1
|
Mijušković A, Wray S, Arrowsmith S. A hydrogen sulphide-releasing non-steroidal anti-inflammatory, ATB-346, significantly attenuates human myometrial contractions. Pharmacol Rep 2025; 77:287-294. [PMID: 39231921 PMCID: PMC11743401 DOI: 10.1007/s43440-024-00643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality. Tocolytics are drugs used to inhibit uterine contractions in cases of imminent preterm birth, however, few are effective in stopping labour once initiated and all have side effects. Combination approaches involving drugs that target multiple signalling pathways that regulate contractions may increase efficacy, reduce dosage and improve tolerability. Both non-steroidal anti-inflammatory drugs (NSAIDs) and hydrogen sulphide (H2S)-releasing compounds can reduce myometrial contractions. In a novel approach we evaluated the tocolytic properties of ATB-346-a H2S-releasing derivative of the NSAID naproxen, shown clinically to reduce pain and inflammation in arthritis. METHODS Using organ baths, paired strips of human myometrium were exposed to increasing concentrations of ATB-346, or equimolar concentrations (10µM and 30µM) of the parent drug, naproxen, or the H2S-releasing moiety, 4-hydroxy-thiobenzamide (TBZ), alone. The ability of ATB-346 versus the individual components of ATB-346 to decrease ex vivo spontaneous contractions was investigated, and the potency was compared to a known H2S donor, Na2S. RESULTS Acute application of Na2S produced a concentration-dependent decrease in force amplitude and force integral (area under the curve) of contraction. ATB-346 produced a more profound decrease in contraction compared to equimolar concentrations of naproxen or TZB alone and was more potent than the equivalent concentration of Na2S. CONCLUSIONS ATB-346 exhibits potent tocolytic properties in human myometrium. These exciting results call for further exploration of ATB-346, with a view to repurposing this or similar drugs as novel therapies for delaying preterm labour.
Collapse
Affiliation(s)
- Ana Mijušković
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Susan Wray
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Sarah Arrowsmith
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
2
|
Ulrich CC, Parker LL, Lambert JA, Baldwin L, Buxton ILO, Etezadi-Amoli N, Leblanc N, Burkin HR. Matrix Metallopeptidase 9 Promotes Contraction in Human Uterine Myometrium. Reprod Sci 2025:10.1007/s43032-024-01778-3. [PMID: 39776427 DOI: 10.1007/s43032-024-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Matrix metallopeptidase 9 (MMP9) is a secreted zinc-dependent peptidase known for extracellular remodeling. MMP9 is elevated in tissues from women experiencing preterm labor, and previous research has shown that the addition of combined matrix metallopeptidases 2 and 9 (MMP2/9) enhances uterine contractions. We hypothesized that adding MMP9 alone would enhance myometrial contractions and that specific MMP9 inhibition would suppress uterine contractions. In myometrial tissue from women undergoing term Caesarean sections, we observed an increased contractile response as measured by area under the curve over time in tissues treated with MMP9 compared to vehicle-treated controls (p = 0.0003). This effect was primarily due to increased contraction frequency in MMP9-treated tissues compared to controls (p < 0.0001). Specific inhibition of MMP9 with the highly selective MMP9 inhibitor 1 (AG-L-66085) reduced contractile responses in myometrial tissues from pregnant women. We observed a reduction in the oxytocin-induced contractile response as measured by area under the curve over time (p < 0.0001) and contraction amplitude (p < 0.0068) in AG-L-66085-treated tissues compared to vehicle-treated controls. To determine the effects of MMP9 inhibition in the absence of exogenous oxytocin, we tested the effects of AG-L-66085 on spontaneous contractions. The area under the curve (p = 0.0415) and amplitude (p = 0.0354) of spontaneous contractions were reduced in response to 1 μM AG-L-66085, and the inhibitory effects increased as the AG-L-66085 concentration increased. Together, these data support the hypothesis that elevated MMP9 promotes myometrial contractions and labor, while its inhibition promotes relaxation.
Collapse
Affiliation(s)
- Craig C Ulrich
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Lauren L Parker
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Janet A Lambert
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Lexa Baldwin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Iain L O Buxton
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Neda Etezadi-Amoli
- Department of Obstetrics and Gynecology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Heather R Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA.
| |
Collapse
|
3
|
Tiwari P, Seth S, Sharma R, Verma R, Narain M, Gupta R. Evaluating cervical mucous inflammatory status as novel predictor for spontaneous onset of labour at term: A prospective observational study. Med J Armed Forces India 2024; 80:S7-S13. [PMID: 39734837 PMCID: PMC11670591 DOI: 10.1016/j.mjafi.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background The objective of this study was to explore the relationship between cervical inflammatory status at term gestation and spontaneous onset of labour. The aim was to search for a cost-effective, readily available, point of care test as predictor for spontaneous onset of labour (SPOL) at term. Methods This prospective observational cohort study was ICMR-STS project. Women who were primigravida with 20-30 years age, term gestation, single-live foetus with cephalic presentation, not in labour, asymptomatic with no evidence of infection and obstetric complications, were included in the study. Cervical mucous samples were subjected to cytological assessment after Giemsa staining and differential count under microscope. Primary outcome measure was the spontaneous onset of labour within 7 days of enrollment; and depending on whether SPOL occurred or not the participants were divided into two groups, Group I and Group II, respectively. Results Out of 47 participants, 23 went into SPOL and included in Group I. We observed significantly increased mean levels of polymorphs (71.7 ± 29 vs. 55 ± 28; p-value 0.03), and raised PLR (12.72 ± 6.89 vs. 7.01 ± 3.4; p-value 0.0007) in group I before onset of labour. Polymorphs showed good sensitivity (73.9%) and specificity (83.3%); and on ROC polymorphs curve was on the left of the reference line which indicated that it has good predictive value for SPOL. Conclusion Predominance of polymorphs in the cervical mucous prior to the onset of labour has emerged as a novel, cost-effective, point of care predictor for SPOL.
Collapse
Affiliation(s)
- Priya Tiwari
- MBBS Student, Government Institute of Medical Sciences, Greater Noida, UP, India
| | - Shikha Seth
- Professor & Head (Obstetrics & Gynaecology) AIIMS, Gorakhpur, UP, India
| | - Ritu Sharma
- Associate Professor (Obstetrics & Gynaecology) Government Institute of Medical Sciences, Greater Noida, UP, India
| | - Ruchi Verma
- Assistant Professor (Obstetrics & Gynaecology) Government Institute of Medical Sciences, Greater Noida, UP, India
| | - Meher Narain
- Senior Resident (Obstetrics & Gynaecology) Government Institute of Medical Sciences, Greater Noida, UP, India
| | - Rakesh Gupta
- Director & Professor, Government Institute of Medical Sciences, Greater Noida, UP, India
| |
Collapse
|
4
|
Lei WJ, Zhang F, Li MD, Pan F, Ling LJ, Lu JW, Myatt L, Sun K, Wang WS. C/EBPδ deficiency delays infection-induced preterm birth. BMC Med 2024; 22:432. [PMID: 39379940 PMCID: PMC11462803 DOI: 10.1186/s12916-024-03650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Parturition is an inflammation process. Exaggerated inflammatory reactions in infection lead to preterm birth. Although nuclear factor kappa B (NF-κB) has been recognized as a classical transcription factor mediating inflammatory reactions, those mediated by NF-κB per se are relatively short-lived. Therefore, there may be other transcription factors involved to sustain NF-κB-initiated inflammatory reactions in gestational tissues in infection-induced preterm birth. METHODS Cebpd-deficient mice were generated to investigate the role of CCAAT enhancer-binding protein δ (C/EBPδ) in lipopolysaccharide (LPS)-induced preterm birth, and the contribution of fetal and maternal C/EBPδ was further dissected by transferring Cebpd-/- or WT embryos to Cebpd-/- or WT dams. The effects of C/EBPδ pertinent to parturition were investigated in mouse and human myometrial and amnion cells. The interplay between C/EBPδ and NF-κB was examined in cultured human amnion fibroblasts. RESULTS The mouse study showed that LPS-induced preterm birth was delayed by Cebpd deficiency in either the fetus or the dam, with further delay being observed in conceptions where both the dam and the fetus were deficient in Cebpd. Mouse and human studies showed that the abundance of C/EBPδ was significantly increased in the myometrium and fetal membranes in infection-induced preterm birth. Furthermore, C/EBPδ participated in LPS-induced upregulation of pro-inflammatory cytokines as well as genes pertinent to myometrial contractility and fetal membrane activation in the myometrium and amnion respectively. A mechanistic study in human amnion fibroblasts showed that C/EBPδ, upon induction by NF-κB, could serve as a supplementary transcription factor to NF-κB to sustain the expression of genes pertinent to parturition. CONCLUSIONS C/EBPδ is a transcription factor to sustain the expression of gene initiated by NF-κB in the myometrium and fetal membranes in infection-induced preterm birth. Targeting C/EBPδ may be of therapeutic value in the treatment of infection-induced preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
5
|
Diao M, Tao Y, Liu Q, Huang L, Li H, Lin X. Rac1 promotes the lipopolysaccharide-induced inflammatory response and contraction-associated proteins (CAPs) expression in mouse uterine smooth muscle cells. Reprod Biol 2024; 24:100896. [PMID: 38833837 DOI: 10.1016/j.repbio.2024.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Activation of the maternal immune system leads to a downstream cascade of proinflammatory events that culminate in the activation of spontaneous uterine contractions, which is associated with preterm birth. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a crucial protein related to cell contraction and inflammation. The main purpose of this study was to explore the role and function of Rac1's regulation of inflammation through in- vivo and in-vitro experiments. Rac1 inhibitor was used in animal model of preterm birth and cells isolated from the uterine tissues of pregnant mice on gestational day 16 were transfected with adenovirus to knockdown or overexpress Rac1 and treated with the Calcium-calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. The expression of Rac1, uterine contraction-associated proteins (CAPs) (COX-2 and Connexin43), and inflammatory cytokines, were assessed by Western blotting and RTPCR. LPS upregulated Rac1, COX-2 and Connexin43 expression in uterine smooth muscle cells (USMCs). The expression of inflammatory cytokines, COX-2, and Connexin43 was significantly decreased in shRac1-transfected cells compared with cells stimulated with LPS only. Rac1 overexpression led to an increase in the expression of inflammatory cytokines, COX-2, and Connexin43. Furthermore, after Rac1 overexpression, KN93 reduced the expression of uterine contraction-associated proteins and inflammatory cytokines. It is thought that the effect of Rac1 on inflammatory cytokine and contraction-associated protein expression in USMCs is mediated by CaMKII. Rac1 can modulate the expression of contraction-associated proteins and inflammatory cytokines through the CaMKII pathway. Rac1 could be an effective therapeutic target for improving the outcome of preterm birth.
Collapse
Affiliation(s)
- Min Diao
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Yunkai Tao
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Qian Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Lu Huang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Hao Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Xuemei Lin
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Nie P, Lan Y, You T, Jia T, Xu H. F-53B mediated ROS affects uterine development in rats during puberty by inducing apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116399. [PMID: 38677070 DOI: 10.1016/j.ecoenv.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as pollutants, can cause palpable environmental and health impacts around the world, as endocrine disruptors, can disrupt endocrine homeostasis and increase the risk of diseases. Chlorinated polyfluoroalkyl ether sulfonate (F-53B), as a substitute for PFAS, was determined to have potential toxicity. Puberty is the stage when sexual organs develop and hormones change dramatically, and abnormal uterine development can increase the risk of uterine lesions and lead to infertility. This study was designed to explore the impact of F-53B on uterine development during puberty. Four-week-old female SD rats were exposed to 0.125 and 6.25 mg/L F-53B during puberty. The results showed that F-53B interfered with growth and sex hormone levels and bound to oestrogen-related receptors, which affected their function, contributed to the accumulation of reactive oxygen species, promoted cell apoptosis and inhibited cell proliferation, ultimately causing uterine dysplasia.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tao You
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tiantian Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
7
|
Bao J, Ma X, Kent LN, Wakle-Prabagaran M, McCarthy R, England SK. BKCa channels are involved in spontaneous and lipopolysaccharide-stimulated uterine contraction in late gestation mice†. Biol Reprod 2024; 110:798-807. [PMID: 38134962 PMCID: PMC11017124 DOI: 10.1093/biolre/ioad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The large-conductance, voltage-gated, calcium (Ca2+)-activated potassium channel (BKCa) is one of the most abundant potassium channels in the myometrium. Previous work conducted by our group has identified a link between inflammation, BKCa channels and excitability of myometrial smooth muscle cells. Here, we investigate the role of BKCa channels in spontaneous and lipopolysaccharide (LPS)-stimulated uterine contraction to gain a better understanding of the relationship between the BKCa channel and uterine contraction in basal and inflammatory states. Uteri of C57BL/6 J mice on gestational day 18.5 (GD18.5) were obtained and either fixed in formalin or used immediately for tension recording or isolation of primary myocytes for patch-clamp. Paraffin sections were used for immunofluorescenctdetection of BKCa and Toll-like receptor (TLR4). For tension recordings, LPS was administered to determine its effect on uterine contractions. Paxilline, a BKCa inhibitor, was used to dissect the role of BKCa in uterine contraction in basal and inflammatory states. Finally, patch-clamp recordings were performed to investigate the relationship between LPS, the BKCa channel and membrane currents in mouse myometrial smooth muscle cells (mMSMCs). We confirmed the expression of BKCa and TLR4 in the myometrium of GD18.5 mice and found that inhibiting BKCa channels with paxilline suppressed both spontaneous and LPS-stimulated uterine contractions. Furthermore, application of BKCa inhibitors (paxilline or iberiotoxin) after LPS inhibited BKCa channel activity in mMSMCs. Moreover, pretreatment with BKCa inhibitor or the TLR4 inhibitor suppressed LPS-activated BKCa currents. Our study demonstrates that BKCa channels are involved in both basal and LPS-stimulated uterine contraction in pregnant mice.
Collapse
Affiliation(s)
- Junjie Bao
- Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey N Kent
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monali Wakle-Prabagaran
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
8
|
Mani A, Hotra J, Blackwell SC, Goetzl L, Refuerzo JS. Mesenchymal Stem Cells Suppress Inflammatory Cytokines in Lipopolysaccharide Exposed Preterm and Term Human Pregnant Myometrial Cells. AJP Rep 2024; 14:e69-e73. [PMID: 38370325 PMCID: PMC10874693 DOI: 10.1055/a-2216-9194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 02/20/2024] Open
Abstract
Objective The objective of this study was to determine the cytokine response in human pregnant preterm and term myometrial cells exposed to lipopolysaccharide (LPS) and cocultured with mesenchymal stem cells (MSCs). Study Design Myometrium was obtained at cesarean delivery in term and preterm patients. Human myometrial cells were exposed to 5 μg/mL LPS for 4 hours followed by 1 μg/mL LPS for 24 hours and were cocultured with MSCs for 24 hours. Culture supernatants were collected at 24 hours and expression of cytokines, including interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and IL-10, was quantified by enzyme-linked immunosorbent assay. Results There was significantly increased expression of the proinflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in preterm myometrial cells treated with LPS compared with untreated preterm myometrial cells. Coculture with MSCs significantly suppressed the proinflammatory cytokine levels in LPS-treated preterm versus treated term myometrial cells. Moreover, MSC cocultured preterm myometrial cells expressed increased levels of the anti-inflammatory cytokines TGF-β and IL-10 compared with treated term myometrial cells. Conclusion MSCs ameliorate LPS-mediated inflammation in preterm human myometrial cells compared with term myometrial cells. Immunomodulatory effects of MSCs mediated through anti-inflammatory cytokine regulation suggest a potential cell-based therapy for preterm birth.
Collapse
Affiliation(s)
- Arunmani Mani
- Department of Obstetrics Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - John Hotra
- Department of Obstetrics Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sean C. Blackwell
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Laura Goetzl
- Department of Obstetrics Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jerrie S. Refuerzo
- Department of Obstetrics Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
9
|
Zangeneh FZ, Hantoushzadeh S. The physiological basis with uterine myometrium contractions from electro-mechanical/hormonal myofibril function to the term and preterm labor. Heliyon 2023; 9:e22259. [PMID: 38034762 PMCID: PMC10687101 DOI: 10.1016/j.heliyon.2023.e22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Most labor-related problems can be attributed to the uterine myometrium muscle, as this irritable tissue must suppress its irritability potential during pregnancy. Unfortunately, fewer studies have investigated the causes of this lack of suppression in preterm labor. Methods We conducted a scoping narrative review using three online databases (PubMed, Scopus, and Science Direct). Results The review focused on ion channel functions in the myometrium, including sodium channels [Na K-ATPase, Na-activated K channels (Slo2), voltage-gated (SCN) Na+, Na+ leaky channels, nonselective (NALCN) channels], potassium channels [KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), intermediate (KCNN4) conductance], and calcium channels [L-Type and T-type Ca2+ channels, calcium-activated chloride channels (CaCC)], as well as hyperpolarization-activated cation channels. These channels' functions are associated with hormonal effects such as oxytocin, estrogen/progesterone, and local prostaglandins. Conclusion Electromechanical/hormonal activity and environmental autocrine factors can serve as the primary practical basis for premature uterine contractions in term/preterm labor. Our findings highlight the significance of.1.the amplitude rate of hyperpolarization and the frequency of contractions,2.changes in the estrogen/progesterone ratio,3.Prostaglandins E/F involvement in initiating potential spikes and the increase of intracytoplasmic Ca2+.This narrative study highlights the range of hyperpolarization and the frequency of myometrium contractions as crucial factors. The synchronized complex progress of estrogen to progesterone ratio and prostaglandins plays a significant role in initiating potential spikes and increasing intracytoplasmic Ca2+, which further influences the contraction process during labor. Insights into myometrium physiology gained from this study may pave the way for much-needed new treatments to reduce problems associated with normal and preterm labor.
Collapse
Affiliation(s)
- Farideh Zafari Zangeneh
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Hantoushzadeh
- Department of Fetal-Maternal Medicine, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
10
|
Riaposova L, Kim SH, Hanyaloglu AC, Sykes L, MacIntyre DA, Bennett PR, Terzidou V. Prostaglandin F2α requires activation of calcium-dependent signalling to trigger inflammation in human myometrium. Front Endocrinol (Lausanne) 2023; 14:1150125. [PMID: 37547305 PMCID: PMC10400332 DOI: 10.3389/fendo.2023.1150125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/06/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Preterm birth is one of the major causes of neonatal morbidity and mortality across the world. Both term and preterm labour are preceded by inflammatory activation in uterine tissues. This includes increased leukocyte infiltration, and subsequent increase in chemokine and cytokine levels, activation of pro-inflammatory transcription factors as NF-κB and increased prostaglandin synthesis. Prostaglandin F2α (PGF2α) is one of the myometrial activators and stimulators. Methods Here we investigated the role of PGF2α in pro-inflammatory signalling pathways in human myometrial cells isolated from term non-labouring uterine tissue. Primary myometrial cells were treated with G protein inhibitors, calcium chelators and/or PGF2α. Nuclear extracts were analysed by TranSignal cAMP/Calcium Protein/DNA Array. Whole cell protein lysates were analysed by Western blotting. mRNA levels of target genes were analysed by RT-PCR. Results The results show that PGF2α increases inflammation in myometrial cells through increased activation of NF-κB and MAP kinases and increased expression of COX-2. PGF2α was found to activate several calcium/cAMP-dependent transcription factors, such as CREB and C/EBP-β. mRNA levels of NF-κB-regulated cytokines and chemokines were also elevated with PGF2α stimulation. We have shown that the increase in PGF2α-mediated COX-2 expression in myometrial cells requires coupling of the FP receptor to both Gαq and Gαi proteins. Additionally, PGF2α-induced calcium response was also mediated through Gαq and Gαi coupling. Discussion In summary, our findings suggest that PGF2α-induced inflammation in myometrial cells involves activation of several transcription factors - NF-κB, MAP kinases, CREB and C/EBP-β. Our results indicate that the FP receptor signals via Gαq and Gαi coupling in myometrium. This work provides insight into PGF2α pro-inflammatory signalling in term myometrium prior to the onset of labour and suggests that PGF2α signalling pathways could be a potential target for management of preterm labour.
Collapse
Affiliation(s)
- Lucia Riaposova
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Sung Hye Kim
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Aylin C. Hanyaloglu
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lynne Sykes
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
- The Parasol Foundation Centre for Women’s Health and Cancer Research, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - David A. MacIntyre
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Phillip R. Bennett
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Vasso Terzidou
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Chelsea and Westminster Hospital National Health Service (NHS) Trust, London, United Kingdom
| |
Collapse
|
11
|
Sharma N, Watkins OC, Chu AHY, Cutfield W, Godfrey KM, Yong HEJ, Chan SY. Myo-inositol: a potential prophylaxis against premature onset of labour and preterm birth. Nutr Res Rev 2023; 36:60-68. [PMID: 34526164 PMCID: PMC7614523 DOI: 10.1017/s0954422421000299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The incidence of preterm birth (PTB), delivery before 37 completed weeks of gestation, is rising in most countries. Several recent small clinical trials of myo-inositol supplementation in pregnancy, which were primarily aimed at preventing gestational diabetes, have suggested an effect on reducing the incidence of PTB as a secondary outcome, highlighting the potential role of myo-inositol as a preventive agent. However, the underlying molecular mechanisms by which myo-inositol might be able to do so remain unknown; these may occur through directly influencing the onset and progress of labour, or by suppressing stimuli that trigger or promote labour. This paper presents hypotheses outlining the potential role of uteroplacental myo-inositol in human parturition and explains possible underlying molecular mechanisms by which myo-inositol might modulate the uteroplacental environment and inhibit preterm labour onset. We suggest that a physiological decline in uteroplacental inositol levels to a critical threshold with advancing gestation, in concert with an increasingly pro-inflammatory uteroplacental environment, permits spontaneous membrane rupture and labour onset. A higher uteroplacental inositol level, potentially promoted by maternal myo-inositol supplementation, might affect lipid metabolism, eicosanoid production and secretion of pro-inflammatory chemocytokines that overall dampen the pro-labour uteroplacental environment responsible for labour onset and progress, thus reducing the risk of PTB. Understanding how and when inositol may act to reduce PTB risk would facilitate the design of future clinical trials of maternal myo-inositol supplementation and definitively address the efficacy of myo-inositol prophylaxis against PTB.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anne H Y Chu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - W Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
12
|
Arman BM, Binder NK, de Alwis N, Beard S, Debruin DA, Hayes A, Tong S, Kaitu'u-Lino TJ, Hannan NJ. Assessment of the tocolytic nifedipine in preclinical primary models of preterm birth. Sci Rep 2023; 13:5646. [PMID: 37024530 PMCID: PMC10079980 DOI: 10.1038/s41598-023-31077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality. Tocolytics are drugs used in cases of imminent preterm birth to inhibit uterine contractions. Nifedipine is a calcium channel blocking agent used to delay threatened spontaneous preterm birth, however, has limited efficacy and lacks preclinical data regarding mechanisms of action. It is unknown if nifedipine affects the pro-inflammatory environment associated with preterm labour pathophysiology and we hypothesise nifedipine only targets myometrial contraction rather than also mitigating inflammation. We assessed anti-inflammatory and anti-contractile effects of nifedipine on human myometrium using in vitro and ex vivo techniques, and a mouse model of preterm birth. We show that nifedipine treatment inhibited contractions in myometrial in vitro contraction assays (P = 0.004 vs. vehicle control) and potently blocked spontaneous and oxytocin-induced contractions in ex vivo myometrial tissue in muscle myography studies (P = 0.01 vs. baseline). Nifedipine treatment did not reduce gene expression or protein secretion of pro-inflammatory cytokines in either cultured myometrial cells or ex vivo tissues. Although nifedipine could delay preterm birth in some mice, this was not consistent in all dams and was overall not statistically significant. Our data suggests nifedipine does not modulate preterm birth via inflammatory pathways in the myometrium, and this may account for its limited clinical efficacy.
Collapse
Affiliation(s)
- Bridget M Arman
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Natasha de Alwis
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Danielle A Debruin
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 3000, Australia
- Australian Institute for Musculoskeletal Science, Victoria University, St AlbansVictoria, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St Albans, Victoria, 3021, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 3000, Australia
- Australian Institute for Musculoskeletal Science, Victoria University, St AlbansVictoria, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St Albans, Victoria, 3021, Australia
| | - Stephen Tong
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | | | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia.
| |
Collapse
|
13
|
Ji K, Chen L, Wang X, Wen B, Yang F, Deng W, Chen Y, Zhang G, Liu H. Integrating single-cell RNA sequencing with spatial transcriptomics reveals an immune landscape of human myometrium during labour. Clin Transl Med 2023; 13:e1234. [PMID: 37095651 PMCID: PMC10126311 DOI: 10.1002/ctm2.1234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The transition of the myometrium from a quiescent to a contractile state during labour is known to involve inflammation, which is characterized by the infiltration of immune cells and the secretion of cytokines. However, the specific cellular mechanisms underlying inflammation in the myometrium during human parturition are not yet fully understood. METHODS Through the analysis of transcriptomics, proteomics, and cytokine arrays, the inflammation in the human myometrium during labour was revealed. By performing single-cell RNA sequencing (scRNA-seq) and spatiotemporal transcriptomic (ST) analyses on human myometrium in term in labour (TIL) and term in non-labour (TNL), we established a comprehensive landscape of immune cells, their transcriptional characteristics, distribution, function and intercellular communications during labour. Histological staining, flow cytometry, and western blotting were applied to validate some results from scRNA-seq and ST. RESULTS Our analysis identified immune cell types, including monocytes, neutrophils, T cells, natural killer (NK) cells and B cells, present in the myometrium. TIL myometrium had a higher proportion of monocytes and neutrophils than TNL myometrium. Furthermore, the scRNA-seq analysis showed an increase in M1 macrophages in TIL myometrium. CXCL8 expression was mainly observed in neutrophils and increased in TIL myometrium. CCL3 and CCL4 were principally expressed in M2 macrophages and neutrophils-6, and decreased during labour; XCL1 and XCL2 were specifically expressed in NK cells, and decreased during labour. Analysis of cytokine receptor expression revealed an increase in IL1R2, which primarily expressed in neutrophils. Finally, we visualized the spatial proximity of representative cytokines, contraction-associated genes, and corresponding receptors in ST to demonstrate their location within the myometrium. CONCLUSIONS Our analysis comprehensively revealed changes in immune cells, cytokines, and cytokine receptors during labour. It provided a valuable resource to detect and characterize inflammatory changes, yielding insights into the immune mechanisms underlying labour.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fan Yang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenfeng Deng
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guozheng Zhang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
The latent phase of labor. Am J Obstet Gynecol 2023; 228:S1017-S1024. [PMID: 36973092 DOI: 10.1016/j.ajog.2022.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 03/17/2023]
Abstract
The latent phase of labor extends from the initiation of labor to the onset of the active phase. Because neither margin is always precisely identifiable, the duration of the latent phase often can only be estimated. During this phase, the cervix undergoes a process of rapid remodeling, which may have begun gradually weeks before. As a consequence of extensive changes in its collagen and ground substance, the cervix softens, becomes thinner and dramatically more compliant, and may dilate modestly. All of these changes prepare the cervix for the more rapid dilatation that will occur during the active phase to follow. For the clinician, it is important to recognize that the latent phase may normally extend for many hours. The normal limit for the duration of the latent phase should be considered to be approximately 20 hours in a nullipara and 14 hours in a multipara. Factors that have been associated with a prolonged latent phase include deficient prelabor or intrapartum cervical remodeling, excessive maternal analgesia or anesthesia, maternal obesity, and chorioamnionitis. Approximately 10% of women with a prolonged latent phase are actually in false labor, and their contractions eventually abate spontaneously. The management of a prolonged latent phase involves either augmenting uterine activity with oxytocin or providing a sedative-induced period of maternal rest. Both are equally effective in advancing the labor to active phase dilatation. A very long latent phase may be a harbinger of other labor dysfunctions.
Collapse
|
15
|
Lopes NA, Ambeskovic M, King SE, Faraji J, Soltanpour N, Falkenberg EA, Scheidl T, Patel M, Fang X, Metz GAS, Olson DM. Environmental Enrichment Promotes Transgenerational Programming of Uterine Inflammatory and Stress Markers Comparable to Gestational Chronic Variable Stress. Int J Mol Sci 2023; 24:ijms24043734. [PMID: 36835144 PMCID: PMC9962069 DOI: 10.3390/ijms24043734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Prenatal maternal stress is linked to adverse pregnancy and infant outcomes, including shortened gestation lengths, low birth weights, cardio-metabolic dysfunction, and cognitive and behavioural problems. Stress disrupts the homeostatic milieu of pregnancy by altering inflammatory and neuroendocrine mediators. These stress-induced phenotypic changes can be passed on to the offspring epigenetically. We investigated the effects of gestational chronic variable stress (CVS) in rats using restraint and social isolation stress in the parental F0 generation and its transgenerational transmission across three generations of female offspring (F1-F3). A subset of F1 rats was housed in an enriched environment (EE) to mitigate the adverse effects of CVS. We found that CVS is transmitted across generations and induces inflammatory changes in the uterus. CVS did not alter any gestational lengths or birth weights. However, inflammatory and endocrine markers changed in the uterine tissues of stressed mothers and their offspring, suggesting that stress is transgenerationally transmitted. The F2 offspring reared in EE had increased birth weights, but their uterine gene expression patterns remained comparable to those of stressed animals. Thus, ancestral CVS induced changes transgenerationally in fetal programming of uterine stress markers over three generations of offspring, and EE housing did not mitigate these effects.
Collapse
Affiliation(s)
- Nayara A. Lopes
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mirela Ambeskovic
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stephanie E. King
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamshid Faraji
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Nasrin Soltanpour
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Erin A. Falkenberg
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Taylor Scheidl
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mansi Patel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Xin Fang
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gerlinde A. S. Metz
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| | - David M. Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| |
Collapse
|
16
|
Cervicovaginal Cytokines to Predict the Onset of Normal and Preterm Labor: a Pseudo-longitudinal Study. Reprod Sci 2023; 30:221-232. [PMID: 35799020 DOI: 10.1007/s43032-022-01007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/12/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory processes associated with human parturition are still not completely understood, not only because the gap between inflammation and the onset of labor has been difficult to study but also because of the limited knowledge about the role of cervicovaginal fluid (CVF) cytokines during the sequence of labor. We aimed to determine whether CVF cytokines could predict the onset of normal and preterm labor. Chemokines and proinflammatory and anti-inflammatory cytokines in CVF were measured in a pseudo-longitudinal manner in healthy women between 12 and 41 weeks gestation with intact fetal membranes before and during the first stage of labor. Women were grouped into five stages, from the absence of uterine activity and cervical changes to regular uterine contractions with cervix dilation > 3 cm (active phase of labor). Of 144 women with spontaneous labor, 96 gave birth at term, 48 gave birth preterm, and both groups displayed similar cytokine concentrations. We found positive correlations between proinflammatory cytokines and the initial sequence of labor, using individual cytokines and score-based data by principal component analysis (IFN-γ, TNF-α, IL-1β, IL-6) as dependent variables. The risk of labor onset increased as the concentrations of IL-6 increased (hazard ratio = 202.09, 95% confidence interval = 24.57-1662.49, P < 0.001). The IL-6 concentration predicted the onset of labor within 12 days of sampling (area under the time-dependent ROC curve = 0.785, 95% confidence interval = 0.693-0.877). Here, we showed that regardless of gestational age, the onset of labor could be predicted by the IL-6 concentration in the CVF, since the initial sequence of spontaneous labor displayed an inflammatory response expressed by the increase in proinflammatory cytokines.
Collapse
|
17
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
18
|
Kotb MA, Kotb A, Talaat S, Shehata SM, El Dessouki N, ElHaddad AA, El Tagy G, Esmat H, Shehata S, Hashim M, Kotb HA, Zekry H, Abd Elkader HM, Kaddah S, Abd El Baky HE, Lotfi N. Congenital aflatoxicosis, mal-detoxification genomics & ontogeny trigger immune-mediated Kotb disease biliary atresia variant: SANRA compliant review. Medicine (Baltimore) 2022; 101:e30368. [PMID: 36181129 PMCID: PMC9524989 DOI: 10.1097/md.0000000000030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biliary atresia (BA) is the most common indication for pediatric liver transplantation. We describe The BA variant: Kotb disease. Liver tissue in the Kotb disease BA is massively damaged by congenital aflatoxicosis resulting in inflammation, adhesions, fibrosis, bile duct proliferation, scarring, cholestasis, focal syncytial giant cell transformation, and typical immune response involving infiltration by CD4+, CD8+, CD68+, CD14+, neutrophil infiltration, neutrophil elastase spill, heavy loads of aflatoxin B1, accelerated cirrhosis, disruption of p53 and GSTPi, and have null glutathione S transferase M1 (GSTM1). All their mothers are heterozygous for GSTM1. This inability to detoxify aflatoxicosis results in progressive inflammatory adhesions and obliterative cholangiopathy early in life. The typical disruption of both p53 and GSTPi causes loss of fidelity of hepatic regeneration. Hence, regeneration in Kotb disease BA typically promotes accelerated cirrhosis. The immune response in Kotb disease BA is for damage control and initiation of regeneration, yet, this friendly fire incurs massive structural collateral damage. The Kotb disease BA is about actual ongoing hepatic entrapment of aflatoxins with lack of ability of safe disposal due to child detoxification-genomics disarray. The Kotb disease BA is a product of the interaction of persistent congenital aflatoxicosis, genetic lack of GSTM1 detoxification, ontogenically impaired activity of other hepatic detoxification, massive neutrophil-elastase, immune-induced damage, and disturbed regeneration. Ante-natal and neonatal screening for aflatoxicosis, avoiding cord milking, and stringent control of aflatoxicosis content of human, poultry and live-stock feeds might prove effective for prevention, prompt diagnosis and management based on our recent understanding of its patho-genomics.
Collapse
Affiliation(s)
- Magd A. Kotb
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
- *Correspondence: (e-mail: )
| | - Ahmed Kotb
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Sahar Talaat
- Department of Pathology, Faculty of Medicine, Cairo University, Egypt
| | - Sherif M. Shehata
- Department of Pediatric Surgery, Faculty of Medicine, Tanta University, Egypt
| | - Nabil El Dessouki
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed A. ElHaddad
- Department of Pediatric Surgery, Faculty of Medicine, Tanta University, Egypt
| | - Gamal El Tagy
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | - Haytham Esmat
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | - Sameh Shehata
- Department of Pediatric Surgery, Faculty of Medicine, Alexandria University, Egypt
| | - Mohamed Hashim
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Hanan A. Kotb
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Egypt
| | - Hanan Zekry
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | | | - Sherif Kaddah
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | | | - Nabil Lotfi
- Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
19
|
Blitek A, Luba M, Szymanska M. Prostacyclin Synthesis and Prostacyclin Receptor Expression in the Porcine Myometrium: Prostacyclin Potential to Regulate Fatty Acid Transporters, Cytokines and Contractility-Related Factors. Animals (Basel) 2022; 12:ani12172237. [PMID: 36077955 PMCID: PMC9454576 DOI: 10.3390/ani12172237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Prostacyclin (prostaglandin I2; PGI2) is an important modulator of vascular functions and is involved in various reproductive processes. PGI2 was also described as a modulator of uterine contractility in several species, including the pig. However, its synthesis and role in the myometrium of the porcine uterus are still not fully described. The objective of this study was to evaluate profiles of PGI2 synthesis and PGI2 receptor expression in the myometrium of gilts throughout the estrous cycle and during early pregnancy and to investigate the in vitro effect of PGI2 on the mRNA expression of factors engaged in smooth muscle contraction, nutrient transport, prostaglandin synthesis and action, and inflammatory response. The obtained results showed that the synthesis of PGI2 changes in the myometrium of pigs during both the estrous cycle and early pregnancy, resulting in much greater concentrations of PGI2 in cyclic than in pregnant gilts. Moreover, PGI2 stimulated the expression of fatty acid transporters and contractility-related calponin 1 and caldesmon 1, whereas it decreased cytokine expression. This study indicates that PGI2 may participate in the regulation of myometrial functions modulating the availability of factors involved in smooth muscle activity and inflammatory reaction in the uterus of pigs. Abstract Although prostacyclin (PGI2) has been well described as a regulator of smooth muscle activity, limited data are available concerning its role in the myometrium of pigs. The present research aimed to examine profiles of PGI2 synthase (PTGIS) and PGI2 receptor (PTGIR) expression and 6-keto PGF1α (a PGI2 metabolite) concentrations in the myometrium of gilts throughout the estrous cycle and during early pregnancy using qPCR, Western blot, and/or ELISA methods. Furthermore, myometrial explants were exposed to iloprost (a stable PGI2 analog) to investigate the effect of PGI2 on the mRNA expression of factors engaged in smooth muscle contraction, nutrient transport, prostaglandin synthesis and action, and inflammatory response. PTGIS mRNA expression was greater in cyclic than in pregnant gilts on days 11–12 after estrus and was accompanied by greater concentrations of 6-keto PGF1α detected in cyclic than in pregnant animals on days 11–20. Iloprost stimulated fatty acid transporters and contractility-related calponin 1 and caldesmon 1 mRNA expression and decreased interleukin 1β and tumor necrosis factor transcript abundance. The obtained results indicate a physiologically relevant role of PGI2 during the estrous cycle in the porcine myometrium with its importance for regulating the expression of contractility-, nutrient transport- and inflammatory response-related factors.
Collapse
|
20
|
Zhang L, Mamillapalli R, Habata S, McAdow M, Taylor HS. Myometrial-derived CXCL12 promotes lipopolysaccharide induced preterm labour by regulating macrophage migration, polarization and function in mice. J Cell Mol Med 2022; 26:2566-2578. [PMID: 35318804 PMCID: PMC9077289 DOI: 10.1111/jcmm.17252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 12/18/2022] Open
Abstract
Preterm birth is a major contributor to neonatal mortality and morbidity. Infection results in elevation of inflammation-related cytokines followed by infiltration of immune cells into gestational tissue. CXCL12 levels are elevated in preterm birth indicating it may have a role in preterm labour (PTL); however, the pathophysiological correlations between CXCL12/CXCR4 signalling and premature labour are poorly understood. In this study, PTL was induced using lipopolysaccharide (LPS) in a murine model. LPS induced CXCL12 RNA and protein levels significantly and specifically in myometrium compared with controls (3-fold and 3.5-fold respectively). Highest levels were found just before the start of labour. LPS also enhanced the infiltration of neutrophils, macrophages and T cells, and induced macrophage M1 polarization. In vitro studies showed that condition medium from LPS-treated primary smooth muscle cells (SMC) induced macrophage migration, M1 polarization and upregulated inflammation-related cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor alpha (TNF-α). AMD3100 treatment in pregnant mice led to a significant decrease in the rate of PTL (70%), prolonged pregnancy duration and suppressed macrophage infiltration into gestation tissue by 2.5-fold. Further, in-vitro treatment of SMC by AMD3100 suppressed the macrophage migration, decreased polarization and downregulated IL-1, IL-6 and TNF-α expression. LPS treatment in pregnant mice induced PTL by increasing myometrial CXCL12, which recruits immune cells that in turn produce inflammation-related cytokines. These effects stimulated by LPS were completely reversed by AMD3100 through blocking of CXCL12/CXCR4 signalling. Thus, the CXCL12/CXCR4 axis presents an excellent target for preventing infection and inflammation-related PTL.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Shutaro Habata
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Molly McAdow
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
21
|
True H, Blanton M, Sureshchandra S, Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol Rev 2022; 308:77-92. [PMID: 35451089 DOI: 10.1111/imr.13080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
A successful human pregnancy requires precisely timed adaptations by the maternal immune system to support fetal growth while simultaneously protecting mother and fetus against microbial challenges. The first trimester of pregnancy is characterized by a robust increase in innate immune activity that promotes successful implantation of the blastocyst and placental development. Moreover, early pregnancy is also a state of increased vulnerability to vertically transmitted pathogens notably, human immunodeficiency virus (HIV), Zika virus (ZIKV), SARS-CoV-2, and Listeria monocytogenes. As gestation progresses, the second trimester is marked by the establishment of an immunosuppressive environment that promotes fetal tolerance and growth while preventing preterm birth, spontaneous abortion, and other gestational complications. Finally, the period leading up to labor and parturition is characterized by the reinstatement of an inflammatory milieu triggering childbirth. These dynamic waves of carefully orchestrated changes have been dubbed the "immune clock of pregnancy." Monocytes in maternal circulation and tissue-resident macrophages at the maternal-fetal interface play a critical role in this delicate balance. This review will summarize the current data describing the longitudinal changes in the phenotype and function of monocyte and macrophage populations in healthy and complicated pregnancies.
Collapse
Affiliation(s)
- Heather True
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Madison Blanton
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
22
|
Pique-Regi R, Romero R, Garcia-Flores V, Peyvandipour A, Tarca AL, Pusod E, Galaz J, Miller D, Bhatti G, Para R, Kanninen T, Hadaya O, Paredes C, Motomura K, Johnson JR, Jung E, Hsu CD, Berry SM, Gomez-Lopez N. A single-cell atlas of the myometrium in human parturition. JCI Insight 2022; 7:153921. [PMID: 35260533 PMCID: PMC8983148 DOI: 10.1172/jci.insight.153921] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
Parturition is a well-orchestrated process characterized by increased uterine contractility, cervical ripening, and activation of the chorioamniotic membranes; yet, the transition from a quiescent to a contractile myometrium heralds the onset of labor. However, the cellular underpinnings of human parturition in the uterine tissues are still poorly understood. Herein, we performed a comprehensive study of the human myometrium during spontaneous term labor using single-cell RNA sequencing (scRNA-Seq). First, we established a single-cell atlas of the human myometrium and unraveled the cell type–specific transcriptomic activity modulated during labor. Major cell types included distinct subsets of smooth muscle cells, monocytes/macrophages, stromal cells, and endothelial cells, all of which communicated and participated in immune (e.g., inflammation) and nonimmune (e.g., contraction) processes associated with labor. Furthermore, integrating scRNA-Seq and microarray data with deconvolution of bulk gene expression highlighted the contribution of smooth muscle cells to labor-associated contractility and inflammatory processes. Last, myometrium-derived single-cell signatures can be quantified in the maternal whole-blood transcriptome throughout pregnancy and are enriched in women in labor, providing a potential means of noninvasively monitoring pregnancy and its complications. Together, our findings provide insights into the contributions of specific myometrial cell types to the biological processes that take place during term parturition.
Collapse
Affiliation(s)
- Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Detroit Medical Center, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Azam Peyvandipour
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Tomi Kanninen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Ola Hadaya
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Carmen Paredes
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | | | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Physiology and
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
23
|
Krasnyi AM, Sadekova AA, Vtorushina VV, Кan NE, Tyutyunnik VL, Krechetova LV. Extracellular DNA levels and cytokine profiles in preterm birth: a cohort study. Arch Gynecol Obstet 2022; 306:1495-1502. [PMID: 35218368 DOI: 10.1007/s00404-022-06456-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/12/2022] [Indexed: 01/23/2023]
Abstract
PURPOSE The content of eight different cytokines, cell-free DNA (cfDNA) and cell-free fetal DNA (cffDNA) in women's plasma during preterm birth (PB) was studied. The purpose of this study was to identify the relationships between the investigated factors and determine their prognostic significance. METHODS Venous blood samples were collected from 45 women with PB and 35 women with full-term labor at 22-31 and 32-36 weeks of gestation, as well as from 17 women during labor at 39-40 weeks of gestation. The concentration of IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF, IFN-γ and TNF-α cytokines in peripheral blood plasma was measured by multiplex method. The level of cfDNA and cffDNA was evaluated using PCR analysis. RESULTS It was found that, the level of IL-6, IL-8 and cfDNA in the blood was significantly increased in women with PB at 22-31 weeks of gestation (p = 0.044, p = 0.001, p < 0.001) and 32-36 weeks of gestation (p = 0.025, p = 0.001, p = 0.002) compared to women with physiological pregnancy at the same terms. The level of cffDNA (p = 0.014) was significantly increased in women with PB at 32-36 weeks of gestation. The IL-8 content had a significant correlation with the cfDNA level in women with PB at all stages of labor and with the cffDNA level in the group who gave birth at 32-36 weeks of gestation. There was no correlation between IL-8, cfDNA and cffDNA, but there was consistency with other cytokines at all studied terms and during delivery in the term-delivery group. CONCLUSION The results of the study suggest that cfDNA is a potential marker of PB and show that the aberrant relationship between cfDNA and IL-8 may be important in the genesis of PB.
Collapse
Affiliation(s)
- Aleksey M Krasnyi
- National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Ac.Oparina str. 4, Moscow, Russia, 117997.
| | - Alsu A Sadekova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Ac.Oparina str. 4, Moscow, Russia, 117997
| | - Valentina V Vtorushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Ac.Oparina str. 4, Moscow, Russia, 117997
| | - Natalia E Кan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Ac.Oparina str. 4, Moscow, Russia, 117997.,I. M. Sechenov First Moscow State Medical UniversityMinistry of Healthcare of Russian Federation, B. Pirogovskaya str. 2-4, Moscow, Russia, 119991
| | - Victor L Tyutyunnik
- National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Ac.Oparina str. 4, Moscow, Russia, 117997
| | - Lyubov V Krechetova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Ac.Oparina str. 4, Moscow, Russia, 117997
| |
Collapse
|
24
|
Lee KS, Kim ES, Kim DY, Song IS, Ahn KH. Association of Gastroesophageal Reflux Disease with Preterm Birth: Machine Learning Analysis. J Korean Med Sci 2021; 36:e282. [PMID: 34751010 PMCID: PMC8575763 DOI: 10.3346/jkms.2021.36.e282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND This study used machine learning and population data for testing the associations of preterm birth with gastroesophageal reflux disease (GERD) and periodontitis. METHODS Retrospective cohort data came from Korea National Health Insurance Service claims data for all women who aged 25-40 years and gave births for the first time as singleton pregnancy during 2015-2017 (405,586 women). The dependent variable was preterm birth during 2015-2017 and the independent variables were GERD (coded as no vs. yes) for each of the years 2002-2014, periodontitis (coded as no vs. yes) for each of the years 2002-2014, age (year) in 2014, socioeconomic status in 2014 measured by an insurance fee, and region (city) (coded as no vs. yes) in 2014. Random forest variable importance was adopted for finding main predictors of preterm birth and testing its associations with GERD and periodontitis. RESULTS Based on random forest variable importance, main predictors of preterm birth during 2015-2017 were socioeconomic status in 2014, age in 2014, GERD for the years 2012, 2014, 2010, 2013, 2007 and 2009, region (city) in 2014 and GERD for the year 2006. The importance rankings of periodontitis were relatively low. CONCLUSION Preterm birth has a stronger association with GERD than with periodontitis. For the prevention of preterm birth, preventive measures for GERD would be essential together with the improvement of socioeconomic status for pregnant women. Especially, it would be vital to promote active counseling for general GERD symptoms (neglected by pregnant women).
Collapse
Affiliation(s)
- Kwang-Sig Lee
- AI Center, Korea University Anam Hospital, Seoul, Korea
| | - Eun Sun Kim
- Department of Gastroenterology, Korea University Anam Hospital, Seoul, Korea
| | - Do-Young Kim
- AI Center, Korea University Anam Hospital, Seoul, Korea
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Seoul, Korea
| | - In-Seok Song
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul, Korea
| | - Ki Hoon Ahn
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Seoul, Korea.
| |
Collapse
|
25
|
Ando K, Hédou JJ, Feyaerts D, Han X, Ganio EA, Tsai ES, Peterson LS, Verdonk F, Tsai AS, Marić I, Wong RJ, Angst MS, Aghaeepour N, Stevenson DK, Blumenfeld YJ, Sultan P, Carvalho B, Stelzer IA, Gaudillière B. A Peripheral Immune Signature of Labor Induction. Front Immunol 2021; 12:725989. [PMID: 34566984 PMCID: PMC8458888 DOI: 10.3389/fimmu.2021.725989] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Approximately 1 in 4 pregnant women in the United States undergo labor induction. The onset and establishment of labor, particularly induced labor, is a complex and dynamic process influenced by multiple endocrine, inflammatory, and mechanical factors as well as obstetric and pharmacological interventions. The duration from labor induction to the onset of active labor remains unpredictable. Moreover, prolonged labor is associated with severe complications for the mother and her offspring, most importantly chorioamnionitis, uterine atony, and postpartum hemorrhage. While maternal immune system adaptations that are critical for the maintenance of a healthy pregnancy have been previously characterized, the role of the immune system during the establishment of labor is poorly understood. Understanding maternal immune adaptations during labor initiation can have important ramifications for predicting successful labor induction and labor complications in both induced and spontaneous types of labor. The aim of this study was to characterize labor-associated maternal immune system dynamics from labor induction to the start of active labor. Serial blood samples from fifteen participants were collected immediately prior to labor induction (baseline) and during the latent phase until the start of active labor. Using high-dimensional mass cytometry, a total of 1,059 single-cell immune features were extracted from each sample. A multivariate machine-learning method was employed to characterize the dynamic changes of the maternal immune system after labor induction until the establishment of active labor. A cross-validated linear sparse regression model (least absolute shrinkage and selection operator, LASSO) predicted the minutes since induction of labor with high accuracy (R = 0.86, p = 6.7e-15, RMSE = 277 min). Immune features most informative for the model included STAT5 signaling in central memory CD8+ T cells and pro-inflammatory STAT3 signaling responses across multiple adaptive and innate immune cell subsets. Our study reports a peripheral immune signature of labor induction, and provides important insights into biological mechanisms that may ultimately predict labor induction success as well as complications, thereby facilitating clinical decision-making to improve maternal and fetal well-being.
Collapse
Affiliation(s)
- Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Julien J Hédou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Eileen S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ivana Marić
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States.,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, United States
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Yair J Blumenfeld
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, United States
| | - Pervez Sultan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Brendan Carvalho
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ina A Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
26
|
Huang Q, Jin X, Li P, Zheng Z, Jiang Y, Liu H. Elevated inflammatory mediators from the maternal-fetal interface to fetal circulation during labor. Cytokine 2021; 148:155707. [PMID: 34560611 DOI: 10.1016/j.cyto.2021.155707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Elevated cytokines, like IL-1βand IL-6, are known to contribute to the pathogenesis of labor. However, the change of inflammatory mediators in maternal-fetal interface to fetal circulation is obscure. STUDY DESIGN AND METHODS We investigated the changes of inflammatory cytokines, chemokines and macrophage in maternal-fetal interface tissues and fetal circulation of women in labor vs. non-labor. Human myometrium, placenta, decidua, fetal membrane and umbilical blood were obtained from in-labor and non-in-labor women who eventually delivered live, singleton infants at term (>37 weeks gestation) by elective caesarean section. Luminex was used to measure the level of cytokines (TNF-α, IL-1β, IL-6, IL-8) and chemokines (MCP-1, GM-CSF, MIP-1α, MIP-1β) in each sample (tissue and umbilical blood). Macrophage infiltration was demonstrated by immunohistochemistry. RESULTS During labor, the level of cytokines TNF-α, IL-1β, IL-6 and IL-8 and chemokine MCP-1 and MIP-1β in myometrium is significantly higher (p < 0.05), than those obtained from non-laboring patients. This increase coincides with the influx of macrophage into the myometrium. In addition, IL-1β and IL-8 (p < 0.05) are also up regulated in fetal membrane during labor compared to non-labor. The cytokines do not change significantly in placenta and decidua tissue. In fetal circulation, IL-6 (p < 0.05) is up regulated in umbilical vein blood in labor group. IL-8 (p = 0.08) in umbilical vein also show an increasing trend during labor. CONCLUSIONS There are markedly elevated inflammatory mediators in maternal-fetal interface during labor. The increased maternal inflammatory factors released into the fetal circulation through placenta circulation at the time of labor. This increase coincides with the influx of macrophage into the pregnancy tissue, suggesting that the inflammatory response might play an important role in the onset of labor.
Collapse
Affiliation(s)
- Qian Huang
- Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Jin
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Pin Li
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zheng Zheng
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanmin Jiang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Darwish A, Ebissy E, Ateya A, El-Sayed A. Single nucleotide polymorphisms, gene expression and serum profile of immune and antioxidant markers associated with postpartum disorders susceptibility in Barki sheep. Anim Biotechnol 2021; 34:327-339. [PMID: 34406916 DOI: 10.1080/10495398.2021.1964984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The objective of this study was to explore the immunological and antioxidant alterations associated with ovine postpartum disorders. Blood samples were collected from 90 adult Barki ewes and allocated into three equal-sized groups (30 ewes each): control group (CG), inflammatory postpartum disorders group (IPG) and non-inflammatory postpartum disorders group (NIPG). PCR-DNA sequencing approach was carried out for TLR4 (256-bp) and SOD (456-bp) genes, and nucleotide sequence variations were noticed to be associated with postpartum disorders resistance/susceptibility. Gene expression profile was also evaluated and levels of IL5, IL6, IL1-ß, TNF alpha, TLR4 and Tollip were significantly up-regulated in ewes affected with postpartum disorders than resistant ones, while SOD and CAT genes pattern elicited an opposite trend. Exploring serum profile also showed a significant increase of IL-1α, IL-1β, IL-6, TNF-α, MDA and NO in IPG compared to their correspond values in NIPG and CG. However, serum levels of IL-10, CAT, GSH and GPx were significantly decreased. This study highlights that SNPs in TLR4 and SOD genes could be genetic markers for postpartum disorders resistance/susceptibility in Barki ewes. Gene expression alongside serum profiles of antioxidant markers could also be used to follow-up the immune status of ewes to build up an effective management protocol.
Collapse
Affiliation(s)
- Asmaa Darwish
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Eman Ebissy
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed El-Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| |
Collapse
|
28
|
Chen Z, Zhang M, Zhao Y, Xu W, Xiang F, Li X, Zhang T, Wu R, Kang X. Hydrogen Sulfide Contributes to Uterine Quiescence Through Inhibition of NLRP3 Inflammasome Activation by Suppressing the TLR4/NF-κB Signalling Pathway. J Inflamm Res 2021; 14:2753-2768. [PMID: 34234503 PMCID: PMC8242154 DOI: 10.2147/jir.s308558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
Abstract
Background The NLRP3 inflammasome plays a critical role in inflammatory responses in various diseases. Our previous study showed that NLRP3 expression was significantly increased in human pregnancy tissue during term labour. Therefore, we explored whether NLRP3 participated in inflammatory responses of preterm and term labour and whether this process could be relieved by H2S, one anti-inflammatory gasotransmitter. Methods Human myometrium was obtained from non-labouring and labouring women. Mouse myometrium was obtained from LPS-induced infectious preterm labour. Uterine smooth muscle cells were isolated from non-labouring women’s myometrial tissues, transfected with siRNA, and treated cells with IL-1β, H2S donor NaHS, NF-κB inhibitor BAY 11–7082 and TLR4 inhibitorTAK-242. The NLRP3 inflammasome, CSE, CBS, TLR4, uterine contraction-associated proteins (CAPs), NF-κB activation and inflammatory cytokine expression were assessed by Western blotting and RT-PCR. Results The NLRP3 inflammasome, TLR4 and activated NF-κB expression were upregulated in human term labour, mouse preterm labour and human uterine smooth muscle cells treated with IL-1β. NLRP3 levels were negatively correlated with CSE and CBS expression. Treatment with the H2S donor NaHS delayed LPS-induced preterm birth in mice and inhibited NLRP3 inflammasome activation. In siNLRP3-transfected cells, there was a significant decrease in the expression of CAPs and inflammatory cytokines compared with IL-1β stimulation. In addition, treatment with the H2S donor NaHS inhibited NLRP3 inflammasome activation, reduced the expression of uterine contraction-associated proteins and inflammatory cytokines and reduced the activation of TLR4 and NF-κB compared with stimulation with IL-1β in human uterine smooth muscle cells. Furthermore, treatment of uterine smooth muscle cells with BAY 11–7082 and TAK-242 found that NLRP3 activation was regulated by the TLR4 and NF-κB pathways. Conclusion H2S suppresses CAP expression and the inflammatory response and contributes to uterine quiescence by inhibiting the TLR4/NF-κB signalling pathway and downstream NLRP3 inflammasome activation. Thus, H2S contributes to uterine quiescence through inhibition of NLRP3 inflammasome activation by suppressing the TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yunzhi Zhao
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wenjuan Xu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tao Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Nold C, Esteves K, Jensen T, Vella AT. Granulocyte-macrophage colony-stimulating factor initiates amniotic membrane rupture and preterm birth in a mouse model. Am J Reprod Immunol 2021; 86:e13424. [PMID: 33772943 DOI: 10.1111/aji.13424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Preterm premature rupture of membranes is associated with 30% of all preterm births. The weakening of amniotic membranes is associated with an increase in matrix metallopeptidases (MMPs) along with a decrease in their inhibitors, tissue inhibitor metallopeptidases (TIMPs). Additionally, granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to weaken fetal membranes in-vitro. We hypothesize pregnant mice treated with GM-CSF lead to increased MMPs:TIMPs resulting in membrane rupture and preterm birth. STUDY DESIGN Pregnant CD-1 mice on gestational day 17 received either an intrauterine injection of GM-CSF or vehicle control. A second series of mice were administered an intrauterine injection of Lipopolysaccharide along with either anti-mouse GM-CSF or control antibody. Mice were evaluated for rupture of membranes and/or preterm birth and the uterus, amniotic fluid, and serum were collected for analysis. RESULTS 87.5% of GM-CSF mice exhibited evidence of membrane rupture or preterm birth, compared with 0% in control mice (p < .001). Treatment with GM-CSF decreased the expression of TNFα (p < .05) while increasing the ratio of MMP2:TIMP1 (p < .05), MMP2:TIMP2 (p < .05), MMP2:TIMP3 (p < .001), MMP9:TIMP1 (p < .01), MMP9:TIMP2 (p < .05), MMP9:TIMP3 (p < .001), and MMP10:TIMP1 (p < .05). Mice treated with LPS and the GM-CSF antibody resulted in a decrease in the ratio of MMP2:TIMP1 (p < .0001) compared with controls. CONCLUSION These studies demonstrate GM-CSF will result in membrane rupture and preterm birth by increasing the ratio MMPs:TIMPs in our animal model. By increasing our understanding of the molecular pathways associated with GM-CSF, we may be able to develop future therapies to prevent preterm birth and reduce neonatal morbidity.
Collapse
Affiliation(s)
- Christopher Nold
- Department of Women's Health, Hartford Hospital, Hartford, CT, USA.,Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Kristyn Esteves
- Department of Obstetrics and Gynecology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
30
|
Steckle V, Shynlova O, Lye S, Bocking A. Low-intensity physical activity may protect pregnant women against spontaneous preterm labour: a prospective case-control study. Appl Physiol Nutr Metab 2021; 46:337-345. [DOI: 10.1139/apnm-2019-0911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate immune system plays a significant role in onset of parturition. Maternal antenatal physical activity can influence immune function and timing of labour. We examined physical activity patterns and concentration of 19 cytokines at 16 and 27 weeks gestational age (GA), in peripheral plasma of 28 asymptomatic women who later had spontaneous preterm labour (SPTL, <37 weeks GA) and 52 women who later delivered at term (TL; ≥37 weeks GA). This nested case-control study used data from the Ontario Birth Study cohort. Exercise was assessed using the International Physical Activity Questionnaire, and cytokines were analyzed using Luminex assays. There was no significant difference in exercise patterns between SPTL and TL subjects. Plasma concentration of interleukin (IL)-10 was significantly higher in SPTL women at 16 and 27 weeks, while tumour necrosis factor alpha (TNF-α), IL-8, and monocyte chemoattractant protein (MCP)-1 concentrations were increased at 27 weeks GA (p < 0.05). Concentration of IL-10 was negatively correlated with the amount of reported walking (ρ = −0.264, p = 0.03). Women should be encouraged to partake in low-intensity exercise throughout pregnancy, as it may confer a protective effect against SPTL through IL-10–mediated pathways. Additionally, plasma cytokine analysis at 27 weeks GA may be useful for predicting SPTL in asymptomatic women. Novelty: In women that delivered preterm, plasma levels of anti-inflammatory cytokine IL-10 were significantly elevated at 16 and 27 weeks of gestation. Plasma levels of IL-10 were negatively correlated with the amount of reported walking. Concentration of IL-8, MCP-1 and TNF-α were increased in plasma of asymptomatic women that subsequently deliver preterm.
Collapse
Affiliation(s)
- Valerie Steckle
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON M5G 1Z5, Canada
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON M5G 1Z5, Canada
| | - Alan Bocking
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
31
|
Jiang Y, Pin L, Shi W, Huang Q, Wang L, Liu H. SAA1 regulates pro-labour mediators in term labour by activating YAP pathway. Mol Cell Biochem 2021; 476:2791-2801. [PMID: 33719002 DOI: 10.1007/s11010-021-04125-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/03/2021] [Indexed: 01/22/2023]
Abstract
Term labour is associated with activation of inflammation which results in myometrial contractility, cervical ripening and decidual/membrane rupture. Serum amyloid A1 (SAA1) is an acute response protein, whose role and underlying regulatory mechanisms in human labour remain unknown. In this study, we found that the mRNA and protein expression of SAA1 in human myometrium at term was increased in labouring tissues compared to non-labouring tissues. In addition, the expression of SAA1 was significantly increased in human primary myometrial cells treated with the pro-inflammatory cytokines interleukin-1 beta (IL-1β) or tumour necrosis factor-alpha (TNF-α). Knockdown of SAA1 using siRNA (siSAA1) resulted in a significant reduction in the expression and secretion of pro-inflammatory cytokines (IL8, IL6), chemokines (CXCL5, CCL2), adhesion molecules (ICAM1, ICAM5) and contraction-associated factors (COX2, PGE2). Mechanistically, the effects of SAA1 were mediated through activation of the Yes-associated protein (YAP) pathway. There was a decrease in the protein expression of phosphorylated YAP (pYAP) after treatment of siSAA1-transfected human primary myometrial cells with IL-1β or TNF-α. Moreover, enhanced expression of YAP reversed the effect of siSAA1 on pro-labour mediators. In conclusion, these experiments demonstrated that SAA1 accelerates the inflammatory response associated with parturition by activating YAP pathway, which may be a novel understanding of the molecular mechanism of labour onset.
Collapse
Affiliation(s)
- Yanmin Jiang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No.9, Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Li Pin
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No.9, Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Weiqun Shi
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No.9, Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Qian Huang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No.9, Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Lele Wang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No.9, Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Huishu Liu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No.9, Jinsui Road, Tianhe District, Guangzhou, 510623, China.
| |
Collapse
|
32
|
McCartney SA, Kachikis A, Huebner EM, Walker CL, Chandrasekaran S, Adams Waldorf KM. Obesity as a contributor to immunopathology in pregnant and non-pregnant adults with COVID-19. Am J Reprod Immunol 2020; 84:e13320. [PMID: 32779790 PMCID: PMC7435524 DOI: 10.1111/aji.13320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has led to a global public health emergency with the need to identify vulnerable populations who may benefit from increased screening and healthcare resources. Initial data suggest that overall, pregnancy is not a significant risk factor for severe coronavirus disease 2019 (COVID-19). However, case series have suggested that maternal obesity is one of the most important comorbidities associated with more severe disease. In obese individuals, suppressors of cytokine signaling are upregulated and type I and III interferon responses are delayed and blunted leading to ineffective viral clearance. Obesity is also associated with changes in systemic immunity involving a wide range of immune cells and mechanisms that lead to low-grade chronic inflammation, which can compromise antiviral immunity. Macrophage activation in adipose tissue can produce low levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Further, adipocyte secretion of leptin is pro-inflammatory and high circulating levels of leptin have been associated with mortality in patients with acute respiratory distress syndrome. The synergistic effects of obesity-associated delays in immune control of COVID-19 with mechanical stress of increased adipose tissue may contribute to a greater risk of pulmonary compromise in obese pregnant women. In this review, we bring together data regarding obesity as a key co-morbidity for COVID-19 in pregnancy with known changes in the antiviral immune response associated with obesity. We also describe how the global burden of obesity among reproductive age women has serious public health implications for COVID-19.
Collapse
Affiliation(s)
| | - Alisa Kachikis
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWAUSA
| | | | | | | | - Kristina M. Adams Waldorf
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWAUSA
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
33
|
Cross JH, Prentice AM, Cerami C. Hepcidin, Serum Iron, and Transferrin Saturation in Full-Term and Premature Infants during the First Month of Life: A State-of-the-Art Review of Existing Evidence in Humans. Curr Dev Nutr 2020; 4:nzaa104. [PMID: 32793848 PMCID: PMC7413980 DOI: 10.1093/cdn/nzaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Neonates regulate iron at birth and in early postnatal life. We reviewed literature from PubMed and Ovid Medline containing data on umbilical cord and venous blood concentrations of hepcidin and iron, and transferrin saturation (TSAT), in human neonates from 0 to 1 mo of age. Data from 59 studies were used to create reference ranges for hepcidin, iron, and TSAT for full-term-birth (FTB) neonates over the first month of life. In FTB neonates, venous hepcidin increases 100% over the first month of life (to reach 61.1 ng/mL; 95% CI: 20.1, 102.0 ng/mL) compared with umbilical cord blood (29.7 ng/mL; 95% CI: 21.1, 38.3 ng/mL). Cord blood has a high concentration of serum iron (28.4 μmol/L; 95% CI: 26.0, 31.1 μmol/L) and levels of TSAT (51.7%; 95% CI: 46.5%, 56.9%). After a short-lived immediate postnatal hypoferremia, iron and TSAT rebounded to approximately half the levels in the cord by the end of the first month. There were insufficient data to formulate reference ranges for preterm neonates.
Collapse
Affiliation(s)
- James H Cross
- Epidemiology and Population Health, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| | - Andrew M Prentice
- Epidemiology and Population Health, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| | - Carla Cerami
- Epidemiology and Population Health, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| |
Collapse
|
34
|
Mani A, Hotra JW, Blackwell SC, Goetzl L, Refuerzo JS. Mesenchymal Stem Cells Attenuate Lipopolysaccharide-Induced Inflammatory Response in Human Uterine Smooth Muscle Cells. AJP Rep 2020; 10:e335-e341. [PMID: 33094025 PMCID: PMC7571561 DOI: 10.1055/s-0040-1715166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023] Open
Abstract
Objective The aim of this study was to determine if mesenchymal stem cells (MSCs) would suppress the inflammatory response in human uterine cells in an in vitro lipopolysaccharide (LPS)-based preterm birth (PTB) model. Study Design Cocultures of human uterine smooth muscle cells (HUtSMCs) and MSCs were exposed to 5 μg/mL LPS for 4 hours and further challenged with 1 μg/mL LPS for a subsequent 24 hours. Key elements of the parturition cascade regulated by toll-like receptors (TLRs) through activation of mitogen-activated protein kinases (MAPKs) were quantified in culture supernatant as biomarkers of MSC modulation. Results Coculture with MSCs significantly attenuated TLR-4, p-JNK, and p- extracellular signal-regulated kinase 1/2 (ERK1/2) protein levels compared with HUtSMCs monoculture ( p = 0.05). In addition, coculture was associated with significant inhibition of proinflammatory cytokines interleukin (IL)-6 and IL-8 ( p = 0.0001) and increased production of anti-inflammatory cytokines IL-10 and transforming growth factor (TGF)-β1 ( p = 0.0001). Conclusion MSCs appear to play a role in significantly attenuating LPS-mediated inflammation via alteration of down-stream MAPKs. MSCs may represent a novel, cell-based therapy in women with increased risk of inflammatory-mediated preterm birth.
Collapse
Affiliation(s)
- Arunmani Mani
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health-McGovern Medical School, Houston, Texas
| | - John W Hotra
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health-McGovern Medical School, Houston, Texas
| | - Sean C Blackwell
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health-McGovern Medical School, Houston, Texas
| | - Laura Goetzl
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health-McGovern Medical School, Houston, Texas
| | - Jerrie S Refuerzo
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health-McGovern Medical School, Houston, Texas
| |
Collapse
|
35
|
Lee JM, Mayall JR, Chevalier A, McCarthy H, Van Helden D, Hansbro PM, Horvat JC, Jobling P. Chlamydia muridarum infection differentially alters smooth muscle function in mouse uterine horn and cervix. Am J Physiol Endocrinol Metab 2020; 318:E981-E994. [PMID: 32315215 DOI: 10.1152/ajpendo.00513.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlamydia trachomatis infection is a primary cause of reproductive tract diseases including infertility. Previous studies showed that this infection alters physiological activities in mouse oviducts. Whether this occurs in the uterus and cervix has never been investigated. This study characterized the physiological activities of the uterine horn and the cervix in a Chlamydia muridarum (Cmu)-infected mouse model at three infection time points of 7, 14, and 21 days postinfection (dpi). Cmu infection significantly decreased contractile force of spontaneous contraction in the cervix (7 and 14 dpi; P < 0.001 and P < 0.05, respectively), but this effect was not observed in the uterine horn. The responses of the uterine horn and cervix to oxytocin were significantly altered by Cmu infection at 7 dpi (P < 0.0001), but such responses were attenuated at 14 and 21 dpi. Cmu infection increased contractile force to prostaglandin (PGF2α) by 53-83% in the uterine horn. This corresponded with the increased messenger ribonucleic acid (mRNA) expression of Ptgfr that encodes for its receptor. However, Cmu infection did not affect contractions of the uterine horn and cervix to PGE2 and histamine. The mRNA expression of Otr and Ptger4 was inversely correlated with the mRNA expression of Il1b, Il6 in the uterine horn of Cmu-inoculated mice (P < 0.01 to P < 0.001), suggesting that the changes in the Otr and Ptger4 mRNA expression might be linked to the changes in inflammatory cytokines. Lastly, this study also showed a novel physiological finding of the differential response to PGE2 in mouse uterine horn and cervix.
Collapse
Affiliation(s)
- Jia Ming Lee
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jemma R Mayall
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, New South Wales, Australia
| | - Anne Chevalier
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, New South Wales, Australia
| | - Huw McCarthy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, New South Wales, Australia
| | - Dirk Van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, New South Wales, Australia
- Centenary Institute and the University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, New South Wales, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
36
|
Targeting bromodomain-containing proteins to prevent spontaneous preterm birth. Clin Sci (Lond) 2020; 133:2379-2400. [PMID: 31750510 DOI: 10.1042/cs20190919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
Preterm birth is a global healthcare challenge. Spontaneous preterm birth (sPTB) is commonly caused by inflammation, yet there are currently no effective therapies available. The Bromodomain and Extra-Terminal motif (BET) proteins, Bromodomain-containing protein (Brd) 2 (Brd2), Brd3 and Brd4 regulate inflammation in non-gestational tissues. The roles of Brd2-4 in human pregnancy are unknown. Using human and mouse models, the present study has identified the Brd proteins part of the process by which inflammation induces parturition. Using human clinical samples, we demonstrate that labor and infection increase the expression of Brds in the uterus and fetal membranes. In primary human myometrial, amnion and decidual cells, we found that global Brd protein inhibition, as well as selective inhibition of Brds, suppressed inflammation-induced expression of mediators involved in myometrial contractions and rupture of fetal membranes. Importantly, studies in the mouse model demonstrate that the pan-Brd inhibitor JQ1 reduced intrauterine inflammation induced by bacterial endotoxin LPS as well as decreasing the effectiveness of LPS to induce parturition. These results implicate BET proteins as novel therapeutic targets for reducing inflammation associated with spontaneous preterm labor.
Collapse
|
37
|
Lim R, Lappas M. Role of IRG1 in Regulating Pro-inflammatory and Pro-labor Mediators in Human Myometrium. Reprod Sci 2020; 27:61-74. [PMID: 32046417 DOI: 10.1007/s43032-019-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/20/2019] [Indexed: 10/25/2022]
Abstract
Preterm birth is a major contributor to neonatal deaths and associated long-term morbidities for the survivors, yet therapies remain elusive, given our incomplete understanding of the mechanisms driving human labor and delivery. Human labor is an inflammatory process, and we investigated whether IRG1 (immunoresponsive gene-1) plays a role in these processes. We demonstrate that IRG1 mRNA and protein expression is significantly increased in myometrium with human term labor, compared to no labor samples, and with preterm (LPS) labor in a mouse model. Pro-labor mediators such as pro-inflammatory cytokines TNF and IL1B, and TLR ligands fsl-1, flagellin, LPS, and poly(I:C) also increased IRG1 mRNA expression in myometrial explants. IRG1 silencing, using siRNA in primary myometrial cells, displayed a decrease in the expression of inflammation-induced pro-inflammatory cytokines (IL1A, IL6), chemokines (CCL2, CXCL1, CXCL8), adhesion molecules (ICAM1, VCAM1), and contractility (PTGFR mRNA expression, prostaglandin F2α release, and in situ gel contraction assay). Our results suggest that IRG1 is involved when pro-labor mediators activate the inflammatory processes of human labor, warranting further investigation.
Collapse
Affiliation(s)
- Ratana Lim
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia
| | - Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
38
|
Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 2020; 98:74-84. [DOI: 10.1139/cjpp-2019-0566] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The heart is capable of responding to stressful situations by increasing muscle mass, which is broadly defined as cardiac hypertrophy. This phenomenon minimizes ventricular wall stress for the heart undergoing a greater than normal workload. At initial stages, cardiac hypertrophy is associated with normal or enhanced cardiac function and is considered to be adaptive or physiological; however, at later stages, if the stimulus is not removed, it is associated with contractile dysfunction and is termed as pathological cardiac hypertrophy. It is during physiological cardiac hypertrophy where the function of subcellular organelles, including the sarcolemma, sarcoplasmic reticulum, mitochondria, and myofibrils, may be upregulated, while pathological cardiac hypertrophy is associated with downregulation of these subcellular activities. The transition of physiological cardiac hypertrophy to pathological cardiac hypertrophy may be due to the reduction in blood supply to hypertrophied myocardium as a consequence of reduced capillary density. Oxidative stress, inflammatory processes, Ca2+-handling abnormalities, and apoptosis in cardiomyocytes are suggested to play a critical role in the depression of contractile function during the development of pathological hypertrophy.
Collapse
Affiliation(s)
- Christopher J. Oldfield
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Todd A. Duhamel
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
39
|
Butler TA, Paul JW, Smith R. Non-conventional signalling in human myometrium by conventional pathways: looking back for a synergistic future. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Initiation of human parturition: signaling from senescent fetal tissues via extracellular vesicle mediated paracrine mechanism. Obstet Gynecol Sci 2019; 62:199-211. [PMID: 31338337 PMCID: PMC6629986 DOI: 10.5468/ogs.2019.62.4.199] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
A better understanding of the underlying mechanisms by which signals from the fetus initiate human parturition is required. Our recent findings support the core hypothesis that oxidative stress (OS) and cellular senescence of the fetal membranes (amnion and chorion) trigger human parturition. Fetal membrane cell senescence at term is a natural physiological response to OS that occurs as a result of increased metabolic demands by the maturing fetus. Fetal membrane senescence is affected by the activation of the p38 mitogen activated kinase-mediated pathway. Similarly, various risk factors of preterm labor and premature rupture of the membranes also cause OS-induced senescence. Data suggest that fetal cell senescence causes inflammatory senescence-associated secretory phenotype (SASP) release. Besides SASP, high mobility group box 1 and cell-free fetal telomere fragments translocate from the nucleus to the cytosol in senescent cells, where they represent damage-associated molecular pattern markers (DAMPs). In fetal membranes, both SASPs and DAMPs augment fetal cell senescence and an associated ‘sterile’ inflammatory reaction. In senescent cells, DAMPs are encapsulated in extracellular vesicles, specifically exosomes, which are 30–150 nm particles, and propagated to distant sites. Exosomes traffic from the fetus to the maternal side and cause labor-associated inflammatory changes in maternal uterine tissues. Thus, fetal membrane senescence and the inflammation generated from this process functions as a paracrine signaling system during parturition. A better understanding of the premature activation of these signals can provide insights into the mechanisms by which fetal signals initiate preterm parturition.
Collapse
|
41
|
Manuel CR, Latuga MS, Ashby CR, Reznik SE. Immune tolerance attenuates gut dysbiosis, dysregulated uterine gene expression and high-fat diet potentiated preterm birth in mice. Am J Obstet Gynecol 2019; 220:596.e1-596.e28. [PMID: 30790568 DOI: 10.1016/j.ajog.2019.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Preterm delivery accounts for 85% of perinatal morbidity and mortality. Although the consumption of a high-fat diet leads to exaggerated proinflammatory responses and, in pregnant women, increased rates of spontaneous preterm birth, the underlying mechanisms remain unclear. OBJECTIVE We sought to elucidate the mechanisms by which maternal consumption of a high-fat diet leads to a dysregulated immune response and, subsequently, spontaneous preterm birth. STUDY DESIGN We performed 16S ribosomal RNA sequencing of DNA extracted and amplified from stool samples and compared the gut microbiomes of lipopolysaccharide-induced pregnant mice that were maintained on a high-fat diet compared to a normal control diet. Next, we sequenced the uterine transcriptomes of the mice. To test the effect of dampening of the immune response on the microbiome, transcriptome, and risk of spontaneous preterm birth, we induced immune tolerance with repetitive subclinical doses (0.2 mg/kg/week for 8 weeks) of endotoxin and performed 16S ribosomal RNA and uterine transcriptome sequencing on these immunotolerized mice. RESULTS High-fat diet potentiates lipopolysaccharide-induced preterm birth by affecting the maternal gut microbiome and uterine transcriptome and reduces antioxidant capacity in a murine model. High-fat diet consumption also increases the colonization of the gut by 5 immunogenic bacteria and decreases colonization by Lachnospiraceae_NK4A136_group. Uteri from high-fat diet mice had increased expression of genes that stimulate the inflammatory-oxidative stress axis, autophagy/apoptosis, and smooth muscle contraction. Repetitive endotoxin priming protects high-fat diet dams from spontaneous preterm birth, increases colonization of the gut by Lachnospiraceae_NK4A136_group, decreases levels of immunogenic bacteria in the gut microbiome, and reduces the number of dysregulated genes after high-fat diet consumption from 994 to 74. CONCLUSION High-fat diet-potentiated spontaneous preterm birth is mediated by increased inflammation, oxidative stress, and gut dysbiosis. The induction of immune tolerance via endotoxin priming reverses these effects and protects high-fat diet dams from spontaneous preterm birth. Based on this work, the role of immunomodulation as a novel therapeutic approach to prevent preterm birth among women who consume high-fat diets should be explored.
Collapse
|
42
|
Saliba J, Coutaud B, Solovieva V, Lu F, Blank V. Regulation of CXCL1 chemokine and CSF3 cytokine levels in myometrial cells by the MAFF transcription factor. J Cell Mol Med 2019; 23:2517-2525. [PMID: 30669188 PMCID: PMC6433675 DOI: 10.1111/jcmm.14136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Cytokines play key roles in a variety of reproductive processes including normal parturition as well as preterm birth. Our previous data have shown that MAFF, a member of the MAF family of bZIP transcription factors, is rapidly induced by pro‐inflammatory cytokines in PHM1‐31 myometrial cells. We performed loss‐of‐function studies in PHM1‐31 cells to identify MAFF dependent genes. We showed that knockdown of MAFF significantly decreased CXCL1 chemokine and CSF3 cytokine transcript and protein levels. Using chromatin immunoprecipitation analyzes, we confirmed CXCL1 and CSF3 genes as direct MAFF targets. We also demonstrated that MAFF function in PHM1‐31 myometrial cells is able to control cytokine and matrix metalloproteinase gene expression in THP‐1 monocytic cells in a paracrine fashion. Our studies provide valuable insights into the MAFF dependent transcriptional network governing myometrial cell function. The data suggest a role of MAFF in parturition and/or infection‐induced preterm labour through modulation of inflammatory processes in the microenvironment.
Collapse
Affiliation(s)
- James Saliba
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Baptiste Coutaud
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Vera Solovieva
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Fangshi Lu
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Ciebiera M, Włodarczyk M, Zgliczyńska M, Łukaszuk K, Męczekalski B, Kobierzycki C, Łoziński T, Jakiel G. The Role of Tumor Necrosis Factor α in the Biology of Uterine Fibroids and the Related Symptoms. Int J Mol Sci 2018; 19:E3869. [PMID: 30518097 PMCID: PMC6321234 DOI: 10.3390/ijms19123869] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of the female genital tract. The incidence of UFs has been estimated at 25⁻80% depending on selected population. The pathophysiology of UFs remains poorly understood. The transformation of smooth muscle cells of the uterus into abnormal, immortal cells, capable of clonal division, is the main component of all pathways leading to UF tumor formation and tumor necrosis factor α (TNF-α) is believed to be one of the key factors in this field. TNF-α is a cell signaling protein involved in systemic inflammation and is one of the cytokines responsible for the acute phase reaction. This publication presents current data about the role of tumor necrosis factor α in the biology of UFs and the related symptoms. TNF-α is an extremely important cytokine associated with the biology of UFs, UF-related symptoms and complaints. Its concentration has been proven to be elevated in women with clinically symptomatic UFs. The presented data suggest the presence of an "inflammation-like" state in women with UFs where TNF-α is a potent inflammation inducer. The origin of numerous symptoms reported by women with UFs can be traced back to the TNF-α influence. Nevertheless, our knowledge on this subject remains limited and TNF-α dependent pathways in UF pathophysiology should be investigated further.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland.
| | - Marta Włodarczyk
- Department of Biochemistry and Clinical Chemistry, Department of Pharmacogenomics, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | - Magdalena Zgliczyńska
- Students' Scientific Association at the I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland.
| | - Krzysztof Łukaszuk
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland.
- INVICTA Fertility and Reproductive Center, 80-172 Gdansk, Poland.
| | - Błażej Męczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-513 Poznan, Poland.
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology Pro-Familia Hospital, 35-001 Rzeszów, Poland.
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| |
Collapse
|
44
|
Lappas M. Runt-related transcription factor 1 (RUNX1) deficiency attenuates inflammation-induced pro-inflammatory and pro-labour mediators in myometrium. Mol Cell Endocrinol 2018; 473:61-71. [PMID: 29330113 DOI: 10.1016/j.mce.2018.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 01/08/2023]
Abstract
Identifying new targets that regulate myometrial activation are required to develop effective treatments to stop preterm labor. Inflammation, which can be induced by sterile or infective insults, plays a role in initiating and maintaining uterine contractions. Several high throughput transcription screening studies have identified an upregulation of runt-related transcription factor 1 (RUNX1) mRNA expression in myometrium with labor. The role of RUNX1 in labor, however, is not known. We report increased RUNX1 during late gestation which was further augmented in labor, suggesting that RUNX1 may be involved in the transition of the myometrium from a quiescent into a contractile state in preparation for labor. By inhibiting the expression of RUNX1, we have established that RUNX1 induces the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, contraction-associated proteins OXR and PTGFR, the uterotonic PGF2α, and the ECM remodelling enzyme MMP9. Targeting RUNX1 may be a novel approach to prevent preterm labor.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
45
|
Shi XM, Wang Y, Zhang Y, Wei Y, Chen L, Zhao YY. Effect of Primary Elective Cesarean Delivery on Placenta Accreta: A Case-Control Study. Chin Med J (Engl) 2018. [PMID: 29521289 PMCID: PMC5865312 DOI: 10.4103/0366-6999.226902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Cesarean section (CS) is an independent risk factor for placenta accreta. Some researchers think that the timing of primary cesarean delivery is associated with placenta accreta in subsequent pregnancies. The aim of this study was to investigate the risk of placenta accreta following primary CS without labor, also called primary elective CS, in a pregnancy complicated with placenta previa. Methods: A retrospective, single-center, case-control study was conducted at Peking University Third Hospital. Relevant clinical data of singleton pregnancies between January 2010 and September 2017 were recorded. The case group included women with placenta accreta who had placenta previa and one previous CS. Control group included women with one previous CS that was complicated with placenta previa. Maternal age, body mass index, gestational age, fetal birth weight, gravity, parity, induced abortion, the rate of women received assisted reproductive technology, other uterine surgery, and primary elective CS were analyzed between the two groups. Results: The rate of primary elective CS (90.1% vs. 69.9%, P < 0.001) was higher, and maternal age was younger (32.7 ± 4.7 years vs. 34.6 ± 4.0 years, P < 0.001) in case group, compared with control group. Case group also had higher gravity and induced abortions compared with the control group (both P < 0.05). Primary CS without labor was associated with significantly increased risk of placenta accreta in a subsequent pregnancy complicated with placenta previa (odds ratio: 3.32; 95% confidential interval: 1.68-6.58). Conclusion: Women with a primary elective CS without labor have a higher chance of developing an accreta in a subsequent pregnancy that is complicated with placenta previa.
Collapse
Affiliation(s)
- Xiao-Ming Shi
- Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing 100191, China
| | - Yan Wang
- Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing 100191, China
| | - Yan Zhang
- Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wei
- Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing 100191, China
| | - Lian Chen
- Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing 100191, China
| | - Yang-Yu Zhao
- Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
46
|
Lim R, Barker G, Lappas M. IRF5 is increased in labouring myometrium and regulates pro-labour mediators. Reproduction 2018; 156:207-218. [PMID: 30006439 DOI: 10.1530/rep-18-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023]
Abstract
Preterm birth continues to be the leading cause of neonatal mortality and morbidities that can extend into adult life. Few treatment options stem from our incomplete understanding of the mechanisms of human labour and delivery. Activation of the inflammatory response in gestational tissues by inflammation and/or infection leads to the production of pro-inflammatory and pro-labour mediators, thus preterm birth. Interferon regulatory factor 5 (IRF5) has recently emerged as an important pro-inflammatory transcription factor involved in acute and chronic inflammation. The aims of this study were to determine the expression of IRF5 in human myometrium from labouring and non-labouring women, and whether IRF5 is involved in the genesis of pro-inflammatory and pro-labour mediators induced by pro-inflammatory cytokines or toll-like receptor (TLR) ligands. IRF5 mRNA and protein expression was significantly higher in human myometrium after spontaneous term labour, compared to non-labouring tissues. IRF5 mRNA expression was also significantly higher in primary myometrial cells treated with the pro-inflammatory cytokines IL1B or TNF. In primary myometrial cells, IRF5 knockdown by siRNA (siIRF5) was associated with significantly decreased expression and or secretion of pro-inflammatory cytokines (IL1A, IL6), chemokines (CXCL8, CCL2), adhesion molecules (ICAM1, VCAM1) and contraction-associated proteins PTGS2, PGF2α and PTGFR when in the presence of IL1B, TNF, fsl-1 (TLR2/6 ligand) or flagellin (TLR5 ligand). siIRF5-transfected cells also displayed decreased NF-κB RELA transcriptional activity in the presence of these preterm birth mediators. Our study suggests a novel role for IRF5 in the regulation of the inflammatory response in human myometrium.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
47
|
Liong S, Lim R, Nguyen-Ngo C, Barker G, Parkington HC, Lappas M. The immunoproteasome inhibitor ONX-0914 regulates inflammation and expression of contraction associated proteins in myometrium. Eur J Immunol 2018; 48:1350-1363. [PMID: 29883518 DOI: 10.1002/eji.201747458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022]
Abstract
There are currently no effective treatments to prevent spontaneous preterm labor. The precise upstream biochemical pathways that regulate the transition between uterine quiescence during pregnancy and contractility during labor remain unclear. It is well known however that intrauterine inflammation, including infection, is commonly associated with preterm labor. In this study, we identified the immunoproteasome subunit low-molecular-mass protein (LMP)7 mRNA expression to be significantly upregulated in laboring human myometrium. Silencing LMP7 using siRNA-targeted knockdown of LMP7 and its inhibitor ONX-0914 in human myometrial cells and tissues decreased proinflammatory cytokines (IL-6), cell chemotaxis (CXCL8, CCL2 expression, and THP-1 migration), cell to cell adhesion (ICAM1 expression and myometrial adhesion), contraction-associated proteins (PTGS2, FP, PGE2, and PGF2α), as well as suppressing contractions in myometrial cells and in myometrial tissues obtained from laboring women. In addition, LMP7 silencing reduced NF-κB RelA activity. ONX-0914 alleviated inflammation (CCL3, CXCL1, PTGS2, and IL-6) in myometrium, placenta, fetal brain, amniotic fluid, and maternal serum induced by LPS in pregnant mice. Collectively, our data suggest a novel role for ONX-014 to suppress uterine activation and contractility associated with preterm labor.
Collapse
Affiliation(s)
- Stella Liong
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ratana Lim
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Helena C Parkington
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
48
|
Delhaes F, Giza SA, Koreman T, Eastabrook G, McKenzie CA, Bedell S, Regnault TRH, de Vrijer B. Altered maternal and placental lipid metabolism and fetal fat development in obesity: Current knowledge and advances in non-invasive assessment. Placenta 2018; 69:118-124. [PMID: 29907450 DOI: 10.1016/j.placenta.2018.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
Abnormal maternal lipid profiles, a hallmark of increased maternal adiposity, are associated with pregnancy complications such as preeclampsia and gestational diabetes, and offspring long-term metabolic health is impacted as the consequence of altered fetal growth, physiology and often iatrogenic prematurity. The metabolic changes associated with maternal obesity and/or the consumption of a high-fat diet effecting maternal lipid profiles and metabolism have also been documented to specifically affect placental function and may underlie changes in fetal development and life course disease risk. The placenta plays a critical role in mediating nutritional signals between the fetus and the mother. As obesity rates in women of reproductive age continue to increase, it is becoming evident that inclusion of new technologies that allow for a better understanding of early changes in placental lipid transport and metabolism, non-invasively in maternal circulation, maternal tissues, placenta, fetal circulation and fetal tissues are needed to aid timely clinical diagnosis and treatment for obesity-associated diseases. This review describes pregnancy lipid homeostasis, with specific reference to changes arising from altered maternal body composition on placental and fetal lipid transport and metabolism. Current technologies for lipid assessments, such as metabolomics and lipidomics may be impacted by labour or mode of delivery and are only reflective of a single time point. This review further addresses how established and novel technologies for assessing lipids and their metabolism non-invasively and during the course of pregnancy may guide future research into the effect of maternal metabolic health on pregnancy outcome, placenta and fetus.
Collapse
Affiliation(s)
- Flavien Delhaes
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Stephanie A Giza
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Tianna Koreman
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Charles A McKenzie
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
49
|
Copley Salem C, Ulrich C, Quilici D, Schlauch K, Buxton ILO, Burkin H. Mechanical strain induced phospho-proteomic signaling in uterine smooth muscle cells. J Biomech 2018; 73:99-107. [PMID: 29661501 DOI: 10.1016/j.jbiomech.2018.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Mechanical strain associated with the expanding uterus correlates with increased preterm birth rates. Mechanical signals result in a cascading network of protein phosphorylation events. These signals direct cellular activities and may lead to changes in contractile phenotype and calcium signaling. In this study, the complete phospho-proteome of uterine smooth muscle cells subjected to mechanical strain for 5 min was compared to un-strained controls. Statistically significant, differential phosphorylation events were annotated by Ingenuity Pathway Analysis to elucidate mechanically induced phosphorylation networks. Mechanical strain leads to the direct activation of ERK1/2, HSPB1, and MYL9, in addition to phosphorylation of PAK2, vimentin, DOCK1, PPP1R12A, and PTPN11 at previously unannotated sites. These results suggest a novel network reaction to mechanical strain and reveal proteins that participate in the activation of contractile mechanisms leading to preterm labor.
Collapse
Affiliation(s)
- Christian Copley Salem
- University of Nevada, Reno School of Medicine, Department of Pharmacology, United States
| | - Craig Ulrich
- University of Nevada, Reno School of Medicine, Department of Pharmacology, United States
| | - David Quilici
- University of Nevada, Reno School of Medicine, Mick Hitchcock Proteomics Center, United States; University of Nevada, Reno School of Medicine, Department of Biochemistry, United States
| | - Karen Schlauch
- University of Nevada, Reno School of Medicine, Department of Biochemistry, United States
| | - Iain L O Buxton
- University of Nevada, Reno School of Medicine, Department of Pharmacology, United States
| | - Heather Burkin
- University of Nevada, Reno School of Medicine, Department of Pharmacology, United States.
| |
Collapse
|
50
|
Nakano T, Kotani T, Imai K, Iitani Y, Ushida T, Tsuda H, Li H, Iwase A, Toyokuni S, Kikkawa F. Effect of molecular hydrogen on uterine inflammation during preterm labour. Biomed Rep 2018; 8:454-460. [PMID: 29732148 DOI: 10.3892/br.2018.1082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
Intrauterine inflammation causes preterm birth and is associated with complications in preterm neonates. Thus, strategies aimed at suppressing inflammation are expected to be effective for reducing the risk of preterm birth and associated complications. Our previous studies demonstrated that molecular hydrogen (H2), an anti-inflammatory agent, prevented inflammation-induced impairment in foetal brain and lung tissues in lipopolysaccharide (LPS)-induced rodent models. However, it remains unclear whether H2 is capable of inhibiting preterm labour. The aim of the current study was therefore to investigate the effect of H2 on inflammation-induced preterm labour. Pregnant ICR (CD-1) mice were divided into three groups: Control, LPS and H2 water (HW) + LPS. In the control and LPS groups, vehicle and LPS, respectively, were intraperitoneally injected on embryonic day 15.5. In the HW + LPS group, HW was administered 24 h prior to LPS injection. The time from LPS administration to parturition was compared between the LPS and HW + LPS groups. Maternal uterus was collected 6 h after LPS injection and the transcript levels of pro-inflammatory cytokines, contractile-associated proteins (CAPs), matrix metalloproteinase-3 (Mmp3) and endothelin-1 (Et1) were assessed by reverse transcription-quantitative polymerase chain reaction. The protein levels of cyclooxygenase-2 (Cox2) were also evaluated by immunohistochemistry. The time from LPS administration to parturition in the HW + LPS group was significantly increased compared with that in the LPS group (33.5±3.4 vs. 18.3±8.8 h, respectively, P=0.020). H2 administration also resulted in significantly higher progesterone levels compared with LPS treatment alone (P=0.002). The transcript levels of pro-inflammatory cytokines, CAPs, Mmp3 and Et1 in the uteri of the LPS group were significantly higher than those in the control group (all P<0.05). In turn, all these levels with the exception of interleukin-8 and Mmp3 were significantly lower in the HW + LPS group compared with those in the LPS group (all P<0.05). The protein levels of Cox2 in the LPS group were also significantly increased compared with those in the control (P<0.001) and HW + LPS (P=0.003) groups. These results suggest that inflammation-induced changes in the uterus may be ameliorated through maternal H2 administration. Preventive H2 administration may therefore represent an effective strategy for the suppression of inflammation during preterm labour.
Collapse
Affiliation(s)
- Tomoko Nakano
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yukako Iitani
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynaecology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Aichi 453-8511, Japan
| | - Hua Li
- Department of Neurology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Akira Iwase
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|