1
|
Yoshimura Y, Kondo H, Takamatsu K, Tsugami Y, Nii T, Isobe N. Modulation of the innate immune system by lipopolysaccharide in the proventriculus of chicks inoculated with or without Newcastle disease and infectious bronchitis vaccine. Poult Sci 2022; 101:101719. [PMID: 35247652 PMCID: PMC8897715 DOI: 10.1016/j.psj.2022.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine whether the innate immune system in the proventriculus of broiler chicks responds to lipopolysaccharide (LPS) and whether this response is affected by Newcastle disease and infectious bronchitis (ND/IB) vaccination. Chicks were divided into 4 groups: nonvaccinated and injected with PBS or LPS (V-L- and V-L+), and vaccinated and injected with PBS or LPS (V+L- and V+L+). Vaccination was performed on d 1, and LPS was intraperitoneally injected on d 11 of age. The gene expression and protein levels of immune molecules, including toll-like receptors (TLRs), antimicrobial peptides, interleukin-1β (IL-1B), and immunoglobulin A (IgA) in the proventriculus and serum were analyzed. The results showed that the expression levels of TLR21 were higher in vaccinated (V+L-) group than in nonvaccinated (V-L-) group. Gene expression levels of avian β-defensin (AvBDs) and cathelicidin1 (Cath1) were not different among the 4 groups. However, the results of LC/MS analysis showed that the levels of AvBD2, 6, and 7 significantly increased after the LPS challenge in nonvaccinated and vaccinated chicks; the levels were higher in V-L+ and V+L+ than in V-L- and V+L-, respectively. Immunohistochemistry analysis revealed the localization of AvBD1 protein in the epithelial cells of the surface glands and AvBD2 and CATH1 in the heterophil-like cells in the lamina propria of surface glands. Although IL-1B gene expression and protein concentration in the proventriculus tissues were not different among the 4 groups, serum IL-1B levels were upregulated by LPS in both the nonvaccinated and vaccinated groups (V-L- vs. V-L+, V+L- vs. V+L+). Moreover, IgA levels in the proventriculus and serum were not affected by vaccination or LPS challenge. Taken together, we conclude that LPS derived from gram-negative bacteria upregulates the innate immune system, including antimicrobial peptide synthesis in the proventriculus. ND/IB vaccination may not significantly affect antimicrobial peptide synthesis in response to LPS; however, TLR21 expression is upregulated by that vaccination. The antimicrobial peptides synthesized in the proventriculus probably prevent pathogenic microbes from entering the intestine.
Collapse
Affiliation(s)
- Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| | - Hiroya Kondo
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Kyota Takamatsu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yusaku Tsugami
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
2
|
Zhao M, Sun Q, Khogali MK, Liu L, Geng T, Yu L, Gong D. Dietary Selenized Glucose Increases Selenium Concentration and Antioxidant Capacity of the Liver, Oviduct, and Spleen in Laying Hens. Biol Trace Elem Res 2021; 199:4746-4752. [PMID: 33506411 DOI: 10.1007/s12011-021-02603-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
Selenized glucose (SeGlu) is a new type of organic selenium (Se) that is synthesized through the selenide reaction of glucose with sodium hydrogen selenide. This study aimed to clarify the influence of dietary SeGlu on the Se level and antioxidant capacity of the liver, oviduct, and spleen in laying hens. A total of 360, 60-week-old, Hy-Line Brown laying hens were randomly assigned to three treatment groups: a basal diet alone (control group, without adding exogenous Se) or the basal diet supplemented with 0.3 mg/kg of Se from sodium selenite (SS) or 5 mg/kg of Se from SeGlu. Diets with SeGlu increased Se levels in the liver, oviduct, and spleen of laying hens (P < 0.001). Compared with the control and SS groups, diet supplemented with SeGlu enhanced glutathione peroxidase (GSH-Px) activity and total antioxidant capacity (T-AOC) in the spleen and oviduct as well as the scavenging ability of 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH•) in the oviduct (P < 0.05). Compared with the control group, SeGlu treatment resulted in an increase (P < 0.05) in GSH-Px activity, T-AOC, and scavenging abilities of hydroxyl radical and DPPH• in the liver of hens. In addition, dietary SeGlu and SS decreased the hydrogen peroxide level in the oviduct in comparison to the control group (P < 0.05). Therefore, dietary SeGlu increased Se concentration and antioxidant ability in the liver, oviduct, and spleen of laying hens. Moreover, SeGlu may be used as a potential source of Se additive in laying hen production.
Collapse
Affiliation(s)
- Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Qingyun Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Mawahib Khedir Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Mohammed ESI, Radey R. Immunomodulation of Antimicrobial Peptides Expression in the Gastrointestinal Tract by Probiotics in Response to Stimulation by Salmonella minnesota Lipopolysaccharides. Probiotics Antimicrob Proteins 2021; 13:1157-1172. [PMID: 33649897 DOI: 10.1007/s12602-021-09746-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 11/27/2022]
Abstract
The aim was to determine whether probiotics-feeding can affect the expression and localization of avian beta defensins (AvBDs) and proinflammatory cytokines in response to Salmonella minnesota lipopolysaccharide (LPS) in the gastrointestinal tract. One-day-old male Chunky broiler chicks were fed with or without 0.4% probiotics for 7 days (P-group and non-P-group, respectively). Then, they were orally challenged with no LPS (0-LPS), 1 µg LPS (1-LPS), or 100 µg LPS (100-LPS) (n = 5, each), in experiment 1, and with no LPS and 1 µg LPS (n = 6, each) in experiment 2. Five hours after LPS challenge, the proventriculi and ceca were collected. A total of seven and eight AvBDs were identified in proventriculus and cecum, respectively. The density of ir-AvBD12 in the surface epithelium of proventriculus increased in the P-group in response to 1-LPS and 100-LPS stimulation. In experiment 1, the expression of two AvBDs in the proventriculus and six AvBDs in the cecum of 1-LPS chicks was higher in P-group than in the non-P-group. Results of experiment 2 showed similar tendency to experiment 1. These results suggest that probiotics-feeding may enhance the immunodefense system mediated by AvBDs but not by cytokine, against infection by Gram-negative bacteria.
Collapse
Affiliation(s)
- Elsayed S I Mohammed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Rasha Radey
- Animal Health Research Institute, Qena Laboratory, Qena, Egypt
| |
Collapse
|
4
|
Effects of Toll-like Receptor Ligands on the Expression of Proinflammatory Cytokines and Avian β-defensins in Cultured Chick Intestine. J Poult Sci 2020; 57:210-222. [PMID: 32733155 PMCID: PMC7387943 DOI: 10.2141/jpsa.0190086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Few studies have focused on the regulation of cytokine and avian β-defensin (AvBDs) expression for promoting immune defense in the avian intestine. The aim of this study was to investigate the effects of different Toll-like receptor (TLR) ligands (bacterial patterns) on the expression of proinflammatory cytokines (IL-1β and IL-6) and AvBDs (AvBD1, AvBD4, and AvBD7) in the chick intestine. The ileum and cecum of 3-day-old chicks were collected and examined histologically to identity the cells present in the intestinal mucosa. Other tissues were cultured with or without the TLR2, TLR4, and TLR21 ligands—Pam3CSK4, LPS, and CpG-ODN—for 1 or 3 h. The gene expression profiles of proinflammatory cytokines and AvBDs were determined in these tissues using real-time polymerase chain reaction (PCR). The mucosa of the ileum and cecum contained leukocytes, luminal and crypt epithelial cells, and other enterocytes. Pam3CSK4 tended to downregulate the expression of IL-1β, AvBD1, and AvBD7 in the ileum but upregulated their expression in the cecum. LPS downregulated the expression of IL-1β and IL-6 in both the ileum and the cecum, whereas it upregulated the expression of AvBD1, AvBD4, and AvBD7 in the cecum. CpG-ODN upregulated the expression of IL-6 and AvBD7 in the ileum and IL-1β in the cecum, and downregulated the expression of IL-1β and AvBDs in the ileum. We suggested that the expression levels of proinflammatory cytokines and AvBDs in the chick intestine are affected by TLR2, TLR4, and TLR21 ligands. Thus, these innate immune factors may be modulated by the luminal microbe complex in the intestine.
Collapse
|
5
|
Terada T, Nii T, Isobe N, Yoshimura Y. Effect of antibiotic treatment on microbial composition and expression of antimicrobial peptides and cytokines in the chick cecum. Poult Sci 2020; 99:3385-3392. [PMID: 32616232 PMCID: PMC7597731 DOI: 10.1016/j.psj.2020.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to confirm whether the expression of innate immune molecules in the chick cecum is altered in association with changes in the composition of the intestinal microbiome that are regulated by treatment with antibiotics. Broiler chicks were administered with antibiotics (penicillin and streptomycin) daily, and the composition of the microbiota, expression of innate immune molecules, and localization of antimicrobial peptides in the chick cecum were examined at day 7 and day 14 using real-time PCR and immunohistochemistry. The oral administration of antibiotics caused an increase in the relative frequency of the Enterobacteriaceae family and a decrease in some gram-negative (Barnesiellaceae) and gram-positive bacterial (Clostridiaceae and Erysipelotrichaceae) families. The gene expression levels of immune molecules, including 4 Toll-like receptors (TLR) (TLR 2, 4, 5, and 21), inflammation-related cytokines (IL-1β, TGFβ3, TGFβ4, and IL-8), and antimicrobial peptides (avian β-defensins and cathelicidins) showed a tendency to decrease with antibiotic treatment at day 7. However, expression levels of TLR21 and some cytokines (IL-1β, TGFβ3, and IL-8) were higher in the cecum or cecal tonsils of the antibiotic-treated group than in those of the control at day 14. The immunoreactive avian β-defensin 2 and cathelicidin 1 proteins were localized in the leukocyte-like cells in the lamina propria, and they were aggregated in the form of small islands. We conclude that the expression of innate immune molecules, including TLR, inflammation-related cytokines, and antimicrobial peptides, in the cecum are altered in association with changes in the density or composition of the luminal microbiota during the early phase of life in chicks.
Collapse
Affiliation(s)
- T Terada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - T Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - N Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Y Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
6
|
Mucosal delivery of CpG-ODN mimicking bacterial DNA via the intrapulmonary route induces systemic antimicrobial immune responses in neonatal chicks. Sci Rep 2020; 10:5343. [PMID: 32210244 PMCID: PMC7093454 DOI: 10.1038/s41598-020-61683-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The transition to antibiotic-free poultry production in the face of pathogenic threats is a very challenging task. We recently demonstrated that mucosal delivery of CpG-ODN alone by the intrapulmonary route (IPL) has potential as an effective alternative to antibiotics in neonatal chicks against Escherichia coli septicemia. How exactly mucosal delivery of CpG-ODN elicits, protective antibacterial immunity remained poorly understood. In this study, CpG-ODN or saline was delivered via the intrapulmonary route to day-old chicks (n = 80/group) using a compressor nebulizer in an acrylic chamber (1 mg/mL CpG-ODN for 15 minutes). In the first part of the study, two days after mucosal CpG-ODN delivery, 40 chicks from each group were challenged subcutaneously with 1 × 105 cfu (n = 20) or 1 × 106 cfu (n = 20) of E. coli and the mortality pattern was monitored for seven days. We found significantly higher survival, better clinical conditions and lower bacterial loads in chicks that received mucosal CpG-ODN. To explore the mechanisms behind this protective immunity, we first looked at the kinetics of the cytokine gene expression (three birds/ group/ time for 10 time-points) in the lungs and spleens. Multiplex gene analysis demonstrated a significant elevation of pro-inflammatory cytokine genes mRNA in the CpG-ODN group. Interleukin (IL)-1β robustly upregulated many folds in the lung after CpG-ODN delivery. Lipopolysaccharide-induced tumor necrosis factor (LITAF) and IL-18 showed expression for an extended period in the lungs. Anti-inflammatory cytokine IL-10 was upregulated in both lungs and spleen, whereas IL-4 showed upregulation in the lungs. To investigate the kinetics of immune enrichment in the lungs and spleens, we performed flow cytometry, histology, and immunohistochemistry at 24, 48 and 72 hrs after CpG-ODN delivery. CpG-ODN treated lungs showed a significant enrichment with monocytes/macrophages and CD4+ and CD8+ T-cell subsets. Macrophages in CpG-ODN treated group demonstrated mature phenotypes (higher CD40 and MHCII expression). Importantly, mucosal delivery of CpG-ODN via the intrapulmonary route significantly enriched immune compartment in the spleen as well, suggesting a systemic effect in neonatal chicks. Altogether, intrapulmonary delivery of aerosolized CpG-ODN orchestrates protective immunity against E. coli septicemia by not only enhancing mucosal immunity but also the systemic immune responses.
Collapse
|
7
|
Effects of Probiotics Lactobacillus reuteri and Clostridium butyricum on the Expression of Toll-like Receptors, Pro- and Anti-inflammatory Cytokines, and Antimicrobial Peptides in Broiler Chick Intestine. J Poult Sci 2020; 57:310-318. [PMID: 33132732 PMCID: PMC7596031 DOI: 10.2141/jpsa.0190098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to determine the effects of live probiotics Lactobacillus reuteri (LR) and Clostridium butyricum (CB) on the expression of genes of innate immune system in broiler chick ileum and cecum. Chicks were administered 500 µl water with or without LR or CB, daily from day 1 to 6 after hatching. The ileum and cecum were collected on day 7 for analysis of gene expression of Toll-like receptors (TLRs), pro- and anti-inflammatory cytokines, and antimicrobial peptides (AMPs) using real-time PCR. The expression of TLR2-1 was upregulated by CB in the ileum and that of TLR5 was upregulated by both LR and CB. Expression of IL-1β and TGFβ2 in the ileum and of TGFβ3 and TGFβ4 in the cecum was upregulated by both LR and CB. The gene expressions of avian β-defensin (AvBD) 1 and cathelicidin (CATH) 3 were upregulated by CB and that of AvBD4 was upregulated by LR in the cecum. However, the expression of CATH2 in the ileum was downregulated by LR. These results suggest that probiotic LR and CB treatments affect a part of the innate defense system in the ileum and cecum by modulating the expression of innate immune molecules including TLRs, pro- and anti-inflammatory cytokines, and AMPs.
Collapse
|
8
|
Kang Y, Nii T, Isobe N, Yoshimura Y. Effects of the routine multiple vaccinations on the expression of innate immune molecules and induction of histone modification in ovarian cells of layer chicks. Poult Sci 2019; 98:5127-5136. [PMID: 31002109 DOI: 10.3382/ps/pez214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to determine whether vaccination affects the expression of Toll-like receptors (TLRs), cytokines, and avian β-defensins (AvBDs) in the chick ovary with or without lipopolysaccharide (LPS) stimulation. White Leghorn female chicks were administered vaccines for infectious bronchitis, Marek's disease, Newcastle disease, and infectious bursal disease during the first 14 D after hatching and ovarian tissues were collected on day 21. Control chicks received water or dilution buffer in place of vaccine. In Experiment 1, ovarian tissues were incubated with or without LPS, and the expression of innate immune molecules (TLRs, cytokines, and AvBDs) was examined by real-time PCR. In Experiment 2, the levels of histone modification in fresh ovarian tissues were examined by western blot analysis. The results of Experiment 1 showed that, in vaccinated chick ovaries, the expression of TLR1-1, 2-1, 2-2, and 21 was up-regulated, whereas that of TLR1-2, 4, and 7 was down-regulated under LPS stimulation. Among the examined 6 cytokines, only the expression of TNFSF15 was lower in the ovaries of vaccinated chicks than that in control with or without LPS stimulation. The expression of AvBD1, 2, 4, and 7 was lower in the ovaries of vaccinated chicks than in control without LPS stimulation, and that of AvBD1 and 2 was also lower even in ovaries incubated with LPS. In Experiment 2, the density of di-methyl histone H3 (Lys9) and acetyl histone H3 (Lys9) was significantly higher in the vaccine group than in the control, whereas di-methyl and tri-methyl histone H3 (Lys4) and acetyl histone H3 (Lys27) did not show differences between the groups. These results suggest that vaccination positively or negatively affects the expression of innate immune molecules in the chick ovary including TLRs, TNFSF15, and AvBDs, and it may be associated with epigenetic reprogramming by histone modifications in ovarian cells. Thus, in the future, it may be possible to develop or improve vaccination programs for the enhancement of the innate immune system in the hen ovary.
Collapse
Affiliation(s)
- Y Kang
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - T Nii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - N Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Y Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
9
|
Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products. Transgenic Res 2018; 28:51-76. [PMID: 30374651 DOI: 10.1007/s11248-018-0101-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian β-defensin-3 (AvβD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvβD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.
Collapse
|
10
|
Changes in the Expression of Avian β-defensins (AvBDs) and Proinflammatory Cytokines and Localization of AvBD2 in the Intestine of Broiler Embryos and Chicks during Growth. J Poult Sci 2018; 55:280-287. [PMID: 32055187 PMCID: PMC6756410 DOI: 10.2141/jpsa.0180022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to determine the changes in the expression of avian β-defensins (AvBDs) and proinflammatory cytokines and localization of AvBD2 in the intestine of broiler embryos and chicks during growth. The ileum and cecum of embryonic day 19 (ED19) and of day-old (D0) and 7-day-old (D7) chicks were collected. Gene expression levels of 10 AvBDs (AvBD1-8, 10, and 12) and proinflammatory cytokines (IL-1β, -6, and -8) were analyzed using real-time PCR, and the localization of AvBD2 was examined by immunohistochemistry. Gene expression levels of AvBD1, 2, 6, and 7 in the ileum and of AvBD1 and 4 in the cecum were higher on ED19 than on D7. The expression of AvBD10 in the ileum was higher on D0 than on ED19, whereas the expression levels of AvBD8 and 10 in the cecum were higher on D0 than on ED19, and that of AvBD10 decreased on D7. The expression levels of IL-1β, -6, and -8 in the ileum were higher on D7 than on ED19. The expression levels of IL-1β, -6, and -8 in the cecum were higher on D0 than on ED19, and that of IL-1β and -6 declined on D7. AvBD2-positive cells were localized in the lamina propria beneath epithelial cells of villi and crypts. The number of positive cells in the cecum mucosa was greater on D0 than on ED19 and D7. In conclusion, we suggest that AvBDs are expressed in the ileum and cecum of embryos and chicks at high levels before or just after hatching and decrease by D7. The expression of proinflammatory cytokines in the ileum increases with growth until D7, but is the highest in the cecum around hatching. These AvBDs and proinflammatory cytokines may play roles in host defense in the intestinal mucosa of embryos and neonatal chicks.
Collapse
|
11
|
Effects of TLR Ligands on the Expression of Cytokines and Possible Role of NF κB in its Process in the Theca of Chicken Follicles. J Poult Sci 2018; 55:288-300. [PMID: 32055188 PMCID: PMC6756407 DOI: 10.2141/jpsa.0170217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/23/2018] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to determine the effects of Toll-like receptor (TLR) ligands on the expression of cytokines in chicken follicular theca and to investigate whether nuclear factor-κB (NFκB) was involved in their expression. The follicular theca was collected from the largest follicle of laying hens. In experiment 1, the expression of TLRs in the theca interna and externa was confirmed using RT-PCR. The theca tissues were then incubated with or without Pam3CSK4 (TLR2 ligand), poly I:C (TLR3 ligand), LPS (TLR4 ligand), flagellin (TLR5 ligand), R837 (TLR7 ligand), and CpG-ODN (TLR21 ligand) for 3 h, after which cytokine expression (IL-1β, IL-6, TNFSF15, CXCLi2, IFN-α, and IFN-β) was analyzed by real-time PCR. In experiment 2, the theca tissues were incubated in a medium containing Pam3CSK4, poly I:C, LPS, or CpG-ODN with or without BAY 11-7085 (an inhibitor of NFκB) for 3 h. The results of experiment 1 revealed that all TLRs, namely TLR1 (type 1 and 2), TLR2 (type 1 and 2), 3–5, 7, 15, and 21, were expressed in the follicular theca, although the PCR products of TLR1 (type 2) and TLR21 were faint. Moreover, Pam3CSK4 and LPS upregulated the expression of all detected cytokines, except for IFN-α, whose expression was not upregulated by LPS. Poly I:C upregulated the expression of IL-6, CXCLi2, and IFN-β, while CpG-ODN upregulated IL-1β. Flagellin and R837 did not significantly affect cytokine expression. In experiment 2, the expression of IL-1β, IL-6, CXCLi2 and IFN-β in tissues incubated with LPS was downregulated by BAY 11-7085. These results suggest that the innate immune system, including pattern recognition by TLRs and cytokine synthesis, occur in the theca; whereas, functions for recognition of bacterial patterns is more developed than that of viral ones.
Collapse
|
12
|
Innate antiviral immune response against infectious bronchitis virus and involvement of prostaglandin E2 in the uterine mucosa of laying hens. Theriogenology 2018; 110:122-129. [PMID: 29407895 DOI: 10.1016/j.theriogenology.2017.12.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/31/2017] [Accepted: 12/31/2017] [Indexed: 11/23/2022]
Abstract
Infectious bronchitis virus (IBV) is an enveloped RNA virus that causes deformities in eggshells. The aim of this study was to investigate the innate immune response to IBV, and to determine whether prostaglandin (PG) E2, which is synthesized during inflammation, is involved in the innate immune response in the uterine mucosa. The effects of intra-oviductal inoculation with attenuated IBV (aIBV) on the expression of viral RNA recognition receptors and innate antiviral factors were examined by real-time PCR and immunohistochemistry, and on PGE2 levels by ELISA. Then, the effects of PGE2 on the expression of innate antiviral factors in cultured uterine mucosal cells were examined. The results showed that the expression of RNA virus pattern recognition receptors (TLR3, 7, and MDA5), antimicrobial peptides (avian β-defensins, including AvBD1, 2, 4-6 and cathelicidins, including CATH1 and 3), and interferons (IFNα, β, γ, λ) were upregulated, and the expression of cyclooxygenase 2 (PG synthase) and the level of PGE2 were increased in the uterine mucosa following aIBV inoculation. The number of AvBD2-positive cells in the mucosa also increased in response to aIBV. In cultured mucosal cells (mainly epithelial), the expression of AvBD4, 10-13 and IFNα, β, and λ was upregulated following incubation with 500 nM PGE2. These results suggest that the expression of viral RNA-recognition receptors, AvBDs, CATHs, and IFNs and PGE2 are induced by the IBV antigen, and that the expression of a different set of AvBDs is also induced by PGE2 in the cultured uterine mucosal cells. These antiviral factors may play a role in the protection of the uterine mucosa from IBV infection.
Collapse
|
13
|
Abdel-Mageed AM, Nii T, Isobe N, Yoshimura Y. Modulatory roles of proinflammatory cytokines on the expression of cathelicidins in the lower regions of the oviduct of laying hens. Cytokine 2017; 99:66-72. [DOI: 10.1016/j.cyto.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/08/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
|
14
|
Ying S, Guo J, Dai Z, Zhu H, Yu J, Ma W, Li J, Akhtar MF, Shi Z. Time course effect of lipopolysaccharide on Toll-like receptors expression and steroidogenesis in the Chinese goose ovary. Reproduction 2017; 153:509-518. [DOI: 10.1530/rep-17-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/06/2017] [Accepted: 02/07/2017] [Indexed: 01/18/2023]
Abstract
The ovary of Chinese goose is easily infected by microorganisms because of the mating behaviour in water, which causes decreased laying performance. This study investigated the time course effect of lipopolysaccharide (LPS) on the steroidogenesis and mRNA expression of Toll-like receptors (TLRs), a class of key pattern recognition receptor, in the breeding goose ovary. The laying geese were treated intravenously with LPS for 0, 6, 12, 24 and 36 h, and all birds were slaughtered approximately 8 h after oviposition. The expression levels of TLRs in the white and yellowish follicles, and granulosa and theca layers of hierarchical follicles were examined by real-time PCR. All 10 members of avian TLR family were differentially expressed among the different follicular tissues. Moreover, at 24 and 36 h after LPS treatment, the hierarchical follicle morphological structure was altered, but the expression levels of TLRs were still higher than the control. Furthermore, during LPS treatment period, the expression pattern of TLRs 2A and 4 genes was similar to that of TLR15 in the white follicles, TLRs 1B, 5 and 15 in the yellowish follicles, TLRs 7 and 15 in the granulosa layer, and TLRs 1A, 2B, 3, 7 and 15 in the theca layer, which had a negative correlation with the kinetics of plasma P4 and E2 concentrations. In conclusion, the mechanism by which pathogen infection inhibited goose follicular growth and further decreased egg production may involve a gradually enhanced inflammatory response and reduced endocrine function. This may be due to stimulated TLRs in the ovary.
Collapse
|
15
|
Kamimura T, Isobe N, Yoshimura Y. Effects of inhibitors of transcription factors, nuclear factor-κB and activator protein 1, on the expression of proinflammatory cytokines and chemokines induced by stimulation with Toll-like receptor ligands in hen vaginal cells. Poult Sci 2017; 96:723-730. [DOI: 10.3382/ps/pew366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
|
16
|
Yoshimura Y, Barua A. Female Reproductive System and Immunology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:33-57. [PMID: 28980228 DOI: 10.1007/978-981-10-3975-1_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Health of the reproductive organs is essential for formation and production of high quality and hygienic eggs. It is of importance to review the structures and functions of female reproductive system for better understanding of the mechanism by which the eggs are formed. The unique functions of ovarian cells for follicular growth and differentiation as well as steroidogenesis and oocyte maturation are regulated by gonadotropins and gonadal steroids. The oviduct is responsible for egg formation, while the unique function to store sperms for a prolonged period takes place in the specific tissue of this organ. The unique innate and adaptive immuno-defense systems that play essential role to prevent infection are developed in the ovary and oviduct. Toll-like receptors (TLRs) that recognize the molecular pattern of microbes and initiate the immunoresponse are expressed in those organs. Avian β-defensins (AvBDs), a member of antimicrobial peptides, are synthesized by the ovarian and oviductal cells. Challenge of those cells by TLR ligands upregulates the expression of proinflammatory cytokines, which in turn stimulate the expression of AvBDs. The adaptive immune system in the ovary and oviduct is also unique, since the migration of lymphocytes is enhanced by estrogens. In contrast to the development of immuno-defense system, spontaneous ovarian cancer and uterine fibroids appear more frequently in chickens than in mammals, and thus chickens could be used as a model for studying these diseases. Thus the avian reproductive organs have unique functions not only for egg formation but also for the immuno-defense system, which is essential for prevention of infection and production of hygienic eggs.
Collapse
Affiliation(s)
- Yukinori Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Animesh Barua
- Departments of Pharmacology, Obstetrics & Gynecology and Pathology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
17
|
Anastasiadou M, Michailidis G. Cytokine activation during embryonic development and in hen ovary and vagina during reproductive age and Salmonella infection. Res Vet Sci 2016; 109:86-93. [PMID: 27892879 DOI: 10.1016/j.rvsc.2016.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/13/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Salmonellosis is one of the most important zoonotic diseases and is usually associated with consumption of Salmonella Enteritidis (SE) contaminated poultry meat or eggs. Contamination with SE is usually the result of infection of the digestive tract, or reproductive organs, especially the ovary and vagina. Thus, knowledge of endogenous innate immune mechanisms operating in the ovary and vagina of hen is an emerging aspect of reproductive physiology. Cytokines are key factors for triggering the immune response and inflammation in chicken to Salmonella infection. The aim of this study was to investigate the expression profile of 11 proinflammatory cytokines in the chicken embryos during embryonic development, as well as in the hen ovary and vagina in vivo, to investigate whether sexual maturation affects their ovarian and vaginal mRNA abundance and to determine whether cytokine expression was constitutive or induced in the ovary and vagina as a response to SE infection. RT-PCR analysis revealed that several cytokines were expressed in the chicken embryos, and in the ovary and vagina of healthy birds. Expression of various cytokines during sexual maturation appeared to be developmentally regulated. In addition, a significant up-regulation of several cytokines in the ovary and vagina of sexually mature SE infected birds compared to healthy birds of the same age was observed. These results suggest a cytokine-mediated immune response mechanism against Salmonella infection in the hen reproductive organs.
Collapse
Affiliation(s)
- M Anastasiadou
- Laboratory of Physiology of Reproduction of Farm Animals, Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - G Michailidis
- Laboratory of Physiology of Reproduction of Farm Animals, Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
18
|
Anastasiadou M, Michailidis G. Transcriptional changes of cytokines in rooster testis and epididymis during sexual maturation stages and Salmonella infection. Anim Reprod Sci 2016; 171:41-8. [PMID: 27289435 DOI: 10.1016/j.anireprosci.2016.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/01/2022]
Abstract
Infection of rooster testis and epididymis by pathogens can lead to impaired fertility, resulting in economic losses in the poultry industry. Antimicrobial protection of rooster reproductive organs is, therefore, an important aspect of reproductive physiology. Salmonellosis is one of the most important zoonotic diseases, caused by Salmonella bacteria including Salmonella Enteritidis (SE) and is usually the result of infection of the reproductive organs. Thus, knowledge of the endogenous innate immune mechanisms of the rooster testis and epididymis is an emerging aspect of reproductive physiology. Cytokines are key factors for stimulating the immune response and inflammation in chickens to Salmonella infection. In the present study the expression profile of 11 pro-inflammatory cytokine genes in the rooster testis and epididymis in vivo and transcriptional changes in these organs during sexual maturation and SE infection were investigated. Gene expression analysis data revealed that in both testis and epididymis nine cytokines namely the IL-1β, IL-6, IL-8, IL-10, IL-12, IL-15, IL-16, IL-17 and IL-18 genes were expressed, while no mRNA transcripts were detected in both organs for IL-2 and IL-4. Furthermore, the expression of various cytokine genes during sexual maturation appeared to be developmentally regulated, while SE infection resulted in a significant up-regulation of IL-1β, -6, -12 and -18 genes in the testis and an increase in the mRNA relative abundance of IL-1β, -6, -12, -16 and -18 in the epididymis of SE-infected sexually mature 28-week-old roosters. These results suggest a cytokine-mediated immune response mechanism against Salmonella infection in the rooster reproductive tract.
Collapse
Affiliation(s)
- M Anastasiadou
- Laboratory of Physiology of Reproduction of Farm Animals, Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - G Michailidis
- Laboratory of Physiology of Reproduction of Farm Animals, Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
19
|
Effects of Virus-associated Molecular Patterns on the Expression of Cathelicidins in the Hen Vagina. J Poult Sci 2016; 53:240-247. [PMID: 32908390 PMCID: PMC7477133 DOI: 10.2141/jpsa.0150180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to examine the expression profiles of the cathelicidins (CATHs) in the oviduct and the effects of Toll-like receptor (TLR) ligands of virus-associated molecular patterns on CATHs expression in the vagina of hens. The mRNA expression of cathelicidins (CATH1, -2, -3 and -B1) in the oviductal mucosa was analyzed by RT-PCR. The effects of viral moleculs on the CATHs expression in the vagina was examined by incubating the mucosal tissue with virus molecular patterns, including poly I:C (dsRNA virus, TLR3 ligand), R848 (ssRNA virus, TLR7 ligand) and CpG-ODN (DNA virus, TLR21 ligand), followed by real-time PCR analysis. The expression of CATH1, CATH2 and CATH3 was identified in all oviductal segments, except for CATH2 which was lacked in the magnum. The expression of CATHB1 was not identified at any segments of the oviduct. Poly I:C down-regulated the expression of CATH1, -2 and -3, whereas R848 up-regulated the expression of CATH1 and CATH3 but down-regulated the expression of CATH2. CpG-ODN did not affect the CATHs expression. These results suggest that mucosal tissues of the oviduct express CATHs to provide the defense mechanism against microbes, and the expression of CATH1 and CATH3 is up-regulated against ssRNA viruses, whereas, dsRNA virus may suppress the expression of CATH1, -2 and -3.
Collapse
|
20
|
Effects of Probiotics on the Expression of Cathelicidins in Response to Stimulation by Salmonella Minnesota Lipopolysaccharides in the Proventriculus and Cecum of Broiler Chicks. J Poult Sci 2016; 53:298-304. [PMID: 32908397 PMCID: PMC7477167 DOI: 10.2141/jpsa.0160064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to determine whether probiotic-feeding affected the expression of cathelicidins (CATHs), a major family of antimicrobial peptides, in response to lipopolysaccharides (LPS) challenge in the proventriculus and cecum of broiler chicks. One-day-old male Chunky broiler chicks were fed with or without 0.4% probiotics for 7 days (P-group and non-P-group, respectively). Then, they were orally challenged with no LPS (0-LPS), 1 µg LPS (1-LPS), or 100 µg LPS (100-LPS) (n=5 in all groups) in Experiment 1, and with no LPS or 1 µg LPS (n=6 in all groups) in Experiment 2. Five hours after LPS challenge, the proventriculi and ceca were collected to analyze CATHs expression. Expression of CATHs was examined at first by reverse transcription-polymerase chain reaction (RT-PCR) using the 0-LPS chicks of non-P-group. The differences in CATHs expression upon probiotics-feeding and LPS were analyzed by real time-PCR. All four CATHs (CATH1, 2, 3 and 4) were expressed in the proventriculus and cecum of chicks. In the proventriculus, the expression of CATHs after LPS challenge did not show significant differences between non-P and P-groups in Experiment 1 and 2. In the cecum, the interactions of the effects of probiotics and LPS on the expression of CATH2 in Experiment 1 and CATH1 and 2 in Experiment 2 were significant, and their expression in 1-LPS chicks was higher in P-group than in non-P-group. However, CATH3 and 4 did not show any significant differences between non-P- and P-groups challenged with LPS. These results suggest that probiotics-feeding may stimulate the immunodefense system mediated by CATH2 and possibly CATH1 against infection by Gram-negative bacteria in the cecum.
Collapse
|
21
|
Johnson GP, Lloyd AT, O'Farrelly C, Meade KG, Fair S. Comparative genomic identification and expression profiling of a novel ?-defensin gene cluster in the equine reproductive tract. Reprod Fertil Dev 2015; 28:RD14345. [PMID: 25924226 DOI: 10.1071/rd14345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/07/2015] [Indexed: 12/21/2022] Open
Abstract
?-defensins are small cationic proteins with potent immunoregulatory and antimicrobial activity. The number of genes encoding these peptides varies significantly between and within species but they have not been extensively characterised in the horse. Here, we describe a systematic search of the Equus caballus genome that identified a cluster of novel ?-defensin genes on Chromosome 22, which is homologous to a cluster on bovine Chromosome 13. Close genomic matches were found for orthologs of 13 of the bovine genes, which were named equine ?-defensins (eBD) 115, eBD116, eBD117, eBD119, eBD120, eBD122a, eBD123, eBD124, eBD125, eBD126, eBD127, eBD129 and eBD132. As expression of the homologous cluster in cattle was limited to the reproductive tract, tissue sections were obtained from the testis, caput, corpus and cauda epididymis and the vas deferens of three stallions and from the ovary, oviduct, uterine horn, uterus, cervix and vagina of three mares. Using a quantitative real-time polymerase chain reaction approach, each of the novel ?-defensin genes showed distinct region-specific patterns of expression. Preferential expression in the caput epididymis of these novel defensins in the stallion and in the oviduct in the mare suggests a possible role in immunoprotection of the equine reproductive tract or in fertility.
Collapse
|
22
|
Yoshimura Y. Avian β-defensins expression for the innate immune system in hen reproductive organs. Poult Sci 2015; 94:804-9. [DOI: 10.3382/ps/peu021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Effects of different TLR ligands on the expression of proinflammatory cytokines and avian β-defensins in the uterine and vaginal tissues of laying hens. Vet Immunol Immunopathol 2014; 162:132-41. [PMID: 25467889 DOI: 10.1016/j.vetimm.2014.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/26/2014] [Accepted: 10/29/2014] [Indexed: 11/21/2022]
Abstract
The immune response in the lower part of the hen oviduct is of crucial importance to protect the oviductal tissues from infection by microorganisms colonizing the cloaca. The aim of this study was to examine whether different TLRs can recognize their ligands to induce expression of proinflammatory cytokines and avian β-defensins (AvBDs) in the uterus and vagina of laying hens. The mucosal tissues of the uterus and vagina were collected, cultured in TCM-199 medium and stimulated with or without different ligands of TLRs, namely Pam3CSK4 (TLR2), poly I:C (TLR3), flagellin (TLR5), R848 (TLR7), and CpG-ODN (TLR21) and incubated for 3h. The expression of IL1B in the uterus and vagina was upregulated by all TLR ligands tested. The expression of IL6 in the uterus and vagina was upregulated by poly I:C and CpG-ODN, and it was also upregulated by Pam3CSK4 in the uterus and by R848 in the vagina. The expression of AvBD10 was upregulated by poly I:C in the uterus and by flagellin in the vagina. On the other hand, the AvBD10 expression was downregulated by CpG-ODN in the uterus and by R848 in the vagina, whereas its expression was not affected by Pam3CSK4 in both tissues. The expression of AvBD12 in the uterus and vagina was not affected by any TLR ligands except for CpG-ODN, which downregulated its expression in the vagina. These results suggest that TLR2, 3, 5, 7, and 21 in the uterine and vaginal tissues are functionally active in inducing proinflammatory cytokines in response to their specific ligands, although the effect on the expression of AvBDs is limited. Proinflammatory cytokines induced by interaction of TLRs with their ligands may play roles in the defense against infectious microorganisms.
Collapse
|
24
|
Effects of avian infectious bronchitis virus antigen on eggshell formation and immunoreaction in hen oviduct. Theriogenology 2014; 81:1129-38. [DOI: 10.1016/j.theriogenology.2014.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/15/2014] [Accepted: 02/01/2014] [Indexed: 11/23/2022]
|