1
|
Djoko Tagne CS, Kouamo MFM, Tchouakui M, Muhammad A, Mugenzi LJL, Tatchou-Nebangwa NMT, Thiomela RF, Gadji M, Wondji MJ, Hearn J, Desire MH, Ibrahim SS, Wondji CS. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. Genetics 2025; 229:1-40. [PMID: 39509710 PMCID: PMC11708915 DOI: 10.1093/genetics/iyae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic mechanisms conferring pyrethroid resistance in malaria vectors are jeopardizing the effectiveness of insecticide-based interventions, and identification of their markers is a key requirement for robust resistance management. Here, using a field-lab-field approach, we demonstrated that a single mutation G454A in the P450 CYP9K1 is driving pyrethroid resistance in the major malaria vector Anopheles funestus in East and Central Africa. Drastic reduction in CYP9K1 diversity was observed in Ugandan samples collected in 2014, with the selection of a predominant haplotype (G454A mutation at 90%), which was completely absent in the other African regions. However, 6 years later (2020) the Ugandan 454A-CYP9K1 haplotype was found predominant in Cameroon (84.6%), but absent in Malawi (Southern Africa) and Ghana (West Africa). Comparative in vitro heterologous expression and metabolism assays revealed that the mutant 454A-CYP9K1 (R) allele significantly metabolizes more type II pyrethroid (deltamethrin) compared with the wild G454-CYP9K1 (S) allele. Transgenic Drosophila melanogaster flies expressing 454A-CYP9K1 (R) allele exhibited significantly higher type I and II pyrethroids resistance compared to flies expressing the wild G454-CYP9K1 (S) allele. Furthermore, laboratory testing and field experimental hut trials in Cameroon demonstrated that mosquitoes harboring the resistant 454A-CYP9K1 allele significantly survived pyrethroids exposure (odds ratio = 567, P < 0.0001). This study highlights the rapid spread of pyrethroid-resistant CYP9K1 allele, under directional selection in East and Central Africa, contributing to reduced bed net efficacy. The newly designed DNA-based assay here will add to the toolbox of resistance monitoring and improving its management strategies.
Collapse
Affiliation(s)
- Carlos S Djoko Tagne
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Mersimine F M Kouamo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Leon J L Mugenzi
- Syngenta Crop Protection Department, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - Nelly M T Tatchou-Nebangwa
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O Box 63, Buea, Cameroon
| | - Riccado F Thiomela
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Mahamat Gadji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College (SRUC), RAVIC, Inverness IV2 5NA, UK
| | - Mbouobda H Desire
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Sulaiman S Ibrahim
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
2
|
Tatchou-Nebangwa NMT, Mugenzi LMJ, Muhammad A, Nebangwa DN, Kouamo MFM, Tagne CSD, Tekoh TA, Tchouakui M, Ghogomu SM, Ibrahim SS, Wondji CS. Two highly selected mutations in the tandemly duplicated CYP6P4a and CYP6P4b genes drive pyrethroid resistance in Anopheles funestus in West Africa. BMC Biol 2024; 22:286. [PMID: 39696366 DOI: 10.1186/s12915-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Gaining a comprehensive understanding of the genetic mechanisms underlying insecticide resistance in malaria vectors is crucial for optimising the effectiveness of insecticide-based vector control methods and developing diagnostic tools for resistance management. Considering the heterogeneity of metabolic resistance in major malaria vectors, the implementation of tailored resistance management strategies is essential for successful vector control. Here, we provide evidence demonstrating that two highly selected mutations in CYP6P4a and CYP6P4b are driving pyrethroid insecticide resistance in the major malaria vector Anopheles funestus, in West Africa. RESULTS Continent-wide polymorphism survey revealed escalated signatures of directional selection of both genes between 2014 and 2021. In vitro insecticide metabolism assays with recombinant enzymes from both genes showed that mutant alleles under selection exhibit higher metabolic efficiency than their wild-type counterparts. Using the GAL4-UAS expression system, transgenic Drosophila flies overexpressing mutant alleles exhibited increased resistance to pyrethroids. These findings were consistent with in silico predictions which highlighted changes in enzyme active site architecture that enhance the affinity of mutant alleles for type I and II pyrethroids. Furthermore, we designed two DNA-based assays for the detection of CYP6P4a-M220I and CYP6P4b-D284E mutations, showing their current confinement to West Africa. Genotype/phenotype correlation analyses revealed that these markers are strongly associated with resistance to types I and II pyrethroids and combine to drastically reduce killing effects of pyrethroid bed nets. CONCLUSIONS Overall, this study demonstrated that CYP6P4a and CYP6P4b contribute to pyrethroid resistance in An. funestus and provided two additional insecticide resistance molecular diagnostic tools that would contribute to monitoring and better management of resistance.
Collapse
Affiliation(s)
- Nelly M T Tatchou-Nebangwa
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon.
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano PMB, Kano, 3011, Nigeria
| | - Derrick N Nebangwa
- Randall Center for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mersimine F M Kouamo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
| | - Carlos S Djoko Tagne
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Theofelix A Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
| | - Stephen M Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Sulaiman S Ibrahim
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry, Bayero University, Kano PMB, Kano, 3011, Nigeria
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
3
|
Gadji M, Kengne-Ouafo JA, Tchouakui M, Wondji MJ, Mugenzi LMJ, Hearn J, Boyomo O, Wondji CS. Genome-wide association studies unveil major genetic loci driving insecticide resistance in Anopheles funestus in four eco-geographical settings across Cameroon. BMC Genomics 2024; 25:1202. [PMID: 39695386 DOI: 10.1186/s12864-024-11148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Insecticide resistance is jeopardising malaria control efforts in Africa. Deciphering the evolutionary dynamics of mosquito populations country-wide is essential for designing effective and sustainable national and subnational tailored strategies to accelerate malaria elimination efforts. Here, we employed genome-wide association studies through pooled template sequencing to compare four eco-geographically different populations of the major vector, Anopheles funestus, across a South North transect in Cameroon, aiming to identify genomic signatures of adaptive responses to insecticides. RESULTS Our analysis revealed limited population structure within Northern and Central regions (FST<0.02), suggesting extensive gene flow, while populations from the Littoral/Coastal region exhibited more distinct genetic patterns (FST>0.049). Greater genetic differentiation was observed at known resistance-associated loci, resistance-to-pyrethroids 1 (rp1) (2R chromosome) and CYP9 (X chromosome), with varying signatures of positive selection across populations. Allelic variation between variants underscores the pervasive impact of selection pressures, with rp1 variants more prevalent in Central and Northern populations (FST>0.3), and the CYP9 associated variants more pronounced in the Littoral/Coastal region (FST =0.29). Evidence of selective sweeps was supported by negative Tajima's D and reduced genetic diversity in all populations, particularly in Central (Elende) and Northern (Tibati) regions. Genomic variant analysis identified novel missense mutations and signatures of complex genomic alterations such as duplications, deletions, transposable element (TE) insertions, and chromosomal inversions, all associated with selective sweeps. A 4.3 kb TE insertion was fixed in all populations with Njombe Littoral/Coastal population, showing higher frequency of CYP9K1 (G454A), a known resistance allele and TE upstream compared to elsewhere. CONCLUSION Our study uncovered regional variations in insecticide resistance candidate variants, emphasizing the need for a streamlined DNA-based diagnostic assay for genomic surveillance across Africa. These findings will contribute to the development of tailored resistance management strategies crucial for addressing the dynamic challenges of malaria control in Cameroon.
Collapse
Affiliation(s)
- Mahamat Gadji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- The University of Yaoundé 1, P.O BOX 812, Yaoundé, Cameroon.
| | - Jonas A Kengne-Ouafo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Pembroke Place Liverpool L3 5QA UK, Liverpool, UK
| | - Leon M J Mugenzi
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland's Rural College (SRUC), RAVIC, 9 Inverness Campus, Inverness, UK
| | - Onana Boyomo
- The University of Yaoundé 1, P.O BOX 812, Yaoundé, Cameroon
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Liverpool School of Tropical Medicine, Pembroke Place Liverpool L3 5QA UK, Liverpool, UK.
| |
Collapse
|
4
|
Boddé M, Nwezeobi J, Korlević P, Makunin A, Akone-Ella O, Barasa S, Gadji M, Hart L, Kaindoa EW, Love K, Lucas ER, Lujumba I, Máquina M, Nagi S, Odero JO, Polo B, Sangbakembi C, Dadzie S, Koekemoer LL, Kwiatkowski D, McAlister E, Ochomo E, Okumu F, Paaijmans K, Tchouassi DP, Wondji CS, Ayala D, Durbin R, Miles A, Lawniczak MKN. Genomic diversity of the African malaria vector Anopheles funestus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628470. [PMID: 39763861 PMCID: PMC11702533 DOI: 10.1101/2024.12.14.628470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Anopheles funestus s.s. is a formidable human malaria vector across sub-Saharan Africa. To understand how the species is evolving, especially in response to malaria vector control, we sequenced 656 modern specimens (collected 2014-2018) and 45 historic specimens (collected 1927-1967) from 16 African countries. We find high levels of genetic variation with clear and stable continental patterns. Six segregating inversions might be involved in adaptation of local ecotypes. Strong recent signals of selection centred on canonical insecticide resistance genes are shared by multiple populations. A promising gene drive target in An. gambiae is highly conserved in An. funestus. This work represents a significant advance in our understanding of the genetic diversity and population structure of An. funestus and will enable smarter targeted malaria control.
Collapse
Affiliation(s)
- Marilou Boddé
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Institut Pasteur, Antananarivo, Madagascar
| | | | | | - Alex Makunin
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | | | - Mahamat Gadji
- Centre for Research In Infectious Disease, Yaounde, Cameroon
| | - Lee Hart
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Katie Love
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Eric R. Lucas
- Liverpool School of Tropical Medicine, United Kingdom
| | | | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Sanjay Nagi
- Liverpool School of Tropical Medicine, United Kingdom
| | | | | | | | - Samuel Dadzie
- Noguchi Memorial Institute for Medical Research, Legon, Ghana
| | | | | | | | | | | | | | | | | | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- Institut Pasteur, Antananarivo, Madagascar
| | | | | | | |
Collapse
|
5
|
Guo YA, Si FL, Han BZ, Qiao L, Chen B. Identification and functional validation of P450 genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera Culicidae). Acta Trop 2024; 260:107413. [PMID: 39343287 DOI: 10.1016/j.actatropica.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Cytochrome P450 monooxygenases (P450s), a multifunctional protein superfamily, are one of three major classes of detoxification enzymes. However, the diversity and functions of P450 genes from pyrethroid-resistant populations of Anopheles sinensis have not been fully explored. In this study, P450 genes associated with pyrethroid resistance were systematically screened using RNA-seq in three field pyrethroid-resistant populations (AH-FR, CQ-FR, YN-FR) and one laboratory resistant strain (WX-LR) at developmental stages, tissues, and post blood-meal in comparison to the laboratory susceptible strain (WX-LS) in An. sinensis. Importantly, the expression of significantly upregulated P450s was verified using RT-qPCR, and the function of selected P450s in pyrethroid detoxification was determined with RNA interference using four laboratory pyrethroid-resistant strains (WX-LR, AH-LR, CQ-LR, YN-LR). Sixteen P450 genes were significantly upregulated in at least one field-resistant population, and 44 were significantly upregulated in different developmental stages, tissues or post blood-meal. A total of 19 P450s were selected to verify their association with pyrethroid resistance, and four of them (AsCYP6P3v1, AsCYP6P3v2, AsCYP9J10, and AsCYP9K1) demonstrated significant upregulation in laboratory pyrethroid-resistant strains using RT-qPCR. Knockdown of these four genes all significantly reduced pyrethroid resistance and increased the mortality by 57.19% (AsCYP6P3v1 and AsCYP6P3v2 knockdown group), 38.39% (AsCYP9K1 knockdown group) and 48.87% (AsCYP9J10 knockdown group) in An. sinensis by RNAi, which determined the pyrethroid detoxification function of these four genes. This study revealed the diversity of P450 genes and provided functional evidence for four P450s in pyrethroid detoxification in An. sinensis for the first time, which increases our understanding of the pyrethroid resistance mechanism, and is of potential value for pyrethroid resistance detection and surveillance.
Collapse
Affiliation(s)
- Ying-Ao Guo
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Bao-Zhu Han
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bin Chen
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
6
|
Logan RAE, Mäurer JB, Wapler C, Ingham VA. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are associated with insecticide resistance in the major malaria vectors Anopheles gambiae s.l. and Anopheles funestus. Sci Rep 2024; 14:19821. [PMID: 39191827 DOI: 10.1038/s41598-024-70713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Malaria remains one of the highest causes of morbidity and mortality, with 249 million cases and over 608,000 deaths in 2022. Insecticides, which target the Anopheles mosquito vector, are the primary method to control malaria. The widespread nature of resistance to the most important insecticide class, the pyrethroids, threatens the control of this disease. To reverse the stall in malaria control there is urgent need for new vector control tools, which necessitates understanding the molecular basis of pyrethroid resistance. In this study we utilised multi-omics data to identify uridine-diphosphate (UDP)-glycosyltransferases (UGTs) potentially involved in resistance across multiple Anopheles species. Phylogenetic analysis identifies sequence similarities between Anopheline UGTs and those involved in agricultural pesticide resistance to pyrethroids, pyrroles and spinosyns. Expression of five UGTs was characterised in An. gambiae and An. coluzzii to determine constitutive over-expression, induction, and tissue specificity. Furthermore, a UGT inhibitor, sulfinpyrazone, restored susceptibility to pyrethroids and DDT in An. gambiae, An. coluzzii, An. arabiensis and An. funestus, the major African malaria vectors. Taken together, this study provides clear association of UGTs with pyrethroid resistance as well as highlighting the potential use of sulfinpyrazone as a novel synergist for vector control.
Collapse
Affiliation(s)
- Rhiannon Agnes Ellis Logan
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Julia Bettina Mäurer
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Charlotte Wapler
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Victoria Anne Ingham
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Tchouakui M, Ibrahim SS, Mangoua MK, Thiomela RF, Assatse T, Ngongang-Yipmo SL, Muhammad A, Mugenzi LJM, Menze BD, Mzilahowa T, Wondji CS. Substrate promiscuity of key resistance P450s confers clothianidin resistance while increasing chlorfenapyr potency in malaria vectors. Cell Rep 2024; 43:114566. [PMID: 39088320 PMCID: PMC11372441 DOI: 10.1016/j.celrep.2024.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
Novel insecticides were recently introduced to counter pyrethroid resistance threats in African malaria vectors. To prolong their effectiveness, potential cross-resistance from promiscuous pyrethroid metabolic resistance mechanisms must be elucidated. Here, we demonstrate that the duplicated P450s CYP6P9a/-b, proficient pyrethroid metabolizers, reduce neonicotinoid efficacy in Anopheles funestus while enhancing the potency of chlorfenapyr. Transgenic expression of CYP6P9a/-b in Drosophila confirmed that flies expressing both genes were significantly more resistant to neonicotinoids than controls, whereas the contrasting pattern was observed for chlorfenapyr. This result was also confirmed by RNAi knockdown experiments. In vitro expression of recombinant CYP6P9a and metabolism assays established that it significantly depletes both clothianidin and chlorfenapyr, with metabolism of chlorfenapyr producing the insecticidally active intermediate metabolite tralopyril. This study highlights the risk of cross-resistance between pyrethroid and neonicotinoid and reveals that chlorfenapyr-based control interventions such as Interceptor G2 could remain efficient against some P450-based resistant mosquitoes.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon.
| | - Sulaiman S Ibrahim
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK
| | - Mersimine K Mangoua
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Riccado F Thiomela
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Tatiane Assatse
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Sonia L Ngongang-Yipmo
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK; Centre for Biotechnology Research, Bayero University, PMB 3011, Kano, Nigeria
| | - Leon J M Mugenzi
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Benjamin D Menze
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Themba Mzilahowa
- Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), Entomology Department, P.O. Box 265, Blantyre, Malawi
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK; International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
8
|
Ibrahim SS, Kouamo MFM, Muhammad A, Irving H, Riveron JM, Tchouakui M, Wondji CS. Functional Validation of Endogenous Redox Partner Cytochrome P450 Reductase Reveals the Key P450s CYP6P9a/- b as Broad Substrate Metabolizers Conferring Cross-Resistance to Different Insecticide Classes in Anopheles funestus. Int J Mol Sci 2024; 25:8092. [PMID: 39125661 PMCID: PMC11311542 DOI: 10.3390/ijms25158092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 08/12/2024] Open
Abstract
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.
Collapse
Affiliation(s)
- Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Mersimine F. M. Kouamo
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
- Center of Biotechnology Research, Bayero University, Kano PMB 3011, Nigeria
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Jacob M. Riveron
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Magellan Tchouakui
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| |
Collapse
|
9
|
Wangrawa DW, Odero JO, Baldini F, Okumu F, Badolo A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:119-137. [PMID: 38303659 DOI: 10.1111/mve.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.
Collapse
Affiliation(s)
- Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Département des Sciences de la Vie et de la Terre, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
10
|
Al-Yazeedi T, Muhammad A, Irving H, Ahn SJ, Hearn J, Wondji CS. Overexpression and nonsynonymous mutations of UDP-glycosyltransferases are potentially associated with pyrethroid resistance in Anopheles funestus. Genomics 2024; 116:110798. [PMID: 38266739 PMCID: PMC10963899 DOI: 10.1016/j.ygeno.2024.110798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
UDP-glycosyltransferases (UGTs) enzymes are pivotal in insecticide resistance by transforming hydrophobic substrates into more hydrophilic forms for efficient cell elimination. This study provides the first comprehensive investigation of Anopheles funestus UGT genes, their evolution, and their association with pyrethroid resistance. We employed a genome-wide association study using pooled sequencing (GWAS-PoolSeq) and transcriptomics on pyrethroid-resistant An. funestus, along with deep-targeted sequencing of UGTs in 80 mosquitoes Africa-wide. UGT310B2 was consistently overexpressed Africa-wide and significant gene-wise Fst differentiation was observed between resistant and susceptible populations: UGT301C2 and UGT302A3 in Malawi, and UGT306C2 in Uganda. Additionally, nonsynonymous mutations in UGT genes were identified. Gene-wise Tajima's D density curves provide insights into population structures within populations across these countries, supporting previous observations. These findings have important implications for current An. funestus control strategies facilitating the prediction of cross-resistance to other UGT-metabolised polar insecticides, thereby guiding more effective and targeted insecticide resistance management efforts.
Collapse
Affiliation(s)
- Talal Al-Yazeedi
- Center for Applied and Translational Genomics (CATG), Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, UK.
| | | | - Helen Irving
- Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, UK
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland's Rural College, An Lòchran, Inverness, United Kingdom
| | - Charles S Wondji
- Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, UK; Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
11
|
Poulton BC, Colman F, Anthousi A, Sattelle DB, Lycett GJ. Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito. PLoS Negl Trop Dis 2024; 18:e0011595. [PMID: 38377131 PMCID: PMC10906864 DOI: 10.1371/journal.pntd.0011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/01/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.
Collapse
Affiliation(s)
- Beth C. Poulton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Fraser Colman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amalia Anthousi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David B. Sattelle
- Division of Medicine, University College London, London, United Kingdom
| | - Gareth J. Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
12
|
Fadel AN, Ibrahim SS, Sandeu MM, Tatsinkou CGM, Menze BD, Irving H, Hearn J, Nagi SC, Weedall GD, Terence E, Tchapga W, Wanji S, Wondji CS. Exploring the molecular mechanisms of increased intensity of pyrethroid resistance in Central African population of a major malaria vector Anopheles coluzzii. Evol Appl 2024; 17:e13641. [PMID: 38410533 PMCID: PMC10895554 DOI: 10.1111/eva.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular mechanisms driving the escalation of pyrethroid resistance in the major malaria mosquitoes of Central Africa remain largely uncharacterized, hindering effective management strategies. Here, resistance intensity and the molecular mechanisms driving it were investigated in a population of Anopheles coluzzii from northern Cameroon. High levels of pyrethroid and organochloride resistance were observed in An. coluzzii population, with no mortality for 1× permethrin; only 11% and 33% mortalities for 5× and 10× permethrin diagnostic concentrations, and <2% mortalities for deltamethrin and DDT, respectively. Moderate bendiocarb resistance (88% mortality) and full susceptibility to malathion were observed. Synergist bioassays with piperonyl butoxide recovered permethrin susceptibility, with mortalities increasing to 53.39%, and 87.30% for 5× and 10× permethrin, respectively, implicating P450 monooxygenases. Synergist bioassays with diethyl maleate (DEM) recovered permethrin and DDT susceptibilities (mortalities increasing to 34.75% and 14.88%, respectively), implicating glutathione S-transferases. RNA-seq-based genome-wide transcriptional analyses supported by quantitative PCR identified glutathione S-transferase, GSTe2 (RNA-seqFC = 2.93 and qRT-PCRFC = 8.4, p < 0.0043) and CYP450, CYP6Z2 (RNA-seqFC = 2.39 and qRT-PCRFC = 11.7, p < 0.0177) as the most overexpressed detoxification genes in the pyrethroid-resistant mosquitoes, compared to mosquitoes of the susceptible Ngousso colony. Other overexpressed genes include P450s, CYP6M2 (FC = 1.68, p < 0.0114), CYP4G16 (FC = 2.02, p < 0.0005), and CYP4G17 (FC = 1.86, p < 0.0276). While high frequency of the 1014F kdr mutation (50%) and low frequencies of 1014S (6.61%) and 1575Y (10.29%) were observed, no ace-1 mutation was detected in bendiocarb-resistant populations, suggesting the preeminent role of metabolic mechanism. Overexpression of metabolic resistance genes (including GSTe2 and CYP6Z2 known to confer resistance to multiple insecticides) in An. coluzzii from the Sudan Savannah of Cameroon highlights the need for alternative management strategies to reduce malaria burden in northern Cameroon.
Collapse
Affiliation(s)
- Amen N. Fadel
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Sulaiman S. Ibrahim
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of BiochemistryBayero UniversityKanoNigeria
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Maurice M. Sandeu
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Microbiology and Infectious DiseasesSchool of Veterinary Medicine and SciencesUniversity of NgaoundéréNgaoundéréCameroon
| | | | | | - Helen Irving
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Jack Hearn
- Centre of Epidemiology and Planetary HealthNorth FacultyVeterinary & Animal ScienceScotland's Rural CollegeInvernessUK
| | - Sanjay C. Nagi
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Gareth D. Weedall
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Ebai Terence
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
| | - Williams Tchapga
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
| | - Samuel Wanji
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| |
Collapse
|
13
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Derilus D, Impoinvil LM, Muturi EJ, McAllister J, Kenney J, Massey SE, Hemme R, Kothera L, Lenhart A. Comparative Transcriptomic Analysis of Insecticide-Resistant Aedes aegypti from Puerto Rico Reveals Insecticide-Specific Patterns of Gene Expression. Genes (Basel) 2023; 14:1626. [PMID: 37628677 PMCID: PMC10454789 DOI: 10.3390/genes14081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Aedes aegypti transmits major arboviruses of public health importance, including dengue, chikungunya, Zika, and yellow fever. The use of insecticides represents the cornerstone of vector control; however, insecticide resistance in Ae. aegypti has become widespread. Understanding the molecular basis of insecticide resistance in this species is crucial to design effective resistance management strategies. Here, we applied Illumina RNA-Seq to study the gene expression patterns associated with resistance to three widely used insecticides (malathion, alphacypermethrin, and lambda-cyhalothrin) in Ae. aegypti populations from two sites (Manatí and Isabela) in Puerto Rico (PR). Cytochrome P450s were the most overexpressed detoxification genes across all resistant phenotypes. Some detoxification genes (CYP6Z7, CYP28A5, CYP9J2, CYP6Z6, CYP6BB2, CYP6M9, and two CYP9F2 orthologs) were commonly overexpressed in mosquitoes that survived exposure to all three insecticides (independent of geographical origin) while others including CYP6BY1 (malathion), GSTD1 (alpha-cypermethrin), CYP4H29 and GSTE6 (lambda-cyhalothrin) were uniquely overexpressed in mosquitoes that survived exposure to specific insecticides. The gene ontology (GO) terms associated with monooxygenase, iron binding, and passive transmembrane transporter activities were significantly enriched in four out of six resistant vs. susceptible comparisons while serine protease activity was elevated in all insecticide-resistant groups relative to the susceptible strain. Interestingly, cuticular-related protein genes (chinase and chitin) were predominantly downregulated, which was also confirmed in the functional enrichment analysis. This RNA-Seq analysis presents a detailed picture of the candidate detoxification genes and other pathways that are potentially associated with pyrethroid and organophosphate resistance in Ae. aegypti populations from PR. These results could inform development of novel molecular tools for detection of resistance-associated gene expression in this important arbovirus vector and guide the design and implementation of resistance management strategies.
Collapse
Affiliation(s)
- Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| | - Ephantus J. Muturi
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| | - Janet McAllister
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.M.); (J.K.); (L.K.)
| | - Joan Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.M.); (J.K.); (L.K.)
| | - Steven E. Massey
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00925, USA;
| | - Ryan Hemme
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR 00920, USA;
| | - Linda Kothera
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.M.); (J.K.); (L.K.)
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| |
Collapse
|
15
|
Ibrahim SS, Muhammad A, Hearn J, Weedall GD, Nagi SC, Mukhtar MM, Fadel AN, Mugenzi LJ, Patterson EI, Irving H, Wondji CS. Molecular drivers of insecticide resistance in the Sahelo-Sudanian populations of a major malaria vector Anopheles coluzzii. BMC Biol 2023; 21:125. [PMID: 37226196 PMCID: PMC10210336 DOI: 10.1186/s12915-023-01610-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Information on common markers of metabolic resistance in malaria vectors from countries sharing similar eco-climatic characteristics can facilitate coordination of malaria control. Here, we characterized populations of the major malaria vector Anopheles coluzzii from Sahel region, spanning four sub-Saharan African countries: Nigeria, Niger, Chad and Cameroon. RESULTS Genome-wide transcriptional analysis identified major genes previously implicated in pyrethroid and/or cross-resistance to other insecticides, overexpressed across the Sahel, including CYP450s, glutathione S-transferases, carboxylesterases and cuticular proteins. Several, well-known markers of insecticide resistance were found in high frequencies-including in the voltage-gated sodium channel (V402L, I940T, L995F, I1527T and N1570Y), the acetylcholinesterase-1 gene (G280S) and the CYP4J5-L43F (which is fixed). High frequencies of the epidemiologically important chromosomal inversion polymorphisms, 2La, 2Rb and 2Rc, were observed (~80% for 2Rb and 2Rc). The 2La alternative arrangement is fixed across the Sahel. Low frequencies of these inversions (<10%) were observed in the fully insecticide susceptible laboratory colony of An. coluzzii (Ngoussou). Several of the most commonly overexpressed metabolic resistance genes sit in these three inversions. Two commonly overexpressed genes, GSTe2 and CYP6Z2, were functionally validated. Transgenic Drosophila melanogaster flies expressing GSTe2 exhibited extremely high DDT and permethrin resistance (mortalities <10% in 24h). Serial deletion of the 5' intergenic region, to identify putative nucleotide(s) associated with GSTe2 overexpression, revealed that simultaneous insertion of adenine nucleotide and a transition (T->C), between Forkhead box L1 and c-EST putative binding sites, were responsible for the high overexpression of GSTe2 in the resistant mosquitoes. Transgenic flies expressing CYP6Z2 exhibited marginal resistance towards 3-phenoxybenzylalcohol (a primary product of pyrethroid hydrolysis by carboxylesterases) and a type II pyrethroid, α-cypermethrin. However, significantly higher mortalities were observed in CYP6Z2 transgenic flies compared with controls, on exposure to the neonicotinoid, clothianidin. This suggests a possible bioactivation of clothianidin into a toxic intermediate, which may make it an ideal insecticide against populations of An. coluzzii overexpressing this P450. CONCLUSIONS These findings will facilitate regional collaborations within the Sahel region and refine implementation strategies through re-focusing interventions, improving evidence-based, cross-border policies towards local and regional malaria pre-elimination.
Collapse
Affiliation(s)
- Sulaiman S. Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
- Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
- Centre for Biotechnology Research, Bayero University, PMB 3011, Kano, Nigeria
| | - Jack Hearn
- Centre of Epidemiology and Planetary Health, Veterinary & Animal Science, Scotland’s Rural College, Inverness, IV2 5NA UK
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Sanjay C. Nagi
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
| | | | - Amen N. Fadel
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Leon J. Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Edward I. Patterson
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1 Canada
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
16
|
Nolden M, Velten R, Paine MJI, Nauen R. Resilience of transfluthrin to oxidative attack by duplicated CYP6P9 variants known to confer pyrethroid resistance in the major malaria mosquito Anopheles funestus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105356. [PMID: 36963931 DOI: 10.1016/j.pestbp.2023.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Resistance to common pyrethroids, such as deltamethrin and permethrin is widespread in the malaria mosquito Anopheles funestus and mainly conferred by upregulated cytochrome P450 monooxygenases (P450s). In the pyrethroid resistant laboratory strain An. funestus FUMOZ-R the duplicated genes CYP6P9a and CYP6P9b are highly upregulated and have been shown to metabolize various pyrethroids, including deltamethrin and permethrin. Here, we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus using a baculovirus expression system and evaluated the interaction of the multifluorinated benzyl pyrethroid transfluthrin with these enzymes by different approaches. First, by Michaelis-Menten kinetics in a fluorescent probe assay with the model substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC), we showed the inhibition of BOMFC metabolism by increasing concentrations of transfluthrin. Second, we tested the metabolic capacity of recombinantly expressed CYP6P9 variants to degrade transfluthrin utilizing UPLC-MS/MS analysis and detected low depletion rates, explaining the virtual lack of resistance of strain FUMOZ-R to transfluthrin observed in previous studies. However, as both approaches suggested an interaction of CYP6P9 variants with transfluthrin, we analyzed the oxidative metabolic fate and failed to detect hydroxylated transfluthrin, but low amounts of an M-2 transfluthrin metabolite. Based on the detected metabolite we hypothesize oxidative attack of the gem-dimethyl substituted cyclopropyl moiety, resulting in the formation of an allyl cation upon ring opening. In conclusion, these findings support the resilience of transfluthrin to P450-mediated pyrethroid resistance, and thus, reinforces its employment as an important resistance-breaking pyrethroid in resistance management strategies to control the major malaria vector An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Robert Velten
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
17
|
Mugenzi LMJ, A. Tekoh T, S. Ibrahim S, Muhammad A, Kouamo M, Wondji MJ, Irving H, Hearn J, Wondji CS. The duplicated P450s CYP6P9a/b drive carbamates and pyrethroids cross-resistance in the major African malaria vector Anopheles funestus. PLoS Genet 2023; 19:e1010678. [PMID: 36972302 PMCID: PMC10089315 DOI: 10.1371/journal.pgen.1010678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/11/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cross-resistance to insecticides in multiple resistant malaria vectors is hampering resistance management. Understanding its underlying molecular basis is critical to implementation of suitable insecticide-based interventions. Here, we established that the tandemly duplicated cytochrome P450s, CYP6P9a/b are driving carbamate and pyrethroid cross-resistance in Southern African populations of the major malaria vector Anopheles funestus. Transcriptome sequencing revealed that cytochrome P450s are the most over-expressed genes in bendiocarb and permethrin-resistant An. funestus. The CYP6P9a and CYP6P9b genes are overexpressed in resistant An. funestus from Southern Africa (Malawi) versus susceptible An. funestus (Fold change (FC) is 53.4 and 17 respectively), while the CYP6P4a and CYP6P4b genes are overexpressed in resistant An. funestus in Ghana, West Africa, (FC is 41.1 and 17.2 respectively). Other up-regulated genes in resistant An. funestus include several additional cytochrome P450s (e.g. CYP9J5, CYP6P2, CYP6P5), glutathione-S transferases, ATP-binding cassette transporters, digestive enzymes, microRNA and transcription factors (FC<7). Targeted enrichment sequencing strongly linked a known major pyrethroid resistance locus (rp1) to carbamate resistance centering around CYP6P9a/b. In bendiocarb resistant An. funestus, this locus exhibits a reduced nucleotide diversity, significant p-values when comparing allele frequencies, and the most non-synonymous substitutions. Recombinant enzyme metabolism assays showed that both CYP6P9a/b metabolize carbamates. Transgenic expression of CYP6P9a/b in Drosophila melanogaster revealed that flies expressing both genes were significantly more resistant to carbamates than controls. Furthermore, a strong correlation was observed between carbamate resistance and CYP6P9a genotypes with homozygote resistant An. funestus (CYP6P9a and the 6.5kb enhancer structural variant) exhibiting a greater ability to withstand bendiocarb/propoxur exposure than homozygote CYP6P9a_susceptible (e.g Odds ratio = 20.8, P<0.0001 for bendiocarb) and heterozygotes (OR = 9.7, P<0.0001). Double homozygote resistant genotype (RR/RR) were even more able to survive than any other genotype combination showing an additive effect. This study highlights the risk that pyrethroid resistance escalation poses to the efficacy of other classes of insecticides. Available metabolic resistance DNA-based diagnostic assays should be used by control programs to monitor cross-resistance between insecticides before implementing new interventions.
Collapse
Affiliation(s)
- Leon M. J. Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Theofelix A. Tekoh
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
| | - Sulaiman S. Ibrahim
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Department of Biochemistry, Bayero University, Kano, Nigeria
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Mersimine Kouamo
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College, An Lòchran, 10 Inverness Campus, Inverness, Scotland, United Kingdom
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
18
|
Portwood NM, Shayo MF, Tungu PK, Mbewe NJ, Mlay G, Small G, Snetselaar J, Kristan M, Levy P, Walker T, Kirby MJ, Kisinza W, Mosha FW, Rowland M, Messenger LA. Multi-centre discriminating concentration determination of broflanilide and potential for cross-resistance to other public health insecticides in Anopheles vector populations. Sci Rep 2022; 12:22359. [PMID: 36572746 PMCID: PMC9792579 DOI: 10.1038/s41598-022-26990-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Novel insecticides are urgently needed to control insecticide-resistant populations of Anopheles malaria vectors. Broflanilide acts as a non-competitive antagonist of the gamma-aminobutyric acid receptor and has shown prolonged effectiveness as an indoor residual spraying product (VECTRON T500) in experimental hut trials against pyrethroid-resistant vector populations. This multi-centre study expanded upon initial discriminating concentration testing of broflanilide, using six Anopheles insectary colonies (An. gambiae Kisumu KCMUCo, An. gambiae Kisumu NIMR, An. arabiensis KGB, An. arabiensis SENN, An. coluzzii N'Gousso and An. stephensi SK), representing major malaria vector species, to facilitate prospective susceptibility monitoring of this new insecticide; and investigated the potential for cross-resistance to broflanilide via the A296S mutation associated with dieldrin resistance (rdl). Across all vector species tested, the discriminating concentration for broflanilide ranged between LC99 × 2 = 1.126-54.00 μg/ml or LC95 × 3 = 0.7437-17.82 μg/ml. Lower concentrations of broflanilide were required to induce complete mortality of An. arabiensis SENN (dieldrin-resistant), compared to its susceptible counterpart, An. arabiensis KGB, and there was no association between the presence of the rdl mechanism of resistance and survival in broflanilide bioassays, demonstrating a lack of cross-resistance to broflanilide. Study findings provide a benchmark for broflanilide susceptibility monitoring as part of ongoing VECTRON T500 community trials in Tanzania and Benin.
Collapse
Affiliation(s)
- Natalie M Portwood
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Magreth F Shayo
- Kilimanjaro Christian Medical University College, Pan African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Patrick K Tungu
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Njelembo J Mbewe
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Kilimanjaro Christian Medical University College, Pan African Malaria Vector Research Consortium, Moshi, Tanzania
| | - George Mlay
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Graham Small
- Innovative Vector Control Consortium, Liverpool, UK
| | - Janneke Snetselaar
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Innovative Vector Control Consortium, Liverpool, UK
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Prisca Levy
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew J Kirby
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd., Rockville, MD, 20852, USA
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Franklin W Mosha
- Kilimanjaro Christian Medical University College, Pan African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
19
|
Hearn J, Djoko Tagne CS, Ibrahim SS, Tene-Fossog B, Mugenzi LMJ, Irving H, Riveron JM, Weedall GD, Wondji CS. Multi-omics analysis identifies a CYP9K1 haplotype conferring pyrethroid resistance in the malaria vector Anopheles funestus in East Africa. Mol Ecol 2022; 31:3642-3657. [PMID: 35546741 PMCID: PMC9321817 DOI: 10.1111/mec.16497] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Metabolic resistance to pyrethroids is a menace to the continued effectiveness of malaria vector controls. Its molecular basis is complex and varies geographically across Africa. Here, we used a multi‐omics approach, followed‐up with functional validation to show that a directionally selected haplotype of a cytochrome P450, CYP9K1 is a major driver of resistance in Anopheles funestus. A PoolSeq GWAS using mosquitoes alive and dead after permethrin exposure, from Malawi and Cameroon, detected candidate genomic regions, but lacked consistency across replicates. Targeted sequencing of candidate resistance genes detected several SNPs associated with known pyrethroid resistance QTLs. The most significant SNPs were in the cytochrome P450 CYP304B1 (Cameroon), CYP315A1 (Uganda) and the ABC transporter gene ABCG4 (Malawi). However, when comparing field resistant mosquitoes to laboratory susceptible, the pyrethroid resistance locus rp1 and SNPs around the ABC transporter ABCG4 were consistently significant, except for Uganda where SNPs in the P450 CYP9K1 was markedly significant. In vitro heterologous metabolism assays with recombinant CYP9K1 revealed that it metabolises type II pyrethroid (deltamethrin; 64% depletion) but not type I (permethrin; 0%), while moderately metabolising DDT (17%). CYP9K1 exhibited reduced genetic diversity in Uganda underlying an extensive selective sweep. Furthermore, a glycine to alanine (G454A) amino acid change in CYP9K1 was fixed in Ugandan mosquitoes but not in other An. funestus populations. This study sheds further light on the evolution of metabolic resistance in a major malaria vector by implicating more genes and variants that can be used to design field‐applicable markers to better track resistance Africa‐wide.
Collapse
Affiliation(s)
- Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Carlos S Djoko Tagne
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Billy Tene-Fossog
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Leon M J Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Gareth D Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
20
|
Wondji CS, Hearn J, Irving H, Wondji MJ, Weedall G. RNAseq-based gene expression profiling of the Anopheles funestus pyrethroid-resistant strain FUMOZ highlights the predominant role of the duplicated CYP6P9a/b cytochrome P450s. G3 (BETHESDA, MD.) 2022; 12:jkab352. [PMID: 34718535 PMCID: PMC8727960 DOI: 10.1093/g3journal/jkab352] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/10/2021] [Indexed: 12/04/2022]
Abstract
Insecticide-based interventions, notably long-lasting insecticidal nets, against mosquito vectors of malaria are currently threatened by pyrethroid resistance. Here, we contrasted RNAseq-based gene expression profiling of laboratory-resistant (FUMOZ) and susceptible (FANG) strains of the major malaria vector Anopheles funestus. Cytochrome P450 genes were the predominant over-expressed detoxification genes in FUMOZ, with high expression of the duplicated CYP6P9a (fold-change of 82.23 vs FANG) and CYP6P9b (FC 11.15). Other over-expressed P450s belonged to the same cluster of P450s corresponding to the resistance to pyrethroid 1 (rp1) quantitative trait loci (QTL) on chromosome 2R. Several Epsilon class glutathione S-transferases were also over-expressed in FUMOZ, as was the ATP-binding cassette transporter AFUN019220 (ABCA) which also exhibited between-strain alternative splicing events at exon 7. Significant differences in single-nucleotide polymorphism frequencies between strains occurred in resistance QTLs rp1 (CYP6P9a/b and CYP6AA1), rp2 on chromosome 2L (CYP6Z1, CYP6M7, and CYP6Z3), and rp3 on chromosome 3R (CYP9J5, CYP9J4, and CYP9J3). Differences were also detected in CYP4G17 and CYP4G16 genes on the X chromosome, both of which are associated with cuticular resistance in Anopheles gambiae. A close analysis of nonsynonymous diversity at the CYP6P9a/b loci revealed a drastic loss of diversity in FUMOZ with only a single polymorphism and 2 haplotypes vs 18 substitutions and 8 haplotypes in FANG. By contrast, a lowly expressed cytochrome P450 (CYP4C36) did not exhibit diversity differences between strains. We also detected the known pyrethroid resistance conferring amino acid change N384S in CYP6P9b. This study further elucidates the molecular bases of resistance in An. funestus, informing strategies to better manage widespread resistance across Africa.
Collapse
Affiliation(s)
- Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, P.O. Box 1359, Cameroon
- Entomology Unit, International Institute of Tropical Agriculture (IITA), Yaoundé, P.O. Box 2008, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, P.O. Box 1359, Cameroon
| | - Gareth Weedall
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
21
|
Wamba ANR, Ibrahim SS, Kusimo MO, Muhammad A, Mugenzi LMJ, Irving H, Wondji MJ, Hearn J, Bigoga JD, Wondji CS. The cytochrome P450 CYP325A is a major driver of pyrethroid resistance in the major malaria vector Anopheles funestus in Central Africa. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103647. [PMID: 34530119 DOI: 10.1016/j.ibmb.2021.103647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The overexpression and overactivity of key cytochrome P450s (CYP450) genes are major drivers of metabolic resistance to insecticides in African malaria vectors such as Anopheles funestus s.s. Previous RNAseq-based transcription analyses revealed elevated expression of CYP325A specific to Central African populations but its role in conferring resistance has not previously been demonstrated. In this study, RT-qPCR consistently confirmed that CYP325A is highly over-expressed in pyrethroid-resistant An. funestus from Cameroon, compared with a control strain and insecticide-unexposed mosquitoes. A synergist bioassay with PBO significantly recovered susceptibility for permethrin and deltamethrin indicating P450-based metabolic resistance. Analyses of the coding sequence of CYP325A Africa-wide detected high-levels of polymorphism, but with no predominant alleles selected by pyrethroid resistance. Geographical amino acid changes were detected notably in Cameroon. In silico homology modelling and molecular docking simulations predicted that CYP325A binds and metabolises type I and type II pyrethroids. Heterologous expression of recombinant CYP325A and metabolic assays confirmed that the most-common Cameroonian haplotype metabolises both type I and type II pyrethroids with depletion rate twice that the of the DR Congo haplotype. Analysis of the 1 kb putative promoter of CYP325A revealed reduced diversity in resistant mosquitoes compared to susceptible ones, suggesting a potential selective sweep in this region. The establishment of CYP325A as a pyrethroid resistance metabolising gene further explains pyrethroid resistance in Central African populations of An. funestus. Our work will facilitate future efforts to detect the causative resistance markers in the promoter region of CYP325A to design field applicable DNA-based diagnostic tools.
Collapse
Affiliation(s)
- Amelie N R Wamba
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Faculty of Science, Department of Biochemistry, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Department of Biochemistry, Bayero University, PMB, 3011, Kano, Nigeria.
| | - Michael O Kusimo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Centre for Biotechnology Research, Bayero University, Kano, PMB, 3011, Kano Nigeria.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jude D Bigoga
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Laboratory for Vector Biology and Control, National Reference Unit for Vector Control, The Biotechnology Centre, Nkolbisson - University of Yaoundé I, P.O. Box 3851, Messa, Yaoundé, Cameroon.
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
22
|
Ngwej LM, Mashat EM, Mukeng CK, Mundongo HT, Malonga FK, Kashala JCK, Bangs MJ. Variable residual activity of K-Othrine® PolyZone and Actellic® 300 CS in semi-field and natural conditions in the Democratic Republic of the Congo. Malar J 2021; 20:358. [PMID: 34461898 PMCID: PMC8406736 DOI: 10.1186/s12936-021-03892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Indoor Residual Spray (IRS) against vector mosquitoes is a primary means for combating malaria transmission. To combat increased patterns of resistance to chemicals against mosquito vectors, alternative candidate insecticide formulations should be screened. With mortality as the primary endpoint, the persistence of residual efficacy of a polymer-enhanced pyrethroid suspension concentrate containing deltamethrin (K-Othrine® PolyZone—KOPZ) applied at 25 mg active ingredient (ai)/m2 was compared with a microencapsulated organophosphate suspension formulation of pirimiphos-methyl (Actellic® 300CS—ACS) applied at 1 g ai/m2. Methods Following standard spray application, periodic contact bioassays were conducted for at least 38 weeks on four types of wall surfaces (unbaked clay, baked clay, cement, and painted cement) sprayed with either KOPZ or ACS in simulated semi-field conditions. Similarly, two types of existing walls in occupied houses (painted cement and baked clay) were sprayed and examined. A colonized strain of female Anopheles arabiensis mosquitoes were exposed to treated or untreated surfaces (controls) for 30 min. For each wall surface test period, 40 treatment mosquitoes (4 cones × 10) in semi-field and 90 (9 cones × 10) in ‘natural’ house conditions were used per wall. 30 mosquitoes (3 cones × 10) on a matching unsprayed surface served as the control. Insecticide, wall material, and sprayed location on wall (in houses) were compared by final mortality at 24 h. Results Insecticide, wall material, and sprayed location on wall surface produced significant difference for mean final mortality over time. In semi-field conditions, KOPZ produced a 72% mean mortality over a 38-week period, while ACS gave 65% (p < 0.001). Painted cement wall performed better than other wall surfaces throughout the study period (73% mean mortality). In the two occupied houses, KOPZ provided a mean mortality of 88%, significantly higher than ACS (p < 0.001). KOPZ provided an effective residual life (≥ 80% mortality) between 7.3 and 14 weeks on experimental walls and between 18.3 and 47.2 weeks in houses, while ACS persisted between 3 and 7.6 weeks under semi-field conditions and between 7.1 and 17.3 weeks in houses. Household painted cement walls provided a longer effective residual activity compared to baked clay for both formulations. Greater mortality was recorded at the top and middle sections of sprayed wall compared to the bottom portion near the floor. Conclusion KOPZ provided longer residual activity on all surfaces compared to ACS. Painted cement walls provided better residual longevity for both insecticides compared to other surfaces. Insecticides also performed better in an occupied house environment compared to semi-field constructed walls. This study illustrates the importance of collecting field-based observations to determine appropriate product active ingredient formulations and timing for recurring IRS cycles.
Collapse
Affiliation(s)
- Leonard M Ngwej
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo. .,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Emmanuel M Mashat
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo
| | - Clarence K Mukeng
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Henri T Mundongo
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Françoise K Malonga
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Jean-Christophe K Kashala
- Faculty of Veterinary Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Michael J Bangs
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo.,Public Health & Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua, 99920, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
23
|
Genome-Wide Transcriptional Analysis and Functional Validation Linked a Cluster of Epsilon Glutathione S-Transferases with Insecticide Resistance in the Major Malaria Vector Anopheles funestus across Africa. Genes (Basel) 2021; 12:genes12040561. [PMID: 33924421 PMCID: PMC8069850 DOI: 10.3390/genes12040561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
Resistance is threatening the effectiveness of insecticide-based interventions in use for malaria control. Pinpointing genes associated with resistance is crucial for evidence-based resistance management targeting the major malaria vectors. Here, a combination of RNA-seq based genome-wide transcriptional analysis and RNA-silencing in vivo functional validation were used to identify key insecticide resistance genes associated with DDT and DDT/permethrin cross-resistance across Africa. A cluster of glutathione-S-transferase from epsilon group were found to be overexpressed in resistant populations of Anopheles funestus across Africa including GSTe1 [Cameroon (fold change, FC: 2.54), Ghana (4.20), Malawi (2.51)], GSTe2 [Cameroon (4.47), Ghana (7.52), Malawi (2.13)], GSTe3 [Cameroon (2.49), Uganda (2.60)], GSTe4 in Ghana (3.47), GSTe5 [Ghana (2.94), Malawi (2.26)], GSTe6 [Cameroun (3.0), Ghana (3.11), Malawi (3.07), Uganda (3.78)] and GSTe7 (2.39) in Ghana. Validation of GSTe genes expression profiles by qPCR confirmed that the genes are differentially expressed across Africa with a greater overexpression in DDT-resistant mosquitoes. RNAi-based knock-down analyses supported that five GSTe genes are playing a major role in resistance to pyrethroids (permethrin and deltamethrin) and DDT in An. funestus, with a significant recovery of susceptibility observed when GSTe2, 3, 4, 5 and GSTe6 were silenced. These findings established that GSTe3, 4, 5 and 6 contribute to DDT resistance and should be further characterized to identify their specific genetic variants, to help design DNA-based diagnostic assays, as previously done for the 119F-GSTe2 mutation. This study highlights the role of GSTes in the development of resistance to insecticides in malaria vectors and calls for actions to mitigate this resistance.
Collapse
|
24
|
Black WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. INSECTS 2021; 12:insects12040276. [PMID: 33804964 PMCID: PMC8063960 DOI: 10.3390/insects12040276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023]
Abstract
The threat of mosquito-borne diseases continues to be a problem for public health in subtropical and tropical regions of the world; in response, there has been increased use of adulticidal insecticides, such as pyrethroids, in human habitation areas over the last thirty years. As a result, the prevalence of pyrethroid-resistant genetic markers in natural mosquito populations has increased at an alarming rate. This review details recent advances in the understanding of specific mechanisms associated with pyrethroid resistance, with emphasis on features of insecticide detoxification and the interdependence of multiple cellular pathways. Together, these advances add important context to the understanding of the processes that are selected in resistant mosquitoes. Specifically, before pyrethroids bind to their targets on motoneurons, they must first permeate the outer cuticle and diffuse to inner tissues. Resistant mosquitoes have evolved detoxification mechanisms that rely on cytochrome P450s (CYP), esterases, carboxyesterases, and other oxidation/reduction (redox) components to effectively detoxify pyrethroids to nontoxic breakdown products that are then excreted. Enhanced resistance mechanisms have evolved to include alteration of gene copy number, transcriptional and post-transcriptional regulation of gene expression, as well as changes to cellular signaling mechanisms. Here, we outline the variety of ways in which detoxification has been selected in various mosquito populations, as well as key gene categories involved. Pathways associated with potential new genes of interest are proposed. Consideration of multiple cellular pathways could provide opportunities for development of new insecticides.
Collapse
|
25
|
Ekoka E, Maharaj S, Nardini L, Dahan-Moss Y, Koekemoer LL. 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasit Vectors 2021; 14:86. [PMID: 33514413 PMCID: PMC7844807 DOI: 10.1186/s13071-020-04558-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.![]()
Collapse
Affiliation(s)
- Elodie Ekoka
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | - Surina Maharaj
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Luisa Nardini
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
26
|
Sandeu MM, Mulamba C, Weedall GD, Wondji CS. A differential expression of pyrethroid resistance genes in the malaria vector Anopheles funestus across Uganda is associated with patterns of gene flow. PLoS One 2020; 15:e0240743. [PMID: 33170837 PMCID: PMC7654797 DOI: 10.1371/journal.pone.0240743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Insecticide resistance is challenging the effectiveness of insecticide-based control interventions to reduce malaria burden in Africa. Understanding the molecular basis of insecticides resistance and patterns of gene flow in major malaria vectors such as Anopheles funestus are important steps for designing effective resistance management strategies. Here, we investigated the association between patterns of genetic structure and expression profiles of genes involved in the pyrethroid resistance in An. funestus across Uganda and neighboring Kenya. METHODS Blood-fed mosquitoes An. funestus were collected across the four localities in Uganda and neighboring Kenya. A Microarray-based genome-wide transcription analysis was performed to identify the set of genes associated with permethrin resistance. 17 microsatellites markers were genotyped and used to establish patterns of genetic differentiation. RESULTS Microarray-based genome-wide transcription profiling of pyrethroid resistance in four locations across Uganda (Arua, Bulambuli, Lira, and Tororo) and Kenya (Kisumu) revealed that resistance was mainly driven by metabolic resistance. The most commonly up-regulated genes in pyrethroid resistance mosquitoes include cytochrome P450s (CYP9K1, CYP6M7, CYP4H18, CYP4H17, CYP4C36). However, expression levels of key genes vary geographically such as the P450 CYP6M7 [Fold-change (FC) = 115.8 (Arua) vs 24.05 (Tororo) and 16.9 (Kisumu)]. In addition, several genes from other families were also over-expressed including Glutathione S-transferases (GSTs), carboxylesterases, trypsin, glycogenin, and nucleotide binding protein which probably contribute to insecticide resistance across Uganda and Kenya. Genotyping of 17 microsatellite loci in the five locations provided evidence that a geographical shift in the resistance mechanisms could be associated with patterns of population structure throughout East Africa. Genetic and population structure analyses indicated significant genetic differentiation between Arua and other localities (FST>0.03) and revealed a barrier to gene flow between Arua and other areas, possibly associated with Rift Valley. CONCLUSION The correlation between patterns of genetic structure and variation in gene expression could be used to inform future interventions especially as new insecticides are gradually introduced.
Collapse
Affiliation(s)
- Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Charles Mulamba
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Uganda Virus Research Institute, Entebbe, Uganda
| | - Gareth D. Weedall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
27
|
Djuicy DD, Hearn J, Tchouakui M, Wondji MJ, Irving H, Okumu FO, Wondji CS. CYP6P9-Driven Signatures of Selective Sweep of Metabolic Resistance to Pyrethroids in the Malaria Vector Anopheles funestus Reveal Contemporary Barriers to Gene Flow. Genes (Basel) 2020; 11:E1314. [PMID: 33167550 PMCID: PMC7694540 DOI: 10.3390/genes11111314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 11/16/2022] Open
Abstract
Pyrethroid resistance in major malaria vectors such as Anopheles funestus threatens malaria control efforts in Africa. Cytochrome P450-mediated metabolic resistance is best understood for CYP6P9 genes in southern Africa in An. funestus. However, we do not know if this resistance mechanism is spreading across Africa and how it relates to broader patterns of gene flow across the continent. Nucleotide diversity of the CYP6P9a gene and the diversity pattern of five gene fragments spanning a region of 120 kb around the CYP6P9a gene were surveyed in mosquitoes from southern, eastern and central Africa. These analyses revealed that a Cyp6P9a resistance-associated allele has swept through southern and eastern Africa and is now fixed in these regions. A similar diversity profile was observed when analysing genomic regions located 34 kb upstream to 86 kb downstream of the CYP6P9a locus, concordant with a selective sweep throughout the rp1 locus. We identify reduced gene flow between southern/eastern Africa and central Africa, which we hypothesise is due to the Great Rift Valley. These potential barriers to gene flow are likely to prevent or slow the spread of CYP6P9-based resistance mechanism to other parts of Africa and would to be considered in future vector control interventions such as gene drive.
Collapse
Affiliation(s)
- Delia Doreen Djuicy
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
| | - Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| | - Magellan Tchouakui
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53 Ifakara 67501, Tanzania;
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| |
Collapse
|
28
|
Mugenzi LMJ, Menze BD, Tchouakui M, Wondji MJ, Irving H, Tchoupo M, Hearn J, Weedall GD, Riveron JM, Cho-Ngwa F, Wondji CS. A 6.5-kb intergenic structural variation enhances P450-mediated resistance to pyrethroids in malaria vectors lowering bed net efficacy. Mol Ecol 2020; 29:4395-4411. [PMID: 32974960 DOI: 10.1111/mec.15645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/01/2020] [Indexed: 01/21/2023]
Abstract
Elucidating the complex evolutionary armory that mosquitoes deploy against insecticides is crucial to maintain the effectiveness of insecticide-based interventions. Here, we deciphered the role of a 6.5-kb structural variation (SV) in driving cytochrome P450-mediated pyrethroid resistance in the malaria vector, Anopheles funestus. Whole-genome pooled sequencing detected an intergenic 6.5-kb SV between duplicated CYP6P9a/b P450s in pyrethroid-resistant mosquitoes through a translocation event. Promoter analysis revealed a 17.5-fold higher activity (p < .0001) for the SV- carrying fragment than the SV- free one. Quantitative real-time PCR expression profiling of CYP6P9a/b for each SV genotype supported its role as an enhancer because SV+/SV+ homozygote mosquitoes had a significantly greater expression for both genes than heterozygotes SV+/SV- (1.7- to 2-fold) and homozygotes SV-/SV- (4-to 5-fold). Designing a PCR assay revealed a strong association between this SV and pyrethroid resistance (SV+/SV+ vs. SV-/SV-; odds ratio [OR] = 2,079.4, p < .001). The 6.5-kb SV is present at high frequency in southern Africa (80%-100%) but absent in East/Central/West Africa. Experimental hut trials revealed that homozygote SV mosquitoes had a significantly greater chance to survive exposure to pyrethroid-treated nets (OR 27.7; p < .0001) and to blood feed than susceptible mosquitoes. Furthermore, mosquitoes homozygote-resistant at the three loci (SV+/CYP6P9a_R/CYP6P9b_R) exhibited a higher resistance level, leading to a far superior ability to survive exposure to nets than those homozygotes susceptible at the three loci, revealing a strong additive effect. This study highlights the important role of structural variations in the development of insecticide resistance in malaria vectors and their detrimental impact on the effectiveness of pyrethroid-based nets.
Collapse
Affiliation(s)
- Leon M J Mugenzi
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Benjamin D Menze
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Gareth D Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,School of Natural Sciences and Psychology, Liverpool, John Moores University, Liverpool, UK
| | - Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Fidelis Cho-Ngwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| |
Collapse
|
29
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Atoyebi SM, Tchigossou GM, Akoton R, Riveron JM, Irving H, Weedall G, Tossou E, Djegbe I, Oyewole IO, Bakare AA, Wondji CS, Djouaka R. Investigating the molecular basis of multiple insecticide resistance in a major malaria vector Anopheles funestus (sensu stricto) from Akaka-Remo, Ogun State, Nigeria. Parasit Vectors 2020; 13:423. [PMID: 32811561 PMCID: PMC7436991 DOI: 10.1186/s13071-020-04296-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the mechanisms used by Anopheles mosquitoes to survive insecticide exposure is key to manage existing insecticide resistance and develop more suitable insecticide-based malaria vector control interventions as well as other alternative integrated tools. To this regard, the molecular basis of permethrin, DDT and dieldrin resistance in Anopheles funestus (sensu stricto) at Akaka-Remo was investigated. METHODS Bioassays were conducted on 3-5-day-old adult An. funestus (s.s.) mosquitoes for permethrin, DDT and dieldrin susceptibility test. The molecular mechanisms of mosquito resistance to these insecticides were investigated using microarray and reverse transcriptase PCR techniques. The voltage-gated sodium channel region of mosquitoes was also screened for the presence of knockdown resistance mutations (kdr west and east) by sequencing method. RESULTS Anopheles funestus (s.s.) population was resistant to permethrin (mortality rate of 68%), DDT (mortality rate of 10%) and dieldrin (mortality rate of 8%) insecticides. Microarray and RT-PCR analyses revealed the overexpression of glutathione S-transferase genes, cytochrome P450s, esterase, trypsin and cuticle proteins in resistant mosquitoes compared to control. The GSTe2 was the most upregulated detoxification gene in permethrin-resistant (FC = 44.89), DDT-resistant (FC = 57.39) and dieldrin-resistant (FC = 41.10) mosquitoes compared to control population (FC = 22.34). The cytochrome P450 gene, CYP6P9b was also upregulated in both permethrin- and DDT-resistant mosquitoes. The digestive enzyme, trypsin (hydrolytic processes) and the cuticle proteins (inducing cuticle thickening leading to reduced insecticides penetration) also showed high involvement in insecticide resistance, through their overexpression in resistant mosquitoes compared to control. The kdr east and west were absent in all mosquitoes analysed, suggesting their non-involvement in the observed mosquito resistance. CONCLUSIONS The upregulation of metabolic genes, especially the GSTe2 and trypsin, as well as the cuticle proteins is driving insecticide resistance of An. funestus (s.s.) population. However, additional molecular analyses, including functional metabolic assays of these genes as well as screening for a possible higher cuticular hydrocarbon and lipid contents, and increased procuticle thickness in resistant mosquitoes are needed to further describe their distinct roles in mosquito resistance.
Collapse
Affiliation(s)
- Seun M. Atoyebi
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Genevieve M. Tchigossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Romaric Akoton
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Jacob M. Riveron
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Insecticide Bioscience Department, Syngenta, Toulouse, UK
| | - Helen Irving
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Gareth Weedall
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Eric Tossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Innocent Djegbe
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- National University of Sciences, Technologies, Engineering and Mathematics, Ecole Normale Supérieure de Natitingou, BP 123, Natitingou, Benin
| | - Isaac O. Oyewole
- Biology Department, Babcock University, Ilisan Remo, Ogun State Nigeria
| | - Adekunle A. Bakare
- Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Charles S. Wondji
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Centre for Research in Infectious Diseases (CRID), Yaounde, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
| |
Collapse
|
31
|
Weedall GD, Riveron JM, Hearn J, Irving H, Kamdem C, Fouet C, White BJ, Wondji CS. An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons. PLoS Genet 2020; 16:e1008822. [PMID: 32497040 PMCID: PMC7297382 DOI: 10.1371/journal.pgen.1008822] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/16/2020] [Accepted: 05/01/2020] [Indexed: 01/05/2023] Open
Abstract
Insecticide resistance in malaria vectors threatens to reverse recent gains in malaria control. Deciphering patterns of gene flow and resistance evolution in malaria vectors is crucial to improving control strategies and preventing malaria resurgence. A genome-wide survey of Anopheles funestus genetic diversity Africa-wide revealed evidences of a major division between southern Africa and elsewhere, associated with different population histories. Three genomic regions exhibited strong signatures of selective sweeps, each spanning major resistance loci (CYP6P9a/b, GSTe2 and CYP9K1). However, a sharp regional contrast was observed between populations correlating with gene flow barriers. Signatures of complex molecular evolution of resistance were detected with evidence of copy number variation, transposon insertion and a gene conversion between CYP6P9a/b paralog genes. Temporal analyses of samples before and after bed net scale up suggest that these genomic changes are driven by this control intervention. Multiple independent selective sweeps at the same locus in different parts of Africa suggests that local evolution of resistance in malaria vectors may be a greater threat than trans-regional spread of resistance haplotypes. Malaria control currently relies heavily on insecticide-based vector control interventions. Unfortunately, resistance to insecticides is threatening their continued effectiveness. Metabolic resistance has the greatest operational significance, yet it remains unclear how mosquito populations evolutionarily respond to the massive selection pressure from control interventions including insecticide-treated nets. Deciphering patterns of gene flow between populations of major malaria vectors such as Anopheles funestus and elucidating genomic signature of resistance evolution are crucial for designing resistance management strategies and preventing malaria resurgence. Here, we performed a genome-wide survey of An. funestus genetic diversity from across its continental range using reduced-genome representation (ddRADseq) and whole genome (PoolSeq) approaches revealing evidence of significant barriers to gene flow impacting the spread of insecticide resistance alleles. This study detected signatures of strong selective sweeps occurring in genomic regions controlling cytochrome P450-based and glutathione s-transferase metabolic resistance to insecticides in this species. Fine-scale analysis of the major pyrethroid resistance-associated genomic regions revealed complex molecular evolution with evidence of copy number variation, transposon insertion and gene conversion highlighting the risk that if this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.
Collapse
Affiliation(s)
- Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: (GDW); (CSW)
| | - Jacob M. Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- LSTM Research Unit at CRID, Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
| | - Colince Kamdem
- LSTM Research Unit at CRID, Yaoundé, Cameroon
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Caroline Fouet
- LSTM Research Unit at CRID, Yaoundé, Cameroon
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Bradley J. White
- Department of Entomology, University of California, Riverside, California, United States of America
- Verily Life Sciences, South San Francisco, California, United States of America
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- LSTM Research Unit at CRID, Yaoundé, Cameroon
- * E-mail: (GDW); (CSW)
| |
Collapse
|
32
|
Wat'senga F, Agossa F, Manzambi EZ, Illombe G, Mapangulu T, Muyembe T, Clark T, Niang M, Ntoya F, Sadou A, Plucinski M, Li Y, Messenger LA, Fornadel C, Oxborough RM, Irish SR. Intensity of pyrethroid resistance in Anopheles gambiae before and after a mass distribution of insecticide-treated nets in Kinshasa and in 11 provinces of the Democratic Republic of Congo. Malar J 2020; 19:169. [PMID: 32354333 PMCID: PMC7193383 DOI: 10.1186/s12936-020-03240-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Between 2011 and 2018, an estimated 134.8 million pyrethroid-treated long-lasting insecticidal nets (LLINs) were distributed nationwide in the Democratic Republic of Congo (DRC) for malaria control. Pyrethroid resistance has developed in DRC in recent years, but the intensity of resistance and impact on LLIN efficacy was not known. Therefore, the intensity of resistance of Anopheles gambiae sensu lato (s.l.) to permethrin and deltamethrin was monitored before and after a mass distribution of LLINs in Kinshasa in December 2016, and in 6 other sites across the country in 2017 and 11 sites in 2018. METHODS In Kinshasa, CDC bottle bioassays using 1, 2, 5, and 10 times the diagnostic dose of permethrin and deltamethrin were conducted using An. gambiae s.l. collected as larvae and reared to adults. Bioassays were conducted in four sites in Kinshasa province 6 months before a mass distribution of deltamethrin-treated LLINs and then two, six, and 10 months after the distribution. One site in neighbouring Kongo Central province was used as a control (no mass campaign of LLIN distribution during the study). Nationwide intensity assays were conducted in six sites in 2017 using CDC bottle bioassays and in 11 sites in 2018 using WHO intensity assays. A sub-sample of An. gambiae s.l. was tested by PCR to determine species composition and frequency of kdr-1014F and 1014S alleles. RESULTS In June 2016, before LLIN distribution, permethrin resistance intensity was high in Kinshasa; the mean mortality rate was 43% at the 5× concentration and 73% at the 10× concentration. Bioassays at 3 time points after LLIN distribution showed considerable variation by site and time and there was no consistent evidence for an increase in pyrethroid resistance intensity compared to the neighbouring control site. Tests of An. gambiae s.l. in 6 sites across the country in 2017 and 11 sites in 2018 showed all populations were resistant to the diagnostic doses of 3 pyrethroids. In 2018, the intensity of resistance varied by site, but was generally moderate for all three pyrethroids, with survivors at ×5 the diagnostic dose. Anopheles gambiae sensu stricto (s.s.) was the most common species identified across 11 sites in DRC, but in Kinshasa, An. gambiae s.s. (91%) and Anopheles coluzzii (8%) were sympatric. CONCLUSIONS Moderate or high intensity pyrethroid resistance was detected nationwide in DRC and is a serious threat to sustained malaria control with pyrethroid LLINs. Next generation nets (PBO nets or bi-treated nets) should be considered for mass distribution.
Collapse
Affiliation(s)
- Francis Wat'senga
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Fiacre Agossa
- USAID President's Malaria Initiative, VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Emile Z Manzambi
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Gillon Illombe
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Tania Mapangulu
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Tamfum Muyembe
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Tiffany Clark
- USAID President's Malaria Initiative, VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Mame Niang
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Kinshasa, Democratic Republic of the Congo
| | - Ferdinand Ntoya
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Kinshasa, Democratic Republic of the Congo
| | - Aboubacar Sadou
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Kinshasa, Democratic Republic of the Congo
| | - Mateusz Plucinski
- U.S. President's Malaria Initiative and Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA, 30329, USA
| | - Yikun Li
- U.S. President's Malaria Initiative and Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA, 30329, USA
| | - Louisa A Messenger
- U.S. President's Malaria Initiative and Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA, 30329, USA.,London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Christen Fornadel
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Richard M Oxborough
- USAID President's Malaria Initiative, VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Seth R Irish
- U.S. President's Malaria Initiative and Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
33
|
Weedall GD, Mugenzi LMJ, Menze BD, Tchouakui M, Ibrahim SS, Amvongo-Adjia N, Irving H, Wondji MJ, Tchoupo M, Djouaka R, Riveron JM, Wondji CS. A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci Transl Med 2020; 11:11/484/eaat7386. [PMID: 30894503 DOI: 10.1126/scitranslmed.aat7386] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/09/2018] [Indexed: 11/02/2022]
Abstract
Metabolic resistance to insecticides such as pyrethroids in mosquito vectors threatens control of malaria in Africa. Unless it is managed, recent gains in reducing malaria transmission could be lost. To improve monitoring and assess the impact of insecticide resistance on malaria control interventions, we elucidated the molecular basis of pyrethroid resistance in the major African malaria vector, Anopheles funestus We showed that a single cytochrome P450 allele (CYP6P9a_R) in A. funestus reduced the efficacy of insecticide-treated bednets for preventing transmission of malaria in southern Africa. Expression of key insecticide resistance genes was detected in populations of this mosquito vector throughout Africa but varied according to the region. Signatures of selection and adaptive evolutionary traits including structural polymorphisms and cis-regulatory transcription factor binding sites were detected with evidence of selection due to the scale-up of insecticide-treated bednet use. A cis-regulatory polymorphism driving the overexpression of the major resistance gene CYP6P9a allowed us to design a DNA-based assay for cytochrome P450-mediated resistance to pyrethroid insecticides. Using this assay, we tracked the spread of pyrethroid resistance and found that it was almost fixed in mosquitoes from southern Africa but was absent from mosquitoes collected elsewhere in Africa. Furthermore, a field study in experimental huts in Cameroon demonstrated that mosquitoes carrying the resistance CYP6P9a_R allele survived and succeeded in blood feeding more often than did mosquitoes that lacked this allele. Our findings highlight the need to introduce a new generation of insecticide-treated bednets for malaria control that do not rely on pyrethroid insecticides.
Collapse
Affiliation(s)
- Gareth D Weedall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, U.K
| | - Leon M J Mugenzi
- LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Benjamin D Menze
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Sulaiman S Ibrahim
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria
| | - Nathalie Amvongo-Adjia
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Centre for Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaoundé, Cameroon
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Murielle J Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Micareme Tchoupo
- LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture (IITA), Cotonou 08 BP 0932, Benin
| | - Jacob M Riveron
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK. .,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
34
|
Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, Posey JE, Gwinn M. Pathogen Genomics in Public Health. N Engl J Med 2019; 381:2569-2580. [PMID: 31881145 PMCID: PMC7008580 DOI: 10.1056/nejmsr1813907] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rapid advances in DNA sequencing technology ("next-generation sequencing") have inspired optimism about the potential of human genomics for "precision medicine." Meanwhile, pathogen genomics is already delivering "precision public health" through more effective investigations of outbreaks of foodborne illnesses, better-targeted tuberculosis control, and more timely and granular influenza surveillance to inform the selection of vaccine strains. In this article, we describe how public health agencies have been adopting pathogen genomics to improve their effectiveness in almost all domains of infectious disease. This momentum is likely to continue, given the ongoing development in sequencing and sequencing-related technologies.
Collapse
Affiliation(s)
- Gregory L Armstrong
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Duncan R MacCannell
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Jill Taylor
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Heather A Carleton
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Elizabeth B Neuhaus
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Richard S Bradbury
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - James E Posey
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Marta Gwinn
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| |
Collapse
|
35
|
Functional genetic validation of key genes conferring insecticide resistance in the major African malaria vector, Anopheles gambiae. Proc Natl Acad Sci U S A 2019; 116:25764-25772. [PMID: 31801878 PMCID: PMC6926047 DOI: 10.1073/pnas.1914633116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Insecticide resistance in Anopheles gambiae mosquitoes can derail malaria control programs, and to overcome it, we need to discover the underlying molecular basis. Here, we characterize 3 genes most often associated with insecticide resistance directly by their overproduction in genetically modified An. gambiae. We show that overexpression of each gene confers resistance to representatives of at least 1 insecticide class, and taken together, the 3 genes provide cross-resistance to all 4 major insecticide classes currently used in public health. These data validate the candidate genes as markers to monitor the spread of resistance in mosquito populations. The modified mosquitoes produced are also valuable tools to prescreen the efficacy of new insecticides against existing resistance mechanisms. Resistance in Anopheles gambiae to members of all 4 major classes (pyrethroids, carbamates, organochlorines, and organophosphates) of public health insecticides limits effective control of malaria transmission in Africa. Increase in expression of detoxifying enzymes has been associated with insecticide resistance, but their direct functional validation in An. gambiae is still lacking. Here, we perform transgenic analysis using the GAL4/UAS system to examine insecticide resistance phenotypes conferred by increased expression of the 3 genes—Cyp6m2, Cyp6p3, and Gste2—most often found up-regulated in resistant An. gambiae. We report evidence in An. gambiae that organophosphate and organochlorine resistance is conferred by overexpression of GSTE2 in a broad tissue profile. Pyrethroid and carbamate resistance is bestowed by similar Cyp6p3 overexpression, and Cyp6m2 confers only pyrethroid resistance when overexpressed in the same tissues. Conversely, such Cyp6m2 overexpression increases susceptibility to the organophosphate malathion, presumably due to conversion to the more toxic metabolite, malaoxon. No resistant phenotypes are conferred when either Cyp6 gene overexpression is restricted to the midgut or oenocytes, indicating that neither tissue is involved in insecticide resistance mediated by the candidate P450s examined. Validation of genes conferring resistance provides markers to guide control strategies, and the observed negative cross-resistance due to Cyp6m2 gives credence to proposed dual-insecticide strategies to overcome pyrethroid resistance. These transgenic An. gambiae-resistant lines are being used to test the “resistance-breaking” efficacy of active compounds early in their development.
Collapse
|
36
|
Mugenzi LMJ, Menze BD, Tchouakui M, Wondji MJ, Irving H, Tchoupo M, Hearn J, Weedall GD, Riveron JM, Wondji CS. Cis-regulatory CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against Anopheles funestus. Nat Commun 2019; 10:4652. [PMID: 31604938 PMCID: PMC6789023 DOI: 10.1038/s41467-019-12686-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/21/2019] [Indexed: 11/09/2022] Open
Abstract
Elucidating the genetic basis of metabolic resistance to insecticides in malaria vectors is crucial to prolonging the effectiveness of insecticide-based control tools including long lasting insecticidal nets (LLINs). Here, we show that cis-regulatory variants of the cytochrome P450 gene, CYP6P9b, are associated with pyrethroid resistance in the African malaria vector Anopheles funestus. A DNA-based assay is designed to track this resistance that occurs near fixation in southern Africa but not in West/Central Africa. Applying this assay we demonstrate, using semi-field experimental huts, that CYP6P9b-mediated resistance associates with reduced effectiveness of LLINs. Furthermore, we establish that CYP6P9b combines with another P450, CYP6P9a, to additively exacerbate the reduced efficacy of insecticide-treated nets. Double homozygote resistant mosquitoes (RR/RR) significantly survive exposure to insecticide-treated nets and successfully blood feed more than other genotypes. This study provides tools to track and assess the impact of multi-gene driven metabolic resistance to pyrethroids, helping improve resistance management. Bed nets treated with insecticides have been instrumental in reducing malaria mortality, but insecticide resistance is on the rise. Here, Mugenzi et al. identify genetic variants in the P450 gene CYP6P9b of Anopheles funestus that associate with insecticide resistance and develop a PCR-based diagnostic assay to help identify pyrethroid-resistant strains.
Collapse
Affiliation(s)
- Leon M J Mugenzi
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon.,Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, P.O. Box, 63, Buea, Cameroon
| | - Benjamin D Menze
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Gareth D Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon.
| |
Collapse
|
37
|
Riveron JM, Huijben S, Tchapga W, Tchouakui M, Wondji MJ, Tchoupo M, Irving H, Cuamba N, Maquina M, Paaijmans K, Wondji CS. Escalation of Pyrethroid Resistance in the Malaria Vector Anopheles funestus Induces a Loss of Efficacy of Piperonyl Butoxide-Based Insecticide-Treated Nets in Mozambique. J Infect Dis 2019; 220:467-475. [PMID: 30923819 PMCID: PMC6603977 DOI: 10.1093/infdis/jiz139] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Insecticide resistance poses a serious threat to insecticide-based interventions in Africa. There is a fear that resistance escalation could jeopardize malaria control efforts. Monitoring of cases of aggravation of resistance intensity and its impact on the efficacy of control tools is crucial to predict consequences of resistance. METHODS The resistance levels of an Anopheles funestus population from Palmeira, southern Mozambique, were characterized and their impact on the efficacy of various insecticide-treated nets established. RESULTS A dramatic loss of efficacy of all long-lasting insecticidal nets (LLINs), including piperonyl butoxide (PBO)-based nets (Olyset Plus), was observed. This An. funestus population consistently (2016, 2017, and 2018) exhibited a high degree of pyrethroid resistance. Molecular analyses revealed that this resistance escalation was associated with a massive overexpression of the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, and also the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in contrast to 2002 (5%). However, the low recovery of susceptibility after PBO synergist assay suggests that other resistance mechanisms could be involved. CONCLUSIONS The loss of efficacy of pyrethroid-based LLINs with and without PBO is a concern for the effectiveness of insecticide-based interventions, and action should be taken to prevent the spread of such super-resistance.
Collapse
Affiliation(s)
- Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
- ISGlobal, Barcelona, Spain
| | - Williams Tchapga
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
| | | | - Mara Maquina
- Centro de Investigação em Saúde da Manhiça, Mozambique
| | - Krijn Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
- ISGlobal, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça, Mozambique
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| |
Collapse
|
38
|
Simma EA, Dermauw W, Balabanidou V, Snoeck S, Bryon A, Clark RM, Yewhalaw D, Vontas J, Duchateau L, Van Leeuwen T. Genome-wide gene expression profiling reveals that cuticle alterations and P450 detoxification are associated with deltamethrin and DDT resistance in Anopheles arabiensis populations from Ethiopia. PEST MANAGEMENT SCIENCE 2019; 75:1808-1818. [PMID: 30740870 DOI: 10.1002/ps.5374] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Vector control is the main intervention in malaria control and elimination strategies. However, the development of insecticide resistance is one of the major challenges for controlling malaria vectors. Anopheles arabiensis populations in Ethiopia showed resistance against both DDT and the pyrethroid deltamethrin. Although an L1014F target-site resistance mutation was present in the voltage gated sodium channel of investigated populations, the levels of resistance indicated the presence of additional resistance mechanisms. In this study, we used genome-wide transcriptome profiling by RNAseq to assess differentially expressed genes between three deltamethrin and DDT resistant An. arabiensis field populations - Asendabo, Chewaka and Tolay - and two susceptible strains - Sekoru and Mozambique. RESULTS Both RNAseq analysis and RT-qPCR showed that a glutathione-S-transferase, gstd3, and a cytochrome P450 monooxygenase, cyp6p4, were significantly overexpressed in the group of resistant populations compared to the susceptible strains, suggesting that the enzymes they encode play a key role in metabolic resistance against deltamethrin or DDT. Furthermore, a gene ontology enrichment analysis showed that expression changes of cuticle related genes were strongly associated with insecticide resistance. Although this did not translate in increased thickness of the procuticle, a higher cuticular hydrocarbon content was observed in a resistant population. CONCLUSION Our transcriptome sequencing of deltamethrin and DDT resistant An. arabiensis populations from Ethiopia suggests non-target site resistance mechanisms and paves the way for further investigation of the role of cuticle composition in insecticide resistance of malaria vectors. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eba A Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Astrid Bryon
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, College of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Luc Duchateau
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Ghurye J, Koren S, Small ST, Redmond S, Howell P, Phillippy AM, Besansky NJ. A chromosome-scale assembly of the major African malaria vector Anopheles funestus. Gigascience 2019; 8:giz063. [PMID: 31157884 PMCID: PMC6545970 DOI: 10.1093/gigascience/giz063] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Anopheles funestus is one of the 3 most consequential and widespread vectors of human malaria in tropical Africa. However, the lack of a high-quality reference genome has hindered the association of phenotypic traits with their genetic basis in this important mosquito. FINDINGS Here we present a new high-quality A. funestus reference genome (AfunF3) assembled using 240× coverage of long-read single-molecule sequencing for contigging, combined with 100× coverage of short-read Hi-C data for chromosome scaffolding. The assembled contigs total 446 Mbp of sequence and contain substantial duplication due to alternative alleles present in the sequenced pool of mosquitos from the FUMOZ colony. Using alignment and depth-of-coverage information, these contigs were deduplicated to a 211 Mbp primary assembly, which is closer to the expected haploid genome size of 250 Mbp. This primary assembly consists of 1,053 contigs organized into 3 chromosome-scale scaffolds with an N50 contig size of 632 kbp and an N50 scaffold size of 93.811 Mbp, representing a 100-fold improvement in continuity versus the current reference assembly, AfunF1. CONCLUSION This highly contiguous and complete A. funestus reference genome assembly will serve as an improved basis for future studies of genomic variation and organization in this important disease vector.
Collapse
Affiliation(s)
- Jay Ghurye
- Department of Computer Science, University of Maryland, 8125 Paint Branch Drive, College Park, MD 20742, USA
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Scott T Small
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Science Center, Notre Dame, IN 46556, USA
| | - Seth Redmond
- Infectious Disease and Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Paul Howell
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Nora J Besansky
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Science Center, Notre Dame, IN 46556, USA
| |
Collapse
|
40
|
Mackenzie-Impoinvil L, Weedall GD, Lol JC, Pinto J, Vizcaino L, Dzuris N, Riveron J, Padilla N, Wondji C, Lenhart A. Contrasting patterns of gene expression indicate differing pyrethroid resistance mechanisms across the range of the New World malaria vector Anopheles albimanus. PLoS One 2019; 14:e0210586. [PMID: 30699158 PMCID: PMC6353143 DOI: 10.1371/journal.pone.0210586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/25/2018] [Indexed: 11/18/2022] Open
Abstract
Decades of unmanaged insecticide use and routine exposure to agrochemicals have left many populations of malaria vectors in the Americas resistant to multiple classes of insecticides, including pyrethroids. The molecular basis of pyrethroid resistance is relatively uncharacterised in American malaria vectors, preventing the design of suitable resistance management strategies. Using whole transcriptome sequencing, we characterized the mechanisms of pyrethroid resistance in Anopheles albimanus from Peru and Guatemala. An. albimanus were phenotyped as either deltamethrin or alpha-cypermethrin resistant. RNA from 1) resistant, 2) unexposed, and 3) a susceptible laboratory strain of An. albimanus was sequenced and analyzed using RNA-Seq. Expression profiles of the three groups were compared based on the current annotation of the An. albimanus reference genome. Several candidate genes associated with pyrethroid resistance in other malaria vectors were found to be overexpressed in resistant An. albimanus. In addition, gene ontology terms related to serine-type endopeptidase activity, extracellular activity and chitin metabolic process were also commonly overexpressed in the field caught resistant and unexposed samples from both Peru and Guatemala when compared to the susceptible strain. The cytochrome P450 CYP9K1 was overexpressed 14x in deltamethrin and 8x in alpha-cypermethrin-resistant samples from Peru and 2x in deltamethrin-resistant samples from Guatemala, relative to the susceptible laboratory strain. CYP6P5 was overexpressed 68x in deltamethrin-resistant samples from Peru but not in deltamethrin-resistant samples from Guatemala. When comparing overexpressed genes between deltamethrin-resistant and alpha-cypermethrin-resistant samples from Peru, a single P450 gene, CYP4C26, was overexpressed 9.8x (p<0.05) in alpha-cypermethrin-resistant samples. In Peruvian deltamethrin-resistant samples, the knockdown resistance mutation (kdr) variant alleles at position 1014 were rare, with approximately 5% frequency, but in the alpha-cypermethrin-resistant samples, the frequency of these alleles was approximately 15-30%. Functional validation of the candidate genes and the kdr mutation as a resistance marker for alpha-cypermethrin will confirm the role of these mechanisms in conferring pyrethroid resistance.
Collapse
Affiliation(s)
- Lucy Mackenzie-Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Juan C. Lol
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala
| | - Jesús Pinto
- Instituto Nacional de Salud Lima, Lima, Peru
| | - Lucrecia Vizcaino
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nicole Dzuris
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacob Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Norma Padilla
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala
| | - Charles Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Killeen GF, Reed TE. The portfolio effect cushions mosquito populations and malaria transmission against vector control interventions. Malar J 2018; 17:291. [PMID: 30097031 PMCID: PMC6086012 DOI: 10.1186/s12936-018-2441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/02/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Portfolio effects were first described as a basis for mitigating against financial risk by diversifying investments. Distributing investment across several different assets can stabilize returns and reduce risks by statistical averaging of individual asset dynamics that often correlate weakly or negatively with each other. The same simple probability theory is equally applicable to complex ecosystems, in which biological and environmental diversity stabilizes ecosystems against natural and human-mediated perturbations. Given the fundamental limitations to how well the full complexity of ecosystem dynamics can be understood or anticipated, the portfolio effect concept provides a simple framework for more critical data interpretation and pro-active conservation management. Applied to conservation ecology purposes, the portfolio effect concept informs management strategies emphasizing identification and maintenance of key ecological processes that generate complexity, diversity and resilience against inevitable, often unpredictable perturbations. IMPLICATIONS Applied to the reciprocal goal of eliminating the least valued elements of global biodiversity, specifically lethal malaria parasites and their vector mosquitoes, simply understanding the portfolio effect concept informs more cautious interpretation of surveillance data and simulation model predictions. Malaria transmission mediated by guilds of multiple vectors in complex landscapes, with highly variable climatic and meteorological conditions, as well as changing patterns of land use and other human behaviours, will systematically tend to be more resilient to attack with vector control than it appears based on even the highest quality surveillance data or predictive models. CONCLUSION Malaria vector control programmes may need to be more ambitious, interpret their short-to-medium term assessments of intervention impact more cautiously, and manage stakeholder expectations more conservatively than has often been the case thus far.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, United Republic of Tanzania.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Western Road, Cork, Republic of Ireland
| |
Collapse
|
42
|
Riveron JM, Watsenga F, Irving H, Irish SR, Wondji CS. High Plasmodium Infection Rate and Reduced Bed Net Efficacy in Multiple Insecticide-Resistant Malaria Vectors in Kinshasa, Democratic Republic of Congo. J Infect Dis 2018; 217:320-328. [PMID: 29087484 PMCID: PMC5853898 DOI: 10.1093/infdis/jix570] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accounting for approximately 11% of all malaria cases, the Democratic Republic of the Congo (DRC) is central to malaria elimination efforts. To support vector control interventions in DRC, we characterized the dynamics and impact of insecticide resistance in major malaria vectors in 2015. High Plasmodium infection rates were recorded in Anopheles gambiae and Anopheles funestus, with Plasmodium falciparum predominant over Plasmodium malariae. Both mosquito species exhibited high and multiple resistance to major public health insecticide classes. The extremely high resistance to permethrin and DDT (dichlorodiphenyltrichloroethane) in An. gambiae (low mortalities after 6 hours exposure) is worrisome, and is supported by a reduced insecticidal effect of bed nets against both mosquito species in laboratory tests. Metabolic and target site insensitivity mechanisms are driving this resistance in An. gambiae, but only the former was observed in An. funestus. These findings highlight the urgent need for actions to prolong the effectiveness of insecticide-based interventions in DRC.
Collapse
Affiliation(s)
- Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
- Research Unit, Liverpool School of Tropical Medicine (LSTM)/Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC) Research Unit, Yaoundé, Cameroon
| | - Francis Watsenga
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
| | - Seth R Irish
- US President’s Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
- Research Unit, Liverpool School of Tropical Medicine (LSTM)/Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC) Research Unit, Yaoundé, Cameroon
| |
Collapse
|
43
|
Nardini L, Hunt RH, Dahan-Moss YL, Christie N, Christian RN, Coetzee M, Koekemoer LL. Malaria vectors in the Democratic Republic of the Congo: the mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus. Malar J 2017; 16:448. [PMID: 29115954 PMCID: PMC5678590 DOI: 10.1186/s12936-017-2099-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022] Open
Abstract
Background The Democratic Republic of the Congo (DRC) is characterized as a holoendemic malaria area with the main vectors being Anopheles funestus and members of the Anopheles gambiae complex. Due to political instability and socio-economic challenges in the region, knowledge of insecticide resistance status and resistance mechanisms in these vectors is limited. Mosquitoes were collected from a mining site in the north-eastern part of the country and, following identification, were subjected to extensive testing for the target-site and biochemical basis of resistance. Quantitative real-time PCR was used to assess a suite of 10 genes frequently involved in pyrethroid and dichlorodiphenyltrichloroethane (DDT) resistance in An. gambiae females and males. In An. funestus, gene expression microarray analysis was carried out on female mosquitoes. Results In both species, deltamethrin resistance was recorded along with high resistance and suspected resistance to DDT in An. gambiae and An. funestus, respectively. A total of 85% of An. gambiae carried the kdr mutations as either homozygous resistant (RR) (L1014S, L1014F or both) or heterozygous (RS), however only 3% carried the rdl mutant allele (RS) and no ace-1 mutations were recorded. Synergist assays indicated a strong role for P450s in deltamethrin resistance in both species. In An. gambiae, analysis of transcription levels showed that the glutathione-S-transferase, GSTS1-2, produced the highest fold change in expression (7.6-fold in females and 31-fold in males) followed by GSTE2, thioredoxin peroxidase (TPX2), and cytochrome oxidases (CYP6M2 and CYP6P1). All other genes tested produced fold change values below 2. Microarray analysis revealed significant over-transcription of cuticular proteins as well as CYP6M7, CYP6P9a and CYP6P9b in insecticide resistant An. funestus. Conclusions These data show that high levels of deltamethrin resistance in the main malaria vector species, conferred by enzymatic detoxification, are present in the DRC. Electronic supplementary material The online version of this article (10.1186/s12936-017-2099-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luisa Nardini
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Richard H Hunt
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Riann N Christian
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa.
| |
Collapse
|