1
|
Kara MF, Guo W, Zhang R, Denby K. LsRTDv1, a reference transcript dataset for accurate transcript-specific expression analysis in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:370-386. [PMID: 39145419 DOI: 10.1111/tpj.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Accurate quantification of gene and transcript-specific expression, with the underlying knowledge of precise transcript isoforms, is crucial to understanding many biological processes. Analysis of RNA sequencing data has benefited from the development of alignment-free algorithms which enhance the precision and speed of expression analysis. However, such algorithms require a reference transcriptome. Here we generate a reference transcript dataset (LsRTDv1) for lettuce (cv. Saladin), combining long- and short-read sequencing with publicly available transcriptome annotations, and filtering to keep only transcripts with high-confidence splice junctions and transcriptional start and end sites. LsRTDv1 identifies novel genes (mostly long non-coding RNAs) and increases the number of transcript isoforms per gene in the lettuce genome from 1.4 to 2.7. We show that LsRTDv1 significantly increases the mapping rate of RNA-seq data from a lettuce time-series experiment (mock- and Botrytis cinerea-inoculated) and enables detection of genes that are differentially alternatively spliced in response to infection as well as transcript-specific expression changes. LsRTDv1 is a valuable resource for investigation of transcriptional and alternative splicing regulation in lettuce.
Collapse
Affiliation(s)
- Mehmet Fatih Kara
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Katherine Denby
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
2
|
Burns JA, Daniels J, Becker KP, Casagrande D, Roberts P, Orenstein E, Vogt DM, Teoh ZE, Wood R, Yin AH, Genot B, Wood RJ, Katija K, Phillips BT, Gruber DF. Transcriptome sequencing of seven deep marine invertebrates. Sci Data 2024; 11:679. [PMID: 38914539 PMCID: PMC11196669 DOI: 10.1038/s41597-024-03533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
We present 4k video and whole transcriptome data for seven deep-sea invertebrate animals collected in the Eastern Pacific Ocean during a research expedition onboard the Schmidt Ocean Institute's R/V Falkor in August of 2021. The animals include one jellyfish (Atolla sp.), three siphonophores (Apolemia sp., Praya sp., and Halistemma sp.), one larvacean (Bathochordaeus mcnutti), one tunicate (Pyrosomatidae sp.), and one ctenophore (Lampocteis sp.). Four of the animals were sequenced with long-read RNA sequencing technology, such that the reads themselves define a reference assembly for those animals. The larvacean tissues were successfully preserved in situ and has paired long-read reference data and short read quantitative transcriptomic data for within-specimen analyses of gene expression. Additionally, for three animals we provide quantitative image data, and a 3D model for one siphonophore. The paired image and transcriptomic data can be used for species identification, species description, and reference genetic data for these deep-sea animals.
Collapse
Affiliation(s)
- John A Burns
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA.
| | - Joost Daniels
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, 95039, USA
| | - Kaitlyn P Becker
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David Casagrande
- Department of Ocean Engineering, University of Rhode Island, 215 South Ferry Road, Narragansett, RI, 02882, USA
| | - Paul Roberts
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, 95039, USA
| | - Eric Orenstein
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, 95039, USA
| | - Daniel M Vogt
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | | | - Ryan Wood
- PA Consulting, Concord, MA, 01742, USA
| | - Alexander H Yin
- Department of Ocean Engineering, University of Rhode Island, 215 South Ferry Road, Narragansett, RI, 02882, USA
| | - Baptiste Genot
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Robert J Wood
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Kakani Katija
- Monterey Bay Aquarium Research Institute, Research and Development, Moss Landing, 95039, USA
| | - Brennan T Phillips
- Department of Ocean Engineering, University of Rhode Island, 215 South Ferry Road, Narragansett, RI, 02882, USA
| | - David F Gruber
- Department of Natural Sciences, Baruch College, City University of New York and PhD Program in Biology, CUNY Graduate Center, New York, NY, 10010, USA.
| |
Collapse
|
3
|
Calderón L, Carbonell-Bejerano P, Muñoz C, Bree L, Sola C, Bergamin D, Tulle W, Gomez-Talquenca S, Lanz C, Royo C, Ibáñez J, Martinez-Zapater JM, Weigel D, Lijavetzky D. Diploid genome assembly of the Malbec grapevine cultivar enables haplotype-aware analysis of transcriptomic differences underlying clonal phenotypic variation. HORTICULTURE RESEARCH 2024; 11:uhae080. [PMID: 38766532 PMCID: PMC11101320 DOI: 10.1093/hr/uhae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 05/22/2024]
Abstract
To preserve their varietal attributes, established grapevine cultivars (Vitis vinifera L. ssp. vinifera) must be clonally propagated, due to their highly heterozygous genomes. Malbec is a France-originated cultivar appreciated for producing high-quality wines and is the offspring of cultivars Prunelard and Magdeleine Noire des Charentes. Here, we have built a diploid genome assembly of Malbec, after trio binning of PacBio long reads into the two haploid complements inherited from either parent. After haplotype-aware deduplication and corrections, complete assemblies for the two haplophases were obtained with a very low haplotype switch-error rate (<0.025). The haplophase alignment identified > 25% of polymorphic regions. Gene annotation including RNA-seq transcriptome assembly and ab initio prediction evidence resulted in similar gene model numbers for both haplophases. The annotated diploid assembly was exploited in the transcriptomic comparison of four clonal accessions of Malbec that exhibited variation in berry composition traits. Analysis of the ripening pericarp transcriptome using either haplophases as a reference yielded similar results, although some differences were observed. Particularly, among the differentially expressed genes identified only with the Magdeleine-inherited haplotype as reference, we observed an over-representation of hypothetically hemizygous genes. The higher berry anthocyanin content of clonal accession 595 was associated with increased abscisic acid responses, possibly leading to the observed overexpression of phenylpropanoid metabolism genes and deregulation of genes associated with abiotic stress response. Overall, the results highlight the importance of producing diploid assemblies to fully represent the genomic diversity of highly heterozygous woody crop cultivars and unveil the molecular bases of clonal phenotypic variation.
Collapse
Affiliation(s)
- Luciano Calderón
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Claudio Muñoz
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
- Facultad de Ciencias Agrarias (UNCuyo), Cátedra Fitopatología, Chacras de Coria 5505, Mendoza, Argentina
| | - Laura Bree
- Vivero Mercier Argentina, Perdriel 5500, Mendoza, Argentina
| | - Cristobal Sola
- Vivero Mercier Argentina, Perdriel 5500, Mendoza, Argentina
| | | | - Walter Tulle
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
| | - Sebastian Gomez-Talquenca
- Plant Virology Laboratory, Instituto Nacional de Tecnología Agropecuaria, Luján de Cuyo 5534, Mendoza, Argentina
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Carolina Royo
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
| | - José Miguel Martinez-Zapater
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño 26007, La Rioja, Spain
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo), Genetica y Genomica de Vid, Chacras de Coria 5505, Mendoza, Argentina
| |
Collapse
|
4
|
Ochoa-Alejo N, Gómez-Jiménez MC, Martínez O. Editorial: Transcriptomics of fruit growth, development and ripening. FRONTIERS IN PLANT SCIENCE 2024; 15:1399376. [PMID: 38645390 PMCID: PMC11026863 DOI: 10.3389/fpls.2024.1399376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Neftali Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | | | - Octavio Martínez
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| |
Collapse
|
5
|
Liao T, Zhang L, Wang Y, Guo L, Cao J, Liu G. Full-length transcriptome characterization of Platycladus orientalis based on the PacBio platform. Front Genet 2024; 15:1345039. [PMID: 38304337 PMCID: PMC10830785 DOI: 10.3389/fgene.2024.1345039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
As a unique and native conifer in China, Platycladus orientalis is widely used in soil erosion control, garden landscapes, timber, and traditional Chinese medicine. However, due to the lack of reference genome and transcriptome, it is limited to the further molecular mechanism research and gene function mining. To develop a full-length reference transcriptome, tissues from five different parts of P. orientalis and four cone developmental stages were sequenced and analyzed by single-molecule real-time (SMRT) sequencing through the PacBio platform in this study. Overall, 37,111 isoforms were detected by PacBio with an N50 length of 2,317 nt, an average length of 1,999 bp, and the GC content of 41.81%. Meanwhile, 36,120 coding sequences, 5,645 simple sequence repeats (SSRs), 1,201 non-coding RNAs (lncRNAs), and 182 alternative splicing (AS) events with five types were identified using the results obtained from the PacBio transcript isoforms. Furthermore, 1,659 transcription factors (TFs) were detected and belonged to 51 TF families. A total of 35,689 transcripts (96.17%) were annotated through the NCBI nr, KOG, Swiss-Prot and KEGG databases, and 385 transcript isoforms related to 8 types of hormones were identified incorporated into plant hormone signal transduction pathways. The assembly and revelation of the full-length transcriptome of P. orientalis offer a pioneering insight for future investigations into gene function and genetic breeding within Platycladus species.
Collapse
Affiliation(s)
| | | | | | | | | | - Guobin Liu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Olmedo P, Vidal J, Ponce E, Defilippi BG, Pérez-Donoso AG, Meneses C, Carpentier S, Pedreschi R, Campos-Vargas R. Proteomic and Low-Polar Metabolite Profiling Reveal Unique Dynamics in Fatty Acid Metabolism during Flower and Berry Development of Table Grapes. Int J Mol Sci 2023; 24:15360. [PMID: 37895040 PMCID: PMC10607693 DOI: 10.3390/ijms242015360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Grapevine development and ripening are complex processes that involve several biochemical pathways, including fatty acid and lipid metabolism. Fatty acids are essential components of lipids, which play crucial roles in fruit maturation and flavor development. However, the dynamics of fatty acid metabolism in grape flowers and berries are poorly understood. In this study, we present those dynamics and investigate the mechanisms of fatty acid homeostasis on 'Thompson Seedless' berries using metabolomic and proteomic analyses. Low-polar metabolite profiling indicated a higher abundance of fatty acids at the pre-flowering and pre-veraison stages. Proteomic analyses revealed that grape flowers and berries display unique profiles of proteins involved in fatty acid biosynthesis, triacylglycerol assembly, fatty acid β-oxidation, and lipid signaling. These findings show, for the first time, that fatty acid metabolism also plays an important role in the development of non-oil-rich tissues, opening new perspectives about lipid function and its relation to berry quality.
Collapse
Affiliation(s)
- Patricio Olmedo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
| | - Juan Vidal
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
| | - Excequel Ponce
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
| | - Bruno G. Defilippi
- Unidad de Postcosecha, Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santiago 8831314, Chile;
| | - Alonso G. Pérez-Donoso
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (A.G.P.-D.); (C.M.)
| | - Claudio Meneses
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (A.G.P.-D.); (C.M.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
| | - Sebastien Carpentier
- Facility for Systems Biology Based Mass Spectrometry SYBIOMA, KU Leuven, B-3000 Leuven, Belgium;
- Bioversity International, Biodiversity for Food & Agriculture, B-3001 Leuven, Belgium
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
| | - Reinaldo Campos-Vargas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile;
| |
Collapse
|
7
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
8
|
Li B, Gschwend AR. Vitis labrusca genome assembly reveals diversification between wild and cultivated grapevine genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1234130. [PMID: 37719220 PMCID: PMC10501149 DOI: 10.3389/fpls.2023.1234130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
Wild grapevines are important genetic resources in breeding programs to confer adaptive fitness traits and unique fruit characteristics, but the genetics underlying these traits, and their evolutionary origins, are largely unknown. To determine the factors that contributed to grapevine genome diversification, we performed comprehensive intragenomic and intergenomic analyses with three cultivated European (including the PN40024 reference genome) and two wild North American grapevine genomes, including our newly released Vitis labrusca genome. We found the heterozygosity of the cultivated grapevine genomes was twice as high as the wild grapevine genomes studied. Approximately 30% of V. labrusca and 48% of V. vinifera Chardonnay genes were heterozygous or hemizygous and a considerable number of collinear genes between Chardonnay and V. labrusca had different gene zygosity. Our study revealed evidence that supports gene gain-loss events in parental genomes resulted in the inheritance of hemizygous genes in the Chardonnay genome. Thousands of segmental duplications supplied source material for genome-specific genes, further driving diversification of the genomes studied. We found an enrichment of recently duplicated, adaptive genes in similar functional pathways, but differential retention of environment-specific adaptive genes within each genome. For example, large expansions of NLR genes were discovered in the two wild grapevine genomes studied. Our findings support variation in transposable elements contributed to unique traits in grapevines. Our work revealed gene zygosity, segmental duplications, gene gain-and-loss variations, and transposable element polymorphisms can be key driving forces for grapevine genome diversification.
Collapse
Affiliation(s)
| | - Andrea R. Gschwend
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Urra C, Sanhueza D, Pavez C, Tapia P, Núñez-Lillo G, Minio A, Miossec M, Blanco-Herrera F, Gainza F, Castro A, Cantu D, Meneses C. Identification of grapevine clones via high-throughput amplicon sequencing: a proof-of-concept study. G3 (BETHESDA, MD.) 2023; 13:jkad145. [PMID: 37395733 PMCID: PMC10468313 DOI: 10.1093/g3journal/jkad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Wine cultivars are available to growers in multiple clonal selections with agronomic and enological differences. Phenotypic differences between clones originated from somatic mutations that accrued over thousands of asexual propagation cycles. Genetic diversity between grape cultivars remains unexplored, and tools to discriminate unequivocally clones have been lacking. This study aimed to uncover genetic variations among a group of clonal selections of 4 important Vitis vinifera cultivars: Cabernet sauvignon, Sauvignon blanc, Chardonnay, and Merlot, and use this information to develop genetic markers to discriminate the clones of these cultivars. We sequenced with short-read sequencing technology the genomes of 18 clones, including biological replicates for a total of 46 genomes. Sequences were aligned to their respective cultivar's reference genome for variant calling. We used reference genomes of Cabernet sauvignon, Chardonnay, and Merlot and developed a de novo genome assembly of Sauvignon blanc using long-read sequencing. On average, 4 million variants were detected for each clone, with 74.2% being single nucleotide variants and 25.8% being small insertions or deletions (InDel). The frequency of these variants was consistent across all clones. From these variants, we validated 46 clonal markers using high-throughput amplicon sequencing for 77.7% of the evaluated clones, most of them small InDel. These results represent an advance in grapevine genotyping strategies and will benefit the viticulture industry for the characterization and identification of the plant material.
Collapse
Affiliation(s)
- Claudio Urra
- UC Davis-Chile, Life Sciences Innovation Center, Santiago 7520424, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Catalina Pavez
- UC Davis-Chile, Life Sciences Innovation Center, Santiago 7520424, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Patricio Tapia
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Gerardo Núñez-Lillo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2263782, Chile
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616-5270, USA
| | - Matthieu Miossec
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
- ANID—Millennium Science Initiative Program—Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
| | - Felipe Gainza
- Center for Research and Innovation, Viña Concha y Toro S.A, Pencahue, Talca 3460000, Chile
| | - Alvaro Castro
- UC Davis-Chile, Life Sciences Innovation Center, Santiago 7520424, Chile
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616-5270, USA
| | - Claudio Meneses
- ANID—Millennium Science Initiative Program—Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- ANID—Millennium Science Initiative Program Millenium Institute Center for Genome Regulation, CRG, Santiago 8331150, Chile
| |
Collapse
|
10
|
Olmedo P, Núñez-Lillo G, Vidal J, Leiva C, Rojas B, Sagredo K, Arriagada C, Defilippi BG, Pérez-Donoso AG, Meneses C, Carpentier S, Pedreschi R, Campos-Vargas R. Proteomic and metabolomic integration reveals the effects of pre-flowering cytokinin applications on central carbon metabolism in table grape berries. Food Chem 2023; 411:135498. [PMID: 36696718 DOI: 10.1016/j.foodchem.2023.135498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Consumers around the world prefer high quality table grapes. To achieve higher quality traits at ripening, grapevine producers apply different plant growth regulators. The synthetic cytokinin forchlorfenuron N-(2-chloro-4-pyridinyl)-N'-phenylurea (CPPU) is widely used, its effect on grape quality is poorly understood. We hypothesized that the use of CPPU in pre-flowering can lead to changes in the metabolism that affects grape quality at harvest. Therefore, we investigated the role of CPPU applications on the quality of grapes by integrating proteomics and metabolomics. CPPU-treated grapevines showed a significant increase in berry size and firmness. Proteomic analyses indicated that CPPU-treated berries accumulated enzymes associated with carbohydrate metabolism, glycolysis, and tricarboxylic acid (TCA) cycle at harvest. Metabolomic analyses showed shifts in the abundance of compounds associated with carbohydrate metabolism and TCA cycle in CPPU-treated grapes. These findings suggest that CPPU applications modulate central carbon metabolism, improving grape berry quality.
Collapse
Affiliation(s)
- Patricio Olmedo
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Gerardo Núñez-Lillo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Juan Vidal
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Carol Leiva
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Karen Sagredo
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - César Arriagada
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - Bruno G Defilippi
- Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santiago, Chile
| | - Alonso G Pérez-Donoso
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Meneses
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile.
| | - Sebastien Carpentier
- Facility for Systems Biology based Mass Spectrometry SYBIOMA, KU Leuven, Leuven, Belgium; Biodiversity for Food and Agriculture, Biodiversity International, Leuven, Belgium.
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile; Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile.
| | - Reinaldo Campos-Vargas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Shi X, Cao S, Wang X, Huang S, Wang Y, Liu Z, Liu W, Leng X, Peng Y, Wang N, Wang Y, Ma Z, Xu X, Zhang F, Xue H, Zhong H, Wang Y, Zhang K, Velt A, Avia K, Holtgräwe D, Grimplet J, Matus JT, Ware D, Wu X, Wang H, Liu C, Fang Y, Rustenholz C, Cheng Z, Xiao H, Zhou Y. The complete reference genome for grapevine ( Vitis vinifera L.) genetics and breeding. HORTICULTURE RESEARCH 2023; 10:uhad061. [PMID: 37213686 PMCID: PMC10199708 DOI: 10.1093/hr/uhad061] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/02/2023] [Indexed: 05/23/2023]
Abstract
Grapevine is one of the most economically important crops worldwide. However, the previous versions of the grapevine reference genome tipically consist of thousands of fragments with missing centromeres and telomeres, limiting the accessibility of the repetitive sequences, the centromeric and telomeric regions, and the study of inheritance of important agronomic traits in these regions. Here, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the cultivar PN40024 using PacBio HiFi long reads. The T2T reference genome (PN_T2T) is 69 Mb longer with 9018 more genes identified than the 12X.v0 version. We annotated 67% repetitive sequences, 19 centromeres and 36 telomeres, and incorporated gene annotations of previous versions into the PN_T2T assembly. We detected a total of 377 gene clusters, which showed associations with complex traits, such as aroma and disease resistance. Even though PN40024 derives from nine generations of selfing, we still found nine genomic hotspots of heterozygous sites associated with biological processes, such as the oxidation-reduction process and protein phosphorylation. The fully annotated complete reference genome therefore constitutes an important resource for grapevine genetic studies and breeding programs.
Collapse
Affiliation(s)
- Xiaoya Shi
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Siyang Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yue Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zhongjie Liu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenwen Liu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanling Peng
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Nan Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yiwen Wang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiyao Ma
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodong Xu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fan Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hui Xue
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haixia Zhong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Amandine Velt
- SVQV, INRAE - University of Strasbourg, 68000 Colmar, France
| | - Komlan Avia
- SVQV, INRAE - University of Strasbourg, 68000 Colmar, France
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Jérôme Grimplet
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Systems Biotech Program, Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- USDA ARS NEA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, NY 14853, USA
| | - Xinyu Wu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Haibo Wang
- Fruit Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture/Key Laboratory of Mineral Nutrition and Fertilizers Efficient Utilization of Deciduous Fruit Tree, Liaoning Province, Xingcheng 125100, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450004, China
| | - Yuling Fang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | | | - Zongming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Xiao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yongfeng Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
12
|
Velasco VME, Ferreira A, Zaman S, Noordermeer D, Ensminger I, Wegrzyn JL. A long-read and short-read transcriptomics approach provides the first high-quality reference transcriptome and genome annotation for Pseudotsuga menziesii (Douglas-fir). G3 (BETHESDA, MD.) 2023; 13:jkac304. [PMID: 36454025 PMCID: PMC10468028 DOI: 10.1093/g3journal/jkac304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/13/2021] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
Douglas-fir (Pseudotsuga menziesii) is native to western North America. It grows in a wide range of environmental conditions and is an important timber tree. Although there are several studies on the gene expression responses of Douglas-fir to abiotic cues, the absence of high-quality transcriptome and genome data is a barrier to further investigation. Like for most conifers, the available transcriptome and genome reference dataset for Douglas-fir remains fragmented and requires refinement. We aimed to generate a highly accurate, and complete reference transcriptome and genome annotation. We deep-sequenced the transcriptome of Douglas-fir needles from seedlings that were grown under nonstress control conditions or a combination of heat and drought stress conditions using long-read (LR) and short-read (SR) sequencing platforms. We used 2 computational approaches, namely de novo and genome-guided LR transcriptome assembly. Using the LR de novo assembly, we identified 1.3X more high-quality transcripts, 1.85X more "complete" genes, and 2.7X more functionally annotated genes compared to the genome-guided assembly approach. We predicted 666 long noncoding RNAs and 12,778 unique protein-coding transcripts including 2,016 putative transcription factors. We leveraged the LR de novo assembled transcriptome with paired-end SR and a published single-end SR transcriptome to generate an improved genome annotation. This was conducted with BRAKER2 and refined based on functional annotation, repetitive content, and transcriptome alignment. This high-quality genome annotation has 51,419 unique gene models derived from 322,631 initial predictions. Overall, our informatics approach provides a new reference Douglas-fir transcriptome assembly and genome annotation with considerably improved completeness and functional annotation.
Collapse
Affiliation(s)
| | - Alyssa Ferreira
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| | - Sumaira Zaman
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| | - Devin Noordermeer
- Department of Biology, University of Toronto,
Mississauga, ON L5L 1C8, Canada
- Graduate Department of Cell and Systems Biology, University of
Toronto, Toronto, ON M5S, Canada
| | - Ingo Ensminger
- Department of Biology, University of Toronto,
Mississauga, ON L5L 1C8, Canada
- Graduate Department of Cell and Systems Biology, University of
Toronto, Toronto, ON M5S, Canada
- Graduate Department of Ecology and Evolutionary Biology, University of
Toronto, Toronto, ON M5S, Canada
| | - Jill L Wegrzyn
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
13
|
Sharbrough J, Bankers L, Cook E, Fields PD, Jalinsky J, McElroy KE, Neiman M, Logsdon JM, Boore JL. Single-molecule Sequencing of an Animal Mitochondrial Genome Reveals Chloroplast-like Architecture and Repeat-mediated Recombination. Mol Biol Evol 2023; 40:6980790. [PMID: 36625177 PMCID: PMC9874032 DOI: 10.1093/molbev/msad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in long-read sequencing technology have allowed for single-molecule sequencing of entire mitochondrial genomes, opening the door for direct investigation of the mitochondrial genome architecture and recombination. We used PacBio sequencing to reassemble mitochondrial genomes from two species of New Zealand freshwater snails, Potamopyrgus antipodarum and Potamopyrgus estuarinus. These assemblies revealed a ∼1.7 kb structure within the mitochondrial genomes of both species that was previously undetected by an assembly of short reads and likely corresponding to a large noncoding region commonly present in the mitochondrial genomes. The overall architecture of these Potamopyrgus mitochondrial genomes is reminiscent of the chloroplast genomes of land plants, harboring a large single-copy (LSC) region and a small single-copy (SSC) region separated by a pair of inverted repeats (IRa and IRb). Individual sequencing reads that spanned across the Potamopyrgus IRa-SSC-IRb structure revealed the occurrence of a "flip-flop" recombination. We also detected evidence for two distinct IR haplotypes and recombination between them in wild-caught P. estuarinus, as well as extensive intermolecular recombination between single-nucleotide polymorphisms in the LSC region. The chloroplast-like architecture and repeat-mediated mitochondrial recombination we describe here raise fundamental questions regarding the origins and commonness of inverted repeats in cytoplasmic genomes and their role in mitochondrial genome evolution.
Collapse
Affiliation(s)
| | - Laura Bankers
- Department of Biology, University of Iowa, Iowa City, IA
| | - Emily Cook
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801
| | - Peter D Fields
- Zoologisches Institut, University of Basel, Basel, Switzerland
| | | | - Kyle E McElroy
- Department of Biology, University of Iowa, Iowa City, IA,Department of Ecology, Evolution, and Organismal Biology, Iowa State University, IA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA
| | - John M Logsdon
- Department of Biology, University of Iowa, Iowa City, IA
| | - Jeffrey L Boore
- Phenome Health and Institute for Systems Biology, Seattle, WA
| |
Collapse
|
14
|
Kishi-Kaboshi M, Tanaka T, Sasaki K, Noda N, Aida R. Combination of long-read and short-read sequencing provides comprehensive transcriptome and new insight for Chrysanthemum morifolium ray-floret colorization. Sci Rep 2022; 12:17874. [PMID: 36284128 PMCID: PMC9596691 DOI: 10.1038/s41598-022-22589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/17/2022] [Indexed: 01/20/2023] Open
Abstract
Chrysanthemum morifolium is one of the most popular ornamental plants globally. Owing to its large and complex genome (around 10 Gb, segmental hexaploid), it has been difficult to obtain comprehensive transcriptome, which will promote to perform new breeding technique, such as genome editing, in C. morifolium. In this study, we used single-molecule real-time (SMRT) sequencing and RNA-seq technologies, combined them with an error-correcting process, and obtained high-coverage ray-floret transcriptome. The SMRT-seq data increased the ratio of long mRNAs containing complete open-reading frames, and the combined dataset provided a more complete transcriptomic data than those produced from either SMRT-seq or RNA-seq-derived transcripts. We finally obtained 'Sei Arabella' transcripts containing 928,645 non-redundant mRNA, which showed 96.6% Benchmarking Universal Single-Copy Orthologs (BUSCO) score. We also validated the reliability of the dataset by analyzing a mapping rate, annotation and transcript expression. Using the dataset, we searched anthocyanin biosynthesis gene orthologs and performed a qRT-PCR experiment to assess the usability of the dataset. The assessment of the dataset and the following analysis indicated that our dataset is reliable and useful for molecular biology. The combination of sequencing methods provided genetic information and a way to analyze the complicated C. morifolium transcriptome.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan ,grid.416835.d0000 0001 2222 0432Present Address: Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Tsuyoshi Tanaka
- grid.416835.d0000 0001 2222 0432Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Katsutomo Sasaki
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Naonobu Noda
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Ryutaro Aida
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| |
Collapse
|
15
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
16
|
Zhang R, Kuo R, Coulter M, Calixto CPG, Entizne JC, Guo W, Marquez Y, Milne L, Riegler S, Matsui A, Tanaka M, Harvey S, Gao Y, Wießner-Kroh T, Paniagua A, Crespi M, Denby K, Hur AB, Huq E, Jantsch M, Jarmolowski A, Koester T, Laubinger S, Li QQ, Gu L, Seki M, Staiger D, Sunkar R, Szweykowska-Kulinska Z, Tu SL, Wachter A, Waugh R, Xiong L, Zhang XN, Conesa A, Reddy ASN, Barta A, Kalyna M, Brown JWS. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. Genome Biol 2022; 23:149. [PMID: 35799267 PMCID: PMC9264592 DOI: 10.1186/s13059-022-02711-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis. RESULTS We present a new and comprehensive Arabidopsis thaliana Reference Transcript Dataset 3 (AtRTD3). AtRTD3 contains over 169,000 transcripts-twice that of the best current Arabidopsis transcriptome and including over 1500 novel genes. Seventy-eight percent of transcripts are from Iso-seq with accurately defined splice junctions and transcription start and end sites. We develop novel methods to determine splice junctions and transcription start and end sites accurately. Mismatch profiles around splice junctions provide a powerful feature to distinguish correct splice junctions and remove false splice junctions. Stratified approaches identify high-confidence transcription start and end sites and remove fragmentary transcripts due to degradation. AtRTD3 is a major improvement over existing transcriptomes as demonstrated by analysis of an Arabidopsis cold response RNA-seq time-series. AtRTD3 provides higher resolution of transcript expression profiling and identifies cold-induced differential transcription start and polyadenylation site usage. CONCLUSIONS AtRTD3 is the most comprehensive Arabidopsis transcriptome currently. It improves the precision of differential gene and transcript expression, differential alternative splicing, and transcription start/end site usage analysis from RNA-seq data. The novel methods for identifying accurate splice junctions and transcription start/end sites are widely applicable and will improve single-molecule sequencing analysis from any species.
Collapse
Affiliation(s)
- Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK.
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Max Coulter
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Cristiane P G Calixto
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Present address: Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Juan Carlos Entizne
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Yamile Marquez
- Centre for Genomic Regulation, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Linda Milne
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Stefan Riegler
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
- Present address: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Sarah Harvey
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York Wentworth Way, York, YO10 5DD, UK
| | - Yubang Gao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Theresa Wießner-Kroh
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Alejandro Paniagua
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain
| | - Martin Crespi
- French National Centre for Scientific Research | CNRS INRAE-Universities of Paris Saclay and Paris, Institute of Plant Sciences Paris Saclay IPS2, Rue de Noetzlin, 91192, Gif sur Yvette, France
| | - Katherine Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York Wentworth Way, York, YO10 5DD, UK
| | - Asa Ben Hur
- Department of Computer Science, Colorado State University, 1873 Campus Delivery, Fort Collins, CO, 80523-1873, USA
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, 100 East 24th St., Austin, TX, 78712-1095, USA
| | - Michael Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17 A-1090, Vienna, Austria
| | - Artur Jarmolowski
- Department of Gene Expression, Adam Mickiewicz University, Poznań, Poland
| | - Tino Koester
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Sascha Laubinger
- Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Qingshun Quinn Li
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lianfeng Gu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
- Present address: Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Ning Zhang
- Biology Department, School of Arts and Sciences, St. Bonaventure University, 3261 West State Road, St. Bonaventure, NY, 14778, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Center of Medical Biochemistry, Dr.-Bohr-Gasse 9/3, A-1030, Vienna, Austria
| | - Maria Kalyna
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - John W S Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| |
Collapse
|
17
|
Nerva L, Garcia JF, Favaretto F, Giudice G, Moffa L, Sandrini M, Cantu D, Zanzotto A, Gardiman M, Velasco R, Gambino G, Chitarra W. The hidden world within plants: metatranscriptomics unveils the complexity of wood microbiomes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2682-2697. [PMID: 35106548 DOI: 10.1093/jxb/erac032] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The importance of plants as complex entities influenced by genomes of the associated microorganisms is now seen as a new source of variability for a more sustainable agriculture, also in the light of ongoing climate change. For this reason, we investigated through metatranscriptomics whether the taxa profile and behaviour of microbial communities associated with the wood of 20-year-old grapevine plants are influenced by the health status of the host. We report for the first time a metatranscriptome from a complex tissue in a real environment, highlighting that this approach is able to define the microbial community better than referenced transcriptomic approaches. In parallel, the use of total RNA enabled the identification of bacterial taxa in healthy samples that, once isolated from the original wood tissue, displayed potential biocontrol activities against a wood-degrading fungal taxon. Furthermore, we revealed an unprecedented high number of new viral entities (~120 new viral species among 180 identified) associated with a single and limited environment and with potential impact on the whole holobiont. Taken together, our results suggest a complex multitrophic interaction in which the viral community also plays a crucial role in raising new ecological questions for the exploitation of microbial-assisted sustainable agriculture.
Collapse
Affiliation(s)
- Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, One Shields Ave, Davis, CA 95618, USA
| | - Francesco Favaretto
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- University of Padova, Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Gaetano Giudice
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- University of Milano, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), Via Celoria 2, 20133, Milano, Italy
| | - Loredana Moffa
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100 Udine, Italy
| | - Marco Sandrini
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100 Udine, Italy
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, One Shields Ave, Davis, CA 95618, USA
| | - Alessandro Zanzotto
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Massimo Gardiman
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Riccardo Velasco
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
18
|
Full-Length Transcriptome Characterization and Comparative Analysis of Chosenia arbutifolia. FORESTS 2022. [DOI: 10.3390/f13040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As a unique tree species in the Salicaceae family, Chosenia arbutifolia is used primarily for construction materials and landscape planting in China. Compared with other Salicaceae species members, the genomic resources of C. arbutifolia are extremely scarce. Thus, in the present study, the full-length transcriptome of C. arbutifolia was sequenced by single-molecular real-time sequencing (SMRT) technology based on the PacBio platform. Then, it was compared against those of other Salicaceae species. We generated 17,397,064 subreads and 95,940 polished reads with an average length of 1812 bp, which were acquired through calibration, clustering, and polishing. In total, 50,073 genes were reconstructed, of which 48,174 open reading frames, 4281 long non-coding RNAs, and 3121 transcription factors were discovered. Functional annotation revealed that 47,717 genes had a hit in at least one of five reference databases. Moreover, a set of 12,332 putative SSR markers were screened among the reconstructed genes. Single-copy and special orthogroups, and divergent and conserved genes, were identified and analyzed to find divergence among C. arbutifolia and the five Salicaceae species. To reveal genes involved in a specific function and pathway, enrichment analyses for GO and KEGG were also performed. In conclusion, the present study empirically confirmed that SMRT sequencing realistically depicted the C. arbutifolia transcriptome and provided a comprehensive reference for functional genomic research on Salicaceae species.
Collapse
|
19
|
Maestri S, Gambino G, Lopatriello G, Minio A, Perrone I, Cosentino E, Giovannone B, Marcolungo L, Alfano M, Rombauts S, Cantu D, Rossato M, Delledonne M, Calderón L. 'Nebbiolo' genome assembly allows surveying the occurrence and functional implications of genomic structural variations in grapevines (Vitis vinifera L.). BMC Genomics 2022; 23:159. [PMID: 35209840 PMCID: PMC8867635 DOI: 10.1186/s12864-022-08389-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Background ‘Nebbiolo’ is a grapevine cultivar typical of north-western Italy, appreciated for producing high-quality red wines. Grapevine cultivars are characterized by possessing highly heterozygous genomes, including a great incidence of genomic rearrangements larger than 50 bp, so called structural variations (SVs). Even though abundant, SVs are an under-explored source of genetic variation mainly due to methodological limitations at their detection. Results We employed a multiple platform approach to produce long-range genomic data for two different ‘Nebbiolo’ clones, namely: optical mapping, long-reads and linked-reads. We performed a haplotype-resolved de novo assembly for cultivar ‘Nebbiolo’ (clone CVT 71) and used an ab-initio strategy to annotate it. The annotated assembly enhanced our ability to detect SVs, enabling the study of genomic regions not present in the grapevines’ reference genome and accounting for their functional implications. We performed variant calling analyses at three different organizational levels: i) between haplotypes of clone CVT 71 (primary assembly vs haplotigs), ii) between ‘Nebbiolo’ and ‘Cabernet Sauvignon’ assemblies and iii) between clones CVT 71 and CVT 185, representing different ‘Nebbiolo’ biotypes. The cumulative size of non-redundant merged SVs indicated a total of 79.6 Mbp for the first comparison and 136.1 Mbp for the second one, while no SVs were detected for the third comparison. Interestingly, SVs differentiating cultivars and haplotypes affected similar numbers of coding genes. Conclusions Our results suggest that SVs accumulation rate and their functional implications in ‘Nebbiolo’ genome are highly-dependent on the organizational level under study. SVs are abundant when comparing ‘Nebbiolo’ to a different cultivar or the two haplotypes of the same individual, while they turned absent between the two analysed clones. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08389-9.
Collapse
Affiliation(s)
- Simone Maestri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| | - Giulia Lopatriello
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Andrea Minio
- Department of Viticulture & Enology, University of California Davis, 595 Hilgard Lane, Davis, CA, 95616, USA
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| | - Emanuela Cosentino
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Barbara Giovannone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luca Marcolungo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Massimiliano Alfano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Stephane Rombauts
- Department of Bioinformatics and Systems Biology, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, 9052, Gent, Belgium
| | - Dario Cantu
- Department of Viticulture & Enology, University of California Davis, 595 Hilgard Lane, Davis, CA, 95616, USA
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Luciano Calderón
- Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
20
|
Rubio B, Stammitti L, Cookson SJ, Teyssier E, Gallusci P. Small RNA populations reflect the complex dialogue established between heterograft partners in grapevine. HORTICULTURE RESEARCH 2022; 9:uhab067. [PMID: 35048109 PMCID: PMC8935936 DOI: 10.1093/hr/uhab067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/24/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Grafting is an ancient method that has been intensively used for the clonal propagation of vegetables and woody trees. Despite its importance in agriculture the physiological and molecular mechanisms underlying phenotypic changes of plants following grafting are still poorly understood. In the present study, we analyse the populations of small RNAs in homo and heterografts and take advantage of the sequence differences in the genomes of heterograft partners to analyse the possible exchange of small RNAs. We demonstrate that the type of grafting per se dramatically influences the small RNA populations independently of genotypes but also show genotype specific effects. In addition, we demonstrate that bilateral exchanges of small RNAs, mainly short interfering RNAs, may occur in heterograft with the preferential transfer of small RNAs from the scion to the rootstock. Altogether, the results suggest that small RNAs may have an important role in the phenotype modifications observed in heterografts.
Collapse
Affiliation(s)
- Bernadette Rubio
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Linda Stammitti
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Sarah Jane Cookson
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Emeline Teyssier
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Philippe Gallusci
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| |
Collapse
|
21
|
Navarro-Payá D, Santiago A, Orduña L, Zhang C, Amato A, D’Inca E, Fattorini C, Pezzotti M, Tornielli GB, Zenoni S, Rustenholz C, Matus JT. The Grape Gene Reference Catalogue as a Standard Resource for Gene Selection and Genetic Improvement. FRONTIERS IN PLANT SCIENCE 2022; 12:803977. [PMID: 35111182 PMCID: PMC8801485 DOI: 10.3389/fpls.2021.803977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 05/06/2023]
Abstract
Effective crop improvement, whether through selective breeding or biotech strategies, is largely dependent on the cumulative knowledge of a species' pangenome and its containing genes. Acquiring this knowledge is specially challenging in grapevine, one of the oldest fruit crops grown worldwide, which is known to have more than 30,000 genes. Well-established research communities studying model organisms have created and maintained, through public and private funds, a diverse range of online tools and databases serving as repositories of genomes and gene function data. The lack of such resources for the non-model, but economically important, Vitis vinifera species has driven the need for a standardised collection of genes within the grapevine community. In an effort led by the Integrape COST Action CA17111, we have recently developed the first grape gene reference catalogue, where genes are ascribed to functional data, including their accession identifiers from different genome-annotation versions (https://integrape.eu/resources/genes-genomes/). We present and discuss this gene repository together with a validation-level scheme based on varied supporting evidence found in current literature. The catalogue structure and online submission form provided permits community curation. Finally, we present the Gene Cards tool, developed within the Vitis Visualization (VitViz) platform, to visualize the data collected in the catalogue and link gene function with tissue-specific expression derived from public transcriptomic data. This perspective article aims to present these resources to the community as well as highlight their potential use, in particular for plant-breeding applications.
Collapse
Affiliation(s)
- David Navarro-Payá
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Chen Zhang
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Alessandra Amato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Erica D’Inca
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Chiara Fattorini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Sara Zenoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| |
Collapse
|
22
|
Hong CP, Kim CK, Lee DJ, Jeong HJ, Lee Y, Park SG, Kim HJ, Kang JN, Ryu H, Kwon SJ, Kang SH. Long-read transcriptome sequencing provides insight into lignan biosynthesis during fruit development in Schisandra chinensis. BMC Genomics 2022; 23:17. [PMID: 34996357 PMCID: PMC8742460 DOI: 10.1186/s12864-021-08253-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Schisandra chinensis, an ancient member of the most basal angiosperm lineage which is known as the ANITA, is a fruit-bearing vine with the pharmacological effects of a multidrug system, such as antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anti-osteoporosis effects. Its major bioactive compound is represented by lignans such as schisandrin. Molecular characterization of lignan biosynthesis in S. chinensis is of great importance for improving the production of this class of active compound. However, the biosynthetic mechanism of schisandrin remains largely unknown. RESULTS To understand the potential key catalytic steps and their regulation of schisandrin biosynthesis, we generated genome-wide transcriptome data from three different tissues of S. chinensis cultivar Cheongsoon, including leaf, root, and fruit, via long- and short-read sequencing technologies. A total of 132,856 assembled transcripts were generated with an average length of 1.9 kb and high assembly completeness. Overall, our data presented effective, accurate gene annotation in the prediction of functional pathways. In particular, the annotation revealed the abundance of transcripts related to phenylpropanoid biosynthesis. Remarkably, transcriptome profiling during fruit development of S. chinensis cultivar Cheongsoon revealed that the phenylpropanoid biosynthetic pathway, specific to coniferyl alcohol biosynthesis, showed a tendency to be upregulated at the postfruit development stage. Further the analysis also revealed that the pathway forms a transcriptional network with fruit ripening-related genes, especially the ABA signaling-related pathway. Finally, candidate unigenes homologous to isoeugenol synthase 1 (IGS1) and dirigent-like protein (DIR), which are subsequently activated by phenylpropanoid biosynthesis and thus catalyze key upstream steps in schisandrin biosynthesis, were identified. Their expression was increased at the postfruit development stage, suggesting that they may be involved in the regulation of schisandrin biosynthesis in S. chinensis. CONCLUSIONS Our results provide new insights into the production and accumulation of schisandrin in S. chinensis berries and will be utilized as a valuable transcriptomic resource for improving the schisandrin content.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea.
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Dong Jin Lee
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea
| | - Hee Jeong Jeong
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sin-Gi Park
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea
| | - Hyo-Jin Kim
- Jeollabukdo ARES Medicinal Resource Research Institute, Jinan, 55440, Republic of Korea
| | - Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| |
Collapse
|
23
|
Contreras-Moreira B, Del Río ÁR, Cantalapiedra CP, Sancho R, Vinuesa P. Pangenome Analysis of Plant Transcripts and Coding Sequences. Methods Mol Biol 2022; 2512:121-152. [PMID: 35818004 DOI: 10.1007/978-1-0716-2429-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pangenome of a species is the sum of the genomes of its individuals. As coding sequences often represent only a small fraction of each genome, analyzing the pangene set can be a cost-effective strategy for plants with large genomes or highly heterozygous species. Here, we describe a step-by-step protocol to analyze plant pangene sets with the software GET_HOMOLOGUES-EST . After a short introduction, where the main concepts are illustrated, the remaining sections cover the installation and typical operations required to analyze and annotate pantranscriptomes and gene sets of plants. The recipes include instructions on how to call core and accessory genes, how to compute a presence-absence pangenome matrix, and how to identify and analyze private genes, present only in some genotypes. Downstream phylogenetic analyses are also discussed.
Collapse
Affiliation(s)
| | | | | | - Rubén Sancho
- Estación Experimental de Aula Dei-CSIC, Zaragoza, Spain
- Escuela Politécnica Superior, Universidad de Zaragoza, Huesca, Spain
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
24
|
Kapustina Ž, Medžiūnė J, Dubovskaja V, Matjošaitis K, Žeimytė S, Lubys A. Sensitive and accurate analysis of gene expression signatures enabled by oligonucleotide-labelled cDNA. RNA Biol 2022; 19:774-780. [PMID: 35653374 PMCID: PMC9191874 DOI: 10.1080/15476286.2022.2078093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 10/30/2022] Open
Abstract
High-throughput RNA sequencing offers a comprehensive analysis of transcriptome complexity originated from regulatory events, such as differential gene expression, alternative polyadenylation and others, and allows the increase in diagnostic capacity and precision. For gene expression profiling applications that do not specifically require information on alternative splicing events, the mRNA 3' termini counting approach is a cost-effective alternative to whole transcriptome sequencing. Here, we report MTAS-seq (mRNA sequencing via terminator-assisted synthesis) - a novel RNA-seq library preparation method directed towards mRNA 3' termini. We demonstrate the specific enrichment for 3'-terminal regions by simple and quick single-tube protocol with built-in molecular barcoding to enable accurate estimation of transcript abundance. To achieve that, we synthesized oligonucleotide-modified dideoxynucleotides which enable the generation of cDNA libraries at the reverse transcription step. We validated the performance of MTAS-seq on well-characterized reference bulk RNA and further tested it with eukaryotic cell lysates.
Collapse
Affiliation(s)
- Žana Kapustina
- Thermo Fisher Scientific Baltics, Research and Development Department, Vilnius, Lithuania
| | - Justina Medžiūnė
- Thermo Fisher Scientific Baltics, Research and Development Department, Vilnius, Lithuania
- Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Varvara Dubovskaja
- Thermo Fisher Scientific Baltics, Research and Development Department, Vilnius, Lithuania
| | - Karolis Matjošaitis
- Thermo Fisher Scientific Baltics, Research and Development Department, Vilnius, Lithuania
| | - Simona Žeimytė
- Thermo Fisher Scientific Baltics, Research and Development Department, Vilnius, Lithuania
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics, Research and Development Department, Vilnius, Lithuania
| |
Collapse
|
25
|
Shields EJ, Sorida M, Sheng L, Sieriebriennikov B, Ding L, Bonasio R. Genome annotation with long RNA reads reveals new patterns of gene expression and improves single-cell analyses in an ant brain. BMC Biol 2021; 19:254. [PMID: 34838024 PMCID: PMC8626913 DOI: 10.1186/s12915-021-01188-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Functional genomic analyses rely on high-quality genome assemblies and annotations. Highly contiguous genome assemblies have become available for a variety of species, but accurate and complete annotation of gene models, inclusive of alternative splice isoforms and transcription start and termination sites, remains difficult with traditional approaches. RESULTS Here, we utilized full-length isoform sequencing (Iso-Seq), a long-read RNA sequencing technology, to obtain a comprehensive annotation of the transcriptome of the ant Harpegnathos saltator. The improved genome annotations include additional splice isoforms and extended 3' untranslated regions for more than 4000 genes. Reanalysis of RNA-seq experiments using these annotations revealed several genes with caste-specific differential expression and tissue- or caste-specific splicing patterns that were missed in previous analyses. The extended 3' untranslated regions afforded great improvements in the analysis of existing single-cell RNA-seq data, resulting in the recovery of the transcriptomes of 18% more cells. The deeper single-cell transcriptomes obtained with these new annotations allowed us to identify additional markers for several cell types in the ant brain, as well as genes differentially expressed across castes in specific cell types. CONCLUSIONS Our results demonstrate that Iso-Seq is an efficient and effective approach to improve genome annotations and maximize the amount of information that can be obtained from existing and future genomic datasets in Harpegnathos and other organisms.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Masato Sorida
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Long Ding
- Department of Biology, New York University, New York, NY, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Resolving the microalgal gene landscape at the strain level: A novel hybrid transcriptome of Emiliania huxleyi CCMP3266. Appl Environ Microbiol 2021; 88:e0141821. [PMID: 34757817 DOI: 10.1128/aem.01418-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microalgae are key ecological players with a complex evolutionary history. Genomic diversity, in addition to limited availability of high-quality genomes, challenge studies that aim to elucidate molecular mechanisms underlying microalgal ecophysiology. Here, we present a novel and comprehensive transcriptomic hybrid approach to generate a reference for genetic analyses, and resolve the microalgal gene landscape at the strain level. The approach is demonstrated for a strain of the coccolithophore microalga Emiliania huxleyi, which is a species complex with considerable genome variability. The investigated strain is commonly studied as a model for algal-bacterial interactions, and was therefore sequenced in the presence of bacteria to elicit the expression of interaction-relevant genes. We applied complementary PacBio Iso-Seq full-length cDNA, and poly(A)-independent Illumina total RNA sequencing, which resulted in a de novo assembled, near complete hybrid transcriptome. In particular, hybrid sequencing improved the reconstruction of long transcripts and increased the recovery of full-length transcript isoforms. To use the resulting hybrid transcriptome as a reference for genetic analyses, we demonstrate a method that collapses the transcriptome into a genome-like dataset, termed "synthetic genome" (sGenome). We used the sGenome as a reference to visually confirm the robustness of the CCMP3266 gene assembly, to conduct differential gene expression analysis, and to characterize novel E. huxleyi genes. The newly-identified genes contribute to our understanding of E. huxleyi genome diversification, and are predicted to play a role in microbial interactions. Our transcriptomic toolkit can be implemented in various microalgae to facilitate mechanistic studies on microalgal diversity and ecology. Importance Microalgae are key players in the ecology and biogeochemistry of our oceans. Efforts to implement genomic and transcriptomic tools in laboratory studies involving microalgae suffer from the lack of published genomes. In the case of coccolithophore microalgae, the problem has long been recognized; the model species Emiliania huxleyi is a species complex with genomes composed of a core, and a large variable portion. To study the role of the variable portion in niche adaptation, and specifically in microbial interactions, strain-specific genetic information is required. Here we present a novel transcriptomic hybrid approach, and generated strain-specific genome-like information. We demonstrate our approach on an E. huxleyi strain that is co-cultivated with bacteria. By constructing a "synthetic genome", we generated comprehensive gene annotations that enabled accurate analyses of gene expression patterns. Importantly, we unveiled novel genes in the variable portion of E. huxleyi that play putative roles in microbial interactions.
Collapse
|
27
|
Maillot P, Velt A, Rustenholz C, Butterlin G, Merdinoglu D, Duchêne E. Alternative splicing regulation appears to play a crucial role in grape berry development and is also potentially involved in adaptation responses to the environment. BMC PLANT BIOLOGY 2021; 21:487. [PMID: 34696712 PMCID: PMC8543832 DOI: 10.1186/s12870-021-03266-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alternative splicing (AS) produces transcript variants playing potential roles in proteome diversification and gene expression regulation. AS modulation is thus essential to respond to developmental and environmental stimuli. In grapevine, a better understanding of berry development is crucial for implementing breeding and viticultural strategies allowing adaptation to climate changes. Although profound changes in gene transcription have been shown to occur in the course of berry ripening, no detailed study on splicing modifications during this period has been published so far. We report here on the regulation of gene AS in developing berries of two grapevine (Vitis vinifera L.) varieties, Gewurztraminer (Gw) and Riesling (Ri), showing distinctive phenotypic characteristics. Using the software rMATS, the transcriptomes of berries at four developmental steps, from the green stage to mid-ripening, were analysed in pairwise comparisons between stages and varieties. RESULTS A total of 305 differential AS (DAS) events, affecting 258 genes, were identified. Interestingly, 22% of these AS events had not been reported before. Among the 80 genes that underwent the most significant variations during ripening, 22 showed a similar splicing profile in Gw and Ri, which suggests their involvement in berry development. Conversely, 23 genes were subjected to splicing regulation in only one variety. In addition, the ratios of alternative isoforms were different in Gw and Ri for 35 other genes, without any change during ripening. This last result indicates substantial AS differences between the two varieties. Remarkably, 8 AS events were specific to one variety, due to the lack of a splice site in the other variety. Furthermore, the transcription rates of the genes affected by stage-dependent splicing regulation were mostly unchanged, identifying AS modulation as an independent way of shaping the transcriptome. CONCLUSIONS The analysis of AS profiles in grapevine varieties with contrasting phenotypes revealed some similarity in the regulation of several genes with developmental functions, suggesting their involvement in berry ripening. Additionally, many splicing differences were discovered between the two varieties, that could be linked to phenotypic specificities and distinct adaptive capacities. Together, these findings open perspectives for a better understanding of berry development and for the selection of grapevine genotypes adapted to climate change.
Collapse
Affiliation(s)
- Pascale Maillot
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France.
- University of Haute Alsace, 68000, Mulhouse, France.
| | - Amandine Velt
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France
| | | | | | | | - Eric Duchêne
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France
| |
Collapse
|
28
|
Sex-Biased Gene Expression and Isoform Profile of Brine Shrimp Artemia franciscana by Transcriptome Analysis. Animals (Basel) 2021; 11:ani11092630. [PMID: 34573596 PMCID: PMC8465105 DOI: 10.3390/ani11092630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The brine shrimp Artemia is a promising model organism for ZW sex determination system, but the genes related to sex determination and differentiation of Artemia have not yet been examined in detail. In this study, the first isoform-level transcriptome sequencing was performed on female and male Artemia franciscana. By using PacBio Iso-Seq and Illumina RNA-Seq technologies, we found 39 candidate sex determination genes that showed sex-biased gene expression. The male-biased expressed genes included DMRT1 and Sad genes, which had three and seven isoforms, respectively. Among these, the Sad gene is an ecdysteroid biosynthetic pathway gene associated with arthropod molting and metamorphosis. We propose the importance and the necessity of further research on genes involved in ecdysteroid biosynthesis. These results will contribute to understand sex determination and differentiation of Artemia and other crustaceans having ZW systems. Abstract The brine shrimp Artemia has a ZW sex determination system with ZW chromosomes in females and ZZ chromosomes in males. Artemia has been considered a promising model organism for ZW sex-determining systems, but the genes involved in sex determination and differentiation of Artemia have not yet been identified. Here, we conducted transcriptome sequencing of female and male A. franciscana using PacBio Iso-Seq and Illumina RNA-Seq techniques to identify candidate sex determination genes. Among the 42,566 transcripts obtained from Iso-Seq, 23,514 were analyzed. Of these, 2065 (8.8%) were female specific, 2513 (10.7%) were male specific, and 18,936 (80.5%) were co-expressed in females and males. Based on GO enrichment analysis and expression values, we found 10 female-biased and 29 male-biased expressed genes, including DMRT1 and Sad genes showing male-biased expression. Our results showed that DMRT1 has three isoforms with five exons, while Sad has seven isoforms with 2–11 exons. The Sad gene is involved in ecdysteroid signaling related to molting and metamorphosis in arthropods. Further studies on ecdysteroid biosynthetic genes are needed to improve our understanding of Artemia sex determination. This study will provide a valuable resource for sex determination and differentiation studies on Artemia and other crustaceans with ZW systems.
Collapse
|
29
|
Morales-Cruz A, Aguirre-Liguori JA, Zhou Y, Minio A, Riaz S, Walker AM, Cantu D, Gaut BS. Introgression among North American wild grapes (Vitis) fuels biotic and abiotic adaptation. Genome Biol 2021; 22:254. [PMID: 34479604 PMCID: PMC8414701 DOI: 10.1186/s13059-021-02467-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/12/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Introgressive hybridization can reassort genetic variants into beneficial combinations, permitting adaptation to new ecological niches. To evaluate evolutionary patterns and dynamics that contribute to introgression, we investigate six wild Vitis species that are native to the Southwestern United States and useful for breeding grapevine (V. vinifera) rootstocks. RESULTS By creating a reference genome assembly from one wild species, V. arizonica, and by resequencing 130 accessions, we focus on identifying putatively introgressed regions (pIRs) between species. We find six species pairs with signals of introgression between them, comprising up to ~ 8% of the extant genome for some pairs. The pIRs tend to be gene poor, located in regions of high recombination and enriched for genes implicated in disease resistance functions. To assess potential pIR function, we explore SNP associations to bioclimatic variables and to bacterial levels after infection with the causative agent of Pierce's disease (Xylella fastidiosa). pIRs are enriched for SNPs associated with both climate and bacterial levels, suggesting that introgression is driven by adaptation to biotic and abiotic stressors. CONCLUSIONS Altogether, this study yields insights into the genomic extent of introgression, potential pressures that shape adaptive introgression, and the evolutionary history of economically important wild relatives of a critical crop.
Collapse
Affiliation(s)
- Abraham Morales-Cruz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA USA
| | | | - Yongfeng Zhou
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA USA
| | - Summaira Riaz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA USA
| | - Andrew M. Walker
- Department of Viticulture and Enology, University of California, Davis, Davis, CA USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA USA
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA USA
| |
Collapse
|
30
|
Savoi S, Torregrosa L, Romieu C. Transcripts switched off at the stop of phloem unloading highlight the energy efficiency of sugar import in the ripening V. vinifera fruit. HORTICULTURE RESEARCH 2021; 8:193. [PMID: 34465746 PMCID: PMC8408237 DOI: 10.1038/s41438-021-00628-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Transcriptomic changes at the cessation of sugar accumulation in the pericarp of Vitis vinifera were addressed on single berries re-synchronised according to their individual growth patterns. The net rates of water, sugars and K+ accumulation inferred from individual growth and solute concentration confirmed that these inflows stopped simultaneously in the ripe berry, while the small amount of malic acid remaining at this stage was still being oxidised at low rate. Re-synchronised individual berries displayed negligible variations in gene expression among triplicates. RNA-seq studies revealed sharp reprogramming of cell-wall enzymes and structural proteins at the stop of phloem unloading, associated with an 80% repression of multiple sugar transporters and aquaporins on the plasma or tonoplast membranes, with the noticeable exception of H+/sugar symporters, which were rather weakly and constitutively expressed. This was verified in three genotypes placed in contrasted thermo-hydric conditions. The prevalence of SWEET suggests that electrogenic transporters would play a minor role on the plasma membranes of SE/CC complex and the one of the flesh, while sucrose/H+ exchangers dominate on its tonoplast. Cis-regulatory elements present in their promoters allowed to sort these transporters in different groups, also including specific TIPs and PIPs paralogs, and cohorts of cell wall-related genes. Together with simple thermodynamic considerations, these results lead to propose that H+/sugar exchangers at the tonoplast, associated with a considerably acidic vacuolar pH, may exhaust cytosolic sugars in the flesh and alleviate the need for supplementary energisation of sugar transport at the plasma membrane.
Collapse
Affiliation(s)
- Stefania Savoi
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France
| | - Laurent Torregrosa
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France
| | - Charles Romieu
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France.
| |
Collapse
|
31
|
Medina CA, Samac DA, Yu LX. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.). Sci Rep 2021; 11:17203. [PMID: 34446782 PMCID: PMC8390513 DOI: 10.1038/s41598-021-96712-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Alfalfa is an important legume forage grown worldwide and its productivity is affected by environmental stresses such as drought and high salinity. In this work, three alfalfa germplasms with contrasting tolerances to drought and high salinity were used for unraveling the transcriptomic responses to drought and salt stresses. Twenty-one different RNA samples from different germplasm, stress conditions or tissue sources (leaf, stem and root) were extracted and sequenced using the PacBio (Iso-Seq) and the Illumina platforms to obtain full-length transcriptomic profiles. A total of 1,124,275 and 91,378 unique isoforms and genes were obtained, respectively. Comparative analysis of transcriptomes identified differentially expressed genes and isoforms as well as transcriptional and post-transcriptional modifications such as alternative splicing events, fusion genes and nonsense-mediated mRNA decay events and non-coding RNA such as circRNA and lncRNA. This is the first time to identify the diversity of circRNA and lncRNA in response to drought and high salinity in alfalfa. The analysis of weighted gene co-expression network allowed to identify master genes and isoforms that may play important roles on drought and salt stress tolerance in alfalfa. This work provides insight for understanding the mechanisms by which drought and salt stresses affect alfalfa growth at the whole genome level.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA
| | - Deborah A Samac
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, 1991 Upper Buford Circle, 495 Borlaug Hall St, Paul, MN, 55108, USA
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA.
| |
Collapse
|
32
|
Sun S, Lin M, Qi X, Chen J, Gu H, Zhong Y, Sun L, Muhammad A, Bai D, Hu C, Fang J. Full-length transcriptome profiling reveals insight into the cold response of two kiwifruit genotypes (A. arguta) with contrasting freezing tolerances. BMC PLANT BIOLOGY 2021; 21:365. [PMID: 34380415 PMCID: PMC8356467 DOI: 10.1186/s12870-021-03152-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Kiwifruit (Actinidia Lindl.) is considered an important fruit species worldwide. Due to its temperate origin, this species is highly vulnerable to freezing injury while under low-temperature stress. To obtain further knowledge of the mechanism underlying freezing tolerance, we carried out a hybrid transcriptome analysis of two A. arguta (Actinidi arguta) genotypes, KL and RB, whose freezing tolerance is high and low, respectively. Both genotypes were subjected to - 25 °C for 0 h, 1 h, and 4 h. RESULTS SMRT (single-molecule real-time) RNA-seq data were assembled using the de novo method, producing 24,306 unigenes with an N50 value of 1834 bp. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that they were involved in the 'starch and sucrose metabolism', the 'mitogen-activated protein kinase (MAPK) signaling pathway', the 'phosphatidylinositol signaling system', the 'inositol phosphate metabolism', and the 'plant hormone signal transduction'. In particular, for 'starch and sucrose metabolism', we identified 3 key genes involved in cellulose degradation, trehalose synthesis, and starch degradation processes. Moreover, the activities of beta-GC (beta-glucosidase), TPS (trehalose-6-phosphate synthase), and BAM (beta-amylase), encoded by the abovementioned 3 key genes, were enhanced by cold stress. Three transcription factors (TFs) belonging to the AP2/ERF, bHLH (basic helix-loop-helix), and MYB families were involved in the low-temperature response. Furthermore, weighted gene coexpression network analysis (WGCNA) indicated that beta-GC, TPS5, and BAM3.1 were the key genes involved in the cold response and were highly coexpressed together with the CBF3, MYC2, and MYB44 genes. CONCLUSIONS Cold stress led various changes in kiwifruit, the 'phosphatidylinositol signaling system', 'inositol phosphate metabolism', 'MAPK signaling pathway', 'plant hormone signal transduction', and 'starch and sucrose metabolism' processes were significantly affected by low temperature. Moreover, starch and sucrose metabolism may be the key pathway for tolerant kiwifruit to resist low temperature damages. These results increase our understanding of the complex mechanisms involved in the freezing tolerance of kiwifruit under cold stress and reveal a series of candidate genes for use in breeding new cultivars with enhanced freezing tolerance.
Collapse
Affiliation(s)
- Shihang Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Lin
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xiujuan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinyong Chen
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hong Gu
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yunpeng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Leiming Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Abid Muhammad
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Danfeng Bai
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Chungen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinbao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
33
|
Vondras AM, Lerno L, Massonnet M, Minio A, Rowhani A, Liang D, Garcia J, Quiroz D, Figueroa‐Balderas R, Golino DA, Ebeler SE, Al Rwahnih M, Cantu D. Rootstock influences the effect of grapevine leafroll-associated viruses on berry development and metabolism via abscisic acid signalling. MOLECULAR PLANT PATHOLOGY 2021; 22:984-1005. [PMID: 34075700 PMCID: PMC8295520 DOI: 10.1111/mpp.13077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 05/14/2023]
Abstract
Grapevine leafroll-associated virus (GLRaV) infections are accompanied by symptoms influenced by host genotype, rootstock, environment, and which individual or combination of GLRaVs is present. Using a dedicated experimental vineyard, we studied the responses to GLRaVs in ripening berries from Cabernet Franc grapevines grafted to different rootstocks and with zero, one, or pairs of leafroll infection(s). RNA sequencing data were mapped to a high-quality Cabernet Franc genome reference assembled to carry out this study and integrated with hormone and metabolite abundance data. This study characterized conserved and condition-dependent responses to GLRaV infection(s). Common responses to GLRaVs were reproduced in two consecutive years and occurred in plants grafted to different rootstocks in more than one infection condition. Though different infections were inconsistently distinguishable from one another, the effects of infections in plants grafted to different rootstocks were distinct at each developmental stage. Conserved responses included the modulation of genes related to pathogen detection, abscisic acid (ABA) signalling, phenylpropanoid biosynthesis, and cytoskeleton remodelling. ABA, ABA glucose ester, ABA and hormone signalling-related gene expression, and the expression of genes in several transcription factor families differentiated the effects of GLRaVs in berries from Cabernet Franc grapevines grafted to different rootstocks. These results support that ABA participates in the shared responses to GLRaV infection and differentiates the responses observed in grapevines grafted to different rootstocks.
Collapse
Affiliation(s)
- Amanda M. Vondras
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Larry Lerno
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Mélanie Massonnet
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Andrea Minio
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Adib Rowhani
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dingren Liang
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jadran Garcia
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Daniela Quiroz
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Deborah A. Golino
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Susan E. Ebeler
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Maher Al Rwahnih
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
34
|
Naftaly AS, Pau S, White MA. Long-read RNA sequencing reveals widespread sex-specific alternative splicing in threespine stickleback fish. Genome Res 2021; 31:1486-1497. [PMID: 34131005 PMCID: PMC8327910 DOI: 10.1101/gr.274282.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Alternate isoforms are important contributors to phenotypic diversity across eukaryotes. Although short-read RNA-sequencing has increased our understanding of isoform diversity, it is challenging to accurately detect full-length transcripts, preventing the identification of many alternate isoforms. Long-read sequencing technologies have made it possible to sequence full-length alternative transcripts, accurately characterizing alternative splicing events, alternate transcription start and end sites, and differences in UTR regions. Here, we use Pacific Biosciences (PacBio) long-read RNA-sequencing (Iso-Seq) to examine the transcriptomes of five organs in threespine stickleback fish (Gasterosteus aculeatus), a widely used genetic model species. The threespine stickleback fish has a refined genome assembly in which gene annotations are based on short-read RNA sequencing and predictions from coding sequence of other species. This suggests some of the existing annotations may be inaccurate or alternative transcripts may not be fully characterized. Using Iso-Seq we detected thousands of novel isoforms, indicating many isoforms are absent in the current Ensembl gene annotations. In addition, we refined many of the existing annotations within the genome. We noted many improperly positioned transcription start sites that were refined with long-read sequencing. The Iso-Seq-predicted transcription start sites were more accurate and verified through ATAC-seq. We also detected many alternative splicing events between sexes and across organs. We found a substantial number of genes in both somatic and gonadal samples that had sex-specific isoforms. Our study highlights the power of long-read sequencing to study the complexity of transcriptomes, greatly improving genomic resources for the threespine stickleback fish.
Collapse
Affiliation(s)
- Alice S Naftaly
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Shana Pau
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Biology, University of Texas Arlington, Arlington, Texas 76019, USA
| | - Michael A White
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
35
|
Seeing the Forest through the (Phylogenetic) Trees: Functional Characterisation of Grapevine Terpene Synthase ( VviTPS) Paralogues and Orthologues. PLANTS 2021; 10:plants10081520. [PMID: 34451565 PMCID: PMC8401418 DOI: 10.3390/plants10081520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022]
Abstract
Gene families involved in specialised metabolism play a key role in a myriad of ecophysiological and biochemical functions. The Vitis vinifera sesquiterpene synthases represent the largest subfamily of grapevine terpene synthase (VviTPS) genes and are important volatile metabolites for wine flavour and aroma, as well as ecophysiological interactions. The functional characterisation of VviTPS genes is complicated by a reliance on a single reference genome that greatly underrepresents this large gene family, exacerbated by extensive duplications and paralogy. The recent release of multiple phased diploid grapevine genomes, as well as extensive whole-genome resequencing efforts, provide a wealth of new sequence information that can be utilised to overcome the limitations of the reference genome. A large cluster of sesquiterpene synthases, localised to chromosome 18, was explored by means of comparative sequence analyses using the publicly available grapevine reference genome, three PacBio phased diploid genomes and whole-genome resequencing data from multiple genotypes. Two genes, VviTPS04 and -10, were identified as putative paralogues and/or allelic variants. Subsequent gene isolation from multiple grapevine genotypes and characterisation by means of a heterologous in planta expression and volatile analysis resulted in the identification of genotype-specific structural variations and polymorphisms that impact the gene function. These results present novel insight into how grapevine domestication likely shaped the VviTPS landscape to result in genotype-specific functions.
Collapse
|
36
|
Gene Expression and Isoform Identification of PacBio Full-Length cDNA Sequences for Berberine Biosynthesis in Berberis koreana. PLANTS 2021; 10:plants10071314. [PMID: 34203474 PMCID: PMC8308982 DOI: 10.3390/plants10071314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Berberis koreana is a medicinal plant containing berberine, which is a bioactive compound of the benzylisoquinoline alkaloid (BIA) class. BIA is widely used in the food and drug industry for its health benefits. To investigate the berberine biosynthesis pathway, gene expression analysis was performed in leaves, flowers, and fruits at different stages of growth. This was followed by full-length cDNA sequencing analysis using the PacBio sequencer platform to determine the number of isoforms of those expressed genes. We identified 23,246 full-length unigenes, among which 8479 had more than one isoform. The number of isoforms ranged between two to thirty-one among all genes. Complete isoform analysis was carried out on the unigenes encoding BIA synthesis. Thirteen of the sixteen genes encoding enzymes for berberine synthesis were present in more than one copy. This demonstrates that gene duplication and translation into isoforms may contribute to the functional specificity of the duplicated genes and isoforms in plant alkaloid synthesis. Our study also demonstrated the streamlining of berberine biosynthesis via the absence of genes for enzymes of other BIAs, but the presence of all the genes for berberine biosynthesize in B. koreana. In addition to genes encoding enzymes for the berberine biosynthesis pathway, the genes encoding enzymes for other BIAs were not present in our dataset except for those encoding corytuberine synthase (CTS) and berbamunine synthase (BS). Therefore, this explains how B. koreana produces berberine by blocking the pathways leading to other BIAs, effectively only allowing the pathway to lead to berberine synthesis.
Collapse
|
37
|
Abstract
We studied the grape sex-determining region (SDR) in 12 Vitis genomes and demonstrated its conservation across 556 genotypes including 193 accessions from 47 world-wide wild grapevine species and 363 accessions of cultivated grapevine. Although the grape SDR is recombination free in all wild species, we found two distinct hermaphrodite (H) haplotypes (H1 and H2) among the cultivated grapevines, both chimeras of male (M) and female (f) haplotypes. The two independent recombinations carry different genetic signatures which long predate the domestication of grapevine, suggesting independent evolutions of this trait in wild European grapevine gene pools prior to human domestication. Hermaphroditic (perfect) flowers were a key trait in grapevine domestication, enabling a drastic increase in yields due to the efficiency of self-pollination in the domesticated grapevine (Vitis vinifera L. ssp. vinifera). In contrast, all extant wild Vitis species are dioecious, each plant having only male or female flowers. In this study, we identified the male (M) and female (f) haplotypes of the sex-determining region (SDR) in the wild grapevine species V. cinerea and confirmed the boundaries of the SDR. We also demonstrated that the SDR and its boundaries are precisely conserved across the Vitis genus using shotgun resequencing data of 556 wild and domesticated accessions from North America, East Asia, and Europe. A high linkage disequilibrium was found at the SDR in all wild grape species, while different recombination signatures were observed along the hermaphrodite (H) haplotype of 363 cultivated accessions, revealing two distinct H haplotypes, named H1 and H2. To further examine the H2 haplotype, we sequenced the genome of two grapevine cultivars, 'Riesling' and 'Chardonnay'. By reconstructing the first two H2 haplotypes, we estimated the divergence time between H1 and H2 haplotypes at ∼6 million years ago, which predates the domestication of grapevine (∼8,000 y ago). Our findings emphasize the important role of recombination suppression in maintaining dioecy in wild grape species and lend additional support to the hypothesis that at least two independent recombination events led to the reversion to hermaphroditism in grapevine.
Collapse
|
38
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
39
|
He Z, Su Y, Wang T. Full-Length Transcriptome Analysis of Four Different Tissues of Cephalotaxus oliveri. Int J Mol Sci 2021; 22:ijms22020787. [PMID: 33466772 PMCID: PMC7830723 DOI: 10.3390/ijms22020787] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
Cephalotaxus oliveri is a tertiary relict conifer endemic to China, regarded as a national second-level protected plant in China. This species has experienced severe changes in temperature and precipitation in the past millions of years, adapting well to harsh environments. In view of global climate change and its endangered conditions, it is crucial to study how it responds to changes in temperature and precipitation for its conservation work. In this study, single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing were combined to generate the complete transcriptome of C. oliveri. Using the RNA-seq data to correct the SMRT sequencing data, the four tissues obtained 63,831 (root), 58,108 (stem), 33,013 (leaf) and 62,436 (male cone) full-length unigenes, with a N50 length of 2523, 3480, 3181, and 3267 bp, respectively. Additionally, 35,887, 11,306, 36,422, and 25,439 SSRs were detected for the male cone, leaf, root, and stem, respectively. The number of long non-coding RNAs predicted from the root was the largest (11,113), and the other tissues were 3408 (stem), 3193 (leaf), and 3107 (male cone), respectively. Functional annotation and enrichment analysis of tissue-specific expressed genes revealed the special roles in response to environmental stress and adaptability in the different four tissues. We also characterized the gene families and pathways related to abiotic factors. This work provides a comprehensive transcriptome resource for C. oliveri, and this resource will facilitate further studies on the functional genomics and adaptive evolution of C. oliveri.
Collapse
Affiliation(s)
- Ziqing He
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
- Correspondence: (Y.S.); (T.W.); Tel.: +86-020-84111939 (Y.S.); +86-020-85280185 (T.W.)
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.S.); (T.W.); Tel.: +86-020-84111939 (Y.S.); +86-020-85280185 (T.W.)
| |
Collapse
|
40
|
Modern Approaches for Transcriptome Analyses in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:11-50. [DOI: 10.1007/978-3-030-80352-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Ramos MJN, Coito JL, Faísca-Silva D, Cunha J, Costa MMR, Amâncio S, Rocheta M. Portuguese wild grapevine genome re-sequencing (Vitis vinifera sylvestris). Sci Rep 2020; 10:18993. [PMID: 33149248 PMCID: PMC7642406 DOI: 10.1038/s41598-020-76012-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022] Open
Abstract
The first genome of Vitis vinifera vinifera (PN40024), published in 2007, boosted grapevine related studies. While this reference genome is a suitable tool for the overall studies in the field, it lacks the ability to unveil changes accumulated during V. v. vinifera domestication. The subspecies V. v. sylvestris preserves wild characteristics, making it a good material to provide insights into V. v. vinifera domestication. The difference in the reproductive strategy between both subspecies is one of the characteristics that set them apart. While V. v. vinifera flowers are hermaphrodite, V. v. sylvestris is mostly dioecious. In this paper, we compare the re-sequencing of the genomes from a male and a female individual of the wild sylvestris, against the reference vinifera genome (PN40024). Variant analysis reveals a low number but with high impact modifications in coding regions, essentially non-synonymous single nucleotide polymorphisms and frame shifts caused by insertions and deletions. The sex-locus was manually inspected, and the results obtained are in line with the most recent works related with wild grapevine sex. In this paper we also describe for the first time RNA editing in transcripts of 14 genes in the sex-determining region, including VviYABBY and VviPLATZ.
Collapse
Affiliation(s)
- Miguel J N Ramos
- LEAF (Linking Landscape, Environment, Agriculture and Food) Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| | - João L Coito
- LEAF (Linking Landscape, Environment, Agriculture and Food) Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - David Faísca-Silva
- LEAF (Linking Landscape, Environment, Agriculture and Food) Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária E Veterinária, Quinta d'Almoinha, 2565-191, Dois Portos, Portugal
| | - M Manuela R Costa
- Plant Functional Biology Centre, Biosystems and Integrative Sciences Institute, University of Minho, 4710-057, Braga, Portugal
| | - Sara Amâncio
- LEAF (Linking Landscape, Environment, Agriculture and Food) Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Margarida Rocheta
- LEAF (Linking Landscape, Environment, Agriculture and Food) Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| |
Collapse
|
42
|
Full-length transcriptome sequencing combined with RNA-seq analysis revealed the immune response of fat greenling (Hexagrammos otakii) to Vibrio harveyi in early infection. Microb Pathog 2020; 149:104527. [PMID: 32980468 DOI: 10.1016/j.micpath.2020.104527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/20/2023]
Abstract
Fat greenling (Hexagrammos otakii) is an important commercial marine fish species cultured in northeast Asia, but its available gene sequences are limited. Vibrio harveyi is a causative agent of vibriosis in fat greenling and also causes severe losses to the aquaculture industry in China. In order to obtain more high-quality transcript information and investigate the early immune response of fat greenling against V. harveyi, the fish were artificially infected with V. harveyi, and five sampling points were set within 48 h. Iso-Seq combined with RNA-Seq were applied in the comprehensive transcriptome analysis of V. harveyi-infected fat greenling. Total 42,225 consensus isoforms were successfully extracted from the result of Iso-Seq, and more than 19,000 ORFs were predicted. In addition, total three modules were identified by WGCNA which significantly positive correlated to the infection time, and the KEGG analysis showed that the immune-related genes in these modules mainly enriched in TLR signaling pathway, NF-κB signaling pathway and Endocytosis. The activation of inflammation and endocytosis was the most significant characteristics of fat greenling immune response during the early infection. Based on the WGCNA, a series of high-degree nodes in the networks were identified as hub genes. The protein structures of cold-inducible RNA-binding protein (CIRBP), poly [ADP-ribose] polymerase 1 (PARP1) and protein arginine N-methyl transferase 1 (PRMT1) were subsequently found to be highly conserved in vertebrate, and the gene expression pattern of CIRBP, PARP1, PRMT1 and a part of TLR/NF-κB pathway-related genes indicated that these proteins might have similar biological functions in regulation of inflammatory response in teleost fish. The results of this study provided the first systematical full-length transcriptome profile of fat greenling and characterized its immune responses in early infection of V. harvey, which will serve as the foundation for further exploring the molecular mechanism of immune defense against bacterial infection in fat greenling.
Collapse
|
43
|
Toups HS, Cochetel N, Gray D, Cramer GR. VviERF6Ls: an expanded clade in Vitis responds transcriptionally to abiotic and biotic stresses and berry development. BMC Genomics 2020; 21:472. [PMID: 32646368 PMCID: PMC7350745 DOI: 10.1186/s12864-020-06811-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Background VviERF6Ls are an uncharacterized gene clade in Vitis with only distant Arabidopsis orthologs. Preliminary data indicated these transcription factors may play a role in berry development and extreme abiotic stress responses. To better understand this highly duplicated, conserved clade, additional members of the clade were identified in four Vitis genotypes. A meta-data analysis was performed on publicly available microarray and RNA-Seq data (confirmed and expanded with RT-qPCR), and Vitis VviERF6L1 overexpression lines were established and characterized with phenotyping and RNA-Seq. Results A total of 18 PN40024 VviERF6Ls were identified; additional VviERF6Ls were identified in Cabernet Sauvignon, Chardonnay, and Carménère. The amino acid sequences of VviERF6Ls were found to be highly conserved. VviERF6L transcripts were detected in numerous plant organs and were differentially expressed in response to numerous abiotic stresses including water deficit, salinity, and cold as well as biotic stresses such as red blotch virus, N. parvum, and E. necator. VviERF6Ls were differentially expressed across stages of berry development, peaking in the pre-veraison/veraison stage and retaining conserved expression patterns across different vineyards, years, and Vitis cultivars. Co-expression network analysis identified a scarecrow-like transcription factor and a calmodulin-like gene with highly similar expression profiles to the VviERF6L clade. Overexpression of VviERF6L1 in a Seyval Blanc background did not result in detectable morphological phenotypes. Genes differentially expressed in response to VviERF6L1 overexpression were associated with abiotic and biotic stress responses. Conclusions VviERF6Ls represent a large and distinct clade of ERF transcription factors in grapevine. The high conservation of protein sequence between these 18 transcription factors may indicate these genes originate from a duplication event in Vitis. Despite high sequence similarity and similar expression patterns, VviERF6Ls demonstrate unique levels of expression supported by similar but heterogeneous promoter sequences. VviERF6L gene expression differed between Vitis species, cultivars and organs including roots, leaves and berries. These genes respond to berry development and abiotic and biotic stresses. VviERF6L1 overexpression in Vitis vinifera results in differential expression of genes related to phytohormone and immune system signaling. Further investigation of this interesting gene family is warranted.
Collapse
Affiliation(s)
- Haley S Toups
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Noé Cochetel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Gray
- Precision Bred LLC, 16676 Sparrow Hawk Lane, Sonora, CA, 95370, USA
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
44
|
Abstract
It remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) in Vitis species. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes. By resolving twenty Vitis SDR haplotypes, we compare male, female, and hermaphrodite haplotype structures and identify sex-linked regions. Coupled with gene expression data, we identify a candidate male-sterility mutation in the VviINP1 gene and potential female-sterility function associated with the transcription factor VviYABBY3. Our data suggest that dioecy has been lost during domestication through a rare recombination event between male and female haplotypes. This work significantly advances the understanding of the genetic basis of sex determination in Vitis and provides the information necessary to rapidly identify sex types in grape breeding programs. Grapevine is one of a few ancestrally dioecious crops that are reverted to hermaphroditism during domestication. Here, the authors identify candidate genes related to male- and female-sterility in grapes and describe the genetic process that led to hermaphroditism during domestication.
Collapse
|
45
|
Ocarez N, Jiménez N, Núñez R, Perniola R, Marsico AD, Cardone MF, Bergamini C, Mejía N. Unraveling the Deep Genetic Architecture for Seedlessness in Grapevine and the Development and Validation of a New Set of Markers for VviAGL11-Based Gene-Assisted Selection. Genes (Basel) 2020; 11:E151. [PMID: 32019199 PMCID: PMC7074311 DOI: 10.3390/genes11020151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
Seedless inheritance has been considered a quasi-monogenic trait based on the VvAGL11 gene. An intragenic simple sequence repeat (SSR) marker, p3_VvAGL11, is currently used to opportunely discard seeded progeny, which represents up to 50% of seedlings to be established in the field. However, the rate of false positives remains significant, and this lack of accuracy might be due to a more complex genetic architecture, some intrinsic flaws of p3_VvAGL11, or potential recombination events between p3_VvAGL11 and the causal SNP located in the coding region. The purpose of this study was to update the genetic architecture of this trait in order to better understand its implications in breeding strategies. A total of 573 F1 individuals that segregate for seedlessness were genotyped with a 20K SNP chip and characterized phenotypically during four seasons for a fine QTL mapping analysis. Based on the molecular diversity of p3_VvAGL11 alleles, we redesigned this marker, and based on the causal SNP, we developed a qPCR-HRM marker for high-throughput and a Tetra-ARMS-PCR for simple predictive analyses. Up to 10 new QTLs were identified that describe the complex nature of seedlessness, corresponding to small but stable effects. The positive predictive value, based on VvAGL11 alone (0.647), was improved up to 0.814 when adding three small-effect QTLs in a multi-QTL additive model as a proof of concept. The new SSR, 5U_VviAGL11, is more informative and robust, and easier to analyze. However, we demonstrated that the association can be lost by intragenic recombination and that the e7_VviAGL11 SNP-based marker is thus more reliable and decreases the occurrence of false positives. This study highlights the bases of prediction failure based solely on a major gene and a reduced set of candidate genes, in addition to opportunities for molecular breeding following further and larger validation studies.
Collapse
Affiliation(s)
- Nallatt Ocarez
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile; (N.O.); (N.J.); (R.N.)
| | - Nicolás Jiménez
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile; (N.O.); (N.J.); (R.N.)
| | - Reynaldo Núñez
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile; (N.O.); (N.J.); (R.N.)
| | - Rocco Perniola
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, 70010 Sede di Turi (BA), Italy; (R.P.); (A.D.M.); (M.F.C.); (C.B.)
| | - Antonio Domenico Marsico
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, 70010 Sede di Turi (BA), Italy; (R.P.); (A.D.M.); (M.F.C.); (C.B.)
| | - Maria Francesca Cardone
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, 70010 Sede di Turi (BA), Italy; (R.P.); (A.D.M.); (M.F.C.); (C.B.)
| | - Carlo Bergamini
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, 70010 Sede di Turi (BA), Italy; (R.P.); (A.D.M.); (M.F.C.); (C.B.)
| | - Nilo Mejía
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile; (N.O.); (N.J.); (R.N.)
| |
Collapse
|
46
|
Cramer GR, Cochetel N, Ghan R, Destrac-Irvine A, Delrot S. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening. BMC PLANT BIOLOGY 2020; 20:41. [PMID: 31992236 PMCID: PMC6986057 DOI: 10.1186/s12870-020-2251-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/14/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Grape berry ripening is influenced by climate, the main component of the "terroir" of a place. Light and temperature are major factors in the vineyard that affect berry development and fruit metabolite composition. RESULTS To better understand the effect of "place" on transcript abundance during the late stages of berry ripening, Cabernet Sauvignon berries grown in Bordeaux and Reno were compared at similar sugar levels (19 to 26 °Brix (total soluble solids)). Day temperatures were warmer and night temperatures were cooler in Reno. °Brix was lower in Bordeaux berries compared to Reno at maturity levels considered optimum for harvest. RNA-Seq analysis identified 5528 differentially expressed genes between Bordeaux and Reno grape skins at 22°Brix. Weighted Gene Coexpression Network Analysis for all expressed transcripts for all four °Brix levels measured indicated that the majority (75%) of transcript expression differed significantly between the two locations. Top gene ontology categories for the common transcript sets were translation, photosynthesis, DNA metabolism and catabolism. Top gene ontology categories for the differentially expressed genes at 22°Brix involved response to stimulus, biosynthesis and response to stress. Some differentially expressed genes encoded terpene synthases, cell wall enzymes, kinases, transporters, transcription factors and photoreceptors. Most circadian clock genes had higher transcript abundance in Bordeaux. Bordeaux berries had higher transcript abundance with differentially expressed genes associated with seed dormancy, light, auxin, ethylene signaling, powdery mildew infection, phenylpropanoid, carotenoid and terpenoid metabolism, whereas Reno berries were enriched with differentially expressed genes involved in water deprivation, cold response, ABA signaling and iron homeostasis. CONCLUSIONS Transcript abundance profiles in the berry skins at maturity were highly dynamic. RNA-Seq analysis identified a smaller (25% of total) common core set of ripening genes that appear not to depend on rootstock, vineyard management, plant age, soil and climatic conditions. Much of the gene expression differed between the two locations and could be associated with multiple differences in environmental conditions that may have affected the berries in the two locations; some of these genes may be potentially controlled in different ways by the vinegrower to adjust final berry composition and reach a desired result.
Collapse
Affiliation(s)
- Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Noé Cochetel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Agnès Destrac-Irvine
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Villenave d’Ornon, France
| | - Serge Delrot
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
47
|
Zhou S, Zhang J, Han H, Zhang J, Ma H, Zhang Z, Lu Y, Liu W, Yang X, Li X, Li L. Full-length transcriptome sequences of Agropyron cristatum facilitate the prediction of putative genes for thousand-grain weight in a wheat-A. cristatum translocation line. BMC Genomics 2019; 20:1025. [PMID: 31881839 PMCID: PMC6935218 DOI: 10.1186/s12864-019-6416-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
Background Agropyron cristatum (L.) Gaertn. (2n = 4x = 28; genomes PPPP) is a wild relative of common wheat (Triticum aestivum L.) and provides many desirable genetic resources for wheat improvement. However, there is still a lack of reference genome and transcriptome information for A. cristatum, which severely impedes functional and molecular breeding studies. Results Single-molecule long-read sequencing technology from Pacific Biosciences (PacBio) was used to sequence full-length cDNA from a mixture of leaves, roots, stems and caryopses and constructed the first full-length transcriptome dataset of A. cristatum, which comprised 44,372 transcripts. As expected, the PacBio transcripts were generally longer and more complete than the transcripts assembled via the Illumina sequencing platform in previous studies. By analyzing RNA-Seq data, we identified tissue-enriched transcripts and assessed their GO term enrichment; the results indicated that tissue-enriched transcripts were enriched for particular molecular functions that varied by tissue. We identified 3398 novel and 1352 A. cristatum-specific transcripts compared with the wheat gene model set. To better apply this A. cristatum transcriptome, the A. cristatum transcripts were integrated with the wheat genome as a reference sequence to try to identify candidate A. cristatum transcripts associated with thousand-grain weight in a wheat-A. cristatum translocation line, Pubing 3035. Conclusions Full-length transcriptome sequences were used in our study. The present study not only provides comprehensive transcriptomic insights and information for A. cristatum but also proposes a new method for exploring the functional genes of wheat relatives under a wheat genetic background. The sequence data have been deposited in the NCBI under BioProject accession number PRJNA534411.
Collapse
Affiliation(s)
- Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Huihui Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhi Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
48
|
Vondras AM, Minio A, Blanco-Ulate B, Figueroa-Balderas R, Penn MA, Zhou Y, Seymour D, Ye Z, Liang D, Espinoza LK, Anderson MM, Walker MA, Gaut B, Cantu D. The genomic diversification of grapevine clones. BMC Genomics 2019; 20:972. [PMID: 31830913 PMCID: PMC6907202 DOI: 10.1186/s12864-019-6211-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background Vegetatively propagated clones accumulate somatic mutations. The purpose of this study was to better appreciate clone diversity and involved defining the nature of somatic mutations throughout the genome. Fifteen Zinfandel winegrape clone genomes were sequenced and compared to one another using a highly contiguous genome reference produced from one of the clones, Zinfandel 03. Results Though most heterozygous variants were shared, somatic mutations accumulated in individual and subsets of clones. Overall, heterozygous mutations were most frequent in intergenic space and more frequent in introns than exons. A significantly larger percentage of CpG, CHG, and CHH sites in repetitive intergenic space experienced transition mutations than in genic and non-repetitive intergenic spaces, likely because of higher levels of methylation in the region and because methylated cytosines often spontaneously deaminate. Of the minority of mutations that occurred in exons, larger proportions of these were putatively deleterious when they occurred in relatively few clones. Conclusions These data support three major conclusions. First, repetitive intergenic space is a major driver of clone genome diversification. Second, clones accumulate putatively deleterious mutations. Third, the data suggest selection against deleterious variants in coding regions or some mechanism by which mutations are less frequent in coding than noncoding regions of the genome.
Collapse
Affiliation(s)
- Amanda M Vondras
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.,Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Michael A Penn
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Yongfeng Zhou
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92617, USA
| | - Danelle Seymour
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92617, USA
| | - Zirou Ye
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Dingren Liang
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Lucero K Espinoza
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Michael M Anderson
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - M Andrew Walker
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA
| | - Brandon Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92617, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
49
|
Lucaciu R, Pelikan C, Gerner SM, Zioutis C, Köstlbacher S, Marx H, Herbold CW, Schmidt H, Rattei T. A Bioinformatics Guide to Plant Microbiome Analysis. FRONTIERS IN PLANT SCIENCE 2019; 10:1313. [PMID: 31708944 PMCID: PMC6819368 DOI: 10.3389/fpls.2019.01313] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Recent evidence for intimate relationship of plants with their microbiota shows that plants host individual and diverse microbial communities that are essential for their survival. Understanding their relatedness using genome-based and high-throughput techniques remains a hot topic in microbiome research. Molecular analysis of the plant holobiont necessitates the application of specific sampling and preparatory steps that also consider sources of unwanted information, such as soil, co-amplified plant organelles, human DNA, and other contaminations. Here, we review state-of-the-art and present practical guidelines regarding experimental and computational aspects to be considered in molecular plant-microbiome studies. We discuss sequencing and "omics" techniques with a focus on the requirements needed to adapt these methods to individual research approaches. The choice of primers and sequence databases is of utmost importance for amplicon sequencing, while the assembly and binning of shotgun metagenomic sequences is crucial to obtain quality data. We discuss specific bioinformatic workflows to overcome the limitation of genome database resources and for covering large eukaryotic genomes such as fungi. In transcriptomics, it is necessary to account for the separation of host mRNA or dual-RNAseq data. Metaproteomics approaches provide a snapshot of the protein abundances within a plant tissue which requires the knowledge of complete and well-annotated plant genomes, as well as microbial genomes. Metabolomics offers a powerful tool to detect and quantify small molecules and molecular changes at the plant-bacteria interface if the necessary requirements with regard to (secondary) metabolite databases are considered. We highlight data integration and complementarity which should help to widen our understanding of the interactions among individual players of the plant holobiont in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hannes Schmidt
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Zhou Y, Minio A, Massonnet M, Solares E, Lv Y, Beridze T, Cantu D, Gaut BS. The population genetics of structural variants in grapevine domestication. NATURE PLANTS 2019; 5:965-979. [PMID: 31506640 DOI: 10.1038/s41477-019-0507-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/26/2019] [Indexed: 05/20/2023]
Abstract
Structural variants (SVs) are a largely unexplored feature of plant genomes. Little is known about the type and size of SVs, their distribution among individuals and, especially, their population dynamics. Understanding these dynamics is critical for understanding both the contributions of SVs to phenotypes and the likelihood of identifying them as causal genetic variants in genome-wide associations. Here, we identify SVs and study their evolutionary genomics in clonally propagated grapevine cultivars and their outcrossing wild progenitors. To catalogue SVs, we assembled the highly heterozygous Chardonnay genome, for which one in seven genes is hemizygous based on SVs. Using an integrative comparison between Chardonnay and Cabernet Sauvignon genomes by whole-genome, long-read and short-read alignment, we extended SV detection to population samples. We found that strong purifying selection acts against SVs but particularly against inversion and translocation events. SVs nonetheless accrue as recessive heterozygotes in clonally propagated lineages. They also define outlier regions of genomic divergence between wild and cultivated grapevines, suggesting roles in domestication. Outlier regions include the sex-determination region and the berry colour locus, where independent large, complex inversions have driven convergent phenotypic evolution.
Collapse
Affiliation(s)
- Yongfeng Zhou
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, UC Davis, Davis, CA, USA
| | | | - Edwin Solares
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
| | - Yuanda Lv
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
| | - Tengiz Beridze
- Institute of Molecular Genetics, Agricultural University of Georgia, Tbilisi, Georgia
| | - Dario Cantu
- Department of Viticulture and Enology, UC Davis, Davis, CA, USA.
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA.
| |
Collapse
|