1
|
Hu Y, Comjean A, Rodiger J, Chen W, Kim AR, Qadiri M, Gao C, Zirin J, Mohr SE, Perrimon N. FlyRNAi.org 2025 update-expanded resources for new technologies and species. Nucleic Acids Res 2024:gkae917. [PMID: 39435987 DOI: 10.1093/nar/gkae917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
The design, analysis and mining of large-scale 'omics studies with the goal of advancing biological and biomedical understanding require use of a range of bioinformatics tools, including approaches tailored to needs specific to a given species and/or technology. The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) Functional Genomics Resources (https://fgr.hms.harvard.edu/tools) supports an increasingly broad group of technologies and species. Recently, for example, we expanded the database to include additional new data-centric resources that facilitate mining and analysis of single-cell transcriptomics. In addition, we have applied our approaches to CRISPR reagent and gene-centric bioinformatics approaches in Drosophila to arthropod vectors of infectious diseases. Building on our previous comprehensive reports on the FlyRNAi database, here we focus on new and updated resources with a primary focus on data-centric tools. Altogether, our suite of online resources supports various stages of functional genomics studies for Drosophila and other arthropods, and facilitate a wide range of reagent design, analysis, data mining and analysis approaches by biologists and biomedical experts studying Drosophila, other common genetic model species, arthropod vectors and/or human biology.
Collapse
Affiliation(s)
- Yanhui Hu
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aram Comjean
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- LifeMine Therapeutics, 30 Acorn Park Dr, Cambridge, MA 02140, USA
| | - Weihang Chen
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ah-Ram Kim
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Mujeeb Qadiri
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chenxi Gao
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Zirin
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephanie E Mohr
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
2
|
Razavi Z, Soltani M, Souri M, Pazoki-Toroudi H. CRISPR-Driven Biosensors: A New Frontier in Rapid and Accurate Disease Detection. Crit Rev Anal Chem 2024:1-25. [PMID: 39288095 DOI: 10.1080/10408347.2024.2400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This comprehensive review delves into the advancements and challenges in biosensing, with a strong emphasis on the transformative potential of CRISPR technology for early and rapid detection of infectious diseases. It underscores the versatility of CRISPR/Cas systems, highlighting their ability to detect both nucleic acids and non-nucleic acid targets, and their seamless integration with isothermal amplification techniques. The review provides a thorough examination of the latest developments in CRISPR-based biosensors, detailing the unique properties of CRISPR systems, such as their high specificity and programmability, which make them particularly effective for detecting disease-associated nucleic acids. While the review focuses on nucleic acid detection due to its critical role in diagnosing infectious diseases, it also explores the broader applications of CRISPR technology in detecting non-nucleic acid targets, thereby acknowledging the technology's broader potential. Additionally, the review identifies existing challenges, such as the need for improved signal amplification and real-world applicability, and offers future perspectives aimed at overcoming these hurdles. The ultimate goal is to advance the development of highly sensitive and specific CRISPR-based biosensors that can be used widely for improving human health, particularly in point-of-care settings and resource-limited environments.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Centre for Sustainable Business, International Business University, Toronto, Canada
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
3
|
Guo Y, Cui Y, Sun M, Zhu X, Zhang Y, Lu J, Li C, Lv J, Guo M, Liu X, Chen Z, Du X, Huo X. Establishment and Application of a Novel Genetic Detection Panel for SNPs in Mongolian Gerbils. Genes (Basel) 2024; 15:817. [PMID: 38927752 PMCID: PMC11202554 DOI: 10.3390/genes15060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The Mongolian gerbil is a distinctive experimental animal in China, as its genetic qualities possess significant value in the field of medical biology research. Here, we aimed to establish an economical and efficient panel for genetic quality detection in Mongolian gerbils using single-nucleotide polymorphism (SNP) markers. To search for SNPs, we conducted whole-genome sequencing (WGS) in 40 Mongolian gerbils from outbred populations. Reliable screening criteria were established to preliminarily select SNPs with a wide genome distribution and high levels of polymorphism. Subsequently, a multiple-target regional capture detection system based on second-generation sequencing was developed for SNP genotyping. Based on the results of WGS, 219 SNPs were preliminarily selected, and they were established and optimized in a multiple-amplification system that included 206 SNP loci by genotyping three outbred populations. PopGen.32 analysis revealed that the average effective allele number, Shannon index, observed heterozygosity, expected heterozygosity, average heterozygosity, polymorphism information content, and other population genetic parameters of the Capital Medical University (CMU) gerbils were the highest, followed by those of Zhejiang gerbils and Dalian gerbils. Through scientific screening and optimization, we successfully established a novel, robust, and cost-effective genetic detection system for Mongolian gerbils by utilizing SNP markers for the first time.
Collapse
Affiliation(s)
- Yafang Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Yutong Cui
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Minghe Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Xiao Zhu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Yilang Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| |
Collapse
|
4
|
Lemmens M, Dorsheimer L, Zeller A, Dietz-Baum Y. Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503767. [PMID: 38821669 DOI: 10.1016/j.mrgentox.2024.503767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.
Collapse
Affiliation(s)
| | - Lena Dorsheimer
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany.
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Yasmin Dietz-Baum
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| |
Collapse
|
5
|
Bruter AV, Varlamova EA, Okulova YD, Tatarskiy VV, Silaeva YY, Filatov MA. Genetically modified mice as a tool for the study of human diseases. Mol Biol Rep 2024; 51:135. [PMID: 38236499 DOI: 10.1007/s11033-023-09066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Modeling a human disease is an essential part of biomedical research. The recent advances in the field of molecular genetics made it possible to obtain genetically modified animals for the study of various diseases. Not only monogenic disorders but also chromosomal and multifactorial disorders can be mimicked in lab animals due to genetic modification. Even human infectious diseases can be studied in genetically modified animals. An animal model of a disease enables the tracking of its pathogenesis and, more importantly, to test new therapies. In the first part of this paper, we review the most common DNA modification technologies and provide key ideas on specific technology choices according to the task at hand. In the second part, we focus on the application of genetically modified mice in studying human diseases.
Collapse
Affiliation(s)
- Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Victor V Tatarskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Yulia Y Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
6
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Saini H, Thakur R, Gill R, Tyagi K, Goswami M. CRISPR/Cas9-gene editing approaches in plant breeding. GM CROPS & FOOD 2023; 14:1-17. [PMID: 37725519 PMCID: PMC10512805 DOI: 10.1080/21645698.2023.2256930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
CRISPR/Cas9 gene editing system is recently developed robust genome editing technology for accelerating plant breeding. Various modifications of this editing system have been established for adaptability in plant varieties as well as for its improved efficiency and portability. This review provides an in-depth look at the various strategies for synthesizing gRNAs for efficient delivery in plant cells, including chemical synthesis and in vitro transcription. It also covers traditional analytical tools and emerging developments in detection methods to analyze CRISPR/Cas9 mediated mutation in plant breeding. Additionally, the review outlines the various analytical tools which are used to detect and analyze CRISPR/Cas9 mediated mutations, such as next-generation sequencing, restriction enzyme analysis, and southern blotting. Finally, the review discusses emerging detection methods, including digital PCR and qPCR. Hence, CRISPR/Cas9 has great potential for transforming agriculture and opening avenues for new advancements in the system for gene editing in plants.
Collapse
Affiliation(s)
- Himanshu Saini
- School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- School of Agriculture, Forestry & Fisheries, Himgiri Zee University, Dehradun, Uttarakhand, India
| | - Rajneesh Thakur
- Department of Plant Pathology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Rubina Gill
- Department of Agronomy, School of Agriculture, Lovely professional university, Phagwara, Punjab, India
| | - Kalpana Tyagi
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, India
| | - Manika Goswami
- Department of Fruit Science, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| |
Collapse
|
8
|
Joshi A, Yang SY, Song HG, Min J, Lee JH. Genetic Databases and Gene Editing Tools for Enhancing Crop Resistance against Abiotic Stress. BIOLOGY 2023; 12:1400. [PMID: 37997999 PMCID: PMC10669554 DOI: 10.3390/biology12111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Abiotic stresses extensively reduce agricultural crop production globally. Traditional breeding technology has been the fundamental approach used to cope with abiotic stresses. The development of gene editing technology for modifying genes responsible for the stresses and the related genetic networks has established the foundation for sustainable agriculture against environmental stress. Integrated approaches based on functional genomics and transcriptomics are now expanding the opportunities to elucidate the molecular mechanisms underlying abiotic stress responses. This review summarizes some of the features and weblinks of plant genome databases related to abiotic stress genes utilized for improving crops. The gene-editing tool based on clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has revolutionized stress tolerance research due to its simplicity, versatility, adaptability, flexibility, and broader applications. However, off-target and low cleavage efficiency hinder the successful application of CRISPR/Cas systems. Computational tools have been developed for designing highly competent gRNA with better cleavage efficiency. This powerful genome editing tool offers tremendous crop improvement opportunities, overcoming conventional breeding techniques' shortcomings. Furthermore, we also discuss the mechanistic insights of the CRISPR/Cas9-based genome editing technology. This review focused on the current advances in understanding plant species' abiotic stress response mechanism and applying the CRISPR/Cas system genome editing technology to develop crop resilience against drought, salinity, temperature, heavy metals, and herbicides.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Hyung-Geun Song
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
- Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
9
|
Ansari AH, Kumar M, Sarkar S, Maiti S, Chakraborty D. CriSNPr, a single interface for the curated and de novo design of gRNAs for CRISPR diagnostics using diverse Cas systems. eLife 2023; 12:e77976. [PMID: 36752591 PMCID: PMC9940907 DOI: 10.7554/elife.77976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
CRISPR-based diagnostics (CRISPRDx) have improved clinical decision-making, especially during the COVID-19 pandemic, by detecting nucleic acids and identifying variants. This has been accelerated by the discovery of new and engineered CRISPR effectors, which have expanded the portfolio of diagnostic applications to include a broad range of pathogenic and non-pathogenic conditions. However, each diagnostic CRISPR pipeline necessitates customized detection schemes based on the fundamental principles of the Cas protein used, its guide RNA (gRNA) design parameters, and the assay readout. This is especially relevant for variant detection, a low-cost alternative to sequencing-based approaches for which no in silico pipeline for the ready-to-use design of CRISPRDx currently exists. In this manuscript, we fill this lacuna using a unified web server, CriSNPr (CRISPR-based SNP recognition), which provides the user with the opportunity to de novo design gRNAs based on six CRISPRDx proteins of choice (Fn/enFnCas9, LwCas13a, LbCas12a, AaCas12b, and Cas14a) and query for ready-to-use oligonucleotide sequences for validation on relevant samples. Furthermore, we provide a database of curated pre-designed gRNAs as well as target/off-target for all human and SARS-CoV-2 variants reported thus far. CriSNPr has been validated on multiple Cas proteins, demonstrating its broad and immediate applicability across multiple detection platforms. CriSNPr can be found at http://crisnpr.igib.res.in/.
Collapse
Affiliation(s)
- Asgar H Ansari
- CSIR-Institute of Genomics & Integrative BiologyNew DelhiIndia
- Academy of Scientific & Innovative Research (AcSIR)GhaziabadIndia
| | - Manoj Kumar
- CSIR-Institute of Genomics & Integrative BiologyNew DelhiIndia
- Academy of Scientific & Innovative Research (AcSIR)GhaziabadIndia
| | - Sajal Sarkar
- CSIR-Institute of Genomics & Integrative BiologyNew DelhiIndia
- Academy of Scientific & Innovative Research (AcSIR)GhaziabadIndia
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative BiologyNew DelhiIndia
- Academy of Scientific & Innovative Research (AcSIR)GhaziabadIndia
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative BiologyNew DelhiIndia
- Academy of Scientific & Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
10
|
Alipanahi R, Safari L, Khanteymoori A. CRISPR genome editing using computational approaches: A survey. FRONTIERS IN BIOINFORMATICS 2023; 2:1001131. [PMID: 36710911 PMCID: PMC9875887 DOI: 10.3389/fbinf.2022.1001131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing has been widely used in various cell types and organisms. To make genome editing with Clustered regularly interspaced short palindromic repeats far more precise and practical, we must concentrate on the design of optimal gRNA and the selection of appropriate Cas enzymes. Numerous computational tools have been created in recent years to help researchers design the best gRNA for Clustered regularly interspaced short palindromic repeats researches. There are two approaches for designing an appropriate gRNA sequence (which targets our desired sites with high precision): experimental and predicting-based approaches. It is essential to reduce off-target sites when designing an optimal gRNA. Here we review both traditional and machine learning-based approaches for designing an appropriate gRNA sequence and predicting off-target sites. In this review, we summarize the key characteristics of all available tools (as far as possible) and compare them together. Machine learning-based tools and web servers are believed to become the most effective and reliable methods for predicting on-target and off-target activities of Clustered regularly interspaced short palindromic repeats in the future. However, these predictions are not so precise now and the performance of these algorithms -especially deep learning one's-depends on the amount of data used during training phase. So, as more features are discovered and incorporated into these models, predictions become more in line with experimental observations. We must concentrate on the creation of ideal gRNA and the choice of suitable Cas enzymes in order to make genome editing with Clustered regularly interspaced short palindromic repeats far more accurate and feasible.
Collapse
Affiliation(s)
| | - Leila Safari
- Department of Computer Engineering, University of Zanjan, Zanjan, Iran,*Correspondence: Leila Safari,
| | | |
Collapse
|
11
|
Velasquez-Vasconez PA. Reflections about the Molecular Tool That Could Change the Course of Human History: Genome Editing. PERSONA Y BIOÉTICA 2022. [DOI: 10.5294/pebi.2022.26.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genetic editing has many applications in almost all areas of society, but may also lead to unpredictable consequences. Genome editing to modify the human germline is at the center of global discussion. Owing to the increasing number of unanswered scientific, ethical, and policy questions, the scientific community agrees that it would be inappropriate to genetically modify embryos. A serious and open debate is necessary to decide whether such research should be suspended or encouraged. Here we show some bold arguments in favor of deleting deleterious genes from the human genome and the risks liberal eugenism poses.
Collapse
|
12
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
13
|
Zirin J, Bosch J, Viswanatha R, Mohr SE, Perrimon N. State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends Genet 2022; 38:437-453. [PMID: 34933779 PMCID: PMC9007876 DOI: 10.1016/j.tig.2021.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
For more than 100 years, the fruit fly, Drosophila melanogaster, has served as a powerful model organism for biological and biomedical research due to its many genetic and physiological similarities to humans and the availability of sophisticated technologies used to manipulate its genome and genes. The Drosophila research community quickly adopted CRISPR technologies and, in the 8 years since the first clustered regularly interspaced short palindromic repeats (CRISPR) publications in flies, has explored and innovated methods for mutagenesis, precise genome engineering, and beyond. Moreover, the short lifespan and ease of genetics have made Drosophila an ideal testing ground for in vivo applications and refinements of the rapidly evolving set of CRISPR-associated (CRISPR-Cas) tools. Here, we review innovations in delivery of CRISPR reagents, increased efficiency of cutting and homology-directed repair (HDR), and alternatives to standard Cas9-based approaches. While the focus is primarily on in vivo systems, we also describe the role of Drosophila cultured cells as both an indispensable first step in the process of assessing new CRISPR technologies and a platform for genome-wide CRISPR pooled screens.
Collapse
Affiliation(s)
- Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Justin Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Anliker B, Childs L, Rau J, Renner M, Schüle S, Schuessler-Lenz M, Sebe A. Regulatory Considerations for Clinical Trial Applications with CRISPR-Based Medicinal Products. CRISPR J 2022; 5:364-376. [PMID: 35452274 DOI: 10.1089/crispr.2021.0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Since first proposed as a new tool for gene targeting and genome editing, CRISPR technology has quickly advanced into the clinical stage. Initial studies highlight the potential for CRISPR-Cas9-mediated therapeutic approaches in human medicine to correct incurable genetic diseases and enhance cell-based therapeutic approaches. While acknowledging the opportunities this technology brings for the treatment of patients with severe diseases, timely development of these innovative medicinal products requires regulatory oversight and adaptation of regulatory requirements to ensure the safety and efficacy of medicinal products based on CRISPR technology. We briefly present the current regulatory framework applicable for CRISPR-Cas-based developments as advanced therapy medicinal products. Moreover, scientific- and regulatory-driven considerations relevant for advancing product development toward clinical trial applications in Germany are highlighted by discussing the key aspects of quality and nonclinical and clinical development requirements.
Collapse
Affiliation(s)
- Brigitte Anliker
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Liam Childs
- Division Host-Pathogen Interactions, Paul Ehrlich Institute, Langen, Germany
| | - Juliane Rau
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Matthias Renner
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Silke Schüle
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Attila Sebe
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
15
|
Computational tools and resources for CRISPR/Cas genome editing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00027-4. [PMID: 35341983 PMCID: PMC10372911 DOI: 10.1016/j.gpb.2022.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genomic editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduced the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focused on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights on the limitations of available computational tools that surely help researchers of this field for further optimization. Lastly, we suggested a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing.
Collapse
|
16
|
Carneiro P, de Freitas MV, Matte U. In silico analysis of potential off-target sites to gene editing for Mucopolysaccharidosis type I using the CRISPR/Cas9 system: Implications for population-specific treatments. PLoS One 2022; 17:e0262299. [PMID: 35073349 PMCID: PMC8786118 DOI: 10.1371/journal.pone.0262299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by alpha-L-iduronidase deficiency encoded by the IDUA gene. Therapy with CRISPR/Cas9 is being developed for treatment, however a detailed investigation of off-target effects must be performed. This study aims to evaluate possible off-targets for a sgRNA aiming to correct the most common variant found in MPS I patients (p.Trp402*). A total of 272 potential off-target sequences was obtained and 84 polymorphic sites were identified in these sequences with a frequency equal to or greater than 1% in at least one of the populations. In the majority of cases, polymorphic sites decrease the chance of off-target cleavage and a new PAM was created, which indicates the importance of such analysis. This study highlights the importance of screening off-targets in a population-specific context using Mucopolysaccharidosis type I as an example of a problem that concerns all therapeutic treatments. Our results can have broader applications for other targets already clinically in use, as they could affect CRISPR/Cas9 safety and efficiency.
Collapse
Affiliation(s)
- Paola Carneiro
- Post-Graduation Program on Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Bioinformatics Core, Experimental Research Center, Hospital de Clínicas, Porto Alegre, Rio Grande do Sul, Brazil
- Cell, Tissue and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Martiela Vaz de Freitas
- Post-Graduation Program on Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Bioinformatics Core, Experimental Research Center, Hospital de Clínicas, Porto Alegre, Rio Grande do Sul, Brazil
- Cell, Tissue and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ursula Matte
- Post-Graduation Program on Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Bioinformatics Core, Experimental Research Center, Hospital de Clínicas, Porto Alegre, Rio Grande do Sul, Brazil
- Cell, Tissue and Genes Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Deb S, Choudhury A, Kharbyngar B, Satyawada RR. Applications of CRISPR/Cas9 technology for modification of the plant genome. Genetica 2022; 150:1-12. [PMID: 35018532 DOI: 10.1007/s10709-021-00146-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas (Clustered regularly interspaced short palindromic repeats/ CRISPR associated protein 9) system was discovered in bacteria and archea as an acquired immune response to protect the cells from infection. This technology has now evolved to become an efficient genome editing tool, and is replacing older gene editing technologies. This technique uses programmable sgRNAs to guide the Cas9 endonuclease to the target DNA location. sgRNA is a vital component of the CRISPR technology, since without it the Cas nuclease cannot reach to its target location. Over the years, many tools have been developed for designing sgRNAs, the details of which have been extensively reviewed here. It has proven to be a promising tool in the field of genetic engineering and has successfully generated many plant varieties with better and desirable qualities. In the present review, we attempted to collect,collate and summarize information related to the development of CRISPR/Cas9 system as a tool and subsequently into a technique having a wide array of applications in the field of plant genome editing in attaining desirable traits like resistance to various diseases, nutritional enhancement etc. In addition, the probable future prospects and the various bio-safety concerns associated with CRISPR gene editing technology have been discussed in detail.
Collapse
Affiliation(s)
- Sohini Deb
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Amrita Choudhury
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Banridor Kharbyngar
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Rama Rao Satyawada
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
18
|
Chulanov V, Kostyusheva A, Brezgin S, Ponomareva N, Gegechkori V, Volchkova E, Pimenov N, Kostyushev D. CRISPR Screening: Molecular Tools for Studying Virus-Host Interactions. Viruses 2021; 13:v13112258. [PMID: 34835064 PMCID: PMC8618713 DOI: 10.3390/v13112258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas is a powerful tool for studying the role of genes in viral infections. The invention of CRISPR screening technologies has made it possible to untangle complex interactions between the host and viral agents. Moreover, whole-genome and pathway-specific CRISPR screens have facilitated identification of novel drug candidates for treating viral infections. In this review, we highlight recent developments in the fields of CRISPR/Cas with a focus on the use of CRISPR screens for studying viral infections and identifying new candidate genes to aid development of antivirals.
Collapse
Affiliation(s)
- Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (V.C.); (A.K.); (S.B.); (N.P.); (N.P.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (V.C.); (A.K.); (S.B.); (N.P.); (N.P.)
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (V.C.); (A.K.); (S.B.); (N.P.); (N.P.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Natalia Ponomareva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (V.C.); (A.K.); (S.B.); (N.P.); (N.P.)
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Elena Volchkova
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| | - Nikolay Pimenov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (V.C.); (A.K.); (S.B.); (N.P.); (N.P.)
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (V.C.); (A.K.); (S.B.); (N.P.); (N.P.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
- Correspondence:
| |
Collapse
|
19
|
Lewald KM, Abrieux A, Wilson DA, Lee Y, Conner WR, Andreazza F, Beers EH, Burrack HJ, Daane KM, Diepenbrock L, Drummond FA, Fanning PD, Gaffney MT, Hesler SP, Ioriatti C, Isaacs R, Little BA, Loeb GM, Miller B, Nava DE, Rendon D, Sial AA, da Silva CSB, Stockton DG, Van Timmeren S, Wallingford A, Walton VM, Wang X, Zhao B, Zalom FG, Chiu JC. Population genomics of Drosophila suzukii reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3-GENES GENOMES GENETICS 2021; 11:6380432. [PMID: 34599814 PMCID: PMC8664444 DOI: 10.1093/g3journal/jkab343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 11/14/2022]
Abstract
Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental United States, as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern US populations, but no evidence of any population structure between different latitudes within the continental United States, suggesting that there are no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western United States and from the Eastern United States to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western United States back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.
Collapse
Affiliation(s)
- Kyle M Lewald
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Antoine Abrieux
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Derek A Wilson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida Institute of Food and Agricultural Sciences, Vero Beach, FL 32603, USA
| | - William R Conner
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Felipe Andreazza
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Elizabeth H Beers
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 99164, USA
| | - Hannah J Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Lauren Diepenbrock
- UF IFAS Citrus Research and Education Center, University of Florida, Lake Alfred, FL 32603, USA
| | - Francis A Drummond
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Philip D Fanning
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Michael T Gaffney
- Horticultural Development Department, Teagasc, Ashtown, Dublin 15, Ireland
| | - Stephen P Hesler
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele all'Adige (TN), Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Brian A Little
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Gregory M Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Betsey Miller
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Dori E Nava
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | - Dara G Stockton
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,USDA-ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Steven Van Timmeren
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Wallingford
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,Department of Agriculture, Nutrition & Food Systems, University of New Hampshire, Durham, NH 03824, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Xingeng Wang
- USDA Agricultural Research Service, Beneficial Insects Introduction Research Unit, Newark, DE 19713, USA
| | - Bo Zhao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
20
|
Li Y, Zhou LQ. dCas9 techniques for transcriptional repression in mammalian cells: Progress, applications and challenges. Bioessays 2021; 43:e2100086. [PMID: 34327721 DOI: 10.1002/bies.202100086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023]
Abstract
Innovative loss-of-function techniques developed in recent years have made it much easier to target specific genomic loci at transcriptional levels. CRISPR interference (CRISPRi) has been proven to be the most effective and specific tool to knock down any gene of interest in mammalian cells. The catalytically deactivated Cas9 (dCas9) can be fused with transcription repressors to downregulate gene expression specified by sgRNA complementary to target genomic sequence. Although CRISPRi has huge potential for gene knockdown, there is still a lack of systematic guidelines for efficient and widespread use. Here we describe the working mechanism and development of CRISPRi, designing principles of sgRNA, delivery methods and applications in mammalian cells in detail. Finally, we propose possible solutions and future directions with regard to current challenges.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Li VR, Zhang Z, Troyanskaya OG. CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes. Bioinformatics 2021; 37:i342-i348. [PMID: 34252931 PMCID: PMC8275342 DOI: 10.1093/bioinformatics/btab268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
MOTIVATION CRISPR/Cas9 is a revolutionary gene-editing technology that has been widely utilized in biology, biotechnology and medicine. CRISPR/Cas9 editing outcomes depend on local DNA sequences at the target site and are thus predictable. However, existing prediction methods are dependent on both feature and model engineering, which restricts their performance to existing knowledge about CRISPR/Cas9 editing. RESULTS Herein, deep multi-task convolutional neural networks (CNNs) and neural architecture search (NAS) were used to automate both feature and model engineering and create an end-to-end deep-learning framework, CROTON (CRISPR Outcomes Through cONvolutional neural networks). The CROTON model architecture was tuned automatically with NAS on a synthetic large-scale construct-based dataset and then tested on an independent primary T cell genomic editing dataset. CROTON outperformed existing expert-designed models and non-NAS CNNs in predicting 1 base pair insertion and deletion probability as well as deletion and frameshift frequency. Interpretation of CROTON revealed local sequence determinants for diverse editing outcomes. Finally, CROTON was utilized to assess how single nucleotide variants (SNVs) affect the genome editing outcomes of four clinically relevant target genes: the viral receptors ACE2 and CCR5 and the immune checkpoint inhibitors CTLA4 and PDCD1. Large SNV-induced differences in CROTON predictions in these target genes suggest that SNVs should be taken into consideration when designing widely applicable gRNAs. AVAILABILITY AND IMPLEMENTATION https://github.com/vli31/CROTON. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Zijun Zhang
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
22
|
|
23
|
Siegner SM, Karasu ME, Schröder MS, Kontarakis Z, Corn JE. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics 2021; 22:101. [PMID: 33653259 PMCID: PMC7923538 DOI: 10.1186/s12859-021-04034-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The rapid expansion of the CRISPR toolbox through tagging effector domains to either enzymatically inactive Cas9 (dCas9) or Cas9 nickase (nCas9) has led to several promising new gene editing strategies. Recent additions include CRISPR cytosine or adenine base editors (CBEs and ABEs) and the CRISPR prime editors (PEs), in which a deaminase or reverse transcriptase are fused to nCas9, respectively. These tools hold great promise to model and correct disease-causing mutations in animal and plant models. But so far, no widely-available tools exist to automate the design of both BE and PE reagents. RESULTS We developed PnB Designer, a web-based application for the design of pegRNAs for PEs and guide RNAs for BEs. PnB Designer makes it easy to design targeting guide RNAs for single or multiple targets on a variant or reference genome from organisms spanning multiple kingdoms. With PnB Designer, we designed pegRNAs to model all known disease causing mutations available in ClinVar. Additionally, PnB Designer can be used to design guide RNAs to install or revert a SNV, scanning the genome with one CBE and seven different ABE PAM variants and returning the best BE to use. PnB Designer is publicly accessible at http://fgcz-shiny.uzh.ch/PnBDesigner/ CONCLUSION: With PnB Designer we created a user-friendly design tool for CRISPR PE and BE reagents, which should simplify choosing editing strategy and avoiding design complications.
Collapse
Affiliation(s)
| | | | | | - Zacharias Kontarakis
- Department of Biology, ETH Zurich, Zurich, Switzerland
- Genome Engineering and Measurement Lab, ETH Zurich, Zurich, Switzerland
| | - Jacob E Corn
- Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Trivedi D. Using CRISPR-Cas9-based genome engineering tools in Drosophila melanogaster. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:85-121. [PMID: 33934839 DOI: 10.1016/bs.pmbts.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster has been used as a model organism for over a century. Mutant-based analyses have been used extensively to understand the genetic basis of different cellular processes, including development, neuronal function and diseases. Most of the earlier genetic mutants and specific tools were generated by random insertions and deletion strategies and then mapped to specific genomic loci. Since all genomic regions are not equally accessible to random mutations and insertions, many genes still remain uncharacterized. Low efficiency of targeted genomic manipulation approaches that rely on homologous recombination, and difficulty in generating resources for sequence-specific endonucleases, such as ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases), could not make these gene targeting techniques very popular. However, recently RNA directed DNA endonucleases, such as CRISPR-Cas, have transformed genome engineering owing to their comparative ease, versatility, and low expense. With the added advantage of preexisting genetic tools, CRISPR-Cas-based manipulations are being extensively used in Drosophila melanogaster and simultaneously being fine-tuned for specific experimental requirements. In this chapter, I will discuss various uses of CRISPR-Cas-based genetic engineering and specific design methods in Drosophila melanogaster. I will summarize various already available tools that are being utilized in conjunction with CRISPR-Cas technology to generate specific genetic manipulation and are being optimized to address specific questions. Finally, I will discuss the future directions of Drosophila genetics research and how CRISPR-Cas can be utilized to target specific questions, addressing which has not been possible thus far.
Collapse
Affiliation(s)
- Deepti Trivedi
- National Centre for Biological Sciences-TIFR, Bengaluru, India.
| |
Collapse
|
25
|
Hu Y, Comjean A, Rodiger J, Liu Y, Gao Y, Chung V, Zirin J, Perrimon N, Mohr SE. FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2021 update. Nucleic Acids Res 2021; 49:D908-D915. [PMID: 33104800 PMCID: PMC7778949 DOI: 10.1093/nar/gkaa936] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) provides a suite of online resources that facilitate functional genomics studies with a special emphasis on Drosophila melanogaster. Currently, the database provides: gene-centric resources that facilitate ortholog mapping and mining of information about orthologs in common genetic model species; reagent-centric resources that help researchers identify RNAi and CRISPR sgRNA reagents or designs; and data-centric resources that facilitate visualization and mining of transcriptomics data, protein modification data, protein interactions, and more. Here, we discuss updated and new features that help biological and biomedical researchers efficiently identify, visualize, analyze, and integrate information and data for Drosophila and other species. Together, these resources facilitate multiple steps in functional genomics workflows, from building gene and reagent lists to management, analysis, and integration of data.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yue Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Verena Chung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
26
|
Höijer I, Johansson J, Gudmundsson S, Chin CS, Bunikis I, Häggqvist S, Emmanouilidou A, Wilbe M, den Hoed M, Bondeson ML, Feuk L, Gyllensten U, Ameur A. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity. Genome Biol 2020; 21:290. [PMID: 33261648 PMCID: PMC7706270 DOI: 10.1186/s13059-020-02206-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND One ongoing concern about CRISPR-Cas9 genome editing is that unspecific guide RNA (gRNA) binding may induce off-target mutations. However, accurate prediction of CRISPR-Cas9 off-target activity is challenging. Here, we present SMRT-OTS and Nano-OTS, two novel, amplification-free, long-read sequencing protocols for detection of gRNA-driven digestion of genomic DNA by Cas9 in vitro. RESULTS The methods are assessed using the human cell line HEK293, re-sequenced at 18x coverage using highly accurate HiFi SMRT reads. SMRT-OTS and Nano-OTS are first applied to three different gRNAs targeting HEK293 genomic DNA, resulting in a set of 55 high-confidence gRNA cleavage sites identified by both methods. Twenty-five of these sites are not reported by off-target prediction software, either because they contain four or more single nucleotide mismatches or insertion/deletion mismatches, as compared with the human reference. Additional experiments reveal that 85% of Cas9 cleavage sites are also found by other in vitro-based methods and that on- and off-target sites are detectable in gene bodies where short-reads fail to uniquely align. Even though SMRT-OTS and Nano-OTS identify several sites with previously validated off-target editing activity in cells, our own CRISPR-Cas9 editing experiments in human fibroblasts do not give rise to detectable off-target mutations at the in vitro-predicted sites. However, indel and structural variation events are enriched at the on-target sites. CONCLUSIONS Amplification-free long-read sequencing reveals Cas9 cleavage sites in vitro that would have been difficult to predict using computational tools, including in dark genomic regions inaccessible by short-read sequencing.
Collapse
Affiliation(s)
- Ida Höijer
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Josefin Johansson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sanna Gudmundsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA USA
| | | | - Ignas Bunikis
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Susana Häggqvist
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anastasia Emmanouilidou
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Wilbe
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcel den Hoed
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Feuk
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
27
|
Bhat MA, Bhat MA, Kumar V, Wani IA, Bashir H, Shah AA, Rahman S, Jan AT. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. J Biotechnol 2020; 324:34-60. [DOI: 10.1016/j.jbiotec.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
|
28
|
Zhao G, Li J, Tang Y. AsCRISPR: A Web Server for Allele-Specific Single Guide RNA Design in Precision Medicine. CRISPR J 2020; 3:512-522. [PMID: 33346704 DOI: 10.1089/crispr.2020.0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Allele-specific genomic targeting by CRISPR is a versatile strategy that has been increasingly exploited not only in treating inherited dominant diseases and mutation-driven cancers, but also in other important fields such as genome imprinting, haploinsufficiency, and genome loci imaging. Despite its tremendous utilities, few bioinformatic tools have been implemented for the allele-specific purpose of CRISPR. We thus developed AsCRISPR (Allele-specific CRISPR), a comprehensive web tool to aid the design of short-guide RNA (sgRNA) sequences that can discriminate between alleles. AsCRISPR allows users to analyze both their own identified variants and heterozygous single nucleotide polymorphisms and, importantly, output the candidate sgRNAs and their quality control information. To facilitate targeting dominant diseases, AsCRISPR analyzed dominant single nucleotide variants (SNVs) retrieved from ClinVar and OMIM databases, and generated a dominant database of candidate-discriminating sgRNAs that may specifically target the alternative allele for each dominant SNV site. Moreover, a validated database was established, which manually curated the discriminating sgRNAs that were experimentally validated in the mounting literature for multiple allele-specific purposes.
Collapse
Affiliation(s)
- Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yu Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
29
|
Stoneman HR, Wrobel RL, Place M, Graham M, Krause DJ, De Chiara M, Liti G, Schacherer J, Landick R, Gasch AP, Sato TK, Hittinger CT. CRISpy-Pop: A Web Tool for Designing CRISPR/Cas9-Driven Genetic Modifications in Diverse Populations. G3 (BETHESDA, MD.) 2020; 10:4287-4294. [PMID: 32963084 PMCID: PMC7642938 DOI: 10.1534/g3.120.401498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
CRISPR/Cas9 is a powerful tool for editing genomes, but design decisions are generally made with respect to a single reference genome. With population genomic data becoming available for an increasing number of model organisms, researchers are interested in manipulating multiple strains and lines. CRISpy-pop is a web application that generates and filters guide RNA sequences for CRISPR/Cas9 genome editing for diverse yeast and bacterial strains. The current implementation designs and predicts the activity of guide RNAs against more than 1000 Saccharomyces cerevisiae genomes, including 167 strains frequently used in bioenergy research. Zymomonas mobilis, an increasingly popular bacterial bioenergy research model, is also supported. CRISpy-pop is available as a web application (https://CRISpy-pop.glbrc.org/) with an intuitive graphical user interface. CRISpy-pop also cross-references the human genome to allow users to avoid the selection of guide RNAs with potential biosafety concerns. Additionally, CRISpy-pop predicts the strain coverage of each guide RNA within the supported strain sets, which aids in functional population genetic studies. Finally, we validate how CRISpy-pop can accurately predict the activity of guide RNAs across strains using population genomic data.
Collapse
Affiliation(s)
- Hayley R Stoneman
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | - Russell L Wrobel
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
| | - Michael Graham
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
| | - David J Krause
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | | | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | | | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| | - Audrey P Gasch
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| |
Collapse
|
30
|
Jeong YK, Song B, Bae S. Current Status and Challenges of DNA Base Editing Tools. Mol Ther 2020; 28:1938-1952. [PMID: 32763143 PMCID: PMC7474268 DOI: 10.1016/j.ymthe.2020.07.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR-mediated DNA base editors, which include cytosine base editors (CBEs) and adenine base editors (ABEs), are promising tools that can induce point mutations at desired sites in a targeted manner to correct or disrupt gene expression. Their high editing efficiency, coupled with their ability to generate a targeted mutation without generating a DNA double-strand break (DSB) or requiring a donor DNA template, suggests that DNA base editors will be useful for treating genetic diseases, among other applications. However, this hope has recently been challenged by the discovery of DNA base editor shortcomings, including off-target DNA editing, the generation of bystander mutations, and promiscuous deamination effects in both DNA and RNA, which arise from the main DNA base editor constituents, a Cas nuclease variant and a deaminase. In this review, we summarize information about the DNA base editors that have been developed to date, introduce their associated potential challenges, and describe current efforts to minimize or mitigate those issues of DNA base editors.
Collapse
Affiliation(s)
- You Kyeong Jeong
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Beomjong Song
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
31
|
Rabinowitz R, Almog S, Darnell R, Offen D. CrisPam: SNP-Derived PAM Analysis Tool for Allele-Specific Targeting of Genetic Variants Using CRISPR-Cas Systems. Front Genet 2020; 11:851. [PMID: 33014011 PMCID: PMC7461778 DOI: 10.3389/fgene.2020.00851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising novel technology that holds the potential of treating genetic diseases. Safety and specificity of the treatment are to be further studied and developed prior to implementation of the technology into the clinic. The guide-RNA (gRNA) allows precise position-specific DNA targeting, although it may tolerate small changes such as point mutations. The permissive nature of the CRISPR-Cas system makes allele-specific targeting a challenging goal. Hence, an allele-specific targeting approach is in need for future treatments of heterozygous patients suffering from diseases caused by dominant negative mutations. The single-nucleotide polymorphism (SNP)-derived protospacer adjacent motif (PAM) approach allows highly allele-specific DNA cleavage due to the existence of a novel PAM sequence only at the target allele. Here, we present CrisPam, a computational tool that detects PAMs within the variant allele for allele-specific targeting by CRISPR-Cas systems. The algorithm scans the sequences and attempts to identify the generation of multiple PAMs for a given reference sequence and its variations. A successful result is such that at least a single PAM is generated by the variation nucleotide. Since the PAM is present within the variant allele only, the Cas enzyme will bind the variant allele exclusively. Analyzing a dataset of human pathogenic point mutations revealed that 90% of the analyzed mutations generated at least a single PAM. Thus, the SNP-derived PAM approach is ideal for targeting most of the point mutations in an allele-specific manner. CrisPam simplifies the gRNAs design process to specifically target the allele of interest and scans a wide range of 26 unique PAMs derived from 23 Cas enzymes. CrisPam is freely available at https://www.danioffenlab.com/crispam.
Collapse
Affiliation(s)
- Roy Rabinowitz
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Almog
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roy Darnell
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Sledzinski P, Nowaczyk M, Olejniczak M. Computational Tools and Resources Supporting CRISPR-Cas Experiments. Cells 2020; 9:E1288. [PMID: 32455882 PMCID: PMC7290941 DOI: 10.3390/cells9051288] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas system has become a cutting-edge technology that revolutionized genome engineering. The use of Cas9 nuclease is currently the method of choice in most tasks requiring a specific DNA modification. The rapid development in the field of CRISPR-Cas is reflected by the constantly expanding ecosystem of computational tools aimed at facilitating experimental design and result analysis. The first group of CRISPR-Cas-related tools that we review is dedicated to aid in guide RNA design by prediction of their efficiency and specificity. The second, relatively new group of tools exploits the observed biases in repair outcomes to predict the results of CRISPR-Cas edits. The third class of tools is developed to assist in the evaluation of the editing outcomes by analysis of the sequencing data. These utilities are accompanied by relevant repositories and databases. Here we present a comprehensive and updated overview of the currently available CRISPR-Cas-related tools, from the perspective of a user who needs a convenient and reliable means to facilitate genome editing experiments at every step, from the guide RNA design to analysis of editing outcomes. Moreover, we discuss the current limitations and challenges that the field must overcome for further improvement in the CRISPR-Cas endeavor.
Collapse
Affiliation(s)
| | | | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.S.); (M.N.)
| |
Collapse
|