1
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
2
|
Zheng Y, Chen S. Transcriptional precision in photoreceptor development and diseases - Lessons from 25 years of CRX research. Front Cell Neurosci 2024; 18:1347436. [PMID: 38414750 PMCID: PMC10896975 DOI: 10.3389/fncel.2024.1347436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
The vertebrate retina is made up of six specialized neuronal cell types and one glia that are generated from a common retinal progenitor. The development of these distinct cell types is programmed by transcription factors that regulate the expression of specific genes essential for cell fate specification and differentiation. Because of the complex nature of transcriptional regulation, understanding transcription factor functions in development and disease is challenging. Research on the Cone-rod homeobox transcription factor CRX provides an excellent model to address these challenges. In this review, we reflect on 25 years of mammalian CRX research and discuss recent progress in elucidating the distinct pathogenic mechanisms of four CRX coding variant classes. We highlight how in vitro biochemical studies of CRX protein functions facilitate understanding CRX regulatory principles in animal models. We conclude with a brief discussion of the emerging systems biology approaches that could accelerate precision medicine for CRX-linked diseases and beyond.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetics and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Saint Louis, MO, United States
- Department of Ophthalmology and Visual Sciences, Saint Louis, MO, United States
| | - Shiming Chen
- Molecular Genetics and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Saint Louis, MO, United States
- Department of Ophthalmology and Visual Sciences, Saint Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
3
|
Guo J, Zhang W, Chen X, Yen A, Chen L, Shively CA, Li D, Wang T, Dougherty JD, Mitra RD. Pycallingcards: an integrated environment for visualizing, analyzing, and interpreting Calling Cards data. Bioinformatics 2024; 40:btae070. [PMID: 38323623 PMCID: PMC10881108 DOI: 10.1093/bioinformatics/btae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/25/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024] Open
Abstract
MOTIVATION Unraveling the transcriptional programs that control how cells divide, differentiate, and respond to their environments requires a precise understanding of transcription factors' (TFs) DNA-binding activities. Calling cards (CC) technology uses transposons to capture transient TF binding events at one instant in time and then read them out at a later time. This methodology can also be used to simultaneously measure TF binding and mRNA expression from single-cell CC and to record and integrate TF binding events across time in any cell type of interest without the need for purification. Despite these advantages, there has been a lack of dedicated bioinformatics tools for the detailed analysis of CC data. RESULTS We introduce Pycallingcards, a comprehensive Python module specifically designed for the analysis of single-cell and bulk CC data across multiple species. Pycallingcards introduces two innovative peak callers, CCcaller and MACCs, enhancing the accuracy and speed of pinpointing TF binding sites from CC data. Pycallingcards offers a fully integrated environment for data visualization, motif finding, and comparative analysis with RNA-seq and ChIP-seq datasets. To illustrate its practical application, we have reanalyzed previously published mouse cortex and glioblastoma datasets. This analysis revealed novel cell-type-specific binding sites and potential sex-linked TF regulators, furthering our understanding of TF binding and gene expression relationships. Thus, Pycallingcards, with its user-friendly design and seamless interface with the Python data science ecosystem, stands as a critical tool for advancing the analysis of TF functions via CC data. AVAILABILITY AND IMPLEMENTATION Pycallingcards can be accessed on the GitHub repository: https://github.com/The-Mitra-Lab/pycallingcards.
Collapse
Affiliation(s)
- Juanru Guo
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Wenjin Zhang
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Xuhua Chen
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Allen Yen
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Lucy Chen
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Christian A Shively
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Daofeng Li
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- McDonnell Genome Institute, , Washington University in St. Louis School of Medicine, Saint Louis, MO, 63110, United States
| | - Joseph D Dougherty
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Department of Psychiatry, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63108, United States
| | - Robi D Mitra
- Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, United States
- McDonnell Genome Institute, , Washington University in St. Louis School of Medicine, Saint Louis, MO, 63110, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63108, United States
| |
Collapse
|
4
|
Gera T, Kumar DK, Yaakov G, Barkai N, Jonas F. ChEC-Seq: A Comprehensive Guide for Scalable and Cost-Efficient Genome-Wide Profiling in Saccharomyces cerevisiae. Methods Mol Biol 2024; 2846:263-283. [PMID: 39141241 DOI: 10.1007/978-1-0716-4071-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Chromatin endogenous cleavage coupled with high-throughput sequencing (ChEC-seq) is a profiling method for protein-DNA interactions that can detect binding locations in vivo, does not require antibodies or fixation, and provides genome-wide coverage at near nucleotide resolution.The core of this method is an MNase fusion of the target protein, which allows it, when triggered by calcium exposure, to cut DNA at its binding sites and to generate small DNA fragments that can be readily separated from the rest of the genome and sequenced.Improvements since the original protocol have increased the ease, lowered the costs, and multiplied the throughput of this method to enable a scale and resolution of experiments not available with traditional methods such as ChIP-seq. This method describes each step from the initial creation and verification of the MNase-tagged yeast strains, over the ChEC MNase activation and small fragment purification procedure to the sequencing library preparation. It also briefly touches on the bioinformatic steps necessary to create meaningful genome-wide binding profiles.
Collapse
Affiliation(s)
- Tamar Gera
- Department of Molecular Genetics, Weizmann Institute, Rehovot, Israel
| | | | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute, Rehovot, Israel
| | - Felix Jonas
- School of Science, Constructor University, Bremen, Germany.
| |
Collapse
|
5
|
Yen A, Mateusiak C, Sarafinovska S, Gachechiladze MA, Guo J, Chen X, Moudgil A, Cammack AJ, Hoisington-Lopez J, Crosby M, Brent MR, Mitra RD, Dougherty JD. Calling Cards: A Customizable Platform to Longitudinally Record Protein-DNA Interactions Over Time in Cells and Tissues. Curr Protoc 2023; 3:e883. [PMID: 37755132 PMCID: PMC10627244 DOI: 10.1002/cpz1.883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Calling Cards is a platform technology to record a cumulative history of transient protein-DNA interactions in the genome of genetically targeted cell types. The record of these interactions is recovered by next-generation sequencing. Compared with other genomic assays, readouts of which provide a snapshot at the time of harvest, Calling Cards enables correlation of historical molecular states to eventual outcomes or phenotypes. To achieve this, Calling Cards uses the piggyBac transposase to insert self-reporting transposon "Calling Cards" into the genome, leaving permanent marks at interaction sites. Calling Cards can be deployed in a variety of in vitro and in vivo biological systems to study gene regulatory networks involved in development, aging, and disease. Out of the box, it assesses enhancer usage but can be adapted to profile-specific transcription factor (TF) binding with custom TF-piggyBac fusion proteins. The Calling Cards workflow has five main stages: delivery of Calling Cards reagents, sample preparation, library preparation, sequencing, and data analysis. Here, we first present a comprehensive guide for experimental design, reagent selection, and optional customization of the platform to study additional TFs. Then, we provide an updated protocol for the five steps, using reagents that improve throughput and decrease costs, including an overview of a newly deployed computational pipeline. This protocol is designed for users with basic molecular biology experience to process samples into sequencing libraries in 2 days. Familiarity with bioinformatic analysis and command line tools is required to set up the pipeline in a high-performance computing environment and to conduct downstream analyses. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation and delivery of Calling Cards reagents Support Protocol 1: Next-generation sequencing quantification of barcode distribution within self-reporting transposon plasmid pool and adeno-associated virus genome Basic Protocol 2: Sample collection and RNA purification Support Protocol 2: Library density quantitative PCR Basic Protocol 3: Sequencing library preparation Basic Protocol 4: Library pooling and sequencing Basic Protocol 5: Data analysis.
Collapse
Affiliation(s)
- Allen Yen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Chase Mateusiak
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Mariam A. Gachechiladze
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Juanru Guo
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Arnav Moudgil
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Alexander J. Cammack
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Jessica Hoisington-Lopez
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - MariaLynn Crosby
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael R. Brent
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Computer Science and Engineering, Washington University, Saint Louis, MO 63130
| | - Robi D. Mitra
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110
- Lead contact
| |
Collapse
|
6
|
Yen A, Mateusiak C, Sarafinovska S, Gachechiladze MA, Guo J, Chen X, Moudgil A, Cammack AJ, Hoisington-Lopez J, Crosby M, Brent MR, Mitra RD, Dougherty JD. Calling Cards: a customizable platform to longitudinally record protein-DNA interactions over time in cells and tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544098. [PMID: 37333130 PMCID: PMC10274760 DOI: 10.1101/2023.06.07.544098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Calling Cards is a platform technology to record a cumulative history of transient protein-DNA interactions in the genome of genetically targeted cell types. The record of these interactions is recovered by next generation sequencing. Compared to other genomic assays, whose readout provides a snapshot at the time of harvest, Calling Cards enables correlation of historical molecular states to eventual outcomes or phenotypes. To achieve this, Calling Cards uses the piggyBac transposase to insert self-reporting transposon (SRT) "Calling Cards" into the genome, leaving permanent marks at interaction sites. Calling Cards can be deployed in a variety of in vitro and in vivo biological systems to study gene regulatory networks involved in development, aging, and disease. Out of the box, it assesses enhancer usage but can be adapted to profile specific transcription factor binding with custom transcription factor (TF)-piggyBac fusion proteins. The Calling Cards workflow has five main stages: delivery of Calling Card reagents, sample preparation, library preparation, sequencing, and data analysis. Here, we first present a comprehensive guide for experimental design, reagent selection, and optional customization of the platform to study additional TFs. Then, we provide an updated protocol for the five steps, using reagents that improve throughput and decrease costs, including an overview of a newly deployed computational pipeline. This protocol is designed for users with basic molecular biology experience to process samples into sequencing libraries in 1-2 days. Familiarity with bioinformatic analysis and command line tools is required to set up the pipeline in a high-performance computing environment and to conduct downstream analyses. Basic Protocol 1: Preparation and delivery of Calling Cards reagentsBasic Protocol 2: Sample preparationBasic Protocol 3: Sequencing library preparationBasic Protocol 4: Library pooling and sequencingBasic Protocol 5: Data analysis.
Collapse
Affiliation(s)
- Allen Yen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Chase Mateusiak
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Mariam A Gachechiladze
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Juanru Guo
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Arnav Moudgil
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Alexander J Cammack
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Jessica Hoisington-Lopez
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - MariaLynn Crosby
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael R Brent
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Computer Science and Engineering, Washington University, Saint Louis, MO 63130
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110
- Lead contact
| |
Collapse
|
7
|
Abid D, Brent MR. NetProphet 3: a machine learning framework for transcription factor network mapping and multi-omics integration. Bioinformatics 2023; 39:7000334. [PMID: 36692138 PMCID: PMC9912366 DOI: 10.1093/bioinformatics/btad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
MOTIVATION Many methods have been proposed for mapping the targets of transcription factors (TFs) from gene expression data. It is known that combining outputs from multiple methods can improve performance. To date, outputs have been combined by using either simplistic formulae, such as geometric mean, or carefully hand-tuned formulae that may not generalize well to new inputs. Finally, the evaluation of accuracy has been challenging due to the lack of genome-scale, ground-truth networks. RESULTS We developed NetProphet3, which combines scores from multiple analyses automatically, using a tree boosting algorithm trained on TF binding location data. We also developed three independent, genome-scale evaluation metrics. By these metrics, NetProphet3 is more accurate than other commonly used packages, including NetProphet 2.0, when gene expression data from direct TF perturbations are available. Furthermore, its integration mode can forge a consensus network from gene expression data and TF binding location data. AVAILABILITY AND IMPLEMENTATION All data and code are available at https://zenodo.org/record/7504131#.Y7Wu3i-B2x8. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dhoha Abid
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA
| | - Michael R Brent
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Lalli M, Yen A, Thopte U, Dong F, Moudgil A, Chen X, Milbrandt J, Dougherty JD, Mitra RD. Measuring transcription factor binding and gene expression using barcoded self-reporting transposon calling cards and transcriptomes. NAR Genom Bioinform 2022; 4:lqac061. [PMID: 36062164 PMCID: PMC9428926 DOI: 10.1093/nargab/lqac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Calling cards technology using self-reporting transposons enables the identification of DNA-protein interactions through RNA sequencing. Although immensely powerful, current implementations of calling cards in bulk experiments on populations of cells are technically cumbersome and require many replicates to identify independent insertions into the same genomic locus. Here, we have drastically reduced the cost and labor requirements of calling card experiments in bulk populations of cells by introducing a DNA barcode into the calling card itself. An additional barcode incorporated during reverse transcription enables simultaneous transcriptome measurement in a facile and affordable protocol. We demonstrate that barcoded self-reporting transposons recover in vitro binding sites for four basic helix-loop-helix transcription factors with important roles in cell fate specification: ASCL1, MYOD1, NEUROD2 and NGN1. Further, simultaneous calling cards and transcriptional profiling during transcription factor overexpression identified both binding sites and gene expression changes for two of these factors. Lastly, we demonstrated barcoded calling cards can record binding in vivo in the mouse brain. In sum, RNA-based identification of transcription factor binding sites and gene expression through barcoded self-reporting transposon calling cards and transcriptomes is an efficient and powerful method to infer gene regulatory networks in a population of cells.
Collapse
Affiliation(s)
- Matthew Lalli
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allen Yen
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Urvashi Thopte
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fengping Dong
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Arnav Moudgil
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Xuhua Chen
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
9
|
Gallagher LA, Velazquez E, Peterson SB, Charity JC, Radey MC, Gebhardt MJ, Hsu F, Shull LM, Cutler KJ, Macareno K, de Moraes MH, Penewit KM, Kim J, Andrade PA, LaFramboise T, Salipante SJ, Reniere ML, de Lorenzo V, Wiggins PA, Dove SL, Mougous JD. Genome-wide protein-DNA interaction site mapping in bacteria using a double-stranded DNA-specific cytosine deaminase. Nat Microbiol 2022; 7:844-855. [PMID: 35650286 PMCID: PMC9159945 DOI: 10.1038/s41564-022-01133-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
DNA-protein interactions are central to fundamental cellular processes, yet widely implemented technologies for measuring these interactions on a genome scale in bacteria are laborious and capture only a snapshot of binding events. We devised a facile method for mapping DNA-protein interaction sites in vivo using the double-stranded DNA-specific cytosine deaminase toxin DddA. In 3D-seq (DddA-sequencing), strains containing DddA fused to a DNA-binding protein of interest accumulate characteristic mutations in DNA sequence adjacent to sites occupied by the DNA-bound fusion protein. High-depth sequencing enables detection of sites of increased mutation frequency in these strains, yielding genome-wide maps of DNA-protein interaction sites. We validated 3D-seq for four transcription regulators in two bacterial species, Pseudomonas aeruginosa and Escherichia coli. We show that 3D-seq offers ease of implementation, the ability to record binding event signatures over time and the capacity for single-cell resolution.
Collapse
Affiliation(s)
- Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Elena Velazquez
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Systems Biology Department, National Center of Biotechnology CSIC, Madrid, Spain
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - James C Charity
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Michael J Gebhardt
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - FoSheng Hsu
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Lauren M Shull
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Kevin J Cutler
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Keven Macareno
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kelsi M Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jennifer Kim
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Pia A Andrade
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Victor de Lorenzo
- Systems Biology Department, National Center of Biotechnology CSIC, Madrid, Spain
| | - Paul A Wiggins
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Salnikov PA, Khabarova AA, Koksharova GS, Mungalov RV, Belokopytova PS, Pristyazhnuk IE, Nurislamov AR, Somatich P, Gridina MM, Fishman VS. Here and there: the double-side transgene localization. Vavilovskii Zhurnal Genet Selektsii 2021; 25:607-612. [PMID: 34755021 PMCID: PMC8553977 DOI: 10.18699/vj21.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022] Open
Abstract
Random transgene integration is a powerful tool for developing new genome-wide screening approaches. These techniques have already been used for functional gene annotation by transposon-insertion sequencing, for identif ication of transcription factor binding sites and regulatory sequences, and for dissecting chromatin position effects. Precise localization of transgenes and accurate artifact f iltration are essential for this type of method. To date, many mapping assays have been developed, including Inverse-PCR, TLA, LAM-PCR, and splinkerette PCR. However, none of them is able to ensure localization of both transgene’s f lanking regions simultaneously, which would be necessary for some applications. Here we proposed a cheap and simple NGS-based approach that overcomes this limitation. The developed assay requires using intentionally designed vectors that lack recognition sites of one or a set of restriction enzymes used for DNA fragmentation. By looping and sequencing these DNA fragments, we obtain special data that allows us to link the two f lanking regions of the transposon. This can be useful for precise insertion mapping and for screening approaches in the f ield of chromosome engineering, where chromosomal recombination events between transgenes occur in a cell population. To demonstrate the method’s feasibility, we applied it for mapping SB transposon integration in the human HAP1 cell line. Our technique allowed us to eff iciently localize genomic transposon integrations, which was conf irmed via PCR analysis. For practical application of this approach, we proposed a set of recommendations and a normalization strategy. The developed method can be used for multiplex transgene localization and detection of rearrangements between them.
Collapse
Affiliation(s)
- P A Salnikov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Khabarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G S Koksharova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R V Mungalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P S Belokopytova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I E Pristyazhnuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A R Nurislamov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P Somatich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M M Gridina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Fishman
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
11
|
Moudgil A, Li D, Hsu S, Purushotham D, Wang T, Mitra RD. The qBED track: a novel genome browser visualization for point processes. Bioinformatics 2021; 37:1168-1170. [PMID: 32941613 DOI: 10.1093/bioinformatics/btaa771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 09/15/2020] [Indexed: 01/25/2023] Open
Abstract
SUMMARY Transposon calling cards is a genomic assay for identifying transcription factor binding sites in both bulk and single cell experiments. Here, we describe the qBED format, an open, text-based standard for encoding and analyzing calling card data. In parallel, we introduce the qBED track on the WashU Epigenome Browser, a novel visualization that enables researchers to inspect calling card data in their genomic context. Finally, through examples, we demonstrate that qBED files can be used to visualize non-calling card datasets, such as Combined Annotation-Dependent Depletion scores and GWAS/eQTL hits, and thus may have broad utility to the genomics community. AVAILABILITY AND IMPLEMENTATION The qBED track is available on the WashU Epigenome Browser (http://epigenomegateway.wustl.edu/browser), beginning with version 46. Source code for the WashU Epigenome Browser with qBED support is available on GitHub (http://github.com/arnavm/eg-react and http://github.com/lidaof/eg-react). A complete definition of the qBED format is available as part of the WashU Epigenome Browser documentation (https://eg.readthedocs.io/en/latest/tracks.html#qbed-track). We have also released a tutorial on how to upload qBED data to the browser (http://dx.doi.org/10.17504/protocols.io.bca8ishw).
Collapse
Affiliation(s)
- Arnav Moudgil
- Department of Genetics, St. Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA.,Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Daofeng Li
- Department of Genetics, St. Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA
| | - Silas Hsu
- Department of Genetics, St. Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA
| | - Deepak Purushotham
- Department of Genetics, St. Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, St. Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, St. Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Witchley JN, Basso P, Brimacombe CA, Abon NV, Noble SM. Recording of DNA-binding events reveals the importance of a repurposed Candida albicans regulatory network for gut commensalism. Cell Host Microbe 2021; 29:1002-1013.e9. [PMID: 33915113 DOI: 10.1016/j.chom.2021.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Candida albicans is a fungal component of the human gut microbiota and an opportunistic pathogen. C. albicans transcription factors (TFs), Wor1 and Efg1, are master regulators of an epigenetic switch required for fungal mating that also control colonization of the mammalian gut. We show that additional mating regulators, WOR2, WOR3, WOR4, AHR1, CZF1, and SSN6, also influence gut commensalism. Using Calling Card-seq to record Candida TF DNA-binding events in the host, we examine the role and relationships of these regulators during murine gut colonization. By comparing in-host transcriptomes of regulatory mutants with enhanced versus diminished commensal fitness, we also identify a set of candidate commensalism effectors. These include Cht2, a GPI-linked chitinase whose gene is bound by Wor1, Czf1, and Efg1 in vivo, that we show promotes commensalism. Thus, the network required for a C. albicans sexual switch is biochemically active in the host intestine and repurposed to direct commensalism.
Collapse
Affiliation(s)
- Jessica N Witchley
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Basso
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cedric A Brimacombe
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nina V Abon
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suzanne M Noble
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Abstract
Consistent sex differences in incidence and outcome have been reported in numerous cancers including brain tumors. GBM, the most common and aggressive primary brain tumor, occurs with higher incidence and shorter survival in males compared to females. Brd4 is essential for regulating transcriptome-wide gene expression and specifying cell identity, including that of GBM. We report that sex-biased Brd4 activity drives sex differences in GBM and renders male and female tumor cells differentially sensitive to BET inhibitors. The observed sex differences in BETi treatment strongly indicate that sex differences in disease biology translate into sex differences in therapeutic responses. This has critical implications for clinical use of BET inhibitors further affirming the importance of inclusion of sex as a biological variable. Sex can be an important determinant of cancer phenotype, and exploring sex-biased tumor biology holds promise for identifying novel therapeutic targets and new approaches to cancer treatment. In an established isogenic murine model of glioblastoma (GBM), we discovered correlated transcriptome-wide sex differences in gene expression, H3K27ac marks, large Brd4-bound enhancer usage, and Brd4 localization to Myc and p53 genomic binding sites. These sex-biased gene expression patterns were also evident in human glioblastoma stem cells (GSCs). These observations led us to hypothesize that Brd4-bound enhancers might underlie sex differences in stem cell function and tumorigenicity in GBM. We found that male and female GBM cells exhibited sex-specific responses to pharmacological or genetic inhibition of Brd4. Brd4 knockdown or pharmacologic inhibition decreased male GBM cell clonogenicity and in vivo tumorigenesis while increasing both in female GBM cells. These results were validated in male and female patient-derived GBM cell lines. Furthermore, analysis of the Cancer Therapeutic Response Portal of human GBM samples segregated by sex revealed that male GBM cells are significantly more sensitive to BET (bromodomain and extraterminal) inhibitors than are female cells. Thus, Brd4 activity is revealed to drive sex differences in stem cell and tumorigenic phenotypes, which can be abrogated by sex-specific responses to BET inhibition. This has important implications for the clinical evaluation and use of BET inhibitors.
Collapse
|
14
|
Helou L, Beauclair L, Dardente H, Piégu B, Tsakou-Ngouafo L, Lecomte T, Kentsis A, Pontarotti P, Bigot Y. The piggyBac-derived protein 5 (PGBD5) transposes both the closely and the distantly related piggyBac-like elements Tcr-pble and Ifp2. J Mol Biol 2021; 433:166839. [PMID: 33539889 PMCID: PMC8404143 DOI: 10.1016/j.jmb.2021.166839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The vertebrate piggyBac derived transposase 5 (PGBD5) encodes a domesticated transposase, which is active and able to transpose its distantly related piggyBac-like element (pble), Ifp2. This raised the question whether PGBD5 would be more effective at mobilizing a phylogenetically closely related pble element. We aimed to identify the pble most closely related to the pgbd5 gene. We updated the landscape of vertebrate pgbd genes to develop efficient filters and identify the most closely related pble to each of these genes. We found that Tcr-pble is phylogenetically the closest pble to the pgbd5 gene. Furthermore, we evaluated the capacity of two murine and human PGBD5 isoforms, Mm523 and Hs524, to transpose both Tcr-pble and Ifp2 elements. We found that both pbles could be transposed by Mm523 with similar efficiency. However, integrations of both pbles occurred through both proper transposition and improper PGBD5-dependent recombination. This suggested that the ability of PGBD5 to bind both pbles may not be based on the primary sequence of element ends, but may involve recognition of inner DNA motifs, possibly related to palindromic repeats. In agreement with this hypothesis, we identified internal palindromic repeats near the end of 24 pble sequences, which display distinct sequences.
Collapse
Affiliation(s)
- Laura Helou
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Hugues Dardente
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Benoît Piégu
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Louis Tsakou-Ngouafo
- UMR MEPHI D-258, I, IRD, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; CNRS SNC 5039, 13005 Marseille, France
| | | | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, Cornell University, New York, NY, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre Pontarotti
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France; CNRS SNC 5039, 13005 Marseille, France
| | - Yves Bigot
- UMR INRAE 0085, CNRS 7247, Physiologie de la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
15
|
Helou L, Beauclair L, Dardente H, Arensburger P, Buisine N, Jaszczyszyn Y, Guillou F, Lecomte T, Kentsis A, Bigot Y. The C-terminal Domain of piggyBac Transposase Is Not Required for DNA Transposition. J Mol Biol 2021; 433:166805. [PMID: 33450253 DOI: 10.1016/j.jmb.2020.166805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022]
Abstract
PiggyBac(PB)-like elements (pble) are members of a eukaryotic DNA transposon family. This family is of interest to evolutionary genomics because pble transposases have been domesticated at least 9 times in vertebrates. The amino acid sequence of pble transposases can be split into three regions: an acidic N-terminal domain (~100 aa), a central domain (~400 aa) containing a DD[D/E] catalytic triad, and a cysteine-rich domain (CRD; ~90 aa). Two recent reports suggested that a functional CRD is required for pble transposase activity. Here we found that two CRD-deficient pble transposases, a PB variant and an isoform encoded by the domesticated PB-derived vertebrate transposase gene 5 (pgbd5) trigger transposition of the Ifp2 pble. When overexpressed in HeLa cells, these CRD-deficient transposases can insert Ifp2 elements with proper and improper transposon ends, associated with deleterious effects on cells. Finally, we found that mouse CRD-deficient transposase Pgbd5, as well as PB, do not insert pbles at random into chromosomes. Transposition events occurred more often in genic regions, in the neighbourhood of the transcription start sites and were often found in genes predominantly expressed in the human central nervous system.
Collapse
Affiliation(s)
- Laura Helou
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | - Hugues Dardente
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Nicolas Buisine
- UMR CNRS 7221, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Florian Guillou
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | | | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, Cornell University, New York, NY, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
16
|
Abstract
To persist in their dynamic human host environments, fungal pathogens must sense and adapt by modulating their gene expression to fulfill their cellular needs. Understanding transcriptional regulation on a global scale would uncover cellular processes linked to persistence and virulence mechanisms that could be targeted for antifungal therapeutics. Infections associated with the yeast Candida albicans, a highly prevalent fungal pathogen, and the multiresistant related species Candida auris are becoming a serious public health threat. To define the set of a gene regulated by a transcriptional regulator in C. albicans, chromatin immunoprecipitation (ChIP)-based techniques, including ChIP with microarray technology (ChIP-chip) or ChIP-DNA sequencing (ChIP-seq), have been widely used. Here, we describe a new set of PCR-based micrococcal nuclease (MNase)-tagging plasmids for C. albicans and other Candida spp. to determine the genome-wide location of any transcriptional regulator of interest using chromatin endogenous cleavage (ChEC) coupled to high-throughput sequencing (ChEC-seq). The ChEC procedure does not require protein-DNA cross-linking or sonication, thus avoiding artifacts related to epitope masking or the hyper-ChIPable euchromatic phenomenon. In a proof-of-concept application of ChEC-seq, we provided a high-resolution binding map of the SWI/SNF chromatin remodeling complex, a master regulator of fungal fitness in C. albicans, in addition to the transcription factor Nsi1 that is an ortholog of the DNA-binding protein Reb1 for which genome-wide occupancy was previously established in Saccharomyces cerevisiae The ChEC-seq procedure described here will allow a high-resolution genomic location definition which will enable a better understanding of transcriptional regulatory circuits that govern fungal fitness and drug resistance in these medically important fungi.IMPORTANCE Systemic fungal infections caused by Candida albicans and the "superbug" Candida auris are becoming a serious public health threat. The ability of these yeasts to cause disease is linked to their faculty to modulate the expression of genes that mediate their escape from the immune surveillance and their persistence in the different unfavorable niches within the host. Comprehensive knowledge on gene expression control of fungal fitness is consequently an interesting framework for the identification of essential infection processes that could be hindered by chemicals as potential therapeutics. Here, we expanded the use of ChEC-seq, a technique that was initially developed in the yeast model Saccharomyces cerevisiae to identify genes that are modulated by a transcriptional regulator, in pathogenic yeasts from the genus Candida This robust technique will allow a better characterization of key gene expression regulators and their contribution to virulence and antifungal resistance in these pathogenic yeasts.
Collapse
|
17
|
Liu J, Shively CA, Mitra RD. Quantitative analysis of transcription factor binding and expression using calling cards reporter arrays. Nucleic Acids Res 2020; 48:e50. [PMID: 32133534 PMCID: PMC7229839 DOI: 10.1093/nar/gkaa141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
We report a tool, Calling Cards Reporter Arrays (CCRA), that measures transcription factor (TF) binding and the consequences on gene expression for hundreds of synthetic promoters in yeast. Using Cbf1p and MAX, we demonstrate that the CCRA method is able to detect small changes in binding free energy with a sensitivity comparable to in vitro methods, enabling the measurement of energy landscapes in vivo. We then demonstrate the quantitative analysis of cooperative interactions by measuring Cbf1p binding at synthetic promoters with multiple sites. We find that the cooperativity between Cbf1p dimers varies sinusoidally with a period of 10.65 bp and energetic cost of 1.37 KBT for sites that are positioned ‘out of phase’. Finally, we characterize the binding and expression of a group of TFs, Tye7p, Gcr1p and Gcr2p, that act together as a ‘TF collective’, an important but poorly characterized model of TF cooperativity. We demonstrate that Tye7p often binds promoters without its recognition site because it is recruited by other collective members, whereas these other members require their recognition sites, suggesting a hierarchy where these factors recruit Tye7p but not vice versa. Our experiments establish CCRA as a useful tool for quantitative investigations into TF binding and function.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Christian A Shively
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
18
|
Moudgil A, Wilkinson MN, Chen X, He J, Cammack AJ, Vasek MJ, Lagunas T, Qi Z, Lalli MA, Guo C, Morris SA, Dougherty JD, Mitra RD. Self-Reporting Transposons Enable Simultaneous Readout of Gene Expression and Transcription Factor Binding in Single Cells. Cell 2020; 182:992-1008.e21. [PMID: 32710817 PMCID: PMC7510185 DOI: 10.1016/j.cell.2020.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Cellular heterogeneity confounds in situ assays of transcription factor (TF) binding. Single-cell RNA sequencing (scRNA-seq) deconvolves cell types from gene expression, but no technology links cell identity to TF binding sites (TFBS) in those cell types. We present self-reporting transposons (SRTs) and use them in single-cell calling cards (scCC), a novel assay for simultaneously measuring gene expression and mapping TFBS in single cells. The genomic locations of SRTs are recovered from mRNA, and SRTs deposited by exogenous, TF-transposase fusions can be used to map TFBS. We then present scCC, which map SRTs from scRNA-seq libraries, simultaneously identifying cell types and TFBS in those same cells. We benchmark multiple TFs with this technique. Next, we use scCC to discover BRD4-mediated cell-state transitions in K562 cells. Finally, we map BRD4 binding sites in the mouse cortex at single-cell resolution, establishing a new method for studying TF biology in situ.
Collapse
Affiliation(s)
- Arnav Moudgil
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael N Wilkinson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - June He
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Alexander J Cammack
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael J Vasek
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tomás Lagunas
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Zongtai Qi
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Matthew A Lalli
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Chuner Guo
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
A viral toolkit for recording transcription factor-DNA interactions in live mouse tissues. Proc Natl Acad Sci U S A 2020; 117:10003-10014. [PMID: 32300008 DOI: 10.1073/pnas.1918241117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) enact precise regulation of gene expression through site-specific, genome-wide binding. Common methods for TF-occupancy profiling, such as chromatin immunoprecipitation, are limited by requirement of TF-specific antibodies and provide only end-point snapshots of TF binding. Alternatively, TF-tagging techniques, in which a TF is fused to a DNA-modifying enzyme that marks TF-binding events across the genome as they occur, do not require TF-specific antibodies and offer the potential for unique applications, such as recording of TF occupancy over time and cell type specificity through conditional expression of the TF-enzyme fusion. Here, we create a viral toolkit for one such method, calling cards, and demonstrate that these reagents can be delivered to the live mouse brain and used to report TF occupancy. Further, we establish a Cre-dependent calling cards system and, in proof-of-principle experiments, show utility in defining cell type-specific TF profiles and recording and integrating TF-binding events across time. This versatile approach will enable unique studies of TF-mediated gene regulation in live animal models.
Collapse
|
20
|
Kang Y, Patel NR, Shively C, Recio PS, Chen X, Wranik BJ, Kim G, McIsaac RS, Mitra R, Brent MR. Dual threshold optimization and network inference reveal convergent evidence from TF binding locations and TF perturbation responses. Genome Res 2020; 30:459-471. [PMID: 32060051 PMCID: PMC7111528 DOI: 10.1101/gr.259655.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
A high-confidence map of the direct, functional targets of each transcription factor (TF) requires convergent evidence from independent sources. Two significant sources of evidence are TF binding locations and the transcriptional responses to direct TF perturbations. Systematic data sets of both types exist for yeast and human, but they rarely converge on a common set of direct, functional targets for a TF. Even the few genes that are both bound and responsive may not be direct functional targets. Our analysis shows that when there are many nonfunctional binding sites and many indirect targets, nonfunctional sites are expected to occur in the cis-regulatory DNA of indirect targets by chance. To address this problem, we introduce dual threshold optimization (DTO), a new method for setting significance thresholds on binding and perturbation-response data, and show that it improves convergence. It also enables comparison of binding data to perturbation-response data that have been processed by network inference algorithms, which further improves convergence. The combination of dual threshold optimization and network inference greatly expands the high-confidence TF network map in both yeast and human. Next, we analyze a comprehensive new data set measuring the transcriptional response shortly after inducing overexpression of a yeast TF. We also present a new yeast binding location data set obtained by transposon calling cards and compare it to recent ChIP-exo data. These new data sets improve convergence and expand the high-confidence network synergistically.
Collapse
Affiliation(s)
- Yiming Kang
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, Missouri 63130, USA
| | - Nikhil R Patel
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, Missouri 63130, USA
| | - Christian Shively
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pamela Samantha Recio
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xuhua Chen
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Bernd J Wranik
- Calico Life Sciences LLC, South San Francisco, California 94080, USA
| | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, California 94080, USA
| | - R Scott McIsaac
- Calico Life Sciences LLC, South San Francisco, California 94080, USA
| | - Robi Mitra
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Michael R Brent
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|
21
|
Hew BE, Sato R, Mauro D, Stoytchev I, Owens JB. RNA-guided piggyBac transposition in human cells. Synth Biol (Oxf) 2019; 4:ysz018. [PMID: 31355344 PMCID: PMC6642342 DOI: 10.1093/synbio/ysz018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 01/12/2023] Open
Abstract
Safer and more efficient methods for directing therapeutic genes to specific sequences could increase the repertoire of treatable conditions. Many current approaches act passively, first initiating a double-stranded break, then relying on host repair to uptake donor DNA. Alternatively, we delivered an actively integrating transposase to the target sequence to initiate gene insertion. We fused the hyperactive piggyBac transposase to the highly specific, catalytically dead SpCas9-HF1 (dCas9) and designed guide RNAs (gRNAs) to the CCR5 safe harbor sequence. We introduced mutations to the native DNA-binding domain of piggyBac to reduce non-specific binding of the transposase and cause the fusion protein to favor binding by dCas9. This strategy enabled us, for the first time, to direct transposition to the genome using RNA. We showed that increasing the number of gRNAs improved targeting efficiency. Interestingly, over half of the recovered insertions were found at a single TTAA hotspot. We also found that the fusion increased the error rate at the genome-transposon junction. We isolated clonal cell lines containing a single insertion at CCR5 and demonstrated long-term expression from this locus. These vectors expand the utility of the piggyBac system for applications in targeted gene addition for biomedical research and gene therapy.
Collapse
Affiliation(s)
- Brian E Hew
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ryuei Sato
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Damiano Mauro
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ilko Stoytchev
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jesse B Owens
- Department of Anatomy, Biochemistry, and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
22
|
In Vivo Piggybac-Based Gene Delivery towards Murine Pancreatic Parenchyma Confers Sustained Expression of Gene of Interest. Int J Mol Sci 2019; 20:ijms20133116. [PMID: 31247905 PMCID: PMC6651600 DOI: 10.3390/ijms20133116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
The pancreas is a glandular organ that functions in the digestive system and endocrine system of vertebrates. The most common disorders involving the pancreas are diabetes, pancreatitis, and pancreatic cancer. In vivo gene delivery targeting the pancreas is important for preventing or curing such diseases and for exploring the biological function of genes involved in the pathogenesis of these diseases. Our previous experiments demonstrated that adult murine pancreatic cells can be efficiently transfected by exogenous plasmid DNA following intraparenchymal injection and subsequent in vivo electroporation using tweezer-type electrodes. Unfortunately, the induced gene expression was transient. Transposon-based gene delivery, such as that facilitated by piggyBac (PB), is known to confer stable integration of a gene of interest (GOI) into host chromosomes, resulting in sustained expression of the GOI. In this study, we investigated the use of the PB transposon system to achieve stable gene expression when transferred into murine pancreatic cells using the above-mentioned technique. Expression of the GOI (coding for fluorescent protein) continued for at least 1.5 months post-gene delivery. Splinkerette-PCR-based analysis revealed the presence of the consensus sequence TTAA at the junctional portion between host chromosomes and the transgenes; however, this was not observed in all samples. This plasmid-based PB transposon system enables constitutive expression of the GOI in pancreas for potential therapeutic and biological applications.
Collapse
|
23
|
Schumann GG, Fuchs NV, Tristán-Ramos P, Sebe A, Ivics Z, Heras SR. The impact of transposable element activity on therapeutically relevant human stem cells. Mob DNA 2019; 10:9. [PMID: 30899334 PMCID: PMC6408843 DOI: 10.1186/s13100-019-0151-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapies.
Collapse
Affiliation(s)
- Gerald G Schumann
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Nina V Fuchs
- 2Host-Pathogen Interactions, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Pablo Tristán-Ramos
- 3GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114, 18016 Granada, Spain.,4Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Attila Sebe
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Zoltán Ivics
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Sara R Heras
- 3GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114, 18016 Granada, Spain.,4Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| |
Collapse
|
24
|
Policastro RA, Zentner GE. Enzymatic methods for genome-wide profiling of protein binding sites. Brief Funct Genomics 2019; 17:138-145. [PMID: 29028882 DOI: 10.1093/bfgp/elx030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genome-wide mapping of protein-DNA interactions is a staple approach in many areas of modern molecular biology. Genome-wide profiles of protein-binding sites are most commonly generated by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq). Although ChIP-seq has played a central role in studying genome-wide protein binding, recent work has highlighted systematic biases in the technique that warrant technical and interpretive caution and underscore the need for orthogonal techniques to both confirm the results of ChIP-seq studies and uncover new insights not accessible to ChIP. Several such techniques, based on genetic or immunological targeting of enzymatic activity to specific genomic loci, have been developed. Here, we review the development, applications and future prospects of these methods as complements to ChIP-based approaches and as powerful techniques in their own right.
Collapse
|
25
|
Maricque BB, Chaudhari HG, Cohen BA. A massively parallel reporter assay dissects the influence of chromatin structure on cis-regulatory activity. Nat Biotechnol 2018; 37:nbt.4285. [PMID: 30451991 PMCID: PMC7351048 DOI: 10.1038/nbt.4285] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2018] [Indexed: 12/16/2022]
Abstract
A gene's position in the genome can profoundly affect its expression because regional differences in chromatin modulate the activity of locally acting cis-regulatory sequences (CRSs). Here we study how CRSs and regional chromatin act in concert on a genome-wide scale. We present a massively parallel reporter gene assay that measures the activities of hundreds of different CRSs, each integrated at many specific genomic locations. Although genome location strongly affected CRS activity, the relative strengths of CRSs were maintained at all chromosomal locations. The intrinsic activities of CRSs also correlated with their activities in plasmid-based assays. We explain our data with a quantitative model in which expression levels are set by independent contributions from local CRSs and the regional chromatin environment, rather than by more complex sequence- or protein-specific interactions between these two factors. The methods we present will help investigators determine when regulatory information is integrated in a modular fashion and when regulatory sequences interact in more complex ways.
Collapse
Affiliation(s)
- Brett B Maricque
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Hemangi G Chaudhari
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Barak A Cohen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
26
|
Yen M, Qi Z, Chen X, Cooper JA, Mitra RD, Onken MD. Transposase mapping identifies the genomic targets of BAP1 in uveal melanoma. BMC Med Genomics 2018; 11:97. [PMID: 30400891 PMCID: PMC6219186 DOI: 10.1186/s12920-018-0424-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/17/2018] [Indexed: 01/13/2023] Open
Abstract
Background BAP1 is a histone deubiquitinase that acts as a tumor and metastasis suppressor associated with disease progression in human cancer. We have used the “Calling Card System” of transposase-directed transposon insertion mapping to identify the genomic targets of BAP1 in uveal melanoma (UM). This system was developed to identify the genomic loci visited by transcription factors that bind directly to DNA; our study is the first use of the system with a chromatin-remodeling factor that binds to histones but does not interact directly with DNA. Methods The transposase piggyBac (PBase) was fused to BAP1 and expressed in OCM-1A UM cells. The insertion of transposons near BAP1 binding sites in UM cells were identified by genomic sequencing. We also examined RNA expression in the same OCM-1A UM cells after BAP1 depletion to identify BAP1 binding sites associated with BAP1-responsive genes. Sets of significant genes were analyzed for common pathways, transcription factor binding sites, and ability to identify molecular tumor classes. Results We found a strong correlation between multiple calling-card transposon insertions targeted by BAP1-PBase and BAP1-responsive expression of adjacent genes. BAP1-bound genomic loci showed narrow distributions of insertions and were near transcription start sites, consistent with recruitment of BAP1 to these sites by specific DNA-binding proteins. Sequence consensus analysis of BAP1-bound sites showed enrichment of motifs specific for YY1, NRF1 and Ets transcription factors, which have been shown to interact with BAP1 in other cell types. Further, a subset of the BAP1 genomic target genes was able to discriminate aggressive tumors in published gene expression data from primary UM tumors. Conclusions The calling card methodology works equally well for chromatin regulatory factors that do not interact directly with DNA as for transcription factors. This technique has generated a new and expanded list of BAP1 targets in UM that provides important insight into metastasis pathways and identifies novel potential therapeutic targets. Electronic supplementary material The online version of this article (10.1186/s12920-018-0424-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Yen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Xuhua Chen
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
27
|
Ramachandran S, Henikoff S. MINCE-Seq: Mapping In Vivo Nascent Chromatin with EdU and Sequencing. Methods Mol Biol 2018; 1832:159-168. [PMID: 30073526 DOI: 10.1007/978-1-4939-8663-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The epigenome has been mapped in different cell types to understand the relationship between the chromatin landscape and the control of gene expression. Most mapping studies profile a large population of cells in various stages of the cell cycle, which results in an average snapshot of the chromatin landscape. However, chromatin is highly dynamic, undergoing rapid changes during active processes such as replication, transcription, repair, and remodeling. Hence, we need methods to map chromatin as a function of time. To address this problem in the context of replication, we developed the method MINCE-seq (Mapping In vivo Nascent Chromatin with EdU and sequencing). MINCE-seq is a genome-wide method that uses the passage of replication fork as a starting point to map the chromatin landscape as a function of time. MINCE-seq can measure chromatin dynamics in a time scale of minutes and at the resolution of individual nucleosome positions and transcription factor-binding sites genome-wide.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
28
|
O Cdc7 kinase where art thou? Curr Genet 2017; 64:677-680. [PMID: 29134273 DOI: 10.1007/s00294-017-0782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
Although Cdc7 protein kinase is important for regulating DNA replication in all eukaryotes and is a target for cancer therapy, it has never been localized in cells. Recently, a novel molecular genomic method used by our laboratory to localize Cdc7 to regions of chromosomes. Originally, mutations in the CDC7 gene were found in the classic cdc mutant collection of Hartwell et al. (Genetics 74:267-286, 1973). The CDC7 gene was found to encode a protein kinase called DDK that has been studied for many years, establishing its precise role in the initiation of DNA replication at origins. Recently, clinical studies are underway with DDK inhibitors against DDK in cancer patients. However, the conundrum is that Cdc7 has never been detected at origins of replication even though many studies have suggested it should be there. We used "Calling Card" system in which DNA binding proteins are localized to the genome via retrotransposon insertion and deep-sequencing methods. We have shown that Cdc7 localizes at many regions of the genome and was enriched at functional origins of replication. These results are consistent with DDK's role in many additional genomic processes including mutagenesis, chromatid cohesion, and meiotic recombination. Thus, the main conclusion from our studies is that Cdc7 kinase is found at many locations in the genome, but is enriched at functional origins of replication. Furthermore, we propose that application of the Calling Card system to other eukaryotes should be useful in identification of functional origins in other eukaryotic cells.
Collapse
|
29
|
Kawakami K, Largaespada DA, Ivics Z. Transposons As Tools for Functional Genomics in Vertebrate Models. Trends Genet 2017; 33:784-801. [PMID: 28888423 DOI: 10.1016/j.tig.2017.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats.
Collapse
Affiliation(s)
- Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan; These authors contributed equally to this work
| | - David A Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN, USA; These authors contributed equally to this work
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany; These authors contributed equally to this work..
| |
Collapse
|
30
|
Li HP, Chen PG, Liu FT, Zhu HS, Jiao XQ, Zhong K, Guo YJ, Zha GM, Han LQ, Lu WF, Wang YY, Yang GY. Characterization and anti-inflammation role of swine IFITM3 gene. Oncotarget 2017; 8:73579-73589. [PMID: 29088728 PMCID: PMC5650283 DOI: 10.18632/oncotarget.20568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
IFITM3 is involved in cell adhesion, apoptosis, immune, and antivirus activity. Furthermore, IFITM3 gene has been considered as a preferential marker for inflammatory diseases, and positive correlation to pathological grades. Therefore, we assumed that IFITM3 was regulated by different signal pathways. To better understand IFITM3 function in inflammatory response, we cloned swine IFITM3 gene, and detected IFITM3 distribution in tissues, as well as characterized this gene. Results indicated that the length of swine IFITM3 gene was 438 bp, encoding 145 amino acids. IFITM3 gene expression abundance was higher in spleen and lungs. Moreover, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, finally obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited time-dependent effect for LPS treatment. To further demonstrate the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling molecules. However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells. In conclusion, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation.
Collapse
Affiliation(s)
- He-Ping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Pei-Ge Chen
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fu-Tao Liu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Shui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xian-Qin Jiao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yu-Jie Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guang-Ming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Li-Qiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wei-Fei Lu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Qi Z, Wilkinson MN, Chen X, Sankararaman S, Mayhew D, Mitra RD. An optimized, broadly applicable piggyBac transposon induction system. Nucleic Acids Res 2017; 45:e55. [PMID: 28082389 PMCID: PMC5397163 DOI: 10.1093/nar/gkw1290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/01/2017] [Indexed: 11/29/2022] Open
Abstract
The piggyBac (PB) transposon has been used in a number of biological applications. The insertion of PB transposons into the genome can disrupt genes or regulatory regions, impacting cellular function, so for many experiments it is important that PB transposition is tightly controlled. Here, we systematically characterize three methods for the post-translational control of the PB transposon in four cell lines. We investigated fusions of the PB transposase with ERT2 and two degradation domains (FKBP-DD, DHFR-DD), in multiple orientations, and determined (i) the fold-induction achieved, (ii) the absolute transposition efficiency of the activated construct and (iii) the effects of two inducer molecules on cellular transcription and function. We found that the FKBP-DD confers the PB transposase with a higher transposition activity and better dynamic range than can be achieved with the other systems. In addition, we found that the FKBP-DD regulates transposon activity in a reversible and dose-dependent manner. Finally, we showed that Shld1, the chemical inducer of FKBP-DD, does not interfere with stem cell differentiation, whereas tamoxifen has significant effects. We believe the FKBP-based PB transposon induction will be useful for transposon-mediated genome engineering, insertional mutagenesis and the genome-wide mapping of transcription factor binding.
Collapse
Affiliation(s)
- Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63108, USA
| | - Michael Nathaniel Wilkinson
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63108, USA
| | - Xuhua Chen
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63108, USA
| | - Sumithra Sankararaman
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63108, USA
| | - David Mayhew
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63108, USA
| | - Robi David Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
32
|
Chen PG, Guan YJ, Zha GM, Jiao XQ, Zhu HS, Zhang CY, Wang YY, Li HP. Swine IRF3/IRF7 attenuates inflammatory responses through TLR4 signaling pathway. Oncotarget 2017; 8:61958-61968. [PMID: 28977918 PMCID: PMC5617478 DOI: 10.18632/oncotarget.18740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/22/2017] [Indexed: 01/22/2023] Open
Abstract
To explore the role of IRF3/IRF7 during inflammatory responses, we investigated the effects of swine IRF3/IRF7 on TLR4 signaling pathway and inflammatory factors expression in porcine kidney epithelial PK15 cell lines. We successfully constructed eukaryotic vectors PB-IRF3 and PB-IRF7, transfected these vectors into PK15 cells and observed GFP under a fluorescence microscope. In addition, RT-PCR was also used to detect transfection efficiency. We found that IRF3/IRF7 was efficiently overexpressed in PK15 cells. Moreover, we evaluated the effects of IRF3/IRF7 on the TLR4 signaling pathway and inflammatory factors by RT-PCR. Transfected cells were treated with lipopolysaccharide (LPS) alone, or in combination with a TBK1 inhibitor (LiCl). We revealed that IRF3/IRF7 enhanced IFNα production, and decreased IL-6 mRNA expression. Blocking the TBK1 pathway, inhibited the changes in IFNα, but not IL-6 mRNA. This illustrated that IRF3/IRF7 enhanced IFNα production through TLR4/TBK1 signaling pathway and played an anti-inflammatory role, while IRF3/IRF7 decreased IL-6 expression independent of the TBK1 pathway. Trends in MyD88, TRAF6, TBK1 and NFκB mRNA variation were similar in all treatments. LPS increased MyD88, TRAF6, TBK1 and NFκB mRNA abundance in PBR3/PBR7 and PBv cells, while LiCl blocked the LPS-mediated effects. The levels of these four factors in PBR3/PBR7 cells were higher than those in PBv. These results demonstrated that IRF3/IRF7 regulated the inflammatory response through the TLR4 signaling pathway. Overexpression of swine IRF3/IRF7 in PK15 cells induced type I interferons production, and attenuated inflammatory responses through TLR4 signaling pathway.
Collapse
Affiliation(s)
- Pei-Ge Chen
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan-Jing Guan
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guang-Ming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xian-Qin Jiao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Shui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Cheng-Yu Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Ping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast. Proc Natl Acad Sci U S A 2016; 113:E7428-E7437. [PMID: 27810962 DOI: 10.1073/pnas.1603577113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed an algorithm, NetSurgeon, which uses genome-wide gene-regulatory networks to identify interventions that force a cell toward a desired expression state. We first validated NetSurgeon extensively on existing datasets. Next, we used NetSurgeon to select transcription factor deletions aimed at improving ethanol production in Saccharomyces cerevisiae cultures that are catabolizing xylose. We reasoned that interventions that move the transcriptional state of cells using xylose toward that of cells producing large amounts of ethanol from glucose might improve xylose fermentation. Some of the interventions selected by NetSurgeon successfully promoted a fermentative transcriptional state in the absence of glucose, resulting in strains with a 2.7-fold increase in xylose import rates, a 4-fold improvement in xylose integration into central carbon metabolism, or a 1.3-fold increase in ethanol production rate. We conclude by presenting an integrated model of transcriptional regulation and metabolic flux that will enable future efforts aimed at improving xylose fermentation to prioritize functional regulators of central carbon metabolism.
Collapse
|
34
|
Bii VM, Trobridge GD. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors. Cancers (Basel) 2016; 8:cancers8110099. [PMID: 27792127 PMCID: PMC5126759 DOI: 10.3390/cancers8110099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.
Collapse
Affiliation(s)
- Victor M Bii
- College of Pharmacy, Washington State University, WSU Spokane PBS 323, P.O. Box 1495, Spokane, WA 99210, USA.
| | - Grant D Trobridge
- College of Pharmacy, Washington State University, WSU Spokane PBS 323, P.O. Box 1495, Spokane, WA 99210, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
35
|
Brent MR. Past Roadblocks and New Opportunities in Transcription Factor Network Mapping. Trends Genet 2016; 32:736-750. [PMID: 27720190 DOI: 10.1016/j.tig.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022]
Abstract
One of the principal mechanisms by which cells differentiate and respond to changes in external signals or conditions is by changing the activity levels of transcription factors (TFs). This changes the transcription rates of target genes via the cell's TF network, which ultimately contributes to reconfiguring cellular state. Since microarrays provided our first window into global cellular state, computational biologists have eagerly attacked the problem of mapping TF networks, a key part of the cell's control circuitry. In retrospect, however, steady-state mRNA abundance levels were a poor substitute for TF activity levels and gene transcription rates. Likewise, mapping TF binding through chromatin immunoprecipitation proved less predictive of functional regulation and less amenable to systematic elucidation of complete networks than originally hoped. This review explains these roadblocks and the current, unprecedented blossoming of new experimental techniques built on second-generation sequencing, which hold out the promise of rapid progress in TF network mapping.
Collapse
Affiliation(s)
- Michael R Brent
- Departments of Computer Science and Genetics and Center for Genome Sciences and Systems Biology, Washington University, , Saint Louis, MO, USA.
| |
Collapse
|
36
|
Abstract
Identifying the genomic targets of transcription factors is an important step in understanding the regulatory networks of gene transcription in yeast. We have developed a method that utilizes what we refer to as transposon "calling cards," in which a transcription factor directs the Ty5 retrotransposase to insert transposons into the genome adjacent to where the transcription factor binds. This method is designed to be multiplexed with many barcoded transcription factors and has the potential to decrease the labor required for the study of large numbers of transcription factors.
Collapse
Affiliation(s)
- David Mayhew
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robi D Mitra
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
37
|
Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4(+) T Cells. Mol Ther 2016; 24:592-606. [PMID: 26755332 PMCID: PMC4786924 DOI: 10.1038/mt.2016.11] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022] Open
Abstract
The inherent risks associated with vector insertion in gene therapy need to be carefully assessed. We analyzed the genome-wide distributions of Sleeping Beauty (SB) and piggyBac (PB) transposon insertions as well as MLV retrovirus and HIV lentivirus insertions in human CD4+ T cells with respect to a panel of 40 chromatin states. The distribution of SB transposon insertions displayed the least deviation from random, while the PB transposon and the MLV retrovirus showed unexpected parallels across all chromatin states. Both MLV and PB insertions are enriched at transcriptional start sites (TSSs) and co-localize with BRD4-associated sites. We demonstrate physical interaction between the PB transposase and bromodomain and extraterminal domain proteins (including BRD4), suggesting convergent evolution of a tethering mechanism that directs integrating genetic elements into TSSs. We detect unequal biases across the four systems with respect to targeting genes whose deregulation has been previously linked to serious adverse events in gene therapy clinical trials. The SB transposon has the highest theoretical chance of targeting a safe harbor locus in the human genome. The data underscore the significance of vector choice to reduce the mutagenic load on cells in clinical applications.
Collapse
|
38
|
ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo. Nat Commun 2015; 6:8733. [PMID: 26490019 PMCID: PMC4618392 DOI: 10.1038/ncomms9733] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/25/2015] [Indexed: 12/31/2022] Open
Abstract
Chromatin endogenous cleavage (ChEC) uses fusion of a protein of interest to micrococcal nuclease (MNase) to target calcium-dependent cleavage to specific genomic loci in vivo. Here we report the combination of ChEC with high-throughput sequencing (ChEC-seq) to map budding yeast transcription factor (TF) binding. Temporal analysis of ChEC-seq data reveals two classes of sites for TFs, one displaying rapid cleavage at sites with robust consensus motifs and the second showing slow cleavage at largely unique sites with low-scoring motifs. Sites with high-scoring motifs also display asymmetric cleavage, indicating that ChEC-seq provides information on the directionality of TF-DNA interactions. Strikingly, similar DNA shape patterns are observed regardless of motif strength, indicating that the kinetics of ChEC-seq discriminates DNA recognition through sequence and/or shape. We propose that time-resolved ChEC-seq detects both high-affinity interactions of TFs with consensus motifs and sites preferentially sampled by TFs during diffusion and sliding. In chromatin endogenous cleavage (ChEC), micrococcal nuclease (MNase) is fused to a protein of interest and its cleavage is thus targeted to specific genomic loci in vivo. Here, the authors show that time-resolved ChEC-seq (high-throughput sequencing after ChEC) can detect DNA shape patterns regardless of motif strength.
Collapse
|
39
|
Mignardi M, Mezger A, Qian X, La Fleur L, Botling J, Larsson C, Nilsson M. Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ. Nucleic Acids Res 2015; 43:e151. [PMID: 26240388 PMCID: PMC4678841 DOI: 10.1093/nar/gkv772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/19/2015] [Indexed: 11/12/2022] Open
Abstract
In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ.
Collapse
Affiliation(s)
- Marco Mignardi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-17121 Sweden
| | - Anja Mezger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-17121 Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-17121 Sweden
| | - Linnea La Fleur
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-17121 Sweden
| |
Collapse
|
40
|
Abstract
DNA transposons offer an efficient nonviral method of permanently modifying the genomes of mammalian cells. The piggyBac transposon system has proven effective in genomic engineering of mammalian cells for preclinical applications, including gene discovery, simultaneous multiplexed genome modification, animal transgenesis, gene transfer in vivo achieving long-term gene expression in animals, and the genetic modification of clinically relevant cell types, such as induced pluripotent stem cells and human T lymphocytes. piggyBac has many desirable features, including seamless excision of transposons from the genomic DNA and the potential to target integration events to desired DNA sequences. In this review, we explore these recent applications and also highlight the unique advantages of using piggyBac for developing new molecular therapeutic strategies.
Collapse
Affiliation(s)
- Lauren E Woodard
- Department of Veterans Affairs, Tennessee Valley Health System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Veterans Affairs, Tennessee Valley Health System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
41
|
Mayhew D, Mitra RD. Transcription factor regulation and chromosome dynamics during pseudohyphal growth. Mol Biol Cell 2014; 25:2669-76. [PMID: 25009286 PMCID: PMC4148256 DOI: 10.1091/mbc.e14-04-0871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A multiplexed analysis of the transcriptional regulation of yeast pseudohyphal growth recorded the binding of 28 different transcription factors with barcoded transposons. A core set of target genes is identified, and a process of DNA looping at the FLO11 locus that provides transcriptional memory for expression of the gene is described. Pseudohyphal growth is a developmental pathway seen in some strains of yeast in which cells form multicellular filaments in response to environmental stresses. We used multiplexed transposon “Calling Cards” to record the genome-wide binding patterns of 28 transcription factors (TFs) in nitrogen-starved yeast. We identified TF targets relevant for pseudohyphal growth, producing a detailed map of its regulatory network. Using tools from graph theory, we identified 14 TFs that lie at the center of this network, including Flo8, Mss11, and Mfg1, which bind as a complex. Surprisingly, the DNA-binding preferences for these key TFs were unknown. Using Calling Card data, we predicted the in vivo DNA-binding motif for the Flo8-Mss11-Mfg1 complex and validated it using a reporter assay. We found that this complex binds several important targets, including FLO11, at both their promoter and termination sequences. We demonstrated that this binding pattern is the result of DNA looping, which regulates the transcription of these targets and is stabilized by an interaction with the nuclear pore complex. This looping provides yeast cells with a transcriptional memory, enabling them more rapidly to execute the filamentous growth program when nitrogen starved if they had been previously exposed to this condition.
Collapse
Affiliation(s)
- David Mayhew
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108
| |
Collapse
|
42
|
Galvan DL, Kettlun CS, Wilson MH. Targeting piggyBac transposon integrations in the human genome. Methods Mol Biol 2014; 1114:143-61. [PMID: 24557901 DOI: 10.1007/978-1-62703-761-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA based transposon systems offer a technology for active and efficient delivery of genes into human cells. An emerging field is directed at manipulating such systems to achieve site-directed integration as compared to un-targeted integration which occurs with native or unmodified transposon systems. The naturally active piggyBac transposon system is derived from insects but has been shown to be very efficient in gene-modifying human cells. Recent efforts have utilized the fusion of DNA binding domains to the piggyBac transposase enzyme with the goal of targeting integration to specific locations in the human genome. In this chapter, we describe methodology for engineering and characterizing chimeric piggyBac transposase enzymes, including experimental approaches for evaluating activity and targeting specificity in the human genome.
Collapse
Affiliation(s)
- Daniel L Galvan
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
43
|
Vogt A, Mochizuki K. A domesticated PiggyBac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in Tetrahymena. PLoS Genet 2013; 9:e1004032. [PMID: 24348275 PMCID: PMC3861120 DOI: 10.1371/journal.pgen.1004032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022] Open
Abstract
The somatic genome of the ciliated protist Tetrahymena undergoes DNA elimination of defined sequences called internal eliminated sequences (IESs), which account for ~30% of the germline genome. During DNA elimination, IES regions are heterochromatinized and assembled into heterochromatin bodies in the developing somatic nucleus. The domesticated piggyBac transposase Tpb2p is essential for the formation of heterochromatin bodies and DNA elimination. In this study, we demonstrate that the activities of Tpb2p involved in forming heterochromatin bodies and executing DNA elimination are genetically separable. The cysteine-rich domain of Tpb2p, which interacts with the heterochromatin-specific histone modifications, is necessary for both heterochromatin body formation and DNA elimination, whereas the endonuclease activity of Tpb2p is only necessary for DNA elimination. Furthermore, we demonstrate that the endonuclease activity of Tpb2p in vitro and the endonuclease activity that executes DNA elimination in vivo have similar substrate sequence preferences. These results strongly indicate that Tpb2p is the endonuclease that directly catalyzes the excision of IESs and that the boundaries of IESs are at least partially determined by the combination of Tpb2p-heterochromatin interaction and relaxed sequence preference of the endonuclease activity of Tpb2p.
Collapse
Affiliation(s)
- Alexander Vogt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna, Austria
- * E-mail:
| |
Collapse
|
44
|
Abstract
The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc(+)Int(-)) transposase. Our findings also suggest the position of a target DNA-transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc(+)Int(-) transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int(-) phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc(+)Int(-) transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase-target DNA interaction.
Collapse
|
45
|
Haynes BC, Maier EJ, Kramer MH, Wang PI, Brown H, Brent MR. Mapping functional transcription factor networks from gene expression data. Genome Res 2013; 23:1319-28. [PMID: 23636944 PMCID: PMC3730105 DOI: 10.1101/gr.150904.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A critical step in understanding how a genome functions is determining which transcription factors (TFs) regulate each gene. Accordingly, extensive effort has been devoted to mapping TF networks. In Saccharomyces cerevisiae, protein–DNA interactions have been identified for most TFs by ChIP-chip, and expression profiling has been done on strains deleted for most TFs. These studies revealed that there is little overlap between the genes whose promoters are bound by a TF and those whose expression changes when the TF is deleted, leaving us without a definitive TF network for any eukaryote and without an efficient method for mapping functional TF networks. This paper describes NetProphet, a novel algorithm that improves the efficiency of network mapping from gene expression data. NetProphet exploits a fundamental observation about the nature of TF networks: The response to disrupting or overexpressing a TF is strongest on its direct targets and dissipates rapidly as it propagates through the network. Using S. cerevisiae data, we show that NetProphet can predict thousands of direct, functional regulatory interactions, using only gene expression data. The targets that NetProphet predicts for a TF are at least as likely to have sites matching the TF's binding specificity as the targets implicated by ChIP. Unlike most ChIP targets, the NetProphet targets also show evidence of functional regulation. This suggests a surprising conclusion: The best way to begin mapping direct, functional TF-promoter interactions may not be by measuring binding. We also show that NetProphet yields new insights into the functions of several yeast TFs, including a well-studied TF, Cbf1, and a completely unstudied TF, Eds1.
Collapse
Affiliation(s)
- Brian C Haynes
- Center for Genome Sciences and Systems Biology, Washington University, Saint Louis, Missouri 63108, USA
| | | | | | | | | | | |
Collapse
|
46
|
The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol Cell Biol 2013; 33:1317-30. [PMID: 23358416 DOI: 10.1128/mcb.00670-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The DNA transposon piggyBac is widely used as a tool in mammalian experimental systems for transgenesis, mutagenesis, and genome engineering. We have characterized genome-wide insertion site preferences of piggyBac by sequencing a large set of integration sites arising from transposition from two separate genomic loci and a plasmid donor in mouse embryonic stem cells. We found that piggyBac preferentially integrates locally to the excision site when mobilized from a chromosomal location and identified other nonlocal regions of the genome with elevated insertion frequencies. piggyBac insertions were associated with expressed genes and markers of open chromatin structure and were excluded from heterochromatin. At the nucleotide level, piggyBac prefers to insert into TA-rich regions within a broader GC-rich context. We also found that piggyBac can insert into sites other than its known TTAA insertion site at a low frequency (2%). Such insertions introduce mismatches that are repaired with signatures of host cell repair pathways. Transposons could be mobilized from plasmids with the observed noncanonical flanking regions, indicating that piggyBac could generate point mutations in the genome.
Collapse
|
47
|
Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon. Proc Natl Acad Sci U S A 2012; 110:234-9. [PMID: 23248290 DOI: 10.1073/pnas.1217548110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A revelation of the genomic age has been the contributions of the mobile DNA segments called transposable elements to chromosome structure, function, and evolution in virtually all organisms. Substantial fractions of vertebrate genomes derive from transposable elements, being dominated by retroelements that move via RNA intermediates. Although many of these elements have been inactivated by mutation, several active retroelements remain. Vertebrate genomes also contain substantial quantities and a high diversity of cut-and-paste DNA transposons, but no active representative of this class has been identified in mammals. Here we show that a cut-and-paste element called piggyBat, which has recently invaded the genome of the little brown bat (Myotis lucifugus) and is a member of the piggyBac superfamily, is active in its native form in transposition assays in bat and human cultured cells, as well as in the yeast Saccharomyces cerevisiae. Our study suggests that some DNA transposons are still actively shaping some mammalian genomes and reveals an unprecedented opportunity to study the mechanism, regulation, and genomic impact of cut-and-paste transposition in a natural mammalian host.
Collapse
|