1
|
Ma Z, Li M, Li F, Wu K, Wu X, Luo T, Gao N, Luo H, Sui Z, Yu Z, Jiang H, Shang X, Chen C, Yue J, Meng F, Duan X, Xu B. Multi-omics sequencing of gastroesophageal junction adenocarcinoma reveals prognosis-relevant key factors and a novel immunogenomic classification. Gastric Cancer 2025:10.1007/s10120-025-01585-y. [PMID: 39883307 DOI: 10.1007/s10120-025-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide personalized treatment. METHODS We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 GEJAC patients and delineated the landscape of genetic and immune alterations. In addition to COSMIC nomenclature, the de novo nomenclature was also utilized to define signatures and investigate their correlation with survival. A novel molecular subtype was developed and validated in other cohorts. RESULTS We found 30 mutated driver genes, 7 novel genomic signatures, 3 copy-number variations, and 2 V-J gene usages related to prognosis that were not identified in previous study. A high frequency of COSMIC-SBS-384-1 and De novo-SV-32-A was associated with more neoantigen generation and a better survival. Using 19 molecular features, we identified three immune-related subtypes (immune inflamed, intermediate, and deserted) with discrete profiles of genomic signatures, immune status, and clinical outcome. The immune deserted subtype (27.2%) was characterized by an earlier KRAS mutation, worse immune reaction, and prognosis than the other two subtypes. The immune inflamed subtypes exhibited the highest levels of neoantigens, TCR/pMHC-binding strength, CD8 + T-cell infiltration, IFN-α/γ response pathways, and survival rate. CONCLUSIONS These results emphasize the immune reaction and prognostic value of novel molecular classifications based on multi-omics data and provide a solid basis for better management of GEJAC.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Mengting Li
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuqiang Li
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Kui Wu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Xianxian Wu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Na Gao
- Department of Pathology, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Huijuan Luo
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310000, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Zhilin Sui
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Hongjing Jiang
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaobin Shang
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Chuangui Chen
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Jie Yue
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Fianbiao Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaofeng Duan
- Department of Minimally Invasive Esophageal Surgery, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, 181 Hanyu Rd., Shapin District, Chongqing, 400030, China.
| |
Collapse
|
2
|
Ishiguro T, Takeda K, Takayanagi D, Mura E, Suzuki R, Tsurui T, Iriguchi N, Hirasawa Y, Ohkuma R, Shimokawa M, Ariizumi H, Kubota Y, Horiike A, Izumizaki M, Wada S, Yoshimura K, Hoffman RM, Tsunoda T. Immune Stress-induced Tumor Mutation Burden and Neoantigen Expression in 4T1 Mammary Cancer Cells: A Potential Mechanism for Long-term Survival in Patients Treated With Immune Checkpoint Inhibitors. Cancer Genomics Proteomics 2025; 22:1-12. [PMID: 39730175 PMCID: PMC11696327 DOI: 10.21873/cgp.20481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM The Kaplan-Meier curves for patients treated with immune checkpoint inhibitors (ICIs) display a small group of potentially-cured patients with long-term survival, creating a 'kangaroo-tail' shape of the survival curve. However, the mechanistic basis of this phenomenon and what occurs in patients whose cancer is resistant to ICIs remain unclear. The present study aimed to answer these questions. MATERIALS AND METHODS We analyzed mutations in mouse 4T1 mammary-gland-derived cancer cells expressing the hemagglutinin antigen (4T1-HA), which were grown in either wild-type mice or cytotoxic T-lymphocyte (CTL)-loaded immunocompromised mice (RAG-/- + ACT) under immune stress. These mutations were compared to those in 4T1-HA cells grown in RAG-/- mice without immune stress as a control. RESULTS The number of gene mutations, the tumor mutation burden (TMB) and microsatellite instability (MSI) scores were increased in the cancer cells under immune stress. The mutations in the antigen protein were such that the protein retained its immunogenicity and could still function as a neoantigen. Repeated immune recognition of additional neoantigens may lead to the kangaroo-tail survival phenomenon. The common genetic mutations of the analyzed 4T1-HA cells under immune stress included genes related to immune response. Analysis of alternative splicing of genes showed that are accumulated gene alterations under immune stress related to cancer-cell proliferation. Copy-number variation (CNV) analysis indicated that normal-antigen presentation and immune responses may be impaired under immune stress. CONCLUSION Cancer cells, under immune stress, may acquire both immune escape capabilities and increased immunogenicity. This dual effect could lead to either resistance or response to ICIs, respectively.
Collapse
Affiliation(s)
- Tomoyuki Ishiguro
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Kazuyuki Takeda
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Daisuke Takayanagi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Emiko Mura
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Risako Suzuki
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Toshiaki Tsurui
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Nana Iriguchi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Yuya Hirasawa
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Ryotaro Ohkuma
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiro Shimokawa
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Yutaro Kubota
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Atsushi Horiike
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Satoshi Wada
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute of Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan;
| |
Collapse
|
3
|
Xia Y, Huang P, Qian YY, Wang Z, Jin N, Li X, Pan W, Wang SY, Jin P, Drokow EK, Li X, Zhang Q, Zhang Z, Li P, Fang Y, Yang XP, Han Z, Gao QL. PARP inhibitors enhance antitumor immune responses by triggering pyroptosis via TNF-caspase 8-GSDMD/E axis in ovarian cancer. J Immunother Cancer 2024; 12:e009032. [PMID: 39366751 PMCID: PMC11459312 DOI: 10.1136/jitc-2024-009032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND In addition to their established action of synthetic lethality in tumor cells, poly(ADP-ribose) polymerase inhibitors (PARPis) also orchestrate tumor immune microenvironment (TIME) that contributes to suppressing tumor growth. However, it remains not fully understood whether and how PARPis trigger tumor-targeting immune responses. METHODS To decode the immune responses reshaped by PARPis, we conducted T-cell receptor (TCR) sequencing and immunohistochemical (IHC) analyses of paired clinical specimens before and after niraparib monotherapy obtained from a prospective study, as well as ID8 mouse ovarian tumors. To validate the induction of immunogenic cell death (ICD) by PARPis, we performed immunofluorescence/IHC staining with homologous recombination deficiency tumor cells and patient-derived xenograft tumor tissues, respectively. To substantiate that PARPis elicited tumor cell pyroptosis, we undertook comprehensive assessments of the cellular morphological features, cleavage of gasdermin (GSDM) proteins, and activation of TNF-caspase signaling pathways through genetic downregulation/depletion and selective inhibition. We also evaluated the critical role of pyroptosis in tumor suppression and immune activation following niraparib treatment using a syngeneic mouse model with implanting CRISPR/Cas9 edited Gsdme-/ - ID8 tumor cells into C57BL/6 mice. RESULTS Our findings revealed that PARPis augmented the proportion of neoantigen-recognized TCR clones and TCR clonal expansion, and induced an inflamed TIME characterized by increased infiltration of both innate and adaptive immune cells. This PARPis-strengthened immune response was associated with the induction of ICD, specifically identified as pyroptosis, which possessed distinctive morphological features and GSDMD/E cleavage. It was validated that the cleavage of GSDMD/E was due to elevated caspase 8 activity downstream of the TNFR1, rather than FAS and TRAIL-R. On PARP inhibition, the NF-κB signaling pathway was activated, leading to increased secretion of TNF-α and subsequent initiation of the TNFR1-caspase 8 cascade. Impeding pyroptosis through the depletion of Gsdme significantly compromised the tumor-suppressing effects of PARP inhibition and undermined the anti-immune response in the syngeneic ID8 mouse model. CONCLUSIONS PARPis induce a specific type of ICD called pyroptosis via TNF-caspase 8-GSDMD/E axis, resulting in an inflamed TIME and augmentation of tumor-targeting immune responses. These findings deepen our understanding of PARPis activities and point toward a promising avenue for synergizing PARPis with immunotherapeutic interventions. TRIAL REGISTRATION NUMBER NCT04507841.
Collapse
Affiliation(s)
- Yu Xia
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pu Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi-yu Qian
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zanhong Wang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Ning Jin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si-Yuan Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Jin
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Emmanuel Kwateng Drokow
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Zhengmao Zhang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingfei Li
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Han
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Qing-lei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Luo Y, Xia Y, Liu D, Li X, Li H, Liu J, Zhou D, Dong Y, Li X, Qian Y, Xu C, Tao K, Li G, Pan W, Zhong Q, Liu X, Xu S, Wang Z, Liu R, Zhang W, Shan W, Fang T, Wang S, Peng Z, Jin P, Jin N, Shi S, Chen Y, Wang M, Jiao X, Luo M, Gong W, Wang Y, Yao Y, Zhao Y, Huang X, Ji X, He Z, Zhao G, Liu R, Wu M, Chen G, Hong L, Ma D, Fang Y, Liang H, Gao Q. Neoadjuvant PARPi or chemotherapy in ovarian cancer informs targeting effector Treg cells for homologous-recombination-deficient tumors. Cell 2024; 187:4905-4925.e24. [PMID: 38971151 DOI: 10.1016/j.cell.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Collapse
Affiliation(s)
- Yikai Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Xia
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Huayi Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahao Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongchen Zhou
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Dong
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xin Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiyu Qian
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangjia Tao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guannan Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Pan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Zhong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingzhe Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Wang
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ronghua Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanying Shan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siyuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zikun Peng
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shennan Shi
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengjie Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaofei Jiao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengshi Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenjian Gong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Yao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Yi Zhao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xinlin Huang
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xuwo Ji
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Zhaoren He
- BioMap (Beijing) Intelligence Technology Limited, Beijing 100089, China
| | - Guangnian Zhao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ding Ma
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yong Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qinglei Gao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Wei YC, Pospiech M, Meng Y, Alachkar H. Development and characterization of human T-cell receptor (TCR) alpha and beta clones' library as biological standards and resources for TCR sequencing and engineering. Biol Methods Protoc 2024; 9:bpae064. [PMID: 39507623 PMCID: PMC11540440 DOI: 10.1093/biomethods/bpae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024] Open
Abstract
Characterization of T-cell receptors (TCRs) repertoire was revolutionized by next-generation sequencing technologies; however, standardization using biological controls to facilitate precision of current alignment and assembly tools remains a challenge. Additionally, availability of TCR libraries for off-the-shelf cloning and engineering TCR-specific T cells is a valuable resource for TCR-based immunotherapies. We established nine human TCR α and β clones that were evaluated using the 5'-rapid amplification of cDNA ends-like RNA-based TCR sequencing on the Illumina platform. TCR sequences were extracted and aligned using MiXCR, TRUST4, and CATT to validate their sensitivity and specificity and to validate library preparation methods. The correlation between actual and expected TCR ratios within libraries confirmed accuracy of the approach. Our findings established the development of biological standards and library of TCR clones to be leveraged in TCR sequencing and engineering. The remaining human TCR clones' libraries for a more diverse biological control will be generated.
Collapse
Affiliation(s)
- Yu-Chun Wei
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Mateusz Pospiech
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Yiting Meng
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Houda Alachkar
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, United States
| |
Collapse
|
6
|
Zhou Y, Li S, Hu Y, Xu X, Cui J, Li S, Li Z, Ji J, Xing R. Multi-regional sequencing reveals the genetic and immune heterogeneity of non-cancerous tissues in gastric cancer. J Pathol 2024; 263:454-465. [PMID: 38845115 DOI: 10.1002/path.6297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 07/09/2024]
Abstract
Gastric cancer (GC) is one of the most heterogeneous tumors. However, research on normal tissue adjacent to the tumor (NAT) is very limited. We performed multi-regional omics sequencing on 150 samples to assess the genetic basis and immune microenvironment in NAT and matched primary tumor or lymph node metastases. NATs demonstrated different mutated genes compared with GC, and NAT genomes underwent independent evolution with low variant allele frequency. Mutation profiles were predominated by aging and smoking-associated signatures in NAT instead of signatures associated with genetic instability. Although the immune microenvironment within NATs shows substantial intra-patient heterogeneity, the proportion of shared TCR clones among NATs is five times higher than that of tumor regions. These findings support the notion that subclonal expansion is not pronounced in NATs. We also demonstrated remarkable intra-patient heterogeneity of GCs and revealed heterogeneity of focal amplification of CD274 (encoding PD-L1) that leads to differential expression. Finally, we identified that monoclonal seeding is predominant in GC, which is followed by metastasis-to-metastasis dissemination in individual lymph nodes. These results provide novel insights into GC carcinogenesis. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yong Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Shen Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Yingqi Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Xiao Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Jiantao Cui
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Shuaicheng Li
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Rui Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| |
Collapse
|
7
|
Goldner Kabeli R, Zevin S, Abargel A, Zilberberg A, Efroni S. Self-supervised learning of T cell receptor sequences exposes core properties for T cell membership. SCIENCE ADVANCES 2024; 10:eadk4670. [PMID: 38669334 PMCID: PMC11809652 DOI: 10.1126/sciadv.adk4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The T cell receptor (TCR) repertoire is an extraordinarily diverse collection of TCRs essential for maintaining the body's homeostasis and response to threats. In this study, we compiled an extensive dataset of more than 4200 bulk TCR repertoire samples, encompassing 221,176,713 sequences, alongside 6,159,652 single-cell TCR sequences from over 400 samples. From this dataset, we then selected a representative subset of 5 million bulk sequences and 4.2 million single-cell sequences to train two specialized Transformer-based language models for bulk (CVC) and single-cell (scCVC) TCR repertoires, respectively. We show that these models successfully capture TCR core qualities, such as sharing, gene composition, and single-cell properties. These qualities are emergent in the encoded TCR latent space and enable classification into TCR-based qualities such as public sequences. These models demonstrate the potential of Transformer-based language models in TCR downstream applications.
Collapse
Affiliation(s)
- Romi Goldner Kabeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Avital Abargel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
8
|
Cao H, Huang P, Qiu J, Gong X, Cao H. Immune landscape of hepatocellular carcinoma tumor microenvironment identifies a prognostic relevant model. Heliyon 2024; 10:e24861. [PMID: 38317886 PMCID: PMC10839619 DOI: 10.1016/j.heliyon.2024.e24861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Background Various studies highlighted that immune cell-mediated inflammatory processes play crucial roles in the progression and treatment of hepatocellular carcinoma (HCC). However, the immune microenvironment of HCC is still poorly characterized. Exploring the role of immune-related genes (IRGs) and describing the immune landscape in HCC would provide insights into tumor-immune co-evolution along HCC progression. Methods We integrated the datasets with complete prognostic information from the Cancer Genome Atlas (TCGA) database and GEO DataSets (GSE14520, GSE76427, and GSE54236) to construct a novel immune landscape based on the Cibersort algorithm and reveal the prognostic signature in HCC patients. Results To describe the tumor microenvironment (TME) in HCC, immune infiltration patterns were defined using the CIBERSORT method, and a prognostic signature contains 5 types of immune cells, including 3 high-risk immune cells (T.cells. CD4. memory. resting, Macrophages.M0, Macrophages.M2) and 2 low-risk immune cells (Plasma. cells, T.cells.CD8), were finally constructed. A novel prognostic index, based on prognostic immune risk score (pIRG), was developed using the univariate Cox regression analyses and LASSO Cox regression algorithm. Furthermore, the ROC curve and KM curve showed that the TME signatures had a stable value in predicting the prognosis of HCC patients in the internal training cohort, internal validation, and external validation cohort. Differential genes analysis and qPCR experiment showed that the expression levels of AKR1B10, LAPTM4B, MMP9, and SPP1 were significantly increased in high-risk patients, while the expression of CD5L was lower. Further analysis found that AKR1B10 and MMP9 were associated with higher M0 macrophage infiltration, while CD5L was associated with higher plasma cell infiltration. Conclusions Taken together, we performed a comprehensive evaluation of the immune landscape of HCC and constructed a novel and robust prognostic prediction model. AKR1B10, LAPTM4B, MMP9, SPP1, and CD5L were involved in important processes in the HCC tumor microenvironment and were expected to become HCC prediction markers and potential targets of treatment.
Collapse
Affiliation(s)
- Hongru Cao
- Department of Nephrology, Affiliated Hospital of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
| | - Ping Huang
- Infectious Disease Prevention and Control Hospital of Chifeng City, Chifeng City, Inner Mongolia, 024000, PR China
| | - Jiawei Qiu
- Institute of Cardiovascular Disease of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
| | - Xiaohui Gong
- Department of Emergency Medicine, Affiliated Hospital of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
- Institute of Cardiovascular Disease of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
| | - Hongfei Cao
- Department of Gastroenterology, Affiliated Hospital of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
| |
Collapse
|
9
|
Zhou JZ, Huang B, Pei B, Sun GW, Pawlitz MD, Zhang W, Li X, Hokynar KC, Yao F, Perera MLW, Wei S, Zheng S, Polin LA, Poulik JM, Ranki A, Krohn K, Cunningham-Rundles C, Yang N, Bhagwat AS, Yu K, Peterson P, Kisand K, Vuong BQ, Cerutti A, Chen K. A Germinal Center Checkpoint of AIRE in B Cells Limits Antibody Diversification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574926. [PMID: 38260362 PMCID: PMC10802573 DOI: 10.1101/2024.01.10.574926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In response to antigens, B cells undergo affinity maturation and class switching mediated by activation-induced cytidine deaminase (AID) in germinal centers (GCs) of secondary lymphoid organs, but uncontrolled AID activity can precipitate autoimmunity and cancer. The regulation of GC antibody diversification is of fundamental importance but not well understood. We found that autoimmune regulator (AIRE), the molecule essential for T cell tolerance, is expressed in GC B cells in a CD40-dependent manner, interacts with AID and negatively regulates antibody affinity maturation and class switching by inhibiting AID function. AIRE deficiency in B cells caused altered antibody repertoire, increased somatic hypermutations, elevated autoantibodies to T helper 17 effector cytokines and defective control of skin Candida albicans. These results define a GC B cell checkpoint of humoral immunity and illuminate new approaches of generating high-affinity neutralizing antibodies for immunotherapy.
Collapse
Affiliation(s)
- Jordan Z. Zhou
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- These authors contributed equally
| | - Bihui Huang
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
- These authors contributed equally
| | - Bo Pei
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Guang Wen Sun
- School of Applied Science, Republic Polytechnic, Singapore 738984, Singapore
| | - Michael D. Pawlitz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Wei Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Guangdong 518083, China
| | - Xinyang Li
- Beijing Genomics Institute (BGI)-Shenzhen, Guangdong 518083, China
| | - Kati C. Hokynar
- Department of Virology, University of Helsinki, Helsinki 00029, Finland
| | - Fayi Yao
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | | | - Shanqiao Wei
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Simin Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore 636921, Singapore
| | - Lisa A. Polin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| | - Janet M. Poulik
- Department of Pathology, Children’s Hospital of Michigan, Detroit, MI 48201, USA
| | - Annamari Ranki
- Department of Dermatology and Allergic Diseases, University of Helsinki and Helsinki University Hospital, Helsinki 00250, Finland
| | - Kai Krohn
- Helsinki University Hospital Research Institute, Biomedicum, Helsinki 00290, Finland
| | | | - Naibo Yang
- Beijing Genomics Institute (BGI)-Shenzhen, Guangdong 518083, China
- Complete Genomics Inc., Mountain View, California 94043, USA
| | - Ashok S. Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Pärt Peterson
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Kai Kisand
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Bao Q. Vuong
- Department of Biology, City College of New York, New York, NY 10031, USA
| | - Andrea Cerutti
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Maryland 20892, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- School of Biological Sciences, Nanyang Technological University, Singapore 636921, Singapore
- Lead Contact
| |
Collapse
|
10
|
Sun Y, Wu P, Zhang Z, Wang Z, Zhou K, Song M, Ji Y, Zang F, Lou L, Rao K, Wang P, Gu Y, Gu J, Lu B, Chen L, Pan X, Zhao X, Peng L, Liu D, Chen X, Wu K, Lin P, Wu L, Su Y, Du M, Hou Y, Yang X, Qiu S, Shi Y, Sun H, Zhou J, Huang X, Peng DH, Zhang L, Fan J. Integrated multi-omics profiling to dissect the spatiotemporal evolution of metastatic hepatocellular carcinoma. Cancer Cell 2024; 42:135-156.e17. [PMID: 38101410 DOI: 10.1016/j.ccell.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Comprehensive molecular analyses of metastatic hepatocellular carcinoma (HCC) are lacking. Here, we generate multi-omic profiling of 257 primary and 176 metastatic regions from 182 HCC patients. Primary tumors rich in hypoxia signatures facilitated polyclonal dissemination. Genomic divergence between primary and metastatic HCC is high, and early dissemination is prevalent. The remarkable neoantigen intratumor heterogeneity observed in metastases is associated with decreased T cell reactivity, resulting from disruptions to neoantigen presentation. We identify somatic copy number alterations as highly selected events driving metastasis. Subclones without Wnt mutations show a stronger selective advantage for metastasis than those with Wnt mutations and are characterized by a microenvironment rich in activated fibroblasts favoring a pro-metastatic phenotype. Finally, metastases without Wnt mutations exhibit higher enrichment of immunosuppressive B cells that mediate terminal exhaustion of CD8+ T cells via HLA-E:CD94-NKG2A checkpoint axis. Collectively, our results provide a multi-dimensional dissection of the complex evolutionary process of metastasis.
Collapse
Affiliation(s)
- Yunfan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Pin Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200032, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China
| | - Zefan Zhang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Zejian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200032, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiqian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Minfang Song
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fenglin Zang
- Department of Pathology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Limu Lou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200032, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Keqiang Rao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Pengxiang Wang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yutong Gu
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Binbin Lu
- Dunwill Med-Tech, Shanghai 200032, China
| | | | - Xiuqi Pan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200032, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Xiaojing Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200032, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Lihua Peng
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
| | - Dongbing Liu
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
| | - Xiaofang Chen
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
| | - Kui Wu
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
| | - Penghui Lin
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
| | - Liang Wu
- BGI Research, Shenzhen 518083, China
| | - Yulin Su
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200032, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Min Du
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai 200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinrong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yinghong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Huichuan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Xingxu Huang
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | | | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200032, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| |
Collapse
|
11
|
Ai Y, Wei S, Huang J, Wang M, Xue Y, Wang L, Han H. A TCRVβ6 + Th1 cell subsets during Salmonella enterica serovar Typhimurium infection. J Cell Mol Med 2023; 27:3414-3417. [PMID: 37603613 PMCID: PMC10623519 DOI: 10.1111/jcmm.17862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Affiliation(s)
- Yue Ai
- Beijing Key Laboratory of Animal Genetic ImprovementCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Key Laboratory of Animal GeneticsBreeding and Reproduction of the Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shao Wei
- Beijing Key Laboratory of Animal Genetic ImprovementCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Key Laboratory of Animal GeneticsBreeding and Reproduction of the Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jianwei Huang
- Beijing Key Laboratory of Animal Genetic ImprovementCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Key Laboratory of Animal GeneticsBreeding and Reproduction of the Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Mengyao Wang
- Beijing Key Laboratory of Animal Genetic ImprovementCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Key Laboratory of Animal GeneticsBreeding and Reproduction of the Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yazhi Xue
- Beijing Key Laboratory of Animal Genetic ImprovementCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Key Laboratory of Animal GeneticsBreeding and Reproduction of the Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Linli Wang
- Beijing Key Laboratory of Animal Genetic ImprovementCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Key Laboratory of Animal GeneticsBreeding and Reproduction of the Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic ImprovementCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Key Laboratory of Animal GeneticsBreeding and Reproduction of the Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding(MOE)China Agricultural UniversityBeijingChina
| |
Collapse
|
12
|
Miao Y, Shi Z, Zhang W, Zhu L, Tang S, Chen H, Wang X, Du Q, Li S, Zhang Y, Luo W, Jin X, Fang M, Zhou H. Immune Repertoire Profiling Reveals Its Clinical Application Potential and Triggers for Neuromyelitis Optica Spectrum Disorders. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200134. [PMID: 37414573 DOI: 10.1212/nxi.0000000000200134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Neuromyelitis optica spectrum disorders (NMOSD) is widely recognized as a CNS demyelinating disease associated with AQP4-IgG (T cell-dependent antibody), and its trigger is still unclear. In addition, although the treatment of NMOSD currently can rely on traditional immunosuppressive and modulating agents, effective methods to predict the efficacy of these therapeutics are lacking. METHODS In this study, high-throughput T-cell receptor (TCR) sequencing was performed on peripheral blood from 151 pretreatment patients with AQP4-IgG+ NMOSD and 151 healthy individuals. We compared the TCR repertoire of those with NMOSD with that of healthy individuals and identified TCR clones that were significantly enriched in NMOSD. In addition, we treated 28 patients with AQP4-IgG+ NMOSD with immunosuppressants and followed up for 6 months to compare changes in NMOSD-specific TCRs (NMOSD-TCRs) before and after treatment. Moreover, we analyzed transcriptome and single-cell B-cell receptor (BCR) data from public databases and performed T-cell activation experiments using antigenic epitopes of cytomegalovirus (CMV) to further explore the triggers of AQP4-IgG+ NMOSD. RESULTS Compared with healthy controls, patients with AQP4-IgG+ NMOSD had significantly reduced diversity and shorter CDR3 length of TCRβ repertoire. Furthermore, we identified 597 NMOSD-TCRs with a high sequence similarity that have the potential to be used in the diagnosis and prognosis of NMOSD. The characterization of NMOSD-TCRs and pathology-associated clonotype annotation indicated that the occurrence of AQP4-IgG+ NMOSD may be associated with CMV infection, which was further corroborated by transcriptome and single-cell BCR analysis results from public databases and T-cell activation experiments. DISCUSSION Our findings suggest that the occurrence of AQP4-IgG+ NMOSD may be associated with CMV infection. In conclusion, our study provides new clues to uncover the causative factors of AQP4-IgG+ NMOSD and provides a theoretical foundation for treating and monitoring the disease.
Collapse
Affiliation(s)
- Yu Miao
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Ziyan Shi
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Wei Zhang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Lin Zhu
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Shanshan Tang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Hongxi Chen
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Xiaofei Wang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Qin Du
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Shuaicheng Li
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Ying Zhang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Wenqin Luo
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Xin Jin
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Mingyan Fang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Hongyu Zhou
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| |
Collapse
|
13
|
Gurun B, Horton W, Murugan D, Zhu B, Leyshock P, Kumar S, Byrne KT, Vonderheide RH, Margolin AA, Mori M, Spellman PT, Coussens LM, Speed TP. An open protocol for modeling T Cell Clonotype repertoires using TCRβ CDR3 sequences. BMC Genomics 2023; 24:349. [PMID: 37365517 DOI: 10.1186/s12864-023-09424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
T cell receptor repertoires can be profiled using next generation sequencing (NGS) to measure and monitor adaptive dynamical changes in response to disease and other perturbations. Genomic DNA-based bulk sequencing is cost-effective but necessitates multiplex target amplification using multiple primer pairs with highly variable amplification efficiencies. Here, we utilize an equimolar primer mixture and propose a single statistical normalization step that efficiently corrects for amplification bias post sequencing. Using samples analyzed by both our open protocol and a commercial solution, we show high concordance between bulk clonality metrics. This approach is an inexpensive and open-source alternative to commercial solutions.
Collapse
Affiliation(s)
- Burcu Gurun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- School of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Wesley Horton
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Dhaarini Murugan
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Biqing Zhu
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Patrick Leyshock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sushil Kumar
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Katelyn T Byrne
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Motomi Mori
- Department of Biostatistics, St. Jude's Children's Research Hospital, Memphis, TN, USA
| | - Paul T Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Lisa M Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
14
|
Li D, Chen C, Li J, Yue J, Ding Y, Wang H, Liang Z, Zhang L, Qiu S, Liu G, Gao Y, Huang Y, Li D, Zhang R, Liu W, Wen X, Li B, Zhang X, Zhang X, Xu RH. A pilot study of lymphodepletion intensity for peripheral blood mononuclear cell-derived neoantigen-specific CD8 + T cell therapy in patients with advanced solid tumors. Nat Commun 2023; 14:3447. [PMID: 37301885 PMCID: PMC10257664 DOI: 10.1038/s41467-023-39225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, the optimal lymphodepletion intensity for peripheral blood mononuclear cell-derived neoantigen-specific CD8 + T cell (Neo-T) therapy has yet to be determined. We report a single-arm, open-label and non-randomized phase 1 study (NCT02959905) of Neo-T therapy with lymphodepletion at various dose intensity in patients with locally advanced or metastatic solid tumors that are refractory to standard therapies. The primary end point is safety and the secondary end points are disease control rate (DCR), progression-free survival (PFS), overall survival (OS). Results show that the treatment is well tolerated with lymphopenia being the most common adverse event in the highest-intensity lymphodepletion groups. Neo-T infusion-related adverse events are only grade 1-2 in the no lymphodepletion group. The median PFS is 7.1 months (95% CI:3.7-9.8), the median OS is 16.8 months (95% CI: 11.9-31.7), and the DCR is 66.7% (6/9) among all groups. Three patients achieve partial response, two of them are in the no lymphodepletion group. In the group without lymphodepletion pretreatment, one patient refractory to prior anti-PD1 therapy shows partial response to Neo-T therapy. Neoantigen specific TCRs are examined in two patients and show delayed expansion after lymphodepletion treatment. In summary, Neo-T therapy without lymphodepletion could be a safe and promising regimen for advanced solid tumors.
Collapse
Affiliation(s)
- Dandan Li
- Biotherapy Center, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China
| | - Jingjing Li
- Biotherapy Center, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | | | - Ya Ding
- Biotherapy Center, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | | | | | - Le Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Si Qiu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Dongli Li
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Rong Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Liu
- Biotherapy Center, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Xizhi Wen
- Biotherapy Center, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaoshi Zhang
- Biotherapy Center, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, China.
- Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, China.
- Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
15
|
Zong F, Long C, Hu W, Chen S, Dai W, Xiao ZX, Cao Y. Abalign: a comprehensive multiple sequence alignment platform for B-cell receptor immune repertoires. Nucleic Acids Res 2023:7173809. [PMID: 37207341 DOI: 10.1093/nar/gkad400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
The utilization of high-throughput sequencing (HTS) for B-cell receptor (BCR) immune repertoire analysis has become widespread in the fields of adaptive immunity and antibody drug development. However, the sheer volume of sequences generated by these experiments presents a challenge in data processing. Specifically, multiple sequence alignment (MSA), a critical aspect of BCR analysis, remains inadequate for handling massive BCR sequencing data and lacks the ability to provide immunoglobulin-specific information. To address this gap, we introduce Abalign, a standalone program specifically designed for ultrafast MSA of BCR/antibody sequences. Benchmark tests demonstrate that Abalign achieves comparable or even better accuracy than state-of-the-art MSA tools, and shows remarkable advantages in terms of speed and memory consumption, reducing the time required for high-throughput analysis from weeks to hours. In addition to its alignment capabilities, Abalign offers a broad range of BCR analysis features, including extracting BCRs, constructing lineage trees, assigning VJ genes, analyzing clonotypes, profiling mutations, and comparing BCR immune repertoires. With its user-friendly graphic interface, Abalign can be easily run on personal computers instead of computing clusters. Overall, Abalign is an easy-to-use and effective tool that enables researchers to analyze massive BCR/antibody sequences, leading to new discoveries in the field of immunoinformatics. The software is freely available at http://cao.labshare.cn/abalign/.
Collapse
Affiliation(s)
- Fanjie Zong
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| | - Chenyu Long
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| | - Wanxin Hu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuang Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wentao Dai
- NHC Key Laboratory of Reproduction Regulation & Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
16
|
Gurun B, Horton W, Murugan D, Zhu B, Leyshock P, Kumar S, Byrne KT, Vonderheide RH, Margolin AA, Mori M, Spellman PT, Coussens LM, Speed TP. An open protocol for modeling T Cell Clonotype repertoires using TCRβ CDR3 sequences. RESEARCH SQUARE 2023:rs.3.rs-2140339. [PMID: 36824803 PMCID: PMC9949261 DOI: 10.21203/rs.3.rs-2140339/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
T cell receptor repertoires can be profiled using next generation sequencing (NGS) to measure and monitor adaptive dynamical changes in response to disease and other perturbations. Genomic DNA-based bulk sequencing is cost-effective but necessitates multiplex target amplification using multiple primer pairs with highly variable amplification efficiencies. Here, we utilize an equimolar primer mixture and propose a single statistical normalization step that efficiently corrects for amplification bias post sequencing. Using samples analyzed by both our open protocol and a commercial solution, we show high concordance between bulk clonality metrics. This approach is an inexpensive and open-source alternative to commercial solutions.
Collapse
|
17
|
Yang B, Li X, Zhang W, Fan J, Zhou Y, Li W, Yin J, Yang X, Guo E, Li X, Fu Y, Liu S, Hu D, Qin X, Dou Y, Xiao R, Lu F, Wang Z, Qin T, Wang W, Zhang Q, Li S, Ma D, Mills GB, Chen G, Sun C. Spatial heterogeneity of infiltrating T cells in high-grade serous ovarian cancer revealed by multi-omics analysis. Cell Rep Med 2022; 3:100856. [PMID: 36543113 PMCID: PMC9798026 DOI: 10.1016/j.xcrm.2022.100856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Tumor-infiltrating lymphocytes (TILs), especially CD8+ TILs, represent a favorable prognostic factor in high-grade serous ovarian cancer (HGSOC) and other tumor lineages. Here, we analyze the spatial heterogeneity of different TIL subtypes in HGSOC. We integrated RNA sequencing, whole-genome sequencing, bulk T cell receptor (TCR) sequencing, as well as single-cell RNA/TCR sequencing to investigate the characteristics and differential composition of TILs across different HGSOC sites. Two immune "cold" patterns in ovarian cancer are identified: (1) ovarian lesions with low infiltration of mainly dysfunctional T cells and immunosuppressive Treg cells and (2) omental lesions infiltrated with non-tumor-specific bystander cells. Exhausted CD8 T cells that are preferentially enriched in ovarian tumors exhibit evidence for expansion and cytotoxic activity. Inherent tumor immune microenvironment characteristics appear to be the main contributor to the spatial differences in TIL status. The landscape of spatial heterogeneity of TILs may inform potential strategies for therapeutic manipulation in HGSOC.
Collapse
Affiliation(s)
- Bin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518083, China
| | - Junpeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Zhou
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518083, China
| | - Wenting Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingjing Yin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Si Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingyu Dou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Funian Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zizhuo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qinghua Zhang
- Department of Gynecology & Obstetrics, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuaicheng Li
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518083, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gordon B Mills
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR 97201, USA; Knight Cancer Institute, Portland, OR 97201, USA; Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
18
|
Zhang W, Wan Z, Li X, Li R, Luo L, Song Z, Miao Y, Li Z, Wang S, Shan Y, Li Y, Chen B, Zhen H, Sun Y, Fang M, Ding J, Yan Y, Zong Y, Wang Z, Zhang W, Yang H, Yang S, Wang J, Jin X, Wang R, Chen P, Min J, Zeng Y, Li T, Xu X, Nie C. A population-based study of precision health assessments using multi-omics network-derived biological functional modules. Cell Rep Med 2022; 3:100847. [PMID: 36493776 PMCID: PMC9798030 DOI: 10.1016/j.xcrm.2022.100847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/05/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022]
Abstract
Recent technological advances in multi-omics and bioinformatics provide an opportunity to develop precision health assessments, which require big data and relevant bioinformatic methods. Here we collect multi-omics data from 4,277 individuals. We calculate the correlations between pairwise features from cross-sectional data and then generate 11 biological functional modules (BFMs) in males and 12 BFMs in females using a community detection algorithm. Using the features in the BFM associated with cardiometabolic health, carotid plaques can be predicted accurately in an independent dataset. We developed a model by comparing individual data with the health baseline in BFMs to assess health status (BFM-ash). Then we apply the model to chronic patients and modify the BFM-ash model to assess the effects of consuming grape seed extract as a dietary supplement. Finally, anomalous BFMs are identified for each subject. Our BFMs and BFM-ash model have huge prospects for application in precision health assessment.
Collapse
Affiliation(s)
- Wei Zhang
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Ziyun Wan
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Xiaoyu Li
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China,BGI Education Center, University of the Chinese Academy of Sciences, Shenzhen 518083, China
| | - Rui Li
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Lihua Luo
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China,BGI Education Center, University of the Chinese Academy of Sciences, Shenzhen 518083, China
| | - Zijun Song
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Miao
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China,BGI Education Center, University of the Chinese Academy of Sciences, Shenzhen 518083, China
| | - Zhiming Li
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Shiyu Wang
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China,BGI Education Center, University of the Chinese Academy of Sciences, Shenzhen 518083, China
| | - Ying Shan
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Yan Li
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Bangwei Chen
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China,School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hefu Zhen
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Yuzhe Sun
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Mingyan Fang
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Jiahong Ding
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Yizhen Yan
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Yang Zong
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Zhen Wang
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Shuang Yang
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Ru Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
| | - Tao Li
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China
| | - Chao Nie
- BGI-Shenzhen, Shenzhen 518083, China,China National GeneBank, Shenzhen 518120, China,Corresponding author
| |
Collapse
|
19
|
Yang P, He Y, Qing P, Xu W, Xie D, Cazier J, Liu X, Varnai C, Zhou Y, Zhao Y, Tang H, Yin X, Liu Y. Application of T-cell receptor repertoire as a novel monitor in dynamic tracking and assessment: A cohort-study based on RA patients. J Cell Mol Med 2022; 26:6042-6055. [PMID: 36440548 PMCID: PMC9753462 DOI: 10.1111/jcmm.17623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
T-cell receptor repertoire (TCRR) sequencing has been widely applied in many fields as a novel tool. This study explored characteristics of TCRR in detail with a cohort of 598 rheumatoid arthritis (RA) patients before and after anti-rheumatic treatments. We highlighted the abnormal TCRR distribution in RA characterized by decreased diversity and increased proportion of hyperexpanded clones (HECs), which was potentially attributed to skewed usage of global V/J segments but not a few certain ones. Enriched motifs analysis in RA community demonstrated the huge heterogeneity of CDR3 sequences, so that individual factors are strongly recommended to be taken into consideration when it comes to clinical application of TCRR. Disease-modifying antirheumatic drugs (DMARDs) can regulate immune system through recovery of TCRR richness to relieve symptoms. Remarkably, sensitive gene profile and advantageous gene profile were identified in this study as new biomarkers for different DMARDs regimens.
Collapse
Affiliation(s)
- Peiqing Yang
- Department of Rheumatology, West China HospitalSichuan UniversityChengduChina
| | - Yijing He
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine CenterWest China Hospital, Sichuan UniversityChengduChina,Laboratory of Nervous System Disease and Brain Functions, Clinical Research InstituteThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Pingying Qing
- Department of Rheumatology, West China HospitalSichuan UniversityChengduChina
| | - Wangdong Xu
- Department of Rheumatology, West China HospitalSichuan UniversityChengduChina,Department of Evidence‐Based MedicineSchool of Public Health, Southwest Medical UniversityLuzhouChina
| | - Dan Xie
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine CenterWest China Hospital, Sichuan UniversityChengduChina
| | | | - Xiao Liu
- BGI‐Shenzhen and Shenzhen Key Laboratory of Transomics BiotechnologiesBGI‐ShenzhenShenzhenChina
| | - Csilla Varnai
- Center for Computational BiologyUniversity of BirminghamBirminghamUK
| | - Yi Zhou
- Department of Medical Affairs, West China HospitalSichuan UniversityChengduChina
| | - Yi Zhao
- Department of Rheumatology, West China HospitalSichuan UniversityChengduChina
| | - Huairong Tang
- Health Management CenterWest China Hospital of Sichuan UniversityChengduChina
| | | | - Yi Liu
- Department of Rheumatology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
20
|
Pettini E, Medaglini D, Ciabattini A. Profiling the B cell immune response elicited by vaccination against the respiratory virus SARS-CoV-2. Front Immunol 2022; 13:1058748. [PMID: 36505416 PMCID: PMC9729280 DOI: 10.3389/fimmu.2022.1058748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
B cells play a fundamental role in host defenses against viral infections. Profiling the B cell response elicited by SARS-CoV-2 vaccination, including the generation and persistence of antigen-specific memory B cells, is essential for improving the knowledge of vaccine immune responsiveness, beyond the antibody response. mRNA-based vaccines have shown to induce a robust class-switched memory B cell response that persists overtime and is boosted by further vaccine administration, suggesting that memory B cells are critical in driving a recall response upon re-exposure to SARS-CoV-2 antigens. Here, we focus on the role of the B cell response in the context of SARS-CoV-2 vaccination, offering an overview of the different technologies that can be used to identify spike-specific B cells, characterize their phenotype using machine learning approaches, measure their capacity to reactivate following antigen encounter, and tracking the maturation of the B cell receptor antigenic affinity.
Collapse
Affiliation(s)
| | | | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
21
|
Wang M, Wei L, Xiang H, Ren B, Liu X, Jiang L, Yang N, Shi J. A megadiverse naïve library derived from numerous camelids for efficient and rapid development of VHH antibodies. Anal Biochem 2022; 657:114871. [PMID: 36108795 DOI: 10.1016/j.ab.2022.114871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/01/2022]
Abstract
The field of antibody development is under pressure to meet rising demands for speed, cost-effectiveness, efficacy, reliability, and large-scale production. It is costly and time-consuming to immunize animals and build a single-domain antibody (sdAb) library for each target. Using the variable domain (VHH) of heavy-chain only antibodies (HcAbs) derived from blood samples of 75 non-immunized camelid animals (51 alpacas, 13 llamas, 11 Bactrian camels), and spleens from two Bactrian camels, a naïve sdAb library with extensive megadiversity and reusability was constructed. The library was evaluated using next-generation DNA sequencing (NGS) and was found to contain hundreds of billions of unique clones. To confirm the availability of target-specific VHHs, a naive library was screened for a variety of targets. At least two VHH candidates were extracted for each target using a 20-day selection pipeline. Some binders had ultrahigh potencies, with binding affinities in the nanomolar range. This naïve library, in particular, offers the possibility of acquiring unique antibodies targeting antigens of interest with low feasible dissociation constant (kD) without the time, effort, and price associated in producing antibodies in animals via antigen injection. Overall, the study shows that the megadiverse naïve library provides a rapid, adaptable, and easy platform for antibody creation, emphasizing its therapeutic and diagnostic implications.
Collapse
Affiliation(s)
- Meiniang Wang
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Likun Wei
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China; Biotechnology and Health Centre, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Bingzhao Ren
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaopan Liu
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Lin Jiang
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China; Complete Genomics, Inc., 2904 Orchard Parkway, San Jose, CA, 95134, USA.
| | - Jiahai Shi
- Synthetic Biology Translational Research Programmes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
22
|
Zheng B, Yang Y, Chen L, Wu M, Zhou S. B-Cell Receptor Repertoire Sequencing: Deeper Digging into the Mechanisms and Clinical Aspects of Immune-mediated Diseases. iScience 2022; 25:105002. [PMID: 36157582 PMCID: PMC9494237 DOI: 10.1016/j.isci.2022.105002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
B cells play an essential role in adaptive immunity and are intimately correlated with pleiotropic immune-mediated diseases. Each B cell occupies a unique B cell receptor (BCR), and all BCRs throughout our body form “BCR repertoire.” With the development of sequencing technology and coupled bioinformatics, accumulating evidence indicates that BCR repertoire largely varies under physiological and pathological conditions. Therefore, comprehensive grasp of BCR repertoire will provide new insights into the pathogenesis of immune-mediated diseases and help exploit efficient diagnostic and treatment strategies. In this review, we start with an overview of BCR repertoire and related sequencing technologies and summarize their current applications in immune-mediated diseases. We also underscore the challenges of this emerging field and propose promising future directions in advancing BCR repertoire exploration.
Collapse
Affiliation(s)
- Bohao Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yuqing Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Lin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Corresponding author
| |
Collapse
|
23
|
Andreani T, Slot LM, Gabillard S, Strübing C, Reimertz C, Yaligara V, Bakker AM, Olfati-Saber R, Toes REM, Scherer HU, Augé F, Šimaitė D. Benchmarking computational methods for B-cell receptor reconstruction from single-cell RNA-seq data. NAR Genom Bioinform 2022; 4:lqac049. [PMID: 35855325 PMCID: PMC9278041 DOI: 10.1093/nargab/lqac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
Multiple methods have recently been developed to reconstruct full-length B-cell receptors (BCRs) from single-cell RNA sequencing (scRNA-seq) data. This need emerged from the expansion of scRNA-seq techniques, the increasing interest in antibody-based drug development and the importance of BCR repertoire changes in cancer and autoimmune disease progression. However, a comprehensive assessment of performance-influencing factors such as the sequencing depth, read length or number of somatic hypermutations (SHMs) as well as guidance regarding the choice of methodology is still lacking. In this work, we evaluated the ability of six available methods to reconstruct full-length BCRs using one simulated and three experimental SMART-seq datasets. In addition, we validated that the BCRs assembled in silico recognize their intended targets when expressed as monoclonal antibodies. We observed that methods such as BALDR, BASIC and BRACER showed the best overall performance across the tested datasets and conditions, whereas only BASIC demonstrated acceptable results on very short read libraries. Furthermore, the de novo assembly-based methods BRACER and BALDR were the most accurate in reconstructing BCRs harboring different degrees of SHMs in the variable domain, while TRUST4, MiXCR and BASIC were the fastest. Finally, we propose guidelines to select the best method based on the given data characteristics.
Collapse
Affiliation(s)
- Tommaso Andreani
- AI & Deep Analytics—Omics Data Science, Sanofi , Frankfurt am Main 65926, Germany
| | - Linda M Slot
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | | | - Carsten Strübing
- Immunology & Inflammation Research, Sanofi , Frankfurt am Main 65926, Germany
| | - Claus Reimertz
- Immunology & Inflammation Research, Sanofi , Frankfurt am Main 65926, Germany
| | - Veeranagouda Yaligara
- Molecular Biology & Genomics, Translational Science Unit, Sanofi , Chilly-Mazarin 91385, France
| | - Aleida M Bakker
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | | | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | - Franck Augé
- AI & Deep Analytics—Omics Data Science, Sanofi , Paris 91385, France
| | - Deimantė Šimaitė
- AI & Deep Analytics—Omics Data Science, Sanofi , Frankfurt am Main 65926, Germany
| |
Collapse
|
24
|
Gao H, Yu L, Yan F, Zheng Y, Huang H, Zhuang X, Zeng Y. Landscape of B Cell Receptor Repertoires in COVID-19 Patients Revealed Through CDR3 Sequencing of Immunoglobulin Heavy and Light Chains. Immunol Invest 2022; 51:1994-2008. [PMID: 35797435 DOI: 10.1080/08820139.2022.2092407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The outbreak and persistence of coronavirus disease 2019 (COVID-19) threaten human health. B cells play a vital role in fighting the infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite many studies on the immune responses in COVID-19 patients, it is still unclear how B cell receptor (BCR) constituents, including immunoglobulin heavy (IGHs) and light chains (IGLs), respond to SARS-CoV-2 in patients with varying symptoms. In this study, we conducted complementarity-determining region 3 (CDR3) sequencing of BCR IGHs and IGLs from the peripheral blood of COVID-19 patients and healthy donors. The results showed significantly reduced clonal diversity, more expanded clones, and longer CDR3 lengths of IGH and IGL in COVID-19 patients than those in healthy individuals. The IGLs had a much higher percentage of VJ skew usage (47.83% IGLV and 42.86% IGLJ were significantly regulated) than the IGHs (12.09% IGHV and 0% IGHJ) between the healthy individuals and patients, which indicated the importance of BCR light chains. Furthermore, we found a largely expanded IGLV3-25 gene cluster mostly pairing with IGLJ1 and ILGJ2 in COVID-19 patients and a newly identified upregulated IGLJ1 gene and IGLJ2+IGLV13-21 recombination, both of which are potential sources of SARS-CoV-2-targeting antibodies. Our findings on specific immune B-cell signatures associated with COVID-19 have clinical implications for vaccine and biomarker development for disease diagnosis.
Collapse
Affiliation(s)
- Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.,Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Furong Yan
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Youxian Zheng
- Department of Microbiology, Quanzhou Municipal Center for Disease Control and Prevention, Fujian Province, Quanzhou, China
| | - Hongbo Huang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xibin Zhuang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yiming Zeng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
25
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3%' and 2*3*8=6*8 and 'taxd'!='taxd%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
26
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3xxs86ybz')) or 13=(select 13 from pg_sleep(7))--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
27
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3-1 waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
28
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-39ff063ur')) or 87=(select 87 from pg_sleep(15))--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
29
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-350furdoz')); waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
30
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-37mniiybo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
31
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3-1); waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
32
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3' and 2*3*8=6*8 and 'iorh'='iorh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
33
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3" and 2*3*8=6*8 and "rm4z"="rm4z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
34
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 PMCID: PMC9166775 DOI: 10.1038/s41698-022-00279-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
ABSRACT Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China. .,Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China. .,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
35
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3wy3fiptt')); waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
36
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-30"xor(if(now()=sysdate(),sleep(15),0))xor"z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
37
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3ou3kdcfa'; waitfor delay '0:0:3' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
38
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3o5iwkyyq'; waitfor delay '0:0:7' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
39
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3andenjck' or 257=(select 257 from pg_sleep(15))--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
40
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3'||dbms_pipe.receive_message(chr(98)||chr(98)||chr(98),15)||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
41
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3-1 waitfor delay '0:0:3' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
42
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3����%2527%2522\'\"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
43
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3'"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
44
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
45
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-31cj8glnr'); waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
46
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3-1 waitfor delay '0:0:7' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
47
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3-1; waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
48
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3dv59iely') or 344=(select 344 from pg_sleep(15))--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
49
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-3hxth5hxl'; waitfor delay '0:0:15' --] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
50
|
Guo Z, Yuan Y, Chen C, Lin J, Ma Q, Liu G, Gao Y, Huang Y, Chen L, Chen LZ, Huang YF, Wang H, Li B, Chen Y, Zhang X. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol 2022; 6:34. [PMID: 35661819 DOI: 10.1038/s41698-022-00279-30'xor(if(now()=sysdate(),sleep(15),0))xor'z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/15/2022] [Indexed: 01/29/2024] Open
Abstract
Neoantigens are ideal targets for dendritic cell (DC) vaccines. So far, only a few neoantigen-based DC vaccines have been investigated in clinical trials. Here, we reported a case of a patient with metastatic gastric cancer who received personalized neoantigen-loaded monocyte-derived dendritic cell (Neo-MoDC) vaccines followed by combination therapy of the Neo-MoDC and immune checkpoint inhibitor (ICI). The patient developed T cell responses against neoantigens after receiving the Neo-MoDC vaccine alone. The following combination therapy triggered a stronger immune response and mediated complete regression of all tumors for over 25 months till October, 2021. Peripheral blood mononuclear cells recognized seven of the eight vaccine neoantigens. And the frequency of neoantigen-specific T cell clones increased obviously after vaccination. Overall, this report describing a complete tumor regression in a gastric cancer patient mediated by Neo-MoDC vaccine in combination with ICI, and suggesting a promising treatment for patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Zengqing Guo
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yuan Yuan
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Geng Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Ling Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Li-Zhu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yu-Fang Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|