1
|
Meissner GW, Vannan A, Jeter J, Close K, DePasquale GM, Dorman Z, Forster K, Beringer JA, Gibney T, Hausenfluck JH, He Y, Henderson K, Johnson L, Johnston RM, Ihrke G, Iyer NA, Lazarus R, Lee K, Li HH, Liaw HP, Melton B, Miller S, Motaher R, Novak A, Ogundeyi O, Petruncio A, Price J, Protopapas S, Tae S, Taylor J, Vorimo R, Yarbrough B, Zeng KX, Zugates CT, Dionne H, Angstadt C, Ashley K, Cavallaro A, Dang T, Gonzalez GA, Hibbard KL, Huang C, Kao JC, Laverty T, Mercer M, Perez B, Pitts SR, Ruiz D, Vallanadu V, Zheng GZ, Goina C, Otsuna H, Rokicki K, Svirskas RR, Cheong HSJ, Dolan MJ, Ehrhardt E, Feng K, Galfi BEI, Goldammer J, Huston SJ, Hu N, Ito M, McKellar C, Minegishi R, Namiki S, Nern A, Schretter CE, Sterne GR, Venkatasubramanian L, Wang K, Wolff T, Wu M, George R, Malkesman O, Aso Y, Card GM, Dickson BJ, Korff W, Ito K, Truman JW, Zlatic M, Rubin GM. A split-GAL4 driver line resource for Drosophila neuron types. eLife 2025; 13:RP98405. [PMID: 39854223 PMCID: PMC11759409 DOI: 10.7554/elife.98405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult Drosophila CNS and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. Previously published and new lines are included, all validated for driver expression and curated for optimal cell-type specificity across diverse cell types. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.
Collapse
Affiliation(s)
- Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Allison Vannan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Jeter
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kari Close
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gina M DePasquale
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Zachary Dorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kaitlyn Forster
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jaye Anne Beringer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Theresa Gibney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Yisheng He
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kristin Henderson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lauren Johnson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gudrun Ihrke
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nirmala A Iyer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rachel Lazarus
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelley Lee
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hsing-Hsi Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hua-Peng Liaw
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brian Melton
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Scott Miller
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reeham Motaher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alexandra Novak
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alyson Petruncio
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jacquelyn Price
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sophia Protopapas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Susana Tae
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Taylor
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rebecca Vorimo
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brianna Yarbrough
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kevin Xiankun Zeng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Heather Dionne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Angstadt
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelly Ashley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Amanda Cavallaro
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tam Dang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cuizhen Huang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jui-Chun Kao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Todd Laverty
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Monti Mercer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brenda Perez
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Scarlett Rose Pitts
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Danielle Ruiz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Viruthika Vallanadu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Grace Zhiyu Zheng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert R Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Han SJ Cheong
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael-John Dolan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, University of CologneCologneGermany
| | - Kai Feng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Basel EI Galfi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, University of CologneCologneGermany
| | - Stephen J Huston
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Nan Hu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire McKellar
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Gabriella R Sterne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Department of Cell & Molecular Biology, University of California, BerkeleyBerkeleyUnited States
| | | | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ming Wu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Oz Malkesman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, University of CologneCologneGermany
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | |
Collapse
|
2
|
Zhu J, Boivin JC, Garner A, Ning J, Zhao YQ, Ohyama T. Feedback inhibition by a descending GABAergic neuron regulates timing of escape behavior in Drosophila larvae. eLife 2024; 13:RP93978. [PMID: 39196635 DOI: 10.7554/elife.93978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Escape behaviors help animals avoid harm from predators and other threats in the environment. Successful escape relies on integrating information from multiple stimulus modalities (of external or internal origin) to compute trajectories toward safe locations, choose between actions that satisfy competing motivations, and execute other strategies that ensure survival. To this end, escape behaviors must be adaptive. When a Drosophila melanogaster larva encounters a noxious stimulus, such as the focal pressure a parasitic wasp applies to the larval cuticle via its ovipositor, it initiates a characteristic escape response. The escape sequence consists of an initial abrupt bending, lateral rolling, and finally rapid crawling. Previous work has shown that the detection of noxious stimuli primarily relies on class IV multi-dendritic arborization neurons (Class IV neurons) located beneath the body wall, and more recent studies have identified several important components in the nociceptive neural circuitry involved in rolling. However, the neural mechanisms that underlie the rolling-escape sequence remain unclear. Here, we present both functional and anatomical evidence suggesting that bilateral descending neurons within the subesophageal zone of D. melanogaster larva play a crucial role in regulating the termination of rolling and subsequent transition to escape crawling. We demonstrate that these descending neurons (designated SeIN128) are inhibitory and receive inputs from a second-order interneuron upstream (Basin-2) and an ascending neuron downstream of Basin-2 (A00c). Together with optogenetic experiments showing that co-activation of SeIN128 neurons and Basin-2 influence the temporal dynamics of rolling, our findings collectively suggest that the ensemble of SeIN128, Basin-2, and A00c neurons forms a GABAergic feedback loop onto Basin-2, which inhibits rolling and thereby facilitates the shift to escape crawling.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Biology, McGill University, Montreal, Canada
- Integrated Program of Neuroscience, McGill University, Montreal, Canada
| | - Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, Canada
- Integrated Program of Neuroscience, McGill University, Montreal, Canada
| | - Alastair Garner
- Department of Biology, McGill University, Montreal, Canada
- Integrated Program of Neuroscience, McGill University, Montreal, Canada
| | - Jing Ning
- Department of Biology, McGill University, Montreal, Canada
| | - Yi Q Zhao
- Department of Biology, McGill University, Montreal, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Kim ES, Rajan A, Chang K, Govindarajan S, Gulick C, English E, Rodriguez B, Bloomfield O, Nakada S, Beard C, O’Connor S, Mastroianni S, Downey E, Feigenbaum M, Tolentino C, Pace A, Khan M, Moon S, DiPrima J, Syed A, Lin F, Abukhadra Y, Bacon I, Beckerle J, Cho S, Donkor NE, Garberg L, Harrington A, Hoang M, Lawani N, Noori A, Park E, Parsons E, Oravitan P, Chen M, Molina C, Richmond C, Reddi A, Huang J, Shugrue C, Coviello R, Unver S, Indelicarto M, Islamovic E, McIlroy R, Yang A, Hamad M, Griffin E, Ahmed Z, Alla A, Fitzgerald P, Choi A, Das T, Cheng Y, Yu J, Roderiques T, Lee E, Liu L, Harper J, Wang J, Suhr C, Tan M, Luque J, Tam AR, Chen E, Triff M, Zimmermann L, Zhang E, Wood J, Clark K, Kpodonu N, Dey A, Ecker A, Chuang M, López RKS, Sun H, Wei Z, Stone H, Chi CYJ, Silvestri A, Orloff P, Nedumaran N, Zou A, Ünver L, Page O, Kim M, Chan TYT, Tulloch A, Hernandez A, Pillai A, Chen C, Chowdhury N, Huang L, Mudide A, Paik G, Wingate A, Quinn L, Conybere C, Baumgardt LL, Buckley R, Kolberg Z, Pattison R, Shazli AA, Ganske P, Sfragara L, Strub A, Collier B, Tamana H, Ravindran D, Howden J, Stewart M, Shimizu S, Braniff J, Fong M, Gutman L, Irvine D, Malholtra S, Medina J, Park J, Yin A, Abromavage H, Barrett B, Chen J, Cho R, Dilatush M, Gaw G, Gu C, Huang J, Kilby H, Markel E, McClure K, Phillips W, Polaski B, Roselli A, Saint-Cyr S, Shin E, Tatum K, Tumpunyawat T, Wetherill L, Ptaszynska S, Zeleznik M, Pesendorfer A, Nolan A, Tao J, Sammeta D, Nicholson L, Dinh GV, Foltz M, Vo A, Ross M, Tokarski A, Hariharan S, Wang E, Baziuk M, Tay A, Wong YHM, Floyd J, Cui A, Pierre K, Coppisetti N, Kutam M, Khurjekar D, Gadzi A, Gubbay B, Pedretti S, Belovich S, Yeung T, Fey M, Shaffer L, Li A, Beritela G, Huyghue K, Foster G, Durso-Finley G, Thierfelder Q, Kiernan H, Lenkowsky A, Thomas T, Cheng N, Chao O, L’Etoile-Goga P, King A, McKinley P, Read N, Milberg D, Lin L, Wong M, Gilman I, Brown S, Chen L, Kosai J, Verbinsky M, Belshaw-Hood A, Lee H, Zhou C, Lobo M, Tse A, Tran K, Lewis K, Sonawane P, Ngo J, Zuzga S, Chow L, Huynh V, Yang W, Lim S, Stites B, Chang S, Cruz-Balleza R, Pelta M, Kujawski S, Yuan C, Standen-Bloom E, Witt O, Anders K, Duane A, Huynh N, Lester B, Fung-Lee S, Fung M, Situ M, Canigiula P, Dijkgraaf M, Romero W, Baula SK, Wong K, Xu I, Martinez B, Nuygen R, Norris L, Nijensohn N, Altman N, Maajid E, Burkhardt O, Chanda J, Doscher C, Gopal A, Good A, Good J, Herrera N, Lanting L, Liem S, Marks A, McLaughlin E, Lee A, Mohr C, Patton E, Pyarali N, Oczon C, Richards D, Good N, Goss S, Khan A, Madonia R, Mitchell V, Sun N, Vranka T, Garcia D, Arroyo F, Morales E, Camey S, Cano G, Bernabe A, Arroyo J, Lopez Y, Gonzalez E, Zumba B, Garcia J, Vargas E, Trinidad A, Candelaria N, Valdez V, Campuzano F, Pereznegron E, Medrano J, Gutierrez J, Gutierrez E, Abrego ET, Gutierrez D, Ortiz C, Barnes A, Arms E, Mitchell L, Balanzá C, Bradford J, Detroy H, Ferguson D, Guillermo E, Manapragada A, Nanula D, Serna B, Singh K, Sramaty E, Wells B, Wiggins M, Dowling M, Schmadeke G, Cafferky S, Good S, Reese M, Fleig M, Gannett A, Cain C, Lee M, Oberto P, Rinehart J, Pan E, Mathis SA, Joiner J, Barr L, Evans CJ, Baena-Lopez A, Beatty A, Collette J, Smullen R, Suttie J, Chisholm T, Rotondo C, Lewis G, Turner V, Stark L, Fox E, Amirapu A, Park S, Lantz N, Rankin AE, Kim SK, Kockel L. Generation of LexA enhancer-trap lines in Drosophila by an international scholastic network. G3 (BETHESDA, MD.) 2023; 13:jkad124. [PMID: 37279923 PMCID: PMC10468311 DOI: 10.1093/g3journal/jkad124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Conditional gene regulation in Drosophila through binary expression systems like the LexA-LexAop system provides a superb tool for investigating gene and tissue function. To increase the availability of defined LexA enhancer trap insertions, we present molecular, genetic, and tissue expression studies of 301 novel Stan-X LexA enhancer traps derived from mobilization of the index SX4 line. This includes insertions into distinct loci on the X, II, and III chromosomes that were not previously associated with enhancer traps or targeted LexA constructs, an insertion into ptc, and seventeen insertions into natural transposons. A subset of enhancer traps was expressed in CNS neurons known to produce and secrete insulin, an essential regulator of growth, development, and metabolism. Fly lines described here were generated and characterized through studies by students and teachers in an international network of genetics classes at public, independent high schools, and universities serving a diversity of students, including those underrepresented in science. Thus, a unique partnership between secondary schools and university-based programs has produced and characterized novel resources in Drosophila, establishing instructional paradigms devoted to unscripted experimental science.
Collapse
Affiliation(s)
- Ella S Kim
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Arjun Rajan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Eva English
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | - Sarah O’Connor
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | - Emma Downey
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | - Abigail Pace
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Marina Khan
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Soyoun Moon
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Jordan DiPrima
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Amber Syed
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Flora Lin
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | | | - Sophia Cho
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Mai Hoang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Nosa Lawani
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Ayush Noori
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Euwie Park
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | - Adith Reddi
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Jason Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Selma Unver
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Alana Yang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Mahdi Hamad
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Zara Ahmed
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Asha Alla
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Audrey Choi
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Tanya Das
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Joshua Yu
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Ethan Lee
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Jason Wang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Chris Suhr
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Max Tan
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Emma Chen
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Max Triff
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Eric Zhang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Jackie Wood
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Nat Kpodonu
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Antar Dey
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Harry Sun
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Zijing Wei
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Henry Stone
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | - Leyla Ünver
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Oscair Page
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Minseo Kim
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | | | - Lina Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Lily Quinn
- Haileybury School, Hertford SG13 7NU, UK
| | | | | | | | | | | | | | - Pia Ganske
- Haileybury School, Hertford SG13 7NU, UK
| | | | | | | | | | | | | | | | | | - Julia Braniff
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Melanie Fong
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Lucy Gutman
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Danny Irvine
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sahil Malholtra
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jillian Medina
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - John Park
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Alicia Yin
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Breanna Barrett
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jacqueline Chen
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Rachelle Cho
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Mac Dilatush
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Gabriel Gaw
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Caitlin Gu
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jupiter Huang
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Houston Kilby
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ethan Markel
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Katie McClure
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - William Phillips
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Benjamin Polaski
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Amelia Roselli
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Soleil Saint-Cyr
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ellie Shin
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Kylan Tatum
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tai Tumpunyawat
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Lucia Wetherill
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sara Ptaszynska
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Maddie Zeleznik
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Anna Nolan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jeffrey Tao
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Divya Sammeta
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Laney Nicholson
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Giao Vu Dinh
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Merrin Foltz
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - An Vo
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Maggie Ross
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Andrew Tokarski
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Samika Hariharan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Elaine Wang
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Martha Baziuk
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ashley Tay
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Jax Floyd
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Aileen Cui
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Kieran Pierre
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Nikita Coppisetti
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Matthew Kutam
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Dhruv Khurjekar
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Anthony Gadzi
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ben Gubbay
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sophia Pedretti
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sofiya Belovich
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tiffany Yeung
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Mercy Fey
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Layla Shaffer
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Arthur Li
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Kyle Huyghue
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Greg Foster
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Quinn Thierfelder
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Holly Kiernan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Andrew Lenkowsky
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tesia Thomas
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Nicole Cheng
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Olivia Chao
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Pia L’Etoile-Goga
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Alexa King
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Paris McKinley
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Nicole Read
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - David Milberg
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Leila Lin
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Melinda Wong
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Io Gilman
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Brown
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Lila Chen
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Jordyn Kosai
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Mark Verbinsky
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Honon Lee
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Cathy Zhou
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Maya Lobo
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Asia Tse
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Kyle Tran
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Kira Lewis
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Pratmesh Sonawane
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Jonathan Ngo
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Sophia Zuzga
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Lillian Chow
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Vianne Huynh
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Wenyi Yang
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Lim
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Brandon Stites
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Shannon Chang
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Michaela Pelta
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Stella Kujawski
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Christopher Yuan
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Oliver Witt
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Karina Anders
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Audrey Duane
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Nancy Huynh
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Benjamin Lester
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Fung-Lee
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Melanie Fung
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Mandy Situ
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Paolo Canigiula
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Matijs Dijkgraaf
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Wilbert Romero
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Kimberly Wong
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Ivana Xu
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Reena Nuygen
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Lucy Norris
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Noah Nijensohn
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Naomi Altman
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Elise Maajid
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | | | | | | | - Alex Gopal
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Aaron Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Jonah Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | - Sophia Liem
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Anila Marks
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | - Audrey Lee
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Collin Mohr
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Emma Patton
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | | | - Nathan Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | - Adeeb Khan
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | - Natasha Sun
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | | | | | | | | | | | | | | | | | - Bryan Zumba
- Pritzker College Prep, Chicago, IL 60639, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jake Bradford
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | | | | | | | | | | | - Khushi Singh
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Emily Sramaty
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Brian Wells
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | - Melissa Dowling
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | | | | | | | | | | | | | - Cory Cain
- Pritzker College Prep, Chicago, IL 60639, USA
| | - Melody Lee
- Harvard-Westlake School, Los Angeles, CA 90077, USA
| | | | | | | | | | | | - Leslie Barr
- Westtown School, West Chester, PA 19382, USA
| | - Cory J Evans
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | - Andrea Beatty
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | - Robert Smullen
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Jeanne Suttie
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | | | | | | | - Elizabeth Fox
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Anjana Amirapu
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicole Lantz
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lutz Kockel
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Jones JD, Holder BL, Eiken KR, Vogt A, Velarde AI, Elder AJ, McEllin JA, Dissel S. Regulation of sleep by cholinergic neurons located outside the central brain in Drosophila. PLoS Biol 2023; 21:e3002012. [PMID: 36862736 PMCID: PMC10013921 DOI: 10.1371/journal.pbio.3002012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/14/2023] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
Sleep is a complex and plastic behavior regulated by multiple brain regions and influenced by numerous internal and external stimuli. Thus, to fully uncover the function(s) of sleep, cellular resolution of sleep-regulating neurons needs to be achieved. Doing so will help to unequivocally assign a role or function to a given neuron or group of neurons in sleep behavior. In the Drosophila brain, neurons projecting to the dorsal fan-shaped body (dFB) have emerged as a key sleep-regulating area. To dissect the contribution of individual dFB neurons to sleep, we undertook an intersectional Split-GAL4 genetic screen focusing on cells contained within the 23E10-GAL4 driver, the most widely used tool to manipulate dFB neurons. In this study, we demonstrate that 23E10-GAL4 expresses in neurons outside the dFB and in the fly equivalent of the spinal cord, the ventral nerve cord (VNC). Furthermore, we show that 2 VNC cholinergic neurons strongly contribute to the sleep-promoting capacity of the 23E10-GAL4 driver under baseline conditions. However, in contrast to other 23E10-GAL4 neurons, silencing these VNC cells does not block sleep homeostasis. Thus, our data demonstrate that the 23E10-GAL4 driver contains at least 2 different types of sleep-regulating neurons controlling distinct aspects of sleep behavior.
Collapse
Affiliation(s)
- Joseph D. Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Brandon L. Holder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Kiran R. Eiken
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alex Vogt
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Adriana I. Velarde
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alexandra J. Elder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jennifer A. McEllin
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Stephane Dissel
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
5
|
Dissel S, Klose MK, van Swinderen B, Cao L, Ford M, Periandri EM, Jones JD, Li Z, Shaw PJ. Sleep-promoting neurons remodel their response properties to calibrate sleep drive with environmental demands. PLoS Biol 2022; 20:e3001797. [PMID: 36173939 PMCID: PMC9521806 DOI: 10.1371/journal.pbio.3001797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/16/2022] [Indexed: 01/29/2023] Open
Abstract
Falling asleep at the wrong time can place an individual at risk of immediate physical harm. However, not sleeping degrades cognition and adaptive behavior. To understand how animals match sleep need with environmental demands, we used live-brain imaging to examine the physiological response properties of the dorsal fan-shaped body (dFB) following interventions that modify sleep (sleep deprivation, starvation, time-restricted feeding, memory consolidation) in Drosophila. We report that dFB neurons change their physiological response-properties to dopamine (DA) and allatostatin-A (AstA) in response to different types of waking. That is, dFB neurons are not simply passive components of a hard-wired circuit. Rather, the dFB neurons intrinsically regulate their response to the activity from upstream circuits. Finally, we show that the dFB appears to contain a memory trace of prior exposure to metabolic challenges induced by starvation or time-restricted feeding. Together, these data highlight that the sleep homeostat is plastic and suggests an underlying mechanism.
Collapse
Affiliation(s)
- Stephane Dissel
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail: (SD); (PJS)
| | - Markus K. Klose
- University of Pittsburgh School of Medicine, Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania, United States of America
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Lijuan Cao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Melanie Ford
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Erica M. Periandri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph D. Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Zhaoyi Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (SD); (PJS)
| |
Collapse
|
6
|
Fölsz O, Lin CC, Task D, Riabinina O, Potter CJ. The Q-system: A Versatile Repressible Binary Expression System. Methods Mol Biol 2022; 2540:35-78. [PMID: 35980572 DOI: 10.1007/978-1-0716-2541-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.
Collapse
Affiliation(s)
- Orsolya Fölsz
- Department of Biosciences, Durham University, Durham, UK
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Giesel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Darya Task
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Eschbach C, Fushiki A, Winding M, Afonso B, Andrade IV, Cocanougher BT, Eichler K, Gepner R, Si G, Valdes-Aleman J, Fetter RD, Gershow M, Jefferis GS, Samuel AD, Truman JW, Cardona A, Zlatic M. Circuits for integrating learned and innate valences in the insect brain. eLife 2021; 10:62567. [PMID: 34755599 PMCID: PMC8616581 DOI: 10.7554/elife.62567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all mushroom body (MB) output neurons (encoding learned valences) and characterized their patterns of interaction with lateral horn (LH) neurons (encoding innate valences) in Drosophila larva. The connectome revealed multiple convergence neuron types that receive convergent MB and LH inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this, we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.
Collapse
Affiliation(s)
- Claire Eschbach
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Akira Fushiki
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Neuroscience & Neurology, & Zuckerman Mind Brain Institute, Columbia University, New York, United States
| | - Michael Winding
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Bruno Afonso
- HHMI Janelia Research Campus, Richmond, United Kingdom
| | - Ingrid V Andrade
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Molecular, Cell and Developmental Biology, University California Los Angeles, Los Angeles, United States
| | - Benjamin T Cocanougher
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Katharina Eichler
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ruben Gepner
- Department of Physics, New York University, New York, United States
| | - Guangwei Si
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Javier Valdes-Aleman
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Department of Molecular, Cell and Developmental Biology, University California Los Angeles, Los Angeles, United States
| | | | - Marc Gershow
- Department of Physics, New York University, New York, United States.,Center for Neural Science, New York University, New York, United States.,Neuroscience Institute, New York University, New York, United States
| | - Gregory Sxe Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Aravinthan Dt Samuel
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - James W Truman
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Biology, University of Washington, Seattle, United States
| | - Albert Cardona
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marta Zlatic
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Sterne GR, Otsuna H, Dickson BJ, Scott K. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. eLife 2021; 10:e71679. [PMID: 34473057 PMCID: PMC8445619 DOI: 10.7554/elife.71679] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult Drosophila melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single-cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.
Collapse
Affiliation(s)
- Gabriella R Sterne
- University of California BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandQueenslandAustralia
| | - Kristin Scott
- University of California BerkeleyBerkeleyUnited States
| |
Collapse
|
10
|
Driesschaert B, Mergan L, Temmerman L. Conditional gene expression in invertebrate animal models. J Genet Genomics 2021; 48:14-31. [PMID: 33814307 DOI: 10.1016/j.jgg.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications. Conditional expression allows for (ir)reversible switching of genes on or off, with the potential of spatial and/or temporal control. This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis, providing tools to answer a wider array of research questions across biological disciplines. Spatial and/or temporal control are granted primarily by (combinations of) specific promoters, temperature regimens, compound addition, or illumination. The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales, using organisms amenable to easy genetic manipulation. Recent years witnessed an exciting expansion and optimization of such tools, of which we provide a comprehensive overview and discussion regarding their use in invertebrates. The mechanism, applicability, benefits, and drawbacks of each of the systems, as well as further developments to be expected in the foreseeable future, are highlighted.
Collapse
Affiliation(s)
- Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
Luan H, Diao F, Scott RL, White BH. The Drosophila Split Gal4 System for Neural Circuit Mapping. Front Neural Circuits 2020; 14:603397. [PMID: 33240047 PMCID: PMC7680822 DOI: 10.3389/fncir.2020.603397] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
The diversity and dense interconnectivity of cells in the nervous system present a huge challenge to understanding how brains work. Recent progress toward such understanding, however, has been fuelled by the development of techniques for selectively monitoring and manipulating the function of distinct cell types-and even individual neurons-in the brains of living animals. These sophisticated techniques are fundamentally genetic and have found their greatest application in genetic model organisms, such as the fruit fly Drosophila melanogaster. Drosophila combines genetic tractability with a compact, but cell-type rich, nervous system and has been the incubator for a variety of methods of neuronal targeting. One such method, called Split Gal4, is playing an increasingly important role in mapping neural circuits in the fly. In conjunction with functional perturbations and behavioral screens, Split Gal4 has been used to characterize circuits governing such activities as grooming, aggression, and mating. It has also been leveraged to comprehensively map and functionally characterize cells composing important brain regions, such as the central complex, lateral horn, and the mushroom body-the latter being the insect seat of learning and memory. With connectomics data emerging for both the larval and adult brains of Drosophila, Split Gal4 is also poised to play an important role in characterizing neurons of interest based on their connectivity. We summarize the history and current state of the Split Gal4 method and indicate promising areas for further development or future application.
Collapse
Affiliation(s)
| | | | | | - Benjamin H. White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD, United States
| |
Collapse
|
12
|
Luan H, Kuzin A, Odenwald WF, White BH. Cre-assisted fine-mapping of neural circuits using orthogonal split inteins. eLife 2020; 9:e53041. [PMID: 32286225 PMCID: PMC7217698 DOI: 10.7554/elife.53041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/11/2020] [Indexed: 01/18/2023] Open
Abstract
Existing genetic methods of neuronal targeting do not routinely achieve the resolution required for mapping brain circuits. New approaches are thus necessary. Here, we introduce a method for refined neuronal targeting that can be applied iteratively. Restriction achieved at the first step can be further refined in a second step, if necessary. The method relies on first isolating neurons within a targeted group (i.e. Gal4 pattern) according to their developmental lineages, and then intersectionally limiting the number of lineages by selecting only those in which two distinct neuroblast enhancers are active. The neuroblast enhancers drive expression of split Cre recombinase fragments. These are fused to non-interacting pairs of split inteins, which ensure reconstitution of active Cre when all fragments are expressed in the same neuroblast. Active Cre renders all neuroblast-derived cells in a lineage permissive for Gal4 activity. We demonstrate how this system can facilitate neural circuit-mapping in Drosophila.
Collapse
Affiliation(s)
- Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIHBethesdaUnited States
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorders and Stroke, NIHBethesdaUnited States
| | - Ward F Odenwald
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorders and Stroke, NIHBethesdaUnited States
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIHBethesdaUnited States
| |
Collapse
|
13
|
Davis FP, Nern A, Picard S, Reiser MB, Rubin GM, Eddy SR, Henry GL. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 2020; 9:e50901. [PMID: 31939737 PMCID: PMC7034979 DOI: 10.7554/elife.50901] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The anatomy of many neural circuits is being characterized with increasing resolution, but their molecular properties remain mostly unknown. Here, we characterize gene expression patterns in distinct neural cell types of the Drosophila visual system using genetic lines to access individual cell types, the TAPIN-seq method to measure their transcriptomes, and a probabilistic method to interpret these measurements. We used these tools to build a resource of high-resolution transcriptomes for 100 driver lines covering 67 cell types, available at http://www.opticlobe.com. Combining these transcriptomes with recently reported connectomes helps characterize how information is transmitted and processed across a range of scales, from individual synapses to circuit pathways. We describe examples that include identifying neurotransmitters, including cases of apparent co-release, generating functional hypotheses based on receptor expression, as well as identifying strong commonalities between different cell types.
Collapse
Affiliation(s)
- Fred P Davis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Molecular Immunology and Inflammation BranchNational Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Serge Picard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean R Eddy
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Howard Hughes Medical Institute and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUnited States
| | - Gilbert L Henry
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
14
|
Xie T, Ho MCW, Liu Q, Horiuchi W, Lin CC, Task D, Luan H, White BH, Potter CJ, Wu MN. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila. Cell Rep 2019; 23:652-665. [PMID: 29642019 PMCID: PMC5962273 DOI: 10.1016/j.celrep.2018.03.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 01/23/2023] Open
Abstract
The neuromodulator dopamine (DA) plays a key role in motor control, motivated behaviors, and higher-order cognitive processes. Dissecting how these DA neural networks tune the activity of local neural circuits to regulate behavior requires tools for manipulating small groups of DA neurons. To address this need, we assembled a genetic toolkit that allows for an exquisite level of control over the DA neural network in Drosophila. To further refine targeting of specific DA neurons, we also created reagents that allow for the conversion of any existing GAL4 line into Split GAL4 or GAL80 lines. We demonstrated how this toolkit can be used with recently developed computational methods to rapidly generate additional reagents for manipulating small subsets or individual DA neurons. Finally, we used the toolkit to reveal a dynamic interaction between a small subset of DA neurons and rearing conditions in a social space behavioral assay.
Collapse
Affiliation(s)
- Tingting Xie
- School of Life Sciences, Peking University, Beijing 100871, China; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Margaret C W Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qili Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wakako Horiuchi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chun-Chieh Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Darya Task
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Christopher J Potter
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Kockel L, Griffin C, Ahmed Y, Fidelak L, Rajan A, Gould EP, Haigney M, Ralston B, Tercek RJ, Galligani L, Rao S, Huq L, Bhargava HK, Dooner AC, Lemmerman EG, Malusa RF, Nguyen TH, Chung JS, Gregory SM, Kuwana KM, Regenold JT, Wei A, Ashton J, Dickinson P, Martel K, Cai C, Chen C, Price S, Qiao J, Shepley D, Zhang J, Chalasani M, Nguyen K, Aalto A, Kim B, Tazawa-Goodchild E, Sherwood A, Rahman A, Wu SYC, Lotzkar J, Michaels S, Aristotle H, Clark A, Gasper G, Xiang E, Schlör FL, Lu M, Haering K, Friberg J, Kuwana A, Lee J, Liu A, Norton E, Hamad L, Lee C, Okeremi D, diTullio H, Dumoulin K, Chi SYG, Derossi GS, Horowitch RE, Issa EC, Le DT, Morales BC, Noori A, Shao J, Cho S, Hoang MN, Johnson IM, Lee KC, Lee M, Madamidola EA, Schmitt KE, Byan G, Park T, Chen J, Monovoukas A, Kang MJ, McGowan T, Walewski JJ, Simon B, Zu SJ, Miller GP, Fitzpatrick KB, Lantz N, Fox E, Collette J, Kurtz R, Duncan C, Palmer R, Rotondo C, Janicki E, Chisholm T, Rankin A, Park S, Kim SK. An Interscholastic Network To Generate LexA Enhancer Trap Lines in Drosophila. G3 (BETHESDA, MD.) 2019; 9:2097-2106. [PMID: 31040111 PMCID: PMC6643891 DOI: 10.1534/g3.119.400105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
Abstract
Binary expression systems like the LexA-LexAop system provide a powerful experimental tool kit to study gene and tissue function in developmental biology, neurobiology, and physiology. However, the number of well-defined LexA enhancer trap insertions remains limited. In this study, we present the molecular characterization and initial tissue expression analysis of nearly 100 novel StanEx LexA enhancer traps, derived from the StanEx1 index line. This includes 76 insertions into novel, distinct gene loci not previously associated with enhancer traps or targeted LexA constructs. Additionally, our studies revealed evidence for selective transposase-dependent replacement of a previously-undetected KP element on chromosome III within the StanEx1 genetic background during hybrid dysgenesis, suggesting a molecular basis for the over-representation of LexA insertions at the NK7.1 locus in our screen. Production and characterization of novel fly lines were performed by students and teachers in experiment-based genetics classes within a geographically diverse network of public and independent high schools. Thus, unique partnerships between secondary schools and university-based programs have produced and characterized novel genetic and molecular resources in Drosophila for open-source distribution, and provide paradigms for development of science education through experience-based pedagogy.
Collapse
Affiliation(s)
- Lutz Kockel
- Dept. of Developmental Biology, Stanford University School of Medicine, Stanford CA 94305
| | | | | | | | | | | | | | | | | | | | - Sagar Rao
- Phillips Exeter Academy, Exeter, NH 03833
| | - Lutfi Huq
- Phillips Exeter Academy, Exeter, NH 03833
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Connie Cai
- Phillips Exeter Academy, Exeter, NH 03833
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Evan Xiang
- Phillips Exeter Academy, Exeter, NH 03833
| | | | - Melissa Lu
- Phillips Exeter Academy, Exeter, NH 03833
| | | | | | | | | | - Alan Liu
- Phillips Exeter Academy, Exeter, NH 03833
| | | | | | - Clara Lee
- Phillips Exeter Academy, Exeter, NH 03833
| | | | | | | | | | | | | | | | - Dan T Le
- Phillips Exeter Academy, Exeter, NH 03833
| | | | | | | | - Sophia Cho
- Phillips Exeter Academy, Exeter, NH 03833
| | | | | | | | - Maria Lee
- Phillips Exeter Academy, Exeter, NH 03833
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicole Lantz
- The Lawrenceville School, 2500 Main St, NJ 08648
| | | | | | - Richard Kurtz
- Commack High School, 1 Scholar Ln, Commack, NY 11725
| | - Chris Duncan
- Pritzker College Prep, 4131 W Cortland St, Chicago, IL 60639
| | - Ryan Palmer
- Pritzker College Prep, 4131 W Cortland St, Chicago, IL 60639
| | - Cheryl Rotondo
- Science Department, Phillips Exeter Academy, Exeter, NH 03833
| | - Eric Janicki
- Science Department, Phillips Exeter Academy, Exeter, NH 03833
| | | | - Anne Rankin
- Science Department, Phillips Exeter Academy, Exeter, NH 03833
| | - Sangbin Park
- Dept. of Developmental Biology, Stanford University School of Medicine, Stanford CA 94305
| | - Seung K Kim
- Dept. of Developmental Biology, Stanford University School of Medicine, Stanford CA 94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Diabetes Research Center, Stanford, CA 94305
| |
Collapse
|
16
|
Abstract
The brain's synaptic networks endow an animal with powerfully adaptive biological behavior. Maps of such synaptic circuits densely reconstructed in those model brains that can be examined and manipulated by genetic means offer the best prospect for understanding the underlying biological bases of behavior. That prospect is now technologically feasible and a scientifically enabling possibility in neurobiology, much as genomics has been in molecular biology and genetics. In Drosophila, two major advances are in electron microscopic technology, using focused ion beam-scanning electron microscopy (FIB-SEM) milling to capture and align digital images, and in computer-aided reconstruction of neuron morphologies. The last decade has witnessed enormous progress in detailed knowledge of the actual synaptic circuits formed by real neurons. Advances in various brain regions that heralded identification of the motion-sensing circuits in the optic lobe are now extending to other brain regions, with the prospect of encompassing the fly's entire nervous system, both brain and ventral nerve cord.
Collapse
Affiliation(s)
- Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147-2408, USA;
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147-2408, USA; .,Department of Psychology and Neuroscience and Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Canada B3H 4R2
| |
Collapse
|
17
|
Guo C, Pan Y, Gong Z. Recent Advances in the Genetic Dissection of Neural Circuits in Drosophila. Neurosci Bull 2019; 35:1058-1072. [PMID: 31119647 DOI: 10.1007/s12264-019-00390-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 11/28/2022] Open
Abstract
Nervous systems endow animals with cognition and behavior. To understand how nervous systems control behavior, neural circuits mediating distinct functions need to be identified and characterized. With superior genetic manipulability, Drosophila is a model organism at the leading edge of neural circuit analysis. We briefly introduce the state-of-the-art genetic tools that permit precise labeling of neurons and their interconnectivity and investigating what is happening in the brain of a behaving animal and manipulating neurons to determine how behaviors are affected. Brain-wide wiring diagrams, created by light and electron microscopy, bring neural circuit analysis to a new level and scale. Studies enabled by these tools advances our understanding of the nervous system in relation to cognition and behavior.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
| | - Yufeng Pan
- Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
18
|
Seroka AQ, Doe CQ. The Hunchback temporal transcription factor determines motor neuron axon and dendrite targeting in Drosophila. Development 2019; 146:dev175570. [PMID: 30890568 PMCID: PMC6467472 DOI: 10.1242/dev.175570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
The generation of neuronal diversity is essential for circuit formation and behavior. Morphological differences in sequentially born neurons could be due to intrinsic molecular identity specified by temporal transcription factors (henceforth called intrinsic temporal identity) or due to changing extrinsic cues. Here, we have used the Drosophila NB7-1 lineage to address this issue. NB7-1 generates the U1-U5 motor neurons sequentially; each has a distinct intrinsic temporal identity due to inheritance of different temporal transcription factors at its time of birth. We show that the U1-U5 neurons project axons sequentially, followed by sequential dendrite extension. We misexpressed the earliest temporal transcription factor, Hunchback, to create 'ectopic' U1 neurons with an early intrinsic temporal identity but later birth-order. These ectopic U1 neurons have axon muscle targeting and dendrite neuropil targeting that are consistent with U1 intrinsic temporal identity, rather than with their time of birth or differentiation. We conclude that intrinsic temporal identity plays a major role in establishing both motor axon muscle targeting and dendritic arbor targeting, which are required for proper motor circuit development.
Collapse
Affiliation(s)
- Austin Q Seroka
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
19
|
Split-QF System for Fine-Tuned Transgene Expression in Drosophila. Genetics 2019; 212:53-63. [PMID: 30862621 PMCID: PMC6499530 DOI: 10.1534/genetics.119.302034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 11/18/2022] Open
Abstract
The Q-system is a binary expression system that works well across species. Here, we report the development and demonstrate the applications of a split-QF system that drives strong expression in Drosophila, is repressible by QS, and is inducible by a small nontoxic molecule (quinic acid). The split-QF system is fully compatible with existing split-GAL4 and split-LexA lines, thus greatly expanding the range of possible advanced intersectional experiments and anatomical, physiological, and behavioral assays in Drosophila, and in other organisms.
Collapse
|
20
|
Petruccelli E, Kaun KR. Insights from intoxicated Drosophila. Alcohol 2019; 74:21-27. [PMID: 29980341 DOI: 10.1016/j.alcohol.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
Our understanding of alcohol use disorder (AUD), particularly alcohol's effects on the nervous system, has unquestionably benefited from the use of model systems such as Drosophila melanogaster. Here, we briefly introduce the use of flies in alcohol research, and highlight the genetic accessibility and neurobiological contribution that flies have made to our understanding of AUD. Future fly research offers unique opportunities for addressing unresolved questions in the alcohol field, such as the neuromolecular and circuit basis for cravings and alcohol-induced neuroimmune dysfunction. This review strongly advocates for interdisciplinary approaches and translational collaborations with the united goal of confronting the major health problems associated with alcohol abuse and addiction.
Collapse
|
21
|
Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE, Liu TL, Singh V, Graves A, Huynh GH, Zhao Y, Bogovic J, Colonell J, Ott CM, Zugates C, Tappan S, Rodriguez A, Mosaliganti KR, Sheu SH, Pasolli HA, Pang S, Xu CS, Megason SG, Hess H, Lippincott-Schwartz J, Hantman A, Rubin GM, Kirchhausen T, Saalfeld S, Aso Y, Boyden ES, Betzig E. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 2019; 363:eaau8302. [PMID: 30655415 PMCID: PMC6481610 DOI: 10.1126/science.aau8302] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022]
Abstract
Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain. These included synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.
Collapse
Affiliation(s)
- Ruixuan Gao
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Shoh M Asano
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - Srigokul Upadhyayula
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Igor Pisarev
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ved Singh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Austin Graves
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Grace H Huynh
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Yongxin Zhao
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Christopher Zugates
- arivis AG, 1875 Connecticut Avenue NW, 10th floor, Washington, DC 20009, USA
| | - Susan Tappan
- MBF Bioscience, 185 Allen Brook Lane, Suite 101, Williston, VT 05495, USA
| | - Alfredo Rodriguez
- MBF Bioscience, 185 Allen Brook Lane, Suite 101, Williston, VT 05495, USA
| | - Kishore R Mosaliganti
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Shu-Hsien Sheu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Harald Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Adam Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tom Kirchhausen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Edward S Boyden
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
- MIT Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- Koch Institute, MIT, Cambridge, MA 02139, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Abstract
Since the founding of Drosophila genetics by Thomas Hunt Morgan and his colleagues over 100 years ago, the experimental induction of mosaicism has featured prominently in its recognition as an unsurpassed genetic model organism. The use of genetic mosaics has facilitated the discovery of a wide variety of developmental processes, identified specific cell lineages, allowed the study of recessive embryonic lethal mutations, and demonstrated the existence of cell competition. Here, we discuss how genetic mosaicism in Drosophila became an invaluable research tool that revolutionized developmental biology. We describe the prevailing methods used to produce mosaic animals, and highlight advantages and disadvantages of each genetic system. We cover methods ranging from simple "twin-spot" analysis to more sophisticated systems of multicolor labeling.
Collapse
|
23
|
Carreira-Rosario A, Zarin AA, Clark MQ, Manning L, Fetter RD, Cardona A, Doe CQ. MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. eLife 2018; 7:38554. [PMID: 30070205 PMCID: PMC6097840 DOI: 10.7554/elife.38554] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/28/2018] [Indexed: 01/04/2023] Open
Abstract
Command-like descending neurons can induce many behaviors, such as backward locomotion, escape, feeding, courtship, egg-laying, or grooming (we define ‘command-like neuron’ as a neuron whose activation elicits or ‘commands’ a specific behavior). In most animals, it remains unknown how neural circuits switch between antagonistic behaviors: via top-down activation/inhibition of antagonistic circuits or via reciprocal inhibition between antagonistic circuits. Here, we use genetic screens, intersectional genetics, circuit reconstruction by electron microscopy, and functional optogenetics to identify a bilateral pair of Drosophila larval ‘mooncrawler descending neurons’ (MDNs) with command-like ability to coordinately induce backward locomotion and block forward locomotion; the former by stimulating a backward-active premotor neuron, and the latter by disynaptic inhibition of a forward-specific premotor neuron. In contrast, direct monosynaptic reciprocal inhibition between forward and backward circuits was not observed. Thus, MDNs coordinate a transition between antagonistic larval locomotor behaviors. Interestingly, larval MDNs persist into adulthood, where they can trigger backward walking. Thus, MDNs induce backward locomotion in both limbless and limbed animals. When we choose to make one kind of movement, it often prevents us making another. We cannot move forward and backward at the same time, for example, and a horse cannot simultaneously gallop and walk. These ‘antagonistic’ behaviors often use the same group of muscles, but the muscles contract in a different order. This requires exquisite control over muscle contractions. Neurons located in the central nervous system form circuits to produce distinct patterns of muscle contractions and to switch between these patterns. Smooth, rapid switching between behaviors is important for animal escape and survival, as well as for performing fine movements. However, we know little about how the activity of the neuronal circuits enables this. Carreira-Rosario, Zarin, Clark et al. set out to identify the underlying neuronal circuitry that allows larval fruit flies to transition between crawling forward and backward. Results from a combination of genetics and microscopy techniques revealed that a neuron called the Mooncrawler Descending Neuron (MDN) induces a switch from forward to backward travel. MDN activates a neuron that stops the larvae crawling forward, and at the same time activates a different neuron that is only active when the larvae crawl backward. Carreira-Rosario et al. also found that MDN triggers backward crawling in the six-limbed adult fly. Understanding how a single neuron – in this case MDN – can trigger a smooth switch between opposing behaviors could be beneficial for the medical and robotics fields. In the medical field, understanding how movement is generated could help to improve therapies that fix damage to the relevant neuronal circuits. Understanding how behavioral transitions occur may also help to design autonomous robots that can navigate complex terrain.
Collapse
Affiliation(s)
- Arnaldo Carreira-Rosario
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Aref Arzan Zarin
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Matthew Q Clark
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Laurina Manning
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| |
Collapse
|
24
|
Sugie A, Marchetti G, Tavosanis G. Structural aspects of plasticity in the nervous system of Drosophila. Neural Dev 2018; 13:14. [PMID: 29960596 PMCID: PMC6026517 DOI: 10.1186/s13064-018-0111-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Neurons extend and retract dynamically their neurites during development to form complex morphologies and to reach out to their appropriate synaptic partners. Their capacity to undergo structural rearrangements is in part maintained during adult life when it supports the animal's ability to adapt to a changing environment or to form lasting memories. Nonetheless, the signals triggering structural plasticity and the mechanisms that support it are not yet fully understood at the molecular level. Here, we focus on the nervous system of the fruit fly to ask to which extent activity modulates neuronal morphology and connectivity during development. Further, we summarize the evidence indicating that the adult nervous system of flies retains some capacity for structural plasticity at the synaptic or circuit level. For simplicity, we selected examples mostly derived from studies on the visual system and on the mushroom body, two regions of the fly brain with extensively studied neuroanatomy.
Collapse
Affiliation(s)
- Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, 951-8585 Japan
- Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | | | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
25
|
Abstract
In general, neurons in insects and many other invertebrate groups are individually recognizable, enabling us to assign an index number to specific neurons in a manner which is rarely possible in a vertebrate brain. This endows many studies on insect nervous systems with the opportunity to document neurons with great precision, so that in favourable cases we can return to the same neuron or neuron type repeatedly so as to recognize many separate morphological classes. The visual system of the fly's compound eye particularly provides clear examples of the accuracy of neuron wiring, allowing numerical comparisons between representatives of the same cell type, and estimates of the accuracy of their wiring.
Collapse
Affiliation(s)
- Ian A Meinertzhagen
- a Department of Psychology and Neuroscience , Life Sciences Centre, Dalhousie University , Halifax , Canada.,b Janelia Research Campus of Howard Hughes Medical Institute , Ashburn , VA , USA
| |
Collapse
|
26
|
Clark MQ, Zarin AA, Carreira-Rosario A, Doe CQ. Neural circuits driving larval locomotion in Drosophila. Neural Dev 2018; 13:6. [PMID: 29673388 PMCID: PMC5907184 DOI: 10.1186/s13064-018-0103-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 11/10/2022] Open
Abstract
More than 30 years of studies into Drosophila melanogaster neurogenesis have revealed fundamental insights into our understanding of axon guidance mechanisms, neural differentiation, and early cell fate decisions. What is less understood is how a group of neurons from disparate anterior-posterior axial positions, lineages and developmental periods of neurogenesis coalesce to form a functional circuit. Using neurogenetic techniques developed in Drosophila it is now possible to study the neural substrates of behavior at single cell resolution. New mapping tools described in this review, allow researchers to chart neural connectivity to better understand how an anatomically simple organism performs complex behaviors.
Collapse
Affiliation(s)
- Matthew Q Clark
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasedena, CA, 91125, USA
| | - Aref Arzan Zarin
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
| | | | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
27
|
Arganda-Carreras I, Manoliu T, Mazuras N, Schulze F, Iglesias JE, Bühler K, Jenett A, Rouyer F, Andrey P. A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain. Front Neuroinform 2018; 12:13. [PMID: 29628885 PMCID: PMC5876320 DOI: 10.3389/fninf.2018.00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/01/2018] [Indexed: 11/13/2022] Open
Abstract
Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.
Collapse
Affiliation(s)
- Ignacio Arganda-Carreras
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Donostia International Physics Center, Donostia-San Sebastian, Spain
| | - Tudor Manoliu
- Institut des Neurosciences Paris-Saclay, Université Paris Sud, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Institut des Neurosciences Paris-Saclay, Université Paris Sud, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Schulze
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria
| | - Juan E Iglesias
- Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain
| | - Katja Bühler
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria
| | - Arnim Jenett
- Tefor Core Facility, Institut des Neurosciences Paris-Saclay, Université Paris Sud, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Université Paris Sud, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Andrey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
28
|
Abstract
The ability to reproducibly target expression of transgenes to small, defined subsets of cells is a key experimental tool for understanding many biological processes. The Drosophila nervous system contains thousands of distinct cell types and it has generally not been possible to limit expression to one or a few cell types when using a single segment of genomic DNA as an enhancer to drive expression. Intersectional methods, in which expression of the transgene only occurs where two different enhancers overlap in their expression patterns, can be used to achieve the desired specificity. This report describes a set of over 2800 transgenic lines for use with the split-GAL4 intersectional method.
Collapse
|
29
|
Sayin S, Boehm AC, Kobler JM, De Backer JF, Grunwald Kadow IC. Internal State Dependent Odor Processing and Perception-The Role of Neuromodulation in the Fly Olfactory System. Front Cell Neurosci 2018; 12:11. [PMID: 29440990 PMCID: PMC5797598 DOI: 10.3389/fncel.2018.00011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Animals rely heavily on their sense of olfaction to perform various vital interactions with an ever-in-flux environment. The turbulent and combinatorial nature of air-borne odorant cues demands the employment of various coding strategies, which allow the animal to attune to its internal needs and past or present experiences. Furthermore, these internal needs can be dependent on internal states such as hunger, reproductive state and sickness. Neuromodulation is a key component providing flexibility under such conditions. Understanding the contributions of neuromodulation, such as sensory neuron sensitization and choice bias requires manipulation of neuronal activity on a local and global scale. With Drosophila's genetic toolset, these manipulations are feasible and even allow a detailed look on the functional role of classical neuromodulators such as dopamine, octopamine and neuropeptides. The past years unraveled various mechanisms adapting chemosensory processing and perception to internal states such as hunger and reproductive state. However, future research should also investigate the mechanisms underlying other internal states including the modulatory influence of endogenous microbiota on Drosophila behavior. Furthermore, sickness induced by pathogenic infection could lead to novel insights as to the neuromodulators of circuits that integrate such a negative postingestive signal within the circuits governing olfactory behavior and learning. The enriched emporium of tools Drosophila provides will help to build a concrete picture of the influence of neuromodulation on olfaction and metabolism, adaptive behavior and our overall understanding of how a brain works.
Collapse
Affiliation(s)
- Sercan Sayin
- Neural Circuits and Metabolism, School of Life Sciences, Technische Universität München, Munich, Germany
| | - Ariane C Boehm
- Neural Circuits and Metabolism, School of Life Sciences, Technische Universität München, Munich, Germany.,Chemosensory Coding, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Johanna M Kobler
- Neural Circuits and Metabolism, School of Life Sciences, Technische Universität München, Munich, Germany.,Chemosensory Coding, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Jean-François De Backer
- Neural Circuits and Metabolism, School of Life Sciences, Technische Universität München, Munich, Germany
| | - Ilona C Grunwald Kadow
- Neural Circuits and Metabolism, School of Life Sciences, Technische Universität München, Munich, Germany.,Chemosensory Coding, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
30
|
Barwell T, DeVeale B, Poirier L, Zheng J, Seroude F, Seroude L. Regulating the UAS/GAL4 system in adult Drosophila with Tet-off GAL80 transgenes. PeerJ 2017; 5:e4167. [PMID: 29259847 PMCID: PMC5733373 DOI: 10.7717/peerj.4167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/24/2017] [Indexed: 01/16/2023] Open
Abstract
The UAS/GAL4 system is the most used method in Drosophila melanogaster for directing the expression of a gene of interest to a specific tissue. However, the ability to control the temporal activity of GAL4 with this system is very limited. This study constructed and characterized Tet-off GAL80 transgenes designed to allow temporal control of GAL4 activity in aging adult muscles. By placing GAL80 under the control of a Tet-off promoter, GAL4 activity is regulated by the presence or absence of tetracycline in the diet. Almost complete inhibition of the expression of UAS transgenes during the pre-adult stages of the life cycle is obtained by using four copies and two types of Tet-off GAL80 transgenes. Upon treatment of newly emerged adults with tetracycline, induction of GAL4 activity is observed but the level of induction is influenced by the concentration of the inducer, the age, the sex and the anatomical location of the expression. The inhibition of GAL4 activity and the maintenance of induced expression are altered in old animals. This study reveals that the repressive ability of GAL80 is affected by the age and sex of the animal which is a major limitation to regulate gene expression with GAL80 in aged Drosophila.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Brian DeVeale
- Department of Biology, Queen's University, Kingston, ON, Canada.,Department of Biology, Queen's University, Kingston, ON, Canada
| | - Luc Poirier
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Jie Zheng
- Department of Biology, Queen's University, Kingston, ON, Canada.,Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Laurent Seroude
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
31
|
Szafranski P. Intercompartmental Piecewise Gene Transfer. Genes (Basel) 2017; 8:genes8100260. [PMID: 28984842 PMCID: PMC5664110 DOI: 10.3390/genes8100260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Gene relocation from the residual genomes of organelles to the nuclear genome still continues, although as a scaled down evolutionary phenomenon, limited in occurrence mostly to protists (sensu lato) and land plants. During this process, the structural integrity of transferred genes is usually preserved. However, the relocation of mitochondrial genes that code for respiratory chain and ribosomal proteins is sometimes associated with their fragmentation into two complementary genes. Herein, this review compiles cases of piecewise gene transfer from the mitochondria to the nucleus, and discusses hypothesized mechanistic links between the fission and relocation of those genes.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|