1
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
2
|
Lomniczi A, Luna SL, Cervera-Juanes R, Appleman ML, Kohama SG, Urbanski HF. Age-related increase in the expression of 11β-hydroxysteroid dehydrogenase type 1 in the hippocampus of male rhesus macaques. Front Aging Neurosci 2024; 16:1328543. [PMID: 38560025 PMCID: PMC10978655 DOI: 10.3389/fnagi.2024.1328543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The hippocampus is especially susceptible to age-associated neuronal pathologies, and there is concern that the age-associated rise in cortisol secretion from the adrenal gland may contribute to their etiology. Furthermore, because 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) catalyzes the reduction of cortisone to the active hormone cortisol, it is plausible that an increase in the expression of this enzyme enhances the deleterious impact of cortisol in the hippocampus and contributes to the neuronal pathologies that underlie cognitive decline in the elderly. Methods Rhesus macaques were used as a translational animal model of human aging, to examine age-related changes in gene and protein expressions of (HSD11B1/HSD11B1) in the hippocampus, a region of the brain that plays a crucial role in learning and memory. Results Older animals showed significantly (p < 0.01) higher base-line cortisol levels in the circulation. In addition, they showed significantly (p < 0.05) higher hippocampal expression of HSD11B1 but not NR3C1 and NR3C2 (i.e., two receptor-encoding genes through which cortisol exerts its physiological actions). A similar age-related significant (p < 0.05) increase in the expression of the HSD11B1 was revealed at the protein level by western blot analysis. Discussion The data suggest that an age-related increase in the expression of hippocampal HSD11B1 is likely to raise cortisol concentrations in this cognitive brain area, and thereby contribute to the etiology of neuropathologies that ultimately lead to neuronal loss and dementia. Targeting this enzyme pharmacologically may help to reduce the negative impact of elevated cortisol concentrations within glucocorticoid-sensitive brain areas and thereby afford neuronal protection.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Selva L. Luna
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Rita Cervera-Juanes
- Department of Physiology and Pharmacology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Maria-Luisa Appleman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
3
|
Li H, Tamura R, Hayashi D, Asai H, Koga J, Ando S, Yokota S, Kaneko J, Sakurai K, Sumiyoshi A, Yamamoto T, Hikishima K, Tanaka KZ, McHugh TJ, Hisatsune T. Silencing dentate newborn neurons alters excitatory/inhibitory balance and impairs behavioral inhibition and flexibility. SCIENCE ADVANCES 2024; 10:eadk4741. [PMID: 38198539 PMCID: PMC10780870 DOI: 10.1126/sciadv.adk4741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Adult neurogenesis confers the hippocampus with unparalleled neural plasticity, essential for intricate cognitive functions. The specific influence of sparse newborn neurons (NBNs) in modulating neural activities and subsequently steering behavior, however, remains obscure. Using an engineered NBN-tetanus toxin mouse model (NBN-TeTX), we noninvasively silenced NBNs, elucidating their crucial role in impulse inhibition and cognitive flexibility as evidenced through Morris water maze reversal learning and Go/Nogo task in operant learning. Task-based functional MRI (tb-fMRI) paired with operant learning revealed dorsal hippocampal hyperactivation during the Nogo task in male NBN-TeTX mice, suggesting that hippocampal hyperexcitability might underlie the observed behavioral deficits. Additionally, resting-state fMRI (rs-fMRI) exhibited enhanced functional connectivity between the dorsal and ventral dentate gyrus following NBN silencing. Further investigations into the activities of PV+ interneurons and mossy cells highlighted the indispensability of NBNs in maintaining the hippocampal excitation/inhibition balance. Our findings emphasize that the neural plasticity driven by NBNs extensively modulates the hippocampus, sculpting inhibitory control and cognitive flexibility.
Collapse
Affiliation(s)
- Haowei Li
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Risako Tamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Daiki Hayashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Hirotaka Asai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Junya Koga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Shota Ando
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Sayumi Yokota
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jun Kaneko
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Keisuke Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Akira Sumiyoshi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tadashi Yamamoto
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Keigo Hikishima
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kazumasa Z. Tanaka
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Thomas J. McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
4
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
5
|
Dash S, Park B, Kroenke CD, Rooney WD, Urbanski HF, Kohama SG. Brain volumetrics across the lifespan of the rhesus macaque. Neurobiol Aging 2023; 126:34-43. [PMID: 36917864 PMCID: PMC10106431 DOI: 10.1016/j.neurobiolaging.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/30/2023] [Accepted: 02/05/2023] [Indexed: 02/13/2023]
Abstract
The rhesus macaque is a long-lived nonhuman primate (NHP) with a brain structure similar to humans, which may represent a valuable translational animal model in which to study human brain aging. Previous magnetic resonance imaging (MRI) studies of age in rhesus macaque brains have been prone to low statistical power, unbalanced sex ratio and lack of a complete age range. To overcome these problems, the current study surveyed structural T1-weighted magnetic resonance imaging scans of 66 animals, 34 females (aged 6-31 years) and 32 males (aged 5-27 years). Differences observed in older animals, included enlargement of the lateral ventricles and a smaller volume in the frontal cortex, caudate, putamen, hypothalamus, and thalamus. Unexpected, greater volume, were measured in older animals in the hippocampus, amygdala, and globus pallidus. There were also numerous differences between males and females with respect to age in both white and gray matter regions. As an apparent model of normative human aging, the macaque is ideal for studying induction and mitigation of neurodegenerative disease.
Collapse
Affiliation(s)
- Steven Dash
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Jiang M, Jang SE, Zeng L. The Effects of Extrinsic and Intrinsic Factors on Neurogenesis. Cells 2023; 12:cells12091285. [PMID: 37174685 PMCID: PMC10177620 DOI: 10.3390/cells12091285] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the mammalian brain, neurogenesis is maintained throughout adulthood primarily in two typical niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles and in other nonclassic neurogenic areas (e.g., the amygdala and striatum). During prenatal and early postnatal development, neural stem cells (NSCs) differentiate into neurons and migrate to appropriate areas such as the olfactory bulb where they integrate into existing neural networks; these phenomena constitute the multistep process of neurogenesis. Alterations in any of these processes impair neurogenesis and may even lead to brain dysfunction, including cognitive impairment and neurodegeneration. Here, we first summarize the main properties of mammalian neurogenic niches to describe the cellular and molecular mechanisms of neurogenesis. Accumulating evidence indicates that neurogenesis plays an integral role in neuronal plasticity in the brain and cognition in the postnatal period. Given that neurogenesis can be highly modulated by a number of extrinsic and intrinsic factors, we discuss the impact of extrinsic (e.g., alcohol) and intrinsic (e.g., hormones) modulators on neurogenesis. Additionally, we provide an overview of the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to persistent neurological sequelae such as neurodegeneration, neurogenic defects and accelerated neuronal cell death. Together, our review provides a link between extrinsic/intrinsic factors and neurogenesis and explains the possible mechanisms of abnormal neurogenesis underlying neurological disorders.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Human Anatomy, Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Dongguan Campus, Guangdong Medical University, Dongguan 523808, China
| | - Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
7
|
Li X, Santos R, Bernal JE, Li DD, Hargaden M, Khan NK. Biology and postnatal development of organ systems of cynomolgus monkeys (Macaca fascicularis). J Med Primatol 2023; 52:64-78. [PMID: 36300896 PMCID: PMC10092073 DOI: 10.1111/jmp.12622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 08/13/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The cynomolgus macaque has become the most used non-human primate species in nonclinical safety assessment during the past decades. METHODS This review summarizes the biological data and organ system development milestones of the cynomolgus macaque available in the literature. RESULTS The cynomolgus macaque is born precocious relative to humans in some organ systems (e.g., nervous, skeletal, respiratory, and gastrointestinal). Organ systems develop, refine, and expand at different rates after birth. In general, the respiratory, gastrointestinal, renal, and hematopoietic systems mature at approximately 3 years of age. The female reproductive, cardiovascular and hepatobiliary systems mature at approximately 4 years of age. The central nervous, skeletal, immune, male reproductive, and endocrine systems complete their development at approximately 5 to 9 years of age. CONCLUSIONS The cynomolgus macaque has no meaningful developmental differences in critical organ systems between 2 and 3 years of age for use in nonclinical safety assessment.
Collapse
Affiliation(s)
- Xiantang Li
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Rosemary Santos
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Jan E. Bernal
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Dingzhou D. Li
- Early Clinical DevelopmentPfizer, IncGrotonConnecticutUSA
| | - Maureen Hargaden
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Nasir K. Khan
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| |
Collapse
|
8
|
Freire-Cobo C, Edler MK, Varghese M, Munger E, Laffey J, Raia S, In SS, Wicinski B, Medalla M, Perez SE, Mufson EJ, Erwin JM, Guevara EE, Sherwood CC, Luebke JI, Lacreuse A, Raghanti MA, Hof PR. Comparative neuropathology in aging primates: A perspective. Am J Primatol 2021; 83:e23299. [PMID: 34255875 PMCID: PMC8551009 DOI: 10.1002/ajp.23299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa K Edler
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emily Munger
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jessie Laffey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sophia Raia
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena S In
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Joseph M Erwin
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Elaine E Guevara
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mary A Raghanti
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Mayweather BA, Buchanan SM, Rubin LL. GDF11 expressed in the adult brain negatively regulates hippocampal neurogenesis. Mol Brain 2021; 14:134. [PMID: 34488822 PMCID: PMC8422669 DOI: 10.1186/s13041-021-00845-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a transforming factor-β superfamily member that functions as a negative regulator of neurogenesis during embryonic development. However, when recombinant GDF11 (rGDF11) is administered systemically in aged mice, it promotes neurogenesis, the opposite of its role during development. The goal of the present study was to reconcile this apparent discrepancy by performing the first detailed investigation into the expression of endogenous GDF11 in the adult brain and its effects on neurogenesis. Using quantitative histological analysis, we observed that Gdf11 is most highly expressed in adult neurogenic niches and non-neurogenic regions within the hippocampus, choroid plexus, thalamus, habenula, and cerebellum. To investigate the role of endogenous GDF11 during adult hippocampal neurogenesis, we generated a tamoxifen inducible mouse that allowed us to reduce GDF11 levels. Depletion of Gdf11 during adulthood increased proliferation of neural progenitors and decreased the number of newborn neurons in the hippocampus, suggesting that endogenous GDF11 remains a negative regulator of hippocampal neurogenesis in adult mice. These findings further support the idea that circulating systemic GDF11 and endogenously expressed GDF11 in the adult brain have different target cells or mechanisms of action. Our data describe a role for GDF11-dependent signaling in adult neurogenesis that has implications for how GDF11 may be used to treat CNS disease.
Collapse
Affiliation(s)
- Brittany A Mayweather
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. .,Harvard Stem Cell Institute, Sherman Fairchild Bldg, 7 Divinity Ave., Cambridge, MA, 02138, USA.
| |
Collapse
|
10
|
Białecka-Dębek A, Granda D, Pietruszka B. The role of docosahexaenoic acid (DHA) in the prevention
of cognitive impairment in the elderly. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aging is an inevitable and progressive biological process that leads to irreversible physiological
and functional changes, also in the nervous system. Cognitive decline occurring with age can
significantly affect the quality of life of older people. Docosahexaenoic acid (DHA) is necessary
for the proper functioning of the nervous system; it can affect its action directly through its
impact on neurogenesis and neuroplasticity, but also indirectly by affecting the functioning
of the cardiovascular system or anti-inflammatory effect. Literature analysis shows that good
nutritional status of n-3 fatty acids, determined on the basis of their level in blood plasma or
erythrocytes, is associated with a lower risk of cognitive decline in selected cognitive domains,
as well as a lower risk of dementia or Alzheimer’s disease, although studies are also available
where the above relationship has not been confirmed. Apart from this, studies on DHA and
EPA diet intake, as well as in the form of dietary supplements, show their beneficial effects in
the context of cognitive functioning and the risk of dementia. Also, the results of intervention
studies, although not explicit, suggest that high doses of DHA and EPA in the form of dietary
supplements may slow down the process of deteriorating the cognitive functioning of the elderly within selected domains. Based on the review of the literature, it can be concluded
that DHA and EPA play an essential role in the prevention of cognitive impairment.
Collapse
Affiliation(s)
- Agata Białecka-Dębek
- Katedra Żywienia Człowieka, Instytut Nauk o Żywieniu Człowieka, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
| | - Dominika Granda
- Katedra Żywienia Człowieka, Instytut Nauk o Żywieniu Człowieka, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
| | - Barbara Pietruszka
- Katedra Żywienia Człowieka, Instytut Nauk o Żywieniu Człowieka, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
| |
Collapse
|
11
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
12
|
Pai C, Nakayama S, Ito-Fujishiro Y, Kanayama K, Munesue Y, Sankai T, Yasutomi Y, Koie H, Ageyama N. Usefulness of cardiac hormones for evaluating valvular disease in cynomolgus monkeys (Macaca fascicularis). J Vet Med Sci 2021; 83:716-723. [PMID: 33692223 PMCID: PMC8111363 DOI: 10.1292/jvms.20-0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nonhuman primates are commonly used as experimental animals due to their biological
resemblance to humans. In patients with cardiac disease, the levels of atrial natriuretic
peptide (ANP) and brain natriuretic peptide (BNP) tend to increase in response to cardiac
damage, and they are thus used as indicators for the diagnosis of human heart failure.
However, no reference values for ANP and BNP have been reported for heart disease in
nonhuman primates. In this study, we recorded the age, sex, and body weight of 202
cynomolgus monkeys, and performed evaluations to assess the ANP and BNP levels,
electrocardiography and echocardiography, and accordingly divided the monkeys into two
groups: healthy monkeys and those with spontaneous cardiac disease. Statistical analysis
was performed to determine the relationship of ANP and BNP with the factors of age, sex,
and body weight. No significant relationship was found between the levels of ANP and BNP
and the factors of age, sex, and body weight. However, both the ANP and BNP levels were
significantly different between the healthy monkeys and monkeys with valvular disease.
Similar to humans, the ANP and BNP levels tended to increase with the progression of
cardiac disease in monkeys. Based on these results, we concluded that ANP and BNP are
indicators of cardiac disease in nonhuman primates, and that this nonhuman primate cardiac
disease model is applicable for cardiology research in humans.
Collapse
Affiliation(s)
- Chungyu Pai
- Laboratory of Veterinary Physiology/Pathophysiology, College of Bioresource Science, Nihon University, Kanagawa 252-0880, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Shunya Nakayama
- Laboratory of Veterinary Physiology/Pathophysiology, College of Bioresource Science, Nihon University, Kanagawa 252-0880, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Yasuyo Ito-Fujishiro
- Laboratory of Veterinary Physiology/Pathophysiology, College of Bioresource Science, Nihon University, Kanagawa 252-0880, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Kiichi Kanayama
- Laboratory of Veterinary Physiology/Pathophysiology, College of Bioresource Science, Nihon University, Kanagawa 252-0880, Japan
| | - Yoshiko Munesue
- The Corporation for Production and Research of Laboratory Primates, Ibaraki 305-0843, Japan
| | - Tadashi Sankai
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan.,Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Hiroshi Koie
- Laboratory of Veterinary Physiology/Pathophysiology, College of Bioresource Science, Nihon University, Kanagawa 252-0880, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| |
Collapse
|
13
|
Kataoka Y. [Imaging and Manipulation of Stem and Progenitor Cells for Revealing the Novel Mechanism of Local Tissue Maintenance in the Brain]. YAKUGAKU ZASSHI 2021; 141:343-348. [PMID: 33642502 DOI: 10.1248/yakushi.20-00198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have been investigating the physiological and pathological roles of stem cells and progenitor cells in the central nervous system using multimodal imaging methods, including positron emission tomography (PET), in vivo optical imaging, and light as well as electron microscopy. Furthermore, we generated transgenic rats for selective ablation of these cells. Imaging studies have demonstrated the proliferation and dynamics of neural stem cells in neurogenic regions and glial progenitor cells expressing a chondroitin sulfate proteoglycan (neuron-glial antigen 2; NG2) in the brain of adult rodents. Glial progenitor cells change their direction of differentiation into mature oligodendrocytes or astrocytes by neural activity following their proliferation. This phenomenon was thought to control the local tissue structure for maintenance of moderate neural activity. Furthermore, selective ablation of glial progenitor cells in the brain induced defects of neurons via neuroinflammation with microglial activation and proinflammatory cytokine production in the region. Thus, we have proposed a novel concept that glial progenitor cells regulate the neuro-immune system in the central nervous system, in addition to their role as germinal cells, giving rise to mature glial cells. Neuroinflammation is associated with the onset and progression of depression, chronic fatigue syndrome, and neurodegenerative diseases, including Alzheimer's disease. Anti-inflammatory effects of glial progenitor cells might bring about the possibility of these cells as the new therapeutic targets for such neurological disorders.
Collapse
Affiliation(s)
- Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Biosystems Dynamics Research.,Multi-modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center
| |
Collapse
|
14
|
Disouky A, Lazarov O. Adult hippocampal neurogenesis in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:137-156. [PMID: 33453939 DOI: 10.1016/bs.pmbts.2020.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New neurons are generated in the dentate gyrus of the adult brain throughout life. They incorporate in the granular cell layer of the dentate gyrus and integrate in the hippocampal circuitry. Increasing evidence suggests that new neurons play a role in learning and memory. In turn, a large body of evidence suggests that neurogenesis is impaired in Alzheimer's disease, contributing to memory deficits characterizing the disease. We outline here current knowledge about the biology of adult hippocampal neurogenesis and its function in learning and memory. In addition, we discuss evidence that neurogenesis is dysfunctional in Alzheimer's disease, address the controversy in the literature concerning the persistence of hippocampal neurogenesis in the adult and aging human brain, and evaluate the therapeutic potential of neurogenesis-based drug development for the treatment of cognitive deficits in Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmed Disouky
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
15
|
Seki T. Understanding the Real State of Human Adult Hippocampal Neurogenesis From Studies of Rodents and Non-human Primates. Front Neurosci 2020; 14:839. [PMID: 32848586 PMCID: PMC7432251 DOI: 10.3389/fnins.2020.00839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The concept of adult hippocampal neurogenesis (AHN) has been widely accepted, and a large number of studies have been performed in rodents using modern experimental techniques, which have clarified the nature and developmental processes of adult neural stem/progenitor cells, the functions of AHN, such as memory and learning, and its association with neural diseases. However, a fundamental problem is that it remains unclear as to what extent AHN actually occurs in humans. The answer to this is indispensable when physiological and pathological functions of human AHN are deduced from studies of rodent AHN, but there are controversial data on the extent of human AHN. In this review, studies on AHN performed in rodents and humans will be briefly reviewed, followed by a discussion of the studies in non-human primates. Then, how data of rodent and non-human primate AHN should be applied for understanding human AHN will be discussed.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Gómez-Oliva R, Geribaldi-Doldán N, Domínguez-García S, Carrascal L, Verástegui C, Nunez-Abades P, Castro C. Vitamin D deficiency as a potential risk factor for accelerated aging, impaired hippocampal neurogenesis and cognitive decline: a role for Wnt/β-catenin signaling. Aging (Albany NY) 2020; 12:13824-13844. [PMID: 32554862 PMCID: PMC7377904 DOI: 10.18632/aging.103510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Vitamin D is an essential fat-soluble vitamin that participates in several homeostatic functions in mammalian organisms. Lower levels of vitamin D are produced in the older population, vitamin D deficiency being an accelerating factor for the progression of the aging process. In this review, we focus on the effect that vitamin D exerts in the aged brain paying special attention to the neurogenic process. Neurogenesis occurs in the adult brain in neurogenic regions, such as the dentate gyrus of the hippocampus (DG). This region generates new neurons that participate in cognitive tasks. The neurogenic rate in the DG is reduced in the aged brain because of a reduction in the number of neural stem cells (NSC). Homeostatic mechanisms controlled by the Wnt signaling pathway protect this pool of NSC from being depleted. We discuss in here the crosstalk between Wnt signaling and vitamin D, and hypothesize that hypovitaminosis might cause failure in the control of the neurogenic homeostatic mechanisms in the old brain leading to cognitive impairment. Understanding the relationship between vitamin D, neurogenesis and cognitive performance in the aged brain may facilitate prevention of cognitive decline and it can open a door into new therapeutic fields by perspectives in the elderly.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Cristina Verástegui
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| |
Collapse
|
17
|
Chamera K, Trojan E, Szuster-Głuszczak M, Basta-Kaim A. The Potential Role of Dysfunctions in Neuron-Microglia Communication in the Pathogenesis of Brain Disorders. Curr Neuropharmacol 2020; 18:408-430. [PMID: 31729301 PMCID: PMC7457436 DOI: 10.2174/1570159x17666191113101629] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022] Open
Abstract
The bidirectional communication between neurons and microglia is fundamental for the proper functioning of the central nervous system (CNS). Chemokines and clusters of differentiation (CD) along with their receptors represent ligand-receptor signalling that is uniquely important for neuron - microglia communication. Among these molecules, CX3CL1 (fractalkine) and CD200 (OX-2 membrane glycoprotein) come to the fore because of their cell-type-specific localization. They are principally expressed by neurons when their receptors, CX3CR1 and CD200R, respectively, are predominantly present on the microglia, resulting in the specific axis which maintains the CNS homeostasis. Disruptions to this balance are suggested as contributors or even the basis for many neurological diseases. In this review, we discuss the roles of CX3CL1, CD200 and their receptors in both physiological and pathological processes within the CNS. We want to underline the critical involvement of these molecules in controlling neuron - microglia communication, noting that dysfunctions in their interactions constitute a key factor in severe neurological diseases, such as schizophrenia, depression and neurodegeneration-based conditions.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Magdalena Szuster-Głuszczak
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| |
Collapse
|
18
|
Pawley LC, Hueston CM, O'Leary JD, Kozareva DA, Cryan JF, O'Leary OF, Nolan YM. Chronic intrahippocampal interleukin-1β overexpression in adolescence impairs hippocampal neurogenesis but not neurogenesis-associated cognition. Brain Behav Immun 2020; 83:172-179. [PMID: 31604142 DOI: 10.1016/j.bbi.2019.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
Both neuroinflammation and adult hippocampal neurogenesis (AHN) are implicated in many neurodegenerative disorders as well as in neuropsychiatric disorders, which often become symptomatic during adolescence. A better knowledge of the impact that chronic neuroinflammation has on the hippocampus during the adolescent period could lead to the discovery of new therapeutics for some of these disorders. The hippocampus is particularly vulnerable to altered concentrations of the pro-inflammatory cytokine interleukin-1β (IL-1β), with elevated levels implicated in the aetiology of neurodegenerative disorders such as Alzheimer's and Parkinson's, and stress-related disorders such as depression. The effect of acutely and chronically elevated concentrations of hippocampal IL-1β have been shown to reduce AHN in adult rodents. However, the effect of exposure to chronic overexpression of hippocampal IL-1β during adolescence, a time of increased vulnerability, hasn't been fully interrogated. Thus, in this study we utilized a lentiviral approach to induce chronic overexpression of IL-1β in the dorsal hippocampus of adolescent male Sprague Dawley rats for 5 weeks, during which time its impact on cognition and hippocampal neurogenesis were examined. A reduction in hippocampal neurogenesis was observed along with a reduced level of neurite branching on hippocampal neurons. However, there was no effect of IL-1β overexpression on performance in pattern separation, novel object recognition or spontaneous alternation in the Y maze. Our study has highlighted that chronic IL-1β overexpression in the hippocampus during the adolescent period exerts a negative impact on neurogenesis independent of cognitive performance, and suggests a degree of resilience of the adolescent hippocampus to inflammatory insult.
Collapse
Affiliation(s)
- Lauren C Pawley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - James D O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
19
|
Nakafuku M, Del Águila Á. Developmental dynamics of neurogenesis and gliogenesis in the postnatal mammalian brain in health and disease: Historical and future perspectives. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e369. [PMID: 31825170 DOI: 10.1002/wdev.369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
The mature mammalian brain has long been thought to be a structurally rigid, static organ since the era of Ramón y Cajal in the early 20th century. Evidence accumulated over the past three decades, however, has completely overturned this long-held view. We now know that new neurons and glia are continuously added to the brain at postnatal stages, even in mature adults of various mammalian species, including humans. Moreover, these newly added cells contribute to structural plasticity and play important roles in higher order brain function, as well as repair after damage. A major source of these new neurons and glia is neural stem cells (NSCs) that persist in specialized niches in the brain throughout life. With this new view, our understanding of normal brain physiology and interventional approaches to various brain disorders has changed markedly in recent years. This article provides a brief overview on the historical changes in our understanding of the developmental dynamics of neurogenesis and gliogenesis in the postnatal and adult mammalian brain and discusses the roles of NSCs and other progenitor populations in such cellular dynamics in health and disease of the postnatal mammalian brain. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
- Masato Nakafuku
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ángela Del Águila
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
20
|
Kim W, Yoo DY, Jung HY, Kim JW, Hahn KR, Kwon HJ, Yoo M, Lee S, Nam SM, Yoon YS, Kim DW, Hwang IK. Leaf extracts from Dendropanax morbifera Léveille mitigate mercury-induced reduction of spatial memory, as well as cell proliferation, and neuroblast differentiation in rat dentate gyrus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:94. [PMID: 31046739 PMCID: PMC6498467 DOI: 10.1186/s12906-019-2508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/17/2019] [Indexed: 01/09/2023]
Abstract
Background The brain is susceptible to methylmercury toxicity, which causes irreversible damage to neurons and glia and the leaf extract Dendropanax morbifera Léveille (DML) has various biological functions in the nervous system. In this study, we examined the effects of DML on mercury-induced proliferating cells and differentiated neuroblasts. Methods Dimethylmercury (5 μg/kg) and galantamine (5 mg/kg) was administered intraperitoneally and/or DML (100 mg/kg) was orally to 7-week-old rats every day for 36 days. One hour after the treatment, novel object recognition test was examined. In addition, spatial probe tests were conducted on the 6th day after 5 days of continuous training in the Morris swim maze. Thereafter, the rats were euthanized for immunohistochemical staining analysis with Ki67 and doublecortin and measurement for acetylcholinesterase (AChE) activity. Results Dimethylmercury-treated rats showed reduced discrimination index in novel object recognition test and took longer to find the platform than did control group. Compared with dimethylmercury treatment alone, supplementation with DML or galatamine significantly ameliorated the reduction of discrimination index and reduced the time spent to find the platform. In addition, the number of platform crossings was lower in the dimethylmercury-treated group than in controls, while the administration of DML or galantamine significantly increased the number of crossings than did dimethylmercury treatment alone. Proliferating cells and differentiated neuroblasts, assessed by Ki67 and doublecortin immunohistochemical staining was significantly decreased in the dimethylmercury treated group versus controls. Supplementation with DML or galantamine significantly increased the number of proliferating cells and differentiated neuroblasts in the dentate gyrus. In addition, treatment with dimethylmercury significantly increased AChE activity in hippocampal homogenates, while treatment with dimethylmercury+DML or dimethylmercury+galantamine significantly ameliorated this increase. Conclusions These results suggest that DML may be a functional food that improves dimethylmercury-induced memory impairment and ameliorates dimethylmercury-induced reduction in proliferating cells and differentiated neuroblasts, and demonstrates corresponding activation of AChE activity in the dentate gyrus.
Collapse
|
21
|
Kirschen GW, Ge S. Young at heart: Insights into hippocampal neurogenesis in the aged brain. Behav Brain Res 2019; 369:111934. [PMID: 31054278 DOI: 10.1016/j.bbr.2019.111934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/09/2019] [Accepted: 04/30/2019] [Indexed: 12/24/2022]
Abstract
While the existence and importance of adult hippocampal neurogenesis in young adult rodents has been well-established, such qualities in aged animals and humans have remained poorly understood. Most evidence in humans has come from hippocampal volumetric changes that provide no direct proof of new neurons in adulthood. Here, we review the basic neurobiological evidence for adult hippocampal neurogenesis in the aged brain of experimental animals with short and long lifespans, and humans. The rate of cell cycling and addition of new hippocampal neurons to the existing hippocampal circuit undoubtedly decreases with age. Yet, neural stem/progenitor cells that persist into senescence may activate and produce a substantial number of functional new neurons that exhibit enhanced survival and integration given the right set of conditions. There thus exists remarkable potential for newly-generated neurons in the senescent hippocampus to make important circuit- and behavioral-level contributions, which may serve as a target for future therapeutics.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, 101 Nicolls Rd, Stony Brook, NY 11794, United States.
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
22
|
Augusto-Oliveira M, Arrifano GPF, Malva JO, Crespo-Lopez ME. Adult Hippocampal Neurogenesis in Different Taxonomic Groups: Possible Functional Similarities and Striking Controversies. Cells 2019; 8:cells8020125. [PMID: 30764477 PMCID: PMC6406791 DOI: 10.3390/cells8020125] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis occurs in many species, from fish to mammals, with an apparent reduction in the number of both neurogenic zones and new neurons inserted into established circuits with increasing brain complexity. Although the absolute number of new neurons is high in some species, the ratio of these cells to those already existing in the circuit is low. Continuous replacement/addition plays a role in spatial navigation (migration) and other cognitive processes in birds and rodents, but none of the literature relates adult neurogenesis to spatial navigation and memory in primates and humans. Some models developed by computational neuroscience attribute a high weight to hippocampal adult neurogenesis in learning and memory processes, with greater relevance to pattern separation. In contrast to theories involving neurogenesis in cognitive processes, absence/rarity of neurogenesis in the hippocampus of primates and adult humans was recently suggested and is under intense debate. Although the learning process is supported by plasticity, the retention of memories requires a certain degree of consolidated circuitry structures, otherwise the consolidation process would be hampered. Here, we compare and discuss hippocampal adult neurogenesis in different species and the inherent paradoxical aspects.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Research on Neurodegeneration and Infection, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-005, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Gabriela P F Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - João O Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| |
Collapse
|
23
|
The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 2019; 24:67-87. [PMID: 29679070 PMCID: PMC6195869 DOI: 10.1038/s41380-018-0036-2] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.
Collapse
|
24
|
Adult Hippocampal Neurogenesis: A Coming-of-Age Story. J Neurosci 2018; 38:10401-10410. [PMID: 30381404 DOI: 10.1523/jneurosci.2144-18.2018] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
What has become standard textbook knowledge over the last decade was a hotly debated matter a decade earlier: the proposition that new neurons are generated in the adult mammalian CNS. The early discovery by Altman and colleagues in the 1960s was vulnerable to criticism due to the lack of technical strategies for unequivocal demonstration, quantification, and physiological analysis of newly generated neurons in adult brain tissue. After several technological advancements had been made in the field, we published a paper in 1996 describing the generation of new neurons in the adult rat brain and the decline of hippocampal neurogenesis during aging. The paper coincided with the publication of several other studies that together established neurogenesis as a cellular mechanism in the adult mammalian brain. In this Progressions article, which is by no means a comprehensive review, we recount our personal view of the initial setting that led to our study and we discuss some of its implications and developments that followed. We also address questions that remain regarding the regulation and function of neurogenesis in the adult mammalian brain, in particular the existence of neurogenesis in the adult human brain.
Collapse
|
25
|
Alger SE, Kensinger EA, Payne JD. Preferential consolidation of emotionally salient information during a nap is preserved in middle age. Neurobiol Aging 2018; 68:34-47. [PMID: 29704647 DOI: 10.1016/j.neurobiolaging.2018.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Sleep preferentially preserves aspects of memory that are most salient and valuable to remember at the expense of memory for less relevant details. Daytime naps and nocturnal sleep enhance this emotional memory trade-off effect, with memory for emotional components correlated with slow-wave sleep during the day and rapid eye movement sleep overnight. However, these studies have primarily sampled from young adult populations. Sleep and memory are altered by middle age, and the aim of the present study was to examine how age affects sleep-based mechanisms of emotional memory prioritization, using a daytime nap protocol to compare young to middle-aged adults. In both age groups, a nap soon after encoding scenes that contained a negative or neutral object on a neutral background led to superior retention of emotional object memory at the expense of memory for the related backgrounds. Sleep spindle activity during slow-wave sleep was related to memory for this emotionally salient information across the age range.
Collapse
Affiliation(s)
- Sara E Alger
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA.
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
26
|
McGuiness JA, Scheinert RB, Asokan A, Stadler VC, Lee CS, Rani A, Kumar A, Foster TC, Ormerod BK. Indomethacin Increases Neurogenesis across Age Groups and Improves Delayed Probe Trial Difference Scores in Middle-Aged Rats. Front Aging Neurosci 2017; 9:280. [PMID: 28928652 PMCID: PMC5591789 DOI: 10.3389/fnagi.2017.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/11/2017] [Indexed: 01/20/2023] Open
Abstract
We tested whether indomethacin or rosiglitazone treatment could rejuvenate spatial ability and hippocampal neurogenesis in aging rats. Young (4 mo; n = 30), middle-aged (12 mo; n = 31), and aged (18 mo; n = 31) male Fischer 344 rats were trained and then tested in a rapid acquisition water maze task and then fed vehicle (500 μl strawberry milk), indomethacin (2.0 mg/ml), or rosiglitazone (8.0 mg/ml) twice daily for the remainder of the experiment. A week after drug treatment commenced, the rats were given 3 daily BrdU (50 mg/kg) injections to test whether age-related declines in neurogenesis were reversed. One week after the final BrdU injection (~2.5 weeks after the 1st water maze session), the rats were trained to a find novel hidden water maze platform location, tested on 15 min and 24 h probe trials and then killed 24 h later. During the first water maze session, young rats outperformed aged rats but all rats learned information about the hidden platform location. Middle-aged and aged rats exhibited better memory probe trial performances than young rats in the 2nd water maze session and indomethacin improved memory probe trial performances on the 2nd vs. 1st water maze session in middle-aged rats. Middle-aged rats with more new neurons had fewer phagocytic microglia and exhibited better hidden platform training trial performances on the 2nd water maze session. Regardless of age, indomethacin increased new hippocampal neuron numbers and both rosiglitazone and indomethacin increased subependymal neuroblasts/neuron densities. Taken together, our results suggest the feasibility of studying the effects of longer-term immunomodulation on age-related declines in cognition and neurogenesis.
Collapse
Affiliation(s)
- James A. McGuiness
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Rachel B. Scheinert
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Aditya Asokan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Vivien-Charlott Stadler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Christian S. Lee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Asha Rani
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Thomas C. Foster
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Brandi K. Ormerod
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| |
Collapse
|
27
|
Noninvasive Evaluation of Cellular Proliferative Activity in Brain Neurogenic Regions in Rats under Depression and Treatment by Enhanced [18F]FLT-PET Imaging. J Neurosci 2017; 36:8123-31. [PMID: 27488633 DOI: 10.1523/jneurosci.0220-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Neural stem cells in two neurogenic regions, the subventricular zone and the subgranular zone (SGZ) of the hippocampal dentate gyrus, can divide and produce new neurons throughout life. Hippocampal neurogenesis is related to emotions, including depression/anxiety, and the therapeutic effects of antidepressants, as well as learning and memory. The establishment of in vivo imaging for proliferative activity of neural stem cells in the SGZ might be used to diagnose depression and to monitor the therapeutic efficacy of antidepressants. Positron emission tomography (PET) imaging with 3'-deoxy-3'-[(18)F]fluoro-l-thymidine ([(18)F]FLT) has been studied to allow visualization of proliferative activity in two neurogenic regions of adult mammals; however, the PET imaging has not been widely used because of lower accumulation of [(18)F]FLT, which does not allow quantitative assessment of the decline in cellular proliferative activity in the SGZ under the condition of depression. We report the establishment of an enhanced PET imaging method with [(18)F]FLT combined with probenecid, an inhibitor of drug transporters at the blood-brain barrier, which can allow the quantitative visualization of neurogenic activity in rats. Enhanced PET imaging allowed us to evaluate reduced cell proliferation in the SGZ of rats with corticosterone-induced depression, and further the recovery of proliferative activity in rats under treatment with antidepressants. This enhanced [(18)F]FLT-PET imaging technique with probenecid can be used to assess the dynamic alteration of neurogenic activity in the adult mammalian brain and may also provide a means for objective diagnosis of depression and monitoring of the therapeutic effect of antidepressant treatment. SIGNIFICANCE STATEMENT Adult hippocampal neurogenesis may play a role in major depression and antidepressant therapy. Establishment of in vivo imaging for hippocampal neurogenic activity may be useful to diagnose depression and monitor the therapeutic efficacy of antidepressants. Positron emission tomography (PET) imaging has been studied to allow visualization of neurogenic activity; however, PET imaging has not been widely used due to the lower accumulation of the PET tracer in the neurogenic regions. Here, we succeeded in establishing highly quantitative PET imaging for neurogenic activity in adult brain with an inhibitor for drug transporter. This enhanced PET imaging allowed evaluation of the decline of neurogenic activity in the hippocampus of rats with depression and the recovery of neurogenic activity by antidepressant treatment.
Collapse
|
28
|
Tamura Y, Kataoka Y. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis. NEUROGENESIS 2017; 4:e1281861. [PMID: 28243610 DOI: 10.1080/23262133.2017.1281861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/25/2016] [Accepted: 01/10/2017] [Indexed: 01/16/2023]
Abstract
Neural stem cells are present in 2 neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), and continue to generate new neurons throughout life. Adult hippocampal neurogenesis is linked to a variety of psychiatric disorders such as depression and anxiety, and to the therapeutic effects of antidepressants, as well as learning and memory. In vivo imaging for hippocampal neurogenic activity may be used to diagnose psychiatric disorders and evaluate the therapeutic efficacy of antidepressants. However, these imaging techniques remain to be established until now. Recently, we established a quantitative positron emission tomography (PET) imaging technique for neurogenic activity in the adult brain with 3'-deoxy-3'-[18F]fluoro-L-thymidine ([18F]FLT) and probenecid, a drug transporter inhibitor in blood-brain barrier. Moreover, we showed that this PET imaging technique can monitor alterations in neurogenic activity in the hippocampus of adult rats with depression and following treatment with an antidepressant. This PET imaging method may assist in diagnosing depression and in monitoring the therapeutic efficacy of antidepressants. In this commentary, we discuss the possibility of in vivo PET imaging for neurogenic activity in adult non-human primates and humans.
Collapse
Affiliation(s)
- Yasuhisa Tamura
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Chuo-ku, Kobe, Japan; Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Yosky Kataoka
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Chuo-ku, Kobe, Japan; Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| |
Collapse
|
29
|
Ihunwo AO, Tembo LH, Dzamalala C. The dynamics of adult neurogenesis in human hippocampus. Neural Regen Res 2016; 11:1869-1883. [PMID: 28197172 PMCID: PMC5270414 DOI: 10.4103/1673-5374.195278] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 02/06/2023] Open
Abstract
The phenomenon of adult neurogenesis is now an accepted occurrence in mammals and also in humans. At least two discrete places house stem cells for generation of neurons in adult brain. These are olfactory system and the hippocampus. In animals, newly generated neurons have been directly or indirectly demonstrated to generate a significant amount of new neurons to have a functional role. However, the data in humans on the extent of this process is still scanty and such as difficult to comprehend its functional role in humans. This paper explores the available data on as extent of adult hippocampal neurogenesis in humans and makes comparison to animal data.
Collapse
Affiliation(s)
- Amadi O. Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lackson H. Tembo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles Dzamalala
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Stein LR, O'Dell KA, Funatsu M, Zorumski CF, Izumi Y. Short-term environmental enrichment enhances synaptic plasticity in hippocampal slices from aged rats. Neuroscience 2016; 329:294-305. [PMID: 27208617 DOI: 10.1016/j.neuroscience.2016.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
Age-associated changes in cognition are mirrored by impairments in cellular models of memory and learning, such as long-term potentiation (LTP) and long-term depression (LTD). In young rodents, environmental enrichment (EE) can enhance memory, alter LTP and LTD, as well as reverse cognitive deficits induced by aging. Whether short-term EE can benefit cognition and synaptic plasticity in aged rodents is unclear. Here, we tested if short-term EE could overcome age-associated impairments in induction of LTP and LTD. LTP and LTD could not be induced in the CA1 region of hippocampal slices in control, aged rats using standard stimuli that are highly effective in young rats. However, exposure of aged littermates to EE for three weeks enabled successful induction of LTP and LTD. EE-facilitated LTP was dependent upon N-methyl-d-aspartate receptors (NMDARs). These alterations in synaptic plasticity occurred with elevated levels of phosphorylated cAMP response element-binding protein and vascular endothelial growth factor, but in the absence of changes in several other synaptic and cellular markers. Importantly, our study suggests that even a relatively short period of EE is sufficient to alter synaptic plasticity and molecular markers linked to cognitive function in aged animals.
Collapse
Affiliation(s)
- Liana R Stein
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Kazuko A O'Dell
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Michiyo Funatsu
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Mietsch M, Baldauf K, Reitemeier S, Suchowski M, Schoon HA, Einspanier A. Blood pressure as prognostic marker for body condition, cardiovascular, and metabolic diseases in the common marmoset (Callithrix jacchus
). J Med Primatol 2016; 45:126-38. [DOI: 10.1111/jmp.12215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Matthias Mietsch
- Faculty of Veterinary Medicine; Institute of Physiological Chemistry; University of Leipzig; Leipzig Germany
| | - Katrin Baldauf
- Faculty of Veterinary Medicine; Department of Small Animal Medicine; University of Leipzig; Leipzig Germany
| | - Susanne Reitemeier
- Faculty of Veterinary Medicine; Institute of Physiological Chemistry; University of Leipzig; Leipzig Germany
| | - Marcel Suchowski
- Faculty of Veterinary Medicine; Institute of Pathology; University of Leipzig; Leipzig Germany
| | - Heinz-Adolf Schoon
- Faculty of Veterinary Medicine; Institute of Pathology; University of Leipzig; Leipzig Germany
| | - Almuth Einspanier
- Faculty of Veterinary Medicine; Institute of Physiological Chemistry; University of Leipzig; Leipzig Germany
| |
Collapse
|
32
|
Abstract
OBJECTIVE The molecular and cellular basis of structural and functional abnormalities of the hippocampus found in schizophrenia is currently unclear. Postnatal neurogenesis contributes to hippocampal function in animal models and is correlated with hippocampal volume in primates. Reduced hippocampal cell proliferation has been previously reported in schizophrenia, which may contribute to hippocampal dysfunction. METHOD We measured the cell proliferation marker, Ki67, in post-mortem hippocampal tissue from patients with schizophrenia (n = 10) and matched controls (n = 16). Ki67-labelled cells were counted within the dentate gyrus and hilus on sections taken from the anterior hippocampus. RESULTS We replicated the finding of a significant reduction in Ki67+ cells/mm² in schizophrenia cases compared to controls (t24 = 2.1, p = 0.023). In our relatively small sample, we did not find a relationship between Ki67+ cells and age overall, or between Ki67 + cells and duration of illness or antipsychotic treatment in people with schizophrenia. CONCLUSION Our results confirm that reduced hippocampal cell proliferation may be present in schizophrenia. Restoring hippocampal neurogenesis may be a potential therapeutic target for the treatment of hippocampal dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Katherine M Allen
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia,Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Samantha J Fung
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia,Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia,Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia,Cynthia Shannon Weickert, Neuroscience Research Australia, Corner of Barker and Easy Streets, Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
33
|
Yousef H, Morgenthaler A, Schlesinger C, Bugaj L, Conboy IM, Schaffer DV. Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis. Stem Cells 2016; 33:1577-88. [PMID: 25538007 DOI: 10.1002/stem.1943] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 11/30/2014] [Indexed: 12/28/2022]
Abstract
Hippocampal neurogenesis, the product of resident neural stem cell proliferation and differentiation, persists into adulthood but decreases with organismal aging, which may contribute to the age-related decline in cognitive function. The mechanisms that underlie this decrease in neurogenesis are not well understood, although evidence in general indicates that extrinsic changes in an aged stem cell niche can contribute to functional decline in old stem cells. Bone morphogenetic protein (BMP) family members are intercellular signaling proteins that regulate stem and progenitor cell quiescence, proliferation, and differentiation in various tissues and are likewise critical regulators of neurogenesis in young adults. Here, we establish that BMP signaling increases significantly in old murine hippocampi and inhibits neural progenitor cell proliferation. Furthermore, direct in vivo attenuation of BMP signaling via genetic and transgenic perturbations in aged mice led to elevated neural stem cell proliferation, and subsequent neurogenesis, in old hippocampi. Such advances in our understanding of mechanisms underlying decreased hippocampal neurogenesis with age may offer targets for the treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Hanadie Yousef
- Department of Molecular and Cell Biology; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Administration Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
34
|
Pérez-Martín M, Rivera P, Blanco E, Lorefice C, Decara J, Pavón FJ, Serrano A, Rodríguez de Fonseca F, Suárez J. Environmental Enrichment, Age, and PPARα Interact to Regulate Proliferation in Neurogenic Niches. Front Neurosci 2016; 10:89. [PMID: 27013951 PMCID: PMC4783391 DOI: 10.3389/fnins.2016.00089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) ligands have been shown to modulate recovery after brain insults such as ischemia and irradiation by enhancing neurogenesis. In the present study, we investigated the effect of the genetic deletion of PPARα receptors on the proliferative rate of neural precursor cells (NPC) in the adult brain. The study was performed in aged Pparα−/− mice exposed to nutritional (treats) and environmental (games) enrichments for 20 days. We performed immunohistochemical analyses of cells containing the replicating cell DNA marker 5-bromo-2′-deoxyuridine (BrdU+) and the immature neuronal marker doublecortin (Dcx+) in the main neurogenic zones of the adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ), and/or hypothalamus. Results indicated a reduction in the number of BrdU+ cells in the neurogenic zones analyzed as well as Dcx+ cells in the SGZ during aging (2, 6, and 18 months). Pparα deficiency alleviated the age-related reduction of NPC proliferation (BrdU+ cells) in the SVZ of the 18-months-old mice. While no genotype effect on NPC proliferation was detected in the SGZ during aging, an accentuated reduction in the number of Dcx+ cells was observed in the SGZ of the 6-months-old Pparα−/− mice. Exposing the 18-months-old mice to nutritional and environmental enrichments reversed the Pparα−/−-induced impairment of NPC proliferation in the neurogenic zones analyzed. The enriched environment did not modify the number of SGZ Dcx+ cells in the 18 months old Pparα−/− mice. These results identify PPARα receptors as a potential target to counteract the naturally observed decline in adult NPC proliferation associated with aging and impoverished environments.
Collapse
Affiliation(s)
- Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga Málaga, Spain
| | - Patricia Rivera
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Eduardo Blanco
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de MálagaMálaga, Spain; Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de LleidaLleida, Spain
| | - Clara Lorefice
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de MálagaMálaga, Spain; UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de MálagaMálaga, Spain
| | - Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Francisco J Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| |
Collapse
|
35
|
Park SJ, Ahn YJ, Lee HE, Hong E, Ryu JH. Standardized Prunella vulgaris
var. lilacina
Extract Enhances Cognitive Performance in Normal Naive Mice. Phytother Res 2015; 29:1814-21. [DOI: 10.1002/ptr.5449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 07/04/2015] [Accepted: 08/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Se Jin Park
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Young Je Ahn
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Hyung Eun Lee
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Eunyoung Hong
- Natraceutical & Functional Foods Center; CJ Foods R&D; Seoul 152-051 Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Republic of Korea
- Department of Oriental Pharmaceutical Science, Kyung Hee East-west Pharmaceutical Research Institute, College of Pharmacy; Kyung Hee University; Seoul 130-701 Republic of Korea
| |
Collapse
|
36
|
Ngwenya LB, Heyworth NC, Shwe Y, Moore TL, Rosene DL. Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey. Front Syst Neurosci 2015; 9:102. [PMID: 26236203 PMCID: PMC4500920 DOI: 10.3389/fnsys.2015.00102] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/30/2015] [Indexed: 12/29/2022] Open
Abstract
The generation of new neurons in the adult mammalian brain is well-established for the hippocampal dentate gyrus (DG). However, the role of neurogenesis in hippocampal function and cognition, how it changes in aging, and the mechanisms underlying this are yet to be elucidated in the monkey brain. To address this, we investigated adult neurogenesis in the DG of 42 rhesus monkeys (39 cognitively tested) ranging in age from young adult to the elderly. We report here that there is an age-related decline in proliferation and a delayed development of adult neuronal phenotype. Additionally, we show that many of the new neurons survive throughout the lifetime of the animal and may contribute to a modest increase in total neuron number in the granule cell layer of the DG over the adult life span. Lastly, we find that measures of decreased adult neurogenesis are only modestly predictive of age-related cognitive impairment.
Collapse
Affiliation(s)
- Laura B Ngwenya
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA USA
| | - Nadine C Heyworth
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA USA
| | - Yamin Shwe
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA USA
| | - Tara L Moore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA USA ; Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| |
Collapse
|
37
|
Abrous DN, Wojtowicz JM. Interaction between Neurogenesis and Hippocampal Memory System: New Vistas. Cold Spring Harb Perspect Biol 2015; 7:7/6/a018952. [PMID: 26032718 DOI: 10.1101/cshperspect.a018952] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
During the last decade, the questions on the functionality of adult neurogenesis have changed their emphasis from if to how the adult-born neurons participate in a variety of memory processes. The emerging answers are complex because we are overwhelmed by a variety of behavioral tasks that apparently require new neurons to be performed optimally. With few exceptions, the hippocampal memory system seems to use the newly generated neurons for multiple roles. Adult neurogenesis has given the dentate gyrus new capabilities not previously thought possible within the scope of traditional synaptic plasticity. Looking at these new developments from the perspective of past discoveries, the science of adult neurogenesis has emerged from its initial phase of being, first, a surprising oddity and, later, exciting possibility, to the present state of being an integral part of mainstream neuroscience. The answers to many remaining questions regarding adult neurogenesis will come along only with our growing understanding of the functionality of the brain as a whole. This, in turn, will require integration of multiple levels of organization from molecules and cells to circuits and systems, ultimately resulting in comprehension of behavioral outcomes.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Inserm U862, Bordeaux-F33077, France Université de Bordeaux, Bordeaux-F33077, France
| | - Jan Martin Wojtowicz
- Department of Physiology, University of Toronto, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
38
|
Costa V, Lugert S, Jagasia R. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb Exp Pharmacol 2015; 228:99-155. [PMID: 25977081 DOI: 10.1007/978-3-319-16522-6_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.
Collapse
Affiliation(s)
- Veronica Costa
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases (NORD), Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070, Basel, Switzerland
| | | | | |
Collapse
|
39
|
Tokuda H, Kontani M, Kawashima H, Kiso Y, Shibata H, Osumi N. Differential effect of arachidonic acid and docosahexaenoic acid on age-related decreases in hippocampal neurogenesis. Neurosci Res 2014; 88:58-66. [PMID: 25149915 DOI: 10.1016/j.neures.2014.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/23/2014] [Accepted: 08/06/2014] [Indexed: 01/07/2023]
Abstract
Hippocampal neurogenesis affects learning and memory. We evaluated in rats effects of ingestion of arachidonic acid (ARA) and/or docosahexaenoic acid (DHA) on age-related decreases in proliferating neural stem/progenitor cells (NSPCs) or newborn neurons (NNs). Rats were fed with ARA- and/or DHA-containing diet from 2 to 18 months old and then sacrificed 1 day or 4 weeks after 5-bromo-2-deoxyuridine (BrdU) injections at 2, 6 and 18 months. The numbers of NSPCs (SOX2+/BrdU+) and NNs (NeuN+/BrdU+) were determined immunohistochemically. The number of BrdU+ cells 1 day after BrdU injections decreased with age, but increased 65% after ARA ingestion compared to the control at 18 months. The SOX2+/BrdU+ cell ratio was unchanged by aging or ingestion of ARA or DHA. The number of NeuN+/BrdU+ cells 4 weeks after BrdU injections decreased with age, but increased 34% (yet not statistically significant) after DHA ingestion compared to the control at 18 months. These results indicate that ARA ingestion can ameliorate the age-related decrease in the number of NSPCs in rats. The functions of ARA and DHA in hippocampal neurogenesis appear to be different in aged rats; ARA may maintain an NSPC pool, whereas DHA may support NN production and/or survival.
Collapse
Affiliation(s)
- Hisanori Tokuda
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Masanori Kontani
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Kawashima
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Yoshinobu Kiso
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
40
|
Yuan TF, Li J, Ding F, Arias-Carrion O. Evidence of adult neurogenesis in non-human primates and human. Cell Tissue Res 2014; 358:17-23. [PMID: 25130142 DOI: 10.1007/s00441-014-1980-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/25/2014] [Indexed: 01/19/2023]
Abstract
Adult neurogenesis in rodents has been extensively studied. Here, we briefly summarize the studies of adult neurogenesis based on non-human primate brains and human postmortem brain samples in recent decades. The differences between rodent, primate and human neurogenesis are discussed. We conclude that these differences may contribute to distinct physiological roles and the self-repair mechanisms in the brain across species.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, China,
| | | | | | | |
Collapse
|
41
|
Taliaz D. Skills development in infants: a possible role for widespread neurogenesis? Front Behav Neurosci 2013; 7:178. [PMID: 24348353 PMCID: PMC3844860 DOI: 10.3389/fnbeh.2013.00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023] Open
Affiliation(s)
- Dekel Taliaz
- Department of Neuroscience and Mental Health, The Hospital for Sick Children Toronto, ON, Canada
| |
Collapse
|
42
|
Allen KM, Fung SJ, Rothmond DA, Noble PL, Weickert CS. Gonadectomy increases neurogenesis in the male adolescent rhesus macaque hippocampus. Hippocampus 2013; 24:225-38. [PMID: 24123729 DOI: 10.1002/hipo.22217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 11/07/2022]
Abstract
New neurons are continuously produced in the subgranular zone of the adult hippocampus and can modulate hippocampal plasticity across life. Adolescence is characterized by dramatic changes in sex hormone levels, and social and emotional behaviors. It is also an age for increased risk of psychiatric disorders, including schizophrenia, which may involve altered hippocampal neurogenesis. The extent to which testosterone and other testicular hormones modulate hippocampal neurogenesis and adolescent behavioral development is unclear. This study aimed to determine if removal of testicular hormones during adolescence alters neurogenesis in the male rhesus macaque hippocampus. We used stereology to examine levels of cell proliferation, cell survival and neuronal differentiation in late adolescent male rhesus macaques (4.6-yrs old) that had previously been gonadectomized or sham operated prior to puberty (2.4-yrs old). While the absence of adolescent testicular hormones had no effect on cell proliferation, cell survival was increased by 65% and indices of immature neuronal differentiation were increased by 56% in gonadectomized monkeys compared to intact monkeys. We show for the first time that presence of circulating testicular hormones, including testosterone, may decrease neuronal survival in the primate hippocampus during adolescence. Our findings are in contrast to existing studies in adults where testosterone tends to be a pro-survival factor and demonstrate that testicular hormones may reduce hippocampal neurogenesis during the age typical of schizophrenia onset.
Collapse
Affiliation(s)
- K M Allen
- Schizophrenia Research Institute, Sydney, 2010, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, 2031, Australia; School of Psychiatry, University of New South Wales, Sydney, 2052, Australia
| | | | | | | | | |
Collapse
|
43
|
Galea LAM, Wainwright SR, Roes MM, Duarte-Guterman P, Chow C, Hamson DK. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications. J Neuroendocrinol 2013; 25:1039-61. [PMID: 23822747 DOI: 10.1111/jne.12070] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/23/2013] [Accepted: 06/29/2013] [Indexed: 12/12/2022]
Abstract
The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress.
Collapse
Affiliation(s)
- L A M Galea
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Ormerod BK, Hanft SJ, Asokan A, Haditsch U, Lee SW, Palmer TD. PPARγ activation prevents impairments in spatial memory and neurogenesis following transient illness. Brain Behav Immun 2013; 29:28-38. [PMID: 23108061 PMCID: PMC3570721 DOI: 10.1016/j.bbi.2012.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/25/2012] [Accepted: 10/19/2012] [Indexed: 11/25/2022] Open
Abstract
The detrimental effects of illness on cognition are familiar to virtually everyone. Some effects resolve quickly while others may linger after the illness resolves. We found that a transient immune response stimulated by lipopolysaccharide (LPS) compromised hippocampal neurogenesis and impaired hippocampus-dependent spatial memory. The immune event caused an ∼50% reduction in the number of neurons generated during the illness and the onset of the memory impairment was delayed and coincided with the time when neurons generated during the illness would have become functional within the hippocampus. Broad spectrum non-steroidal anti-inflammatory drugs attenuated these effects but selective Cox-2 inhibition was ineffective while PPARγ activation was surprisingly effective at protecting both neurogenesis and memory from the effects of LPS-produced transient illness. These data may highlight novel mechanisms behind chronic inflammatory and neuroinflammatory episodes that are known to compromise hippocampus-dependent forms of learning and memory.
Collapse
Affiliation(s)
- Brandi K. Ormerod
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305,J. Crayton Pruitt Family Department of Biomedical Engineering, McKnight Brain Institute and Neuroscience Department, University of Florida, Gainesville, FL, USA, 32611,To whom correspondence should be addressed: Dr. Brandi K. Ormerod: J. Crayton Pruitt Family Department of Biomedical Engineering, 1600 Center Drive, Room J296, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA, 32611, Phone: 352-273-8125, Fax: 352-273-9222, Or Dr. Theo D. Palmer, Institute for Stem Cell Biology and Regenerative Medicine, Lorey I Lokey Stem Cell Building, Rm1141, 265 Campus Drive, Stanford University, Stanford, CA, USA, 94305. Phone: 650-723-9306, Fax: 650-736-0936,
| | - Simon J. Hanft
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305
| | - Aditya Asokan
- J. Crayton Pruitt Family Department of Biomedical Engineering, McKnight Brain Institute and Neuroscience Department, University of Florida, Gainesville, FL, USA, 32611
| | - Ursula Haditsch
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305
| | - Star W. Lee
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305
| | - Theo D. Palmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305,To whom correspondence should be addressed: Dr. Brandi K. Ormerod: J. Crayton Pruitt Family Department of Biomedical Engineering, 1600 Center Drive, Room J296, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA, 32611, Phone: 352-273-8125, Fax: 352-273-9222, Or Dr. Theo D. Palmer, Institute for Stem Cell Biology and Regenerative Medicine, Lorey I Lokey Stem Cell Building, Rm1141, 265 Campus Drive, Stanford University, Stanford, CA, USA, 94305. Phone: 650-723-9306, Fax: 650-736-0936,
| |
Collapse
|
45
|
Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK. Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun 2013; 28:25-43. [PMID: 23078985 PMCID: PMC3545095 DOI: 10.1016/j.bbi.2012.09.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 01/02/2023] Open
Abstract
We tested whether daily exercise modulates immune and neuroimmune cytokines, hippocampus-dependent behavior and hippocampal neurogenesis in aging male F344 rats (18mo upon arrival). Twelve weeks after conditioned running or control group assignment, the rats were trained and tested in a rapid water maze followed by an inhibitory avoidance task. The rats were BrdU-injected beginning 12days after behavioral testing and killed 3weeks later to quantify cytokines and neurogenesis. Daily exercise increased neurogenesis and improved immediate and 24h water maze discrimination index (DI) scores and 24h inhibitory avoidance retention latencies. Daily exercise decreased cortical VEGF, hippocampal IL-1β and serum MCP-1, GRO-KC and leptin levels but increased hippocampal GRO-KC and IL-18 concentrations. Serum leptin concentration correlated negatively with new neuron number and both DI scores while hippocampal IL-1β concentration correlated negatively with memory scores in both tasks. Cortical VEGF, serum GRO-KC and serum MCP-1 levels correlated negatively with immediate DI score and we found novel positive correlations between hippocampal IL-18 and GRO-KC levels and new neuron number. Pathway analyses revealed distinct serum, hippocampal and cortical compartment cytokine relationships. Our results suggest that daily exercise potentially improves cognition in aging rats by modulating hippocampal neurogenesis and immune and neuroimmune cytokine signaling. Our correlational data begin to provide a framework for systematically manipulating these immune and neuroimmune signaling molecules to test their effects on cognition and neurogenesis across lifespan in future experiments.
Collapse
Affiliation(s)
- Rachel. B. Speisman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C. Foster
- Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA,Corresponding Author: Brandi K. Ormerod, PhD, Assistant Professor, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA, Phone: 352-273-8125, Fax: 352-273-9221,
| | - Brandi K. Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA,Corresponding Author: Brandi K. Ormerod, PhD, Assistant Professor, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA, Phone: 352-273-8125, Fax: 352-273-9221,
| |
Collapse
|
46
|
Hara Y, Rapp PR, Morrison JH. Neuronal and morphological bases of cognitive decline in aged rhesus monkeys. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1051-73. [PMID: 21710198 PMCID: PMC3448991 DOI: 10.1007/s11357-011-9278-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/03/2011] [Indexed: 05/13/2023]
Abstract
Rhesus monkeys provide a valuable model for studying the basis of cognitive aging because they are vulnerable to age-related decline in executive function and memory in a manner similar to humans. Some of the behavioral tasks sensitive to the effects of aging are the delayed response working memory test, recognition memory tests including the delayed nonmatching-to-sample and the delayed recognition span task, and tests of executive function including reversal learning and conceptual set-shifting task. Much effort has been directed toward discovering the neurobiological parameters that are coupled to individual differences in age-related cognitive decline. Area 46 of the dorsolateral prefrontal cortex (dlPFC) has been extensively studied for its critical role in executive function while the hippocampus and related cortical regions have been a major target of research for memory function. Some of the key age-related changes in area 46 include decreases in volume, microcolumn strength, synapse density, and α1- and α2-adrenergic receptor binding densities. All of these measures significantly correlate with cognitive scores. Interestingly, the critical synaptic subtypes associated with cognitive function appear to be different between the dlPFC and the hippocampus. For example, the dendritic spine subtype most critical to task acquisition and vulnerable to aging in area 46 is the thin spine, whereas in the dentate gyrus, the density of large mushroom spines with perforated synapses correlates with memory performance. This review summarizes age-related changes in anatomical, neuronal, and synaptic parameters within brain areas implicated in cognition and whether these changes are associated with cognitive decline.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, New York, NY 10029 USA
- Friedman Brain Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029 USA
| | - Peter R. Rapp
- Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - John H. Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, New York, NY 10029 USA
- Friedman Brain Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029 USA
- Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, NY 10029 USA
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, NY 10029 USA
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029 USA
| |
Collapse
|
47
|
Environmental enrichment restores neurogenesis and rapid acquisition in aged rats. Neurobiol Aging 2012; 34:263-74. [PMID: 22795793 DOI: 10.1016/j.neurobiolaging.2012.05.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/19/2012] [Accepted: 05/19/2012] [Indexed: 12/27/2022]
Abstract
Strategies combatting cognitive decline among the growing aging population are vital. We tested whether environmental enrichment could reverse age-impaired rapid spatial search strategy acquisition concomitantly with hippocampal neurogenesis in rats. Young (5-8 months) and aged (20-22 months) male Fischer 344 rats were pair-housed and exposed to environmental enrichment (n = 7 young, 9 aged) or housed individually (n = 7 young, 7 aged) for 10 weeks. After 5 weeks, hidden platform trials (5 blocks of 3 trials; 15 m inter-block interval), a probe trial, and then visible platform trials (5 blocks of 3 trials; 15 m inter-block interval) commenced in the water maze. One week after testing, rats were given 5 daily intraperitoneal bromodeoxyuridine (50 mg/kg) injections and perfused 4 weeks later to quantify neurogenesis. Although young rats outperformed aged rats, aged enriched rats outperformed aged individually housed rats on all behavioral measures. Neurogenesis decreased with age but enrichment enhanced new cell survival, regardless of age. The novel correlation between new neuron number and behavioral measures obtained in a rapid water maze task among aged rats, suggests that environmental enrichment increases their ability to rapidly acquire and flexibly use spatial information along with neurogenesis.
Collapse
|
48
|
The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 2012; 13:240-50. [PMID: 22395804 DOI: 10.1038/nrn3200] [Citation(s) in RCA: 640] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal ageing is associated with impairments in cognitive function, including memory. These impairments are linked, not to a loss of neurons in the forebrain, but to specific and relatively subtle synaptic alterations in the hippocampus and prefrontal cortex. Here, we review studies that have shed light on the cellular and synaptic changes observed in these brain structures during ageing that can be directly related to cognitive decline in young and aged animals. We also discuss the influence of the hormonal status on these age-related alterations and recent progress in the development of therapeutic strategies to limit the impact of ageing on memory and cognition in humans.
Collapse
|
49
|
Artegiani B, Calegari F. Age-related cognitive decline: can neural stem cells help us? Aging (Albany NY) 2012; 4:176-86. [PMID: 22466406 PMCID: PMC3348478 DOI: 10.18632/aging.100446] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 02/07/2023]
Abstract
Several studies suggest that an increase in adult neurogenesis has beneficial effects on emotional behavior and cognitive performance including learning and memory. The observation that aging has a negative effect on the proliferation of neural stem cells has prompted several laboratories to investigate new systems to artificially increase neurogenesis in senescent animals as a means to compensate for age-related cognitive decline. In this review we will discuss the systemic, cellular, and molecular changes induced by aging and affecting the neurogenic niche at the level of neural stem cell proliferation, their fate change, neuronal survival, and subsequent integration in the neuronal circuitry. Particular attention will be given to those manipulations that increase neurogenesis in the aged brain as a potential avenue towards therapy.
Collapse
Affiliation(s)
- Benedetta Artegiani
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | | |
Collapse
|
50
|
New neurons in an aged brain. Behav Brain Res 2011; 227:497-507. [PMID: 22024433 DOI: 10.1016/j.bbr.2011.10.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 12/21/2022]
Abstract
Adult hippocampal neurogenesis is one of the most robust forms of synaptic plasticity in the nervous system and occurs throughout life. However, the rate of neurogenesis declines dramatically with age. Older animals have significantly less neural progenitor cell proliferation, neuronal differentiation, and newborn neuron survival compared to younger animals. Intrinsic properties of neural progenitor cells, such as gene transcription and telomerase activity, change with age, which may contribute to the observed decline in neurogenesis. In addition, age-related changes in the local cells of the neurogenic niche may no longer provide neural progenitor cells with the cell-cell contact and soluble cues necessary for hippocampal neurogenesis. Astrocytes, microglia, and endothelial cells undergo changes in morphology and signaling properties with age, altering the foundation of the neurogenic niche. While most studies indicate a correlation between decreased hippocampal neurogenesis and impaired performance in hippocampus-dependent cognitive tasks in aged mice, a few have demonstrated that young and aged mice are equivalent in their cognitive ability. Here, we summarize the different behavioral paradigms to test hippocampus-dependent cognition and the need to develop neurogenesis-dependent tasks.
Collapse
|