1
|
Vinnakota GG, Lewis LE, Bharadwaj SK, Purkayastha J, Patil AK. Amplitude-Integrated Electroencephalogram in Premature Infants: A Prospective Cohort Study. Neuropediatrics 2024. [PMID: 39384320 DOI: 10.1055/a-2436-8767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
OBJECTIVE The study aimed to interpret and establish patterns of amplitude-integrated electroencephalogram (aEEG) in stable preterm neonates and compare the aEEG among different gestational age groups using three standard classifications. METHODS This prospective cohort study included stable preterm neonates between 240/7 and 366/7 weeks of gestation. aEEG was recorded in the first and second week of life and interpreted using the L. Hellström-Westas, Burdjalov, and Magalhães classification for background pattern, continuity, upper and lower margin amplitude, sleep-wake cycle, bandwidth, and presence of seizures. Subgroup analysis was performed based on ≤30 and >30 weeks' gestation. RESULTS A total of 76 aEEG recordings were analyzed from 45 preterm neonates. In the first week, 60% of the neonates had normal voltage patterns, which increased to 80% in the second week. All infants ≤30 weeks displayed discontinuous wave patterns during the first week, and half transitioned to continuous waves in the second week. The lower margin amplitude increased, and the upper margin amplitude decreased with increased gestational age. Additionally, 65% of neonates had a mature sleep-wake cycle in the second week compared with 22% in the first week. The median (interquartile range) CFM score in the second week was 12 (4.5) compared with 8 (4) in the first week, and the CFM score positively correlated with gestation (Spearman correlation coefficient, 0.8; 95% confidence interval, 0.7-0.86). Magalhães grading in both groups was predominantly normal. CONCLUSION aEEG is predominantly a continuous normal voltage pattern in >30 weeks' gestation and discontinuous in ≤30 weeks' gestation. CFM score correlates positively with advancing gestation gestational age.
Collapse
Affiliation(s)
- Gayathri G Vinnakota
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Leslie E Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shruthi K Bharadwaj
- Department of Neonatology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayashree Purkayastha
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anand K Patil
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Saito J, Shibasaki J, Yamamoto K, Fujita M, Toyoshima K. Predictive value of serum interleukin-6 for neonatal encephalopathy outcomes. J Neonatal Perinatal Med 2024:NPM230224. [PMID: 39365327 DOI: 10.3233/npm-230224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Serum interleukin-6 (IL-6) may predict adverse outcomes of neonatal encephalopathy (NE); however, limited data regarding the predictive utility of IL-6 during neurodevelopmental follow-up are available. We aimed to determine the utility of IL-6 for predicting adverse outcomes at 18 to 22 months of age. METHODS Eighty-seven patients with NE who received therapeutic hypothermia were enrolled in this study. Serial serum IL-6 levels during the first 3 postnatal days were collected. Patients were classified into three groups: 1) death, 2) survival with moderate to severe neurodevelopmental disability (NDD) at 18-22 months of age, and 3) survival without NDD (favorable outcome). The predictive ability of IL-6 was determined by the area under the receiver-operating characteristic curve (AUC). RESULTS Serial IL-6 data of 80 patients with NE were available and showed peak levels on postnatal day 1; these levels gradually decreased toward day 3. By 18-22 months of age, 13 and 17 patients died and experienced moderate to severe NDD without death, respectively. Fifty patients experienced favorable outcomes. Higher IL-6 levels on day 1 predicted the composite adverse outcome (including death and survival with NDD; n = 30; AUC, 0.648). Higher IL-6 levels on day 1 predicted death (n = 13; AUC, 0.799), whereas higher IL-6 levels on day 1 predicted survival with NDD (n = 17; AUC, 0.536). CONCLUSIONS The AUC of IL-6 that predicted survival with NDD was lower than the AUC of IL-6 that predicted death; therefore, IL-6 may have insufficient utility for predicting NDD without death.
Collapse
Affiliation(s)
- J Saito
- Department of Neonatology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - J Shibasaki
- Department of Neonatology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - K Yamamoto
- Department of Biostatistics, School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - M Fujita
- Department of Neonatology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - K Toyoshima
- Department of Neonatology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Tekgul H, Yalaz M, Kanmaz S, Terek D, Aktan G, Akcay AA, Koroglu OA, Yilmaz S, Akisu M, Kultursay N. The clinical value of amplitude-integrated electroencephalography in a historical cohort with neonatal encephalopathy: A comparison of short-term versus prolonged-period monitoring. J Clin Neurosci 2024; 126:148-153. [PMID: 38889593 DOI: 10.1016/j.jocn.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND To compare the amplitude-integrated electroencephalography (aEEG) monitoring (short-term versus prolonged-period) for neonatal seizure detection and outcome. METHODS The aEEG monitoring in a historical cohort (n = 88, preterm:42, and term:46) with neonatal encephalopathy between 2010-2022 was re-evaluated for neonatal seizures (electrographic, electro-clinical, and clinical seizures) and EEG background scoring. The cohort was dichotomized: group I (short-period with 6-12 h, n = 36) and group II (prolonged-period with 24-48 h, n = 52). Both monitoring types were evaluated for the diagnostic accuracy of the "patients with seizures" and for outcome characteristics (early death as well as adverse outcomes at 12 months of age). RESULTS A total of 67 (76 %) neonates of the cohort were diagnosed as "patients with seizures": electrographic-only seizures in 10 (15 %), electro-clinical seizures in 22 (33 %), and clinical-only seizures in 35 (52 %). The aEEG provides the "patients with seizures" in neonates with a 36.5 % rate with both types of monitoring: 17/36 (47.2 %) with short-term and 15/52 (28.8 %) with prolonged-period monitoring. The prolonged period aEEG had higher diagnostic values for seizure detection (sensitivity = 0.73 and negative predictivity value = 0.81). However, the aEEG background scores were similar for both types of aEEG monitoring, respectively (the mean ± SD: 4.73 ± 2.9 versus 4.4 ± 4. p = 0.837). The aEEG scoring was correlated with the magnitude of brain injury documented with MRI, the early death, and the adverse outcome at 12 months of age. CONCLUSIONS Both aEEG types are valuable for monitoring the "patients with seizures" and outcome characteristics.
Collapse
Affiliation(s)
- Hasan Tekgul
- Department of Pediatrics, Division of Child Neurology, Ege University Medical Faculty, Turkiye.
| | - Mehmet Yalaz
- Department of Pediatrics, Division of Neonatology, Ege University Medical Faculty, Turkiye.
| | - Seda Kanmaz
- Department of Pediatrics, Division of Child Neurology, Ege University Medical Faculty, Turkiye.
| | - Demet Terek
- Department of Pediatrics, Division of Neonatology, Ege University Medical Faculty, Turkiye
| | - Gul Aktan
- Department of Pediatrics, Division of Child Neurology, Ege University Medical Faculty, Turkiye.
| | - Ayfer Arduç Akcay
- Department of Pediatrics, Division of Child Neurology, Koc University Medical Faculty, Turkiye.
| | - Ozge A Koroglu
- Department of Pediatrics, Division of Neonatology, Ege University Medical Faculty, Turkiye
| | - Sanem Yilmaz
- Department of Pediatrics, Division of Child Neurology, Ege University Medical Faculty, Turkiye.
| | - Mete Akisu
- Department of Pediatrics, Division of Neonatology, Ege University Medical Faculty, Turkiye.
| | - Nilgun Kultursay
- Department of Pediatrics, Division of Neonatology, Ege University Medical Faculty, Turkiye.
| |
Collapse
|
4
|
Damien J, Vannasing P, Tremblay J, Petitpas L, Marandyuk B, Balasingam T, El Jalbout R, Paquette N, Donofrio G, Birca A, Gallagher A, Pinchefsky EF. Relationship between EEG spectral power and dysglycemia with neurodevelopmental outcomes after neonatal encephalopathy. Clin Neurophysiol 2024; 163:160-173. [PMID: 38754181 DOI: 10.1016/j.clinph.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/28/2024] [Accepted: 03/23/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE We investigated how electroencephalography (EEG) quantitative measures and dysglycemia relate to neurodevelopmental outcomes following neonatal encephalopathy (NE). METHODS This retrospective study included 90 neonates with encephalopathy who received therapeutic hypothermia. EEG absolute spectral power was calculated during post-rewarming and 2-month follow-up. Measures of dysglycemia (hypoglycemia, hyperglycemia, and glycemic lability) and glucose variability were computed for the first 48 h of life. We evaluated the ability of EEG and glucose measures to predict neurodevelopmental outcomes at ≥ 18 months, using logistic regressions (with area under the receiver operating characteristic [AUROC] curves). RESULTS The post-rewarming global delta power (average all electrodes), hyperglycemia and glycemic lability predicted moderate/severe neurodevelopmental outcome separately (AUROC = 0.8, 95%CI [0.7,0.9], p < .001) and even more so when combined (AUROC = 0.9, 95%CI [0.8,0.9], p < .001). After adjusting for NE severity and magnetic resonance imaging (MRI) brain injury, only global delta power remained significantly associated with moderate/severe neurodevelopmental outcome (odds ratio [OR] = 0.9, 95%CI [0.8,1.0], p = .04), gross motor delay (OR = 0.9, 95%CI [0.8,1.0], p = .04), global developmental delay (OR = 0.9, 95%CI [0.8,1.0], p = .04), and auditory deficits (OR = 0.9, 95%CI [0.8,1.0], p = .03). CONCLUSIONS In NE, global delta power post-rewarming was predictive of outcomes at ≥ 18 months. SIGNIFICANCE EEG markers post-rewarming can aid prediction of neurodevelopmental outcomes following NE.
Collapse
Affiliation(s)
- Janie Damien
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - Phetsamone Vannasing
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Julie Tremblay
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Laurence Petitpas
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - Bohdana Marandyuk
- Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Thameya Balasingam
- Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Ramy El Jalbout
- Department of Radiology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Natacha Paquette
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - Gianluca Donofrio
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Service of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| | - Ala Birca
- Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Service of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| | - Anne Gallagher
- Neurodevelopmental Optical Imaging Laboratory (LION Lab), Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - Elana F Pinchefsky
- Research Centre, Sainte-Justine University Hospital Centre, Montreal, QC, Canada; Service of Neurology, Department of Pediatrics, Sainte-Justine University Hospital Centre, Montreal, QC, Canada.
| |
Collapse
|
5
|
Felling RJ, Kamerkar A, Friedman ML, Said AS, LaRovere KL, Bell MJ, Bembea MM. Neuromonitoring During ECMO Support in Children. Neurocrit Care 2023; 39:701-713. [PMID: 36720837 DOI: 10.1007/s12028-023-01675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
Extracorporeal membrane oxygenation is a potentially lifesaving intervention for children with severe cardiac or respiratory failure. It is used with increasing frequency and in increasingly more complex and severe diseases. Neurological injuries are important causes of morbidity and mortality in children treated with extracorporeal membrane oxygenation and include ischemic stroke, intracranial hemorrhage, hypoxic-ischemic injury, and seizures. In this review, we discuss the epidemiology and pathophysiology of neurological injury in patients supported with extracorporeal membrane oxygenation, and we review the current state of knowledge for available modalities of monitoring neurological function in these children. These include structural imaging with computed tomography and ultrasound, cerebral blood flow monitoring with near-infrared spectroscopy and transcranial Doppler ultrasound, and physiological monitoring with electroencephalography and plasma biomarkers. We highlight areas of need and emerging advances that will improve our understanding of neurological injury related to extracorporeal membrane oxygenation and help to reduce the burden of neurological sequelae in these children.
Collapse
Affiliation(s)
- Ryan J Felling
- Department of Neurology, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, USA.
| | - Asavari Kamerkar
- Department of Anesthesia Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Matthew L Friedman
- Division of Pediatric Critical Care, Indiana School of Medicine, Indianapolis, IN, USA
| | - Ahmed S Said
- Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael J Bell
- Division of Critical Care Medicine, Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Melania M Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Glass HC, Numis AL, Comstock BA, Gonzalez FF, Mietzsch U, Bonifacio SL, Massey S, Thomas C, Natarajan N, Mayock DE, Sokol GM, Van Meurs KP, Ahmad KA, Maitre N, Heagerty PJ, Juul SE, Wu YW, Wusthoff CJ. Association of EEG Background and Neurodevelopmental Outcome in Neonates With Hypoxic-Ischemic Encephalopathy Receiving Hypothermia. Neurology 2023; 101:e2223-e2233. [PMID: 37816642 PMCID: PMC10727206 DOI: 10.1212/wnl.0000000000207744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Predicting neurodevelopmental outcome for neonates with hypoxic-ischemic encephalopathy (HIE) is important for clinical decision-making, care planning, and parent communication. We examined the relationship between EEG background and neurodevelopmental outcome among children enrolled in a trial of erythropoietin or placebo for neonates with HIE treated with therapeutic hypothermia. METHODS Participants had EEG recorded throughout hypothermia. EEG background was classified as normal, discontinuous, or severely abnormal (defined as burst suppression, low voltage suppressed, or status epilepticus) at 5 1-hour epochs: onset of recording, 24, 36, 48, and 72 hours after birth. The predominant background pattern during the entire continuous video EEG monitoring recording was calculated using the arithmetic mean of the 5 EEG background ratings (normal = 0; discontinuous = 1; severely abnormal = 2) as follows: "predominantly normal" (mean = 0), "normal/discontinuous" (0 < mean<1), "predominantly discontinuous" (mean = 1), "discontinuous/severely abnormal" (1 < mean<2), or "predominantly severely abnormal" (mean = 2). Primary outcome was death or neurodevelopmental impairment (NDI) defined as cerebral palsy, Gross Motor Function Classification Score ≥1, or cognitive score <90 on Bayley Scales of Infant Toddler Development, third edition at age 2 years. Neurodevelopment was also categorized into a 5-level ordinal measure: no, mild, moderate, severe NDI, or death for secondary analysis. We used generalized linear regression models with robust standard errors to assess the relative risk of death or NDI by EEG background in both unadjusted and adjusted analyses controlling for the effects of treatment group, sex, HIE severity, and study recruitment site. RESULTS Among 142 neonates, the predominant background EEG pattern was predominantly normal in 35 (25%), normal/discontinuous in 68 (48%), predominantly discontinuous in 11 (7.7%), discontinuous/severely abnormal in 16 (11%), and predominantly severely abnormal in 12 (8.5%). Increasing severity of background across monitoring epochs was associated with increasingly worse clinical outcomes. Children with severe EEG background abnormality at any time point (n = 36, 25%) were significantly more likely to die or have severe NDI at 2 years (adjusted relative risk: 7.95, 95% CI 3.49-18.12). DISCUSSION EEG background is strongly associated with NDI at age 2 years. These results can be used to assist health care providers to plan follow-up care and counsel families for decision-making related to goals of care.
Collapse
Affiliation(s)
- Hannah C Glass
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA.
| | - Adam L Numis
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Bryan A Comstock
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Fernando F Gonzalez
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Ulrike Mietzsch
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Sonia Lomeli Bonifacio
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Shavonne Massey
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Cameron Thomas
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Niranjana Natarajan
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Dennis E Mayock
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Gregory M Sokol
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Krisa P Van Meurs
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Kaashif A Ahmad
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Nathalie Maitre
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Patrick J Heagerty
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Sandra E Juul
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Yvonne W Wu
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| | - Courtney J Wusthoff
- Departments of Neurology and Weill Institute for Neuroscience (H.C.G., A.L.N., Y.W.W.); Pediatrics (H.C.G., A.L.N., Y.W.W.), UCSF Benioff Children's Hospital; Epidemiology & Biostatistics (H.C.G.), University of California San Francisco, CA; Department Biostatistics (B.A.C., P.J.H.), University of Washington, Seattle; Department of Pediatrics (U.M., S.E.J.), Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital; Department of Pediatrics (K.P.V.M., S.L.B.), Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA; Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine (S.L.M.), University of Pennsylvania, Philadelphia; Department of Pediatrics (C.T.), University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, OH; Department of Neurology (N.N.), University of Washington School of Medicine, Seattle; Department of Pediatrics (G.S.), Indiana University School of Medicine, Indianapolis, IN; Pediatrix Neonatology of San Antonio (K.A.A.), TX; Department of Pediatrics, and Emory + Children's Pediatric Institute (N.M.), Emory University, Atlanta, GA; Department of Neurology (C.J.W.), Stanford University, Palo Alto, CA
| |
Collapse
|
7
|
Jenkinson A, Zaidi S, Bhat R, Greenough A, Dassios T. Carboxyhaemoglobin levels in infants with hypoxic ischaemic encephalopathy. J Perinat Med 2023; 51:1225-1228. [PMID: 37638387 DOI: 10.1515/jpm-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVES Hypoxic ischaemic encephalopathy (HIE) is associated with oxidative stress. A potential marker of oxidative damage is carboxyhaemoglobin (COHb) which is the product of the reaction between carbon monoxide and haemoglobin and is routinely assessed on blood gas analysis. Our objective was to test the hypothesis that higher COHb levels would be associated with worse outcomes in infants treated for HIE. METHODS A retrospective, observational study was performed of all infants who received whole body hypothermia for HIE at a tertiary neonatal intensive care unit between January 2018 and August 2021. For each participating infant, the highest COHb level per day was recorded for days one, three and five after birth. RESULTS During the study period, 67 infants with a median (IQR) gestational age of 40 (38-41) weeks underwent therapeutic hypothermia for HIE. The median (IQR) COHb level on day three was higher in infants without electroencephalographic seizures (1.4 [1.1-1.4] %) compared with infants with seizures (1.1 [0.9-1.3] %, p=0.024). The median (IQR) COHb on day five was higher in infants without MRI brain abnormalities (1.4 [1.2-1.7] %) compared with infants with MRI abnormalities (1.2 [1.0-1.4] %, p=0.032). The COHb level was not significantly different between the nine infants who died compared to the infants who survived. CONCLUSIONS COHb levels were higher in infants with HIE without seizures and in those with normal MRI brain examinations. We suggest that carbon monoxide has a potential protective role in HIE.
Collapse
Affiliation(s)
- Allan Jenkinson
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Ravindra Bhat
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, UK
| | - Anne Greenough
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Theodore Dassios
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Shevtsova Y, Eldarov C, Starodubtseva N, Goryunov K, Chagovets V, Ionov O, Plotnikov E, Silachev D. Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1693. [PMID: 37892356 PMCID: PMC10605414 DOI: 10.3390/children10101693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
A study was performed to determine early metabolomic markers of ischemic hypoxic encephalopathy (HIE) using a Rice-Vannucci model for newborn rats. Dried blood spots from 7-day-old male and female rat pups, including 10 HIE-affected animals and 16 control animals, were analyzed by liquid chromatography coupled with mass spectrometry (HPLC-MS) in positive and negative ion recording modes. Multivariate statistical analysis revealed two distinct clusters of metabolites in both HPLC-MS modes. Subsequent univariate statistical analysis identified 120 positive and 54 negative molecular ions that exhibited statistically significant change in concentration, with more than a 1.5-fold difference after HIE. In the HIE group, the concentrations of steroid hormones, saturated mono- and triglycerides, and phosphatidylcholines (PCs) were significantly decreased in positive mode. On the contrary, the concentration of unsaturated PCs was increased in the HIE group. Among negatively charged molecular ions, the greatest variations were found in the categories of phosphatidylcholines, phosphatidylinositols, and triglycerides. The major metabolic pathways associated with changed metabolites were analyzed for both modes. Metabolic pathways such as steroid biosynthesis and metabolism fatty acids were most affected. These results underscored the central role of glycerophospholipid metabolism in triggering systemic responses in HIE. Therefore, lipid biomarkers' evaluation by targeted HPLC-MS research could be a promising approach for the early diagnosis of HIE.
Collapse
Affiliation(s)
- Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Chupalav Eldarov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
9
|
Yimenicioglu S, Kaya TB, Yıldırım E, Arayıcı S, Bildirici Y, Ekici A. The factors affecting neurodevelopmental outcomes in HIE. Acta Neurol Belg 2023; 123:1903-1909. [PMID: 36352199 DOI: 10.1007/s13760-022-02126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy (HIE) has different neurological outcomes. AIM We wanted to see if there was any developmental delay in neonates with hypoxia ischemic encephalopathy who were given therapeutic hypothermia. STUDY DESIGN Retrospective cohort study. METHODS The Denver developmental screening test II (DDST-II) was performed to newborns who had been applied to therapeutic hypothermia. RESULTS There were 69 male and 36 female newborns. The mean 1-min and 5-min Apgar scores were 4.72 ± 2.51 and 7.03 ± 2.017, respectively. The mean pH and mean base excess were 6.92 ± 0.1 and -18.05 ± 5.72, respectively. The most common risk factors were meconium staining (17.1%). There were 67 patients with Stage I, 20 with Stage II, and 18 with Stage III. Diffusion restriction was seen in 13 patients. 28 patients had seizures. In aEEG, 12 patients had burst suppression. Three (2.9%) infants died during hospitalization. 19 patients missed follow-up appointments. Thirteen patients had abnormal development according to DDST-II. Seven patients had gross motor function delays and were diagnosed with cerebral palsy. Three had language skill delays, but two of them had speech disorders after two years of age. Two had delayed milestones. Two had delays in fine motor skills but did not have any sequels after two years of age. A significant difference was found between seizures and the severity of Sarnat stage, intubation in the delivery room with developmental delay. Apgar scores were significantly lower in patients with CP. CONCLUSION We should closely follow-up neonates who had low Apgar scores, seizures, a high Sarnat stage, were intubated in the delivery room.
Collapse
Affiliation(s)
- Sevgi Yimenicioglu
- Department of Pediatric Neurology, Health Ministry Eskisehir City Hospital, Eskisehir, Turkey.
| | - Tugba Barsan Kaya
- Department of Neonatal Intensive Care Unit, Eskisehir Osmangazi University Hospital, Eskisehir, Turkey
| | - Egemen Yıldırım
- Department of Neonatal Intensive Care Unit, Health Ministry Eskisehir City Hospital, Eskişehir, Turkey
| | - Sema Arayıcı
- Department of Neonatal Intensive Care Unit, Akdeniz University Hospital, Antalya, Turkey
| | - Yaşar Bildirici
- Department of Pediatrics, Health Ministry Eskisehir City Hospital, Eskisehir, Turkey
| | - Arzu Ekici
- Department of Pediatric Neurology, Health Ministry Bursa Yüksek İhtisas Eğitim Araştirma Hastahanesi, Bursa, Turkey
| |
Collapse
|
10
|
Langeslag JF, Berendse K, Daams JG, Onland W, Leeflang MMG, van Kaam AH, de Haan TR. Clinical Prediction Models and Predictors for Death or Adverse Neurodevelopmental Outcome in Term Newborns with Hypoxic-Ischemic Encephalopathy: A Systematic Review of the Literature. Neonatology 2023; 120:776-788. [PMID: 37536297 DOI: 10.1159/000530411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/18/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Although many predictive parameters have been studied, an internationally accepted, validated predictive model to predict the clinical outcome of asphyxiated infants suffering from hypoxic-ischemic encephalopathy is currently lacking. The aim of this study was to identify, appraise and summarize available clinical prediction models, and provide an overview of all investigated predictors for the outcome death or neurodevelopmental impairment in this population. METHODS A systematic literature search was performed in Medline and Embase. Two reviewers independently included eligible studies and extracted data. The quality was assessed using PROBAST for prediction model studies and QUIPS assessment tools for predictor studies. RESULTS A total of nine prediction models were included. These models were very heterogeneous in number of predictors assessed, methods of model derivation, and primary outcomes. All studies had a high risk of bias following the PROBAST assessment and low applicability due to complex model presentation. A total of 104 predictor studies were included investigating various predictors, showing tremendous heterogeneity in investigated predictors, timing of predictors, primary outcomes, results, and methodological quality according to QUIPS. Selected high-quality studies with accurate discriminating performance provide clinicians and researchers an evidence map of predictors for prognostication after HIE in newborns. CONCLUSION Given the low methodological quality of the currently published clinical prediction models, implementation into clinical practice is not yet possible. Therefore, there is an urgent need to develop a prediction model which complies with the PROBAST guideline. An overview of potential predictors to include in a prediction model is presented.
Collapse
Affiliation(s)
- Juliette F Langeslag
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands,
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands,
| | - Kevin Berendse
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Joost G Daams
- Medical Library, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Wes Onland
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Mariska M G Leeflang
- Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Timo R de Haan
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Hagan B, Mujumdar R, Sahoo JP, Das A, Dutta A. Technical feasibility of multimodal imaging in neonatal hypoxic-ischemic encephalopathy from an ovine model to a human case series. Front Pediatr 2023; 11:1072663. [PMID: 37425273 PMCID: PMC10323750 DOI: 10.3389/fped.2023.1072663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia occurs when the brain does not receive enough oxygen and blood. A surrogate marker for "intact survival" is necessary for the successful management of HIE. The severity of HIE can be classified based on clinical presentation, including the presence of seizures, using a clinical classification scale called Sarnat staging; however, Sarnat staging is subjective, and the score changes over time. Furthermore, seizures are difficult to detect clinically and are associated with a poor prognosis. Therefore, a tool for continuous monitoring on the cot side is necessary, for example, an electroencephalogram (EEG) that noninvasively measures the electrical activity of the brain from the scalp. Then, multimodal brain imaging, when combined with functional near-infrared spectroscopy (fNIRS), can capture the neurovascular coupling (NVC) status. In this study, we first tested the feasibility of a low-cost EEG-fNIRS imaging system to differentiate between normal, hypoxic, and ictal states in a perinatal ovine hypoxia model. Here, the objective was to evaluate a portable cot-side device and perform autoregressive with extra input (ARX) modeling to capture the perinatal ovine brain states during a simulated HIE injury. So, ARX parameters were tested with a linear classifier using a single differential channel EEG, with varying states of tissue oxygenation detected using fNIRS, to label simulated HIE states in the ovine model. Then, we showed the technical feasibility of the low-cost EEG-fNIRS device and ARX modeling with support vector machine classification for a human HIE case series with and without sepsis. The classifier trained with the ovine hypoxia data labeled ten severe HIE human cases (with and without sepsis) as the "hypoxia" group and the four moderate HIE human cases as the "control" group. Furthermore, we showed the feasibility of experimental modal analysis (EMA) based on the ARX model to investigate the NVC dynamics using EEG-fNIRS joint-imaging data that differentiated six severe HIE human cases without sepsis from four severe HIE human cases with sepsis. In conclusion, our study showed the technical feasibility of EEG-fNIRS imaging, ARX modeling of NVC for HIE classification, and EMA that may provide a biomarker of sepsis effects on the NVC in HIE.
Collapse
Affiliation(s)
- Brian Hagan
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Radhika Mujumdar
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Jagdish P. Sahoo
- Department of Neonatology, IMS & SUM Hospital, Bhubaneswar, India
| | - Abhijit Das
- Department of Neurology, The Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
12
|
Chaton L, Bourel-Ponchel E, Lamblin MD, Joriot S, Lacan L, Derambure P, Nguyen S, Flamein F. Use of EEG in neonatal hypoxic-ischemic encephalopathy: A French survey of current practice and perspective for improving health care. Neurophysiol Clin 2023; 53:102883. [PMID: 37229978 DOI: 10.1016/j.neucli.2023.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES Controlled therapeutic hypothermia (CTH) is a standard of care in the management of neonatal hypoxic-ischemic encephalopathy HIE in newborns after 36 weeks of gestational age (WGA) in France. The electroencephalogram (EEG) plays a major role in HIE diagnosis and follow-up. We conducted a French national survey on the current use of EEG in newborn undergoing CTH. METHODS Between July and October 2021, an email survey was sent to the heads of the Neonatal intensive care units (NICUs) in metropolitan and overseas French departments and territories. RESULTS Out of 67, 56 (83%) of NICUs responded. All of them performed CTH in children born after 36 WGA with clinical and biological criteria of moderate to severe HIE. 82% of the NICUs used conventional EEG (cEEG) before 6 h of life (H6), prior to CTH being performed, to inform decisions about its use. However, half of the 56 NICUs had limited access after regular working hours. 51 of the 56 centers (91%) used cEEG, either short-lasting or continuous monitoring during cooling, while 5 centers conducted only amplitude EEG (aEEG). Only 4 of 56 centers (7%) used cEEG systematically both prior to CTH and for continuous monitoring under CTH. DISCUSSION The use of cEEG in the management of neonatal HIE was widespread in NICUs, but with significant disparities when considering 24-hour access. The introduction of a centralized neurophysiological on-call system grouping several NICUs would be of major interest for most centers which do not have the facility of EEG outside working hours.
Collapse
Affiliation(s)
- Laurence Chaton
- Service de neurophysiologie clinique, CHU Lille, Lille, France.
| | - Emilie Bourel-Ponchel
- Explorations fonctionnelles du système nerveux pédiatrique, CHU Amiens-Picardie, Amiens, France
| | | | | | - Laure Lacan
- Service de neuropédiatrie CHU Lille, Lille, France
| | - Philippe Derambure
- Service de neurophysiologie clinique, CHU Lille, Lille, France; INSERM U1171, University of Lille, Lille, France
| | - Sylvie Nguyen
- Service de neuropédiatrie CHU Lille, Lille, France; ULR2694-METRICS, University of Lille, Lille, France
| | | |
Collapse
|
13
|
Onda K, Chavez-Valdez R, Graham EM, Everett AD, Northington FJ, Oishi K. Quantification of Diffusion Magnetic Resonance Imaging for Prognostic Prediction of Neonatal Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2023; 46:55-68. [PMID: 37231858 PMCID: PMC10712961 DOI: 10.1159/000530938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/20/2023] [Indexed: 05/27/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.
Collapse
Affiliation(s)
- Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raul Chavez-Valdez
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M. Graham
- Department of Gynecology & Obstetrics, Division of Maternal-Fetal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen D. Everett
- Department of Pediatrics, Division of Pediatric Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Han Y, Wu P, Tian J, Chen H, Yang C. Diffusion kurtosis imaging and diffusion weighted imaging comparison in diagnosis of early hypoxic-ischemic brain edema. Eur J Med Res 2023; 28:159. [PMID: 37131227 PMCID: PMC10155297 DOI: 10.1186/s40001-023-01090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/05/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) refers to cerebral hypoxic-ischemic injury caused by asphyxia during perinatal period, which is one of the important causes of neonatal death and sequelae. Early and accurate diagnosis of HIE is of great significance for the prognostic evaluation of patients. The purpose of this study is to explore the efficacy of diffusion-kurtosis imaging (DKI) and diffusion-weighted imaging (DWI) in the diagnosis of early HIE. METHODS Twenty Yorkshire newborn piglets (3-5 days) were randomly divided into control group and experimental group. DWI and DKI scanning were performed at timepoints of 3, 6, 9, 12, 16, and 24 h after hypoxic-ischemic exposure. At each timepoint, the parameter values obtained by each group scan were measured, and the lesion area of the apparent diffusion coefficient (ADC) map and mean diffusion coefficient (MDC) map were measured. (For better interpretation of this study, we replaced the description of MD with MDC). Then, we completely removed the brain for pathological examination, and observed the state of cells and mitochondria in the ADC/MDC matching area (the actual area of the lesion), and the mismatch area (the area around the lesion). RESULTS In the experimental group, the ADC and MDC values decreased with time, but the MDC decreased more significantly and the change rate was higher. Both MDC and ADC values changed rapidly from 3 to 12 h and slowly from 12 to 24 h. The MDC and ADC images showed obvious lesions at 3 h for the first time. At this time, the area of ADC lesions was larger than that of MDC. As the lesions developed, the area of ADC maps was always larger than that of the MDC maps within 24 h. By observing the microstructure of the tissues by light microscopy, we found that the ADC and MDC matching area in the experimental group showed swelling of neurons, infiltration of inflammatory cells, and local necrotic lesions. Consistent with the observation under light microscope, pathological changes were observed in the matching ADC and MDC regions under electron microscopy as well, including collapse of mitochondrial membrane, fracture of partial mitochondrial ridge, and emergence of autophagosomes. In the mismatching region, the above pathological changes were not observed in the corresponding region of the ADC map. CONCLUSIONS DKI's characteristic parameter MDC is better than ADC (parameter of DWI) to reflect the real area of the lesion. Therefore, DKI is superior to DWI in diagnosing early HIE.
Collapse
Affiliation(s)
- Yuxuan Han
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province China
| | - Peng Wu
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province China
| | - Juan Tian
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province China
| | - Honghai Chen
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province China
| | - Chao Yang
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province China
| |
Collapse
|
15
|
Bourel-Ponchel E, Querne L, Flamein F, Ghostine-Ramadan G, Wallois F, Lamblin MD. The prognostic value of neonatal conventional-EEG monitoring in hypoxic-ischemic encephalopathy during therapeutic hypothermia. Dev Med Child Neurol 2023; 65:58-66. [PMID: 35711160 PMCID: PMC10084260 DOI: 10.1111/dmcn.15302] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/28/2023]
Abstract
AIM To determine the prognostic value of conventional electroencephalography (EEG) monitoring in neonatal hypoxic-ischemic encephalopathy (HIE). METHOD In this multicentre retrospective study, 95 full-term neonates (mean of 39.3wks gestational age [SD 1.4], 36 [38%] females, 59 [62%] males) with HIE (2013-2016) undergoing therapeutic hypothermia were divided between favourable or adverse outcomes. Background EEG activity (French classification scale: 0-1-2-3-4-5) and epileptic seizure burden (epileptic seizure scale: 0-1-2) were graded for seven 6-hour periods. Conventional EEG monitoring was investigated by principal component analysis (PCA), with clustering methods to extract prognostic biomarkers of development at 2 years and infant death. RESULTS Eighty-one per cent of infants with an adverse outcome had a French classification scale equal to or greater than 3 after H48 (100% at H6-12). The H6-12 epileptic seizure scale was equal to or greater than 1 for 39%, increased to 52% at H30-36 and then remained equal to or greater than 1 for 39% after H48. Forty-five per cent of infants with a favourable outcome had a H6-12 French classification scale equal to or greater than 3, which dropped to 5% after H48; 13% had a H6-12 epileptic seizure scale equal to or greater than 1 but no seizures after H48. Clustering methods based on PCA showed the high efficiency (96%) of conventional EEG monitoring for outcome prediction and allowed the definition of three prognostic EEG biomarkers: H6-78 French classification scale mean, H6-78 French classification scale slope, and H30-78 epileptic seizure scale mean. INTERPRETATION Early lability and recovery of physiological features is prognostic of a favourable outcome. Seizure onset from the second day should also be considered to accurately predict neurodevelopment in HIE and support the importance of conventional EEG monitoring in HIE in infants cooled with therapeutic hypothermia. WHAT THIS PAPER ADDS Comprehensive analysis showed the high prognostic efficiency (96%) of conventional electroencephalography (EEG) monitoring. Prognostic EEG biomarkers consist of the grade of background EEG activity, its evolution, and the mean seizure burden. Persistent seizures (H48) without an improvement in background EEG activity were consistently associated with an adverse outcome.
Collapse
Affiliation(s)
- Emilie Bourel-Ponchel
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,Pediatric Neurophysiology Unit, Amiens Picardie University Hospital, Amiens, France
| | - Laurent Querne
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,Department of Pediatric Neurology, Amiens-Picardie University Hospital, Amiens, France
| | - Florence Flamein
- Department of Neonatology, University Hospital of Lille, Lille, France
| | - Ghida Ghostine-Ramadan
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,Neonatal Intensive Care Unit, Amiens-Picardie University Hospital, Amiens, France
| | - Fabrice Wallois
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,Pediatric Neurophysiology Unit, Amiens Picardie University Hospital, Amiens, France
| | | |
Collapse
|
16
|
Chock VY, Rao A, Van Meurs KP. Optimal neuromonitoring techniques in neonates with hypoxic ischemic encephalopathy. Front Pediatr 2023; 11:1138062. [PMID: 36969281 PMCID: PMC10030520 DOI: 10.3389/fped.2023.1138062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Neonates with hypoxic ischemic encephalopathy (HIE) are at significant risk for adverse outcomes including death and neurodevelopmental impairment. Neuromonitoring provides critical diagnostic and prognostic information for these infants. Modalities providing continuous monitoring include continuous electroencephalography (cEEG), amplitude-integrated electroencephalography (aEEG), near-infrared spectroscopy (NIRS), and heart rate variability. Serial bedside neuromonitoring techniques include cranial ultrasound and somatic and visual evoked potentials but may be limited by discrete time points of assessment. EEG, aEEG, and NIRS provide distinct and complementary information about cerebral function and oxygen utilization. Integrated use of these neuromonitoring modalities in addition to other potential techniques such as heart rate variability may best predict imaging outcomes and longer-term neurodevelopment. This review examines available bedside neuromonitoring techniques for the neonate with HIE in the context of therapeutic hypothermia.
Collapse
|
17
|
Singh A, Saluja S, Kler N, Garg P, Soni A, Thakur A. Amplitude integrated EEG: how much it helps in prognostication in neonatal encephalopathy? J Matern Fetal Neonatal Med 2022; 35:7748-7755. [PMID: 34121586 DOI: 10.1080/14767058.2021.1937104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Neonatal encephalopathy (NE) is associated with a high risk of adverse neurological outcomes. Several neurodiagnostic tests have been evaluated to predict the prognosis. Amplitude integrated Electroencephalogram (aEEG) is now being commonly used for bedside evaluation of cerebral function. There is limited data on the role of aEEG for prognostication in NE, from resource-limited settings. OBJECTIVE To evaluate the predictive ability of aEEG for abnormal neurological outcomes in neonatal encephalopathy or neonates with encephalopathy. METHODS Neonates above 35 weeks of gestation admitted to NICU in a tertiary care hospital with a diagnosis of encephalopathy were enrolled. Clinical characteristics severity of encephalopathy and seizures were recorded. Amplitude integrated recording was started at admission and continued till recovery of trace to normal or for 10 days. The primary outcome was death or abnormal neurological status at 3-6 months of age. The study was registered in the Clinical Trial Registry of India (CTRI/2013/05/003612). RESULTS The incidence of NE was 6% of total admission. Moderate and severe encephalopathy occurred in 58 and 39% of babies respectively. Hypoxic-ischemic encephalopathy was the most common cause. Clinical seizures occurred in 91% of cases. An abnormal aEEG trace was observed in 51 (76.1%) infants with NE. For adverse neurological outcomes at an age average of 4.5 months of age, aEEG had a sensitivity, specificity, NPV, and PPV of 100, 54.2, 100, and 77.5, respectively. CONCLUSIONS Clinical staging and aEEG has good predictive ability to detect an adverse neurological outcome. aEEG improves the ability to predict abnormal outcome in babies with moderate encephalopathy. Early recovery of aEEG abnormality correlates with better neurodevelopmental outcomes.KEY MESSAGESWhat's known: aEEG is a useful modality to assess neurodevelopmental outcomes however data from developing countries is lacking.What's new: aEEG monitoring in babies in neonatal encephalopathy may improve the prediction of abnormal neurological outcomes in babies with moderate encephalopathy.
Collapse
Affiliation(s)
- Anita Singh
- Department of Neonatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | - Arun Soni
- Sir Ganga Ram Hospital, New Delhi, India
| | | |
Collapse
|
18
|
Bonifacio SL, Chalak LF, Van Meurs KP, Laptook AR, Shankaran S. Neuroprotection for hypoxic-ischemic encephalopathy: Contributions from the neonatal research network. Semin Perinatol 2022; 46:151639. [PMID: 35835616 PMCID: PMC11500562 DOI: 10.1016/j.semperi.2022.151639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Therapeutic hypothermia (TH) is now well established as the standard of care treatment for moderate to severe neonatal encephalopathy secondary to perinatal hypoxic ischemic encephalopathy (HIE) in infants ≥36 weeks gestation in high income countries. The Neonatal Research Network (NRN) contributed greatly to the study of TH as a neuroprotectant with three trials now completed in infants ≥36 weeks gestation and the only large randomized-controlled trial of TH in preterm infants now in the follow-up phase. Data from the first NRN TH trial combined with data from other large trials of TH affirm the safety and neuroprotective qualities of TH and highlight the importance of providing TH to all infants who qualify. In this review we will highlight the findings of the three NRN trials of TH in the term infant population and the secondary analyses that continue to inform the care of patients with HIE.
Collapse
Affiliation(s)
- Sonia Lomeli Bonifacio
- Division of Neonatal & Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Lina F Chalak
- Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Krisa P Van Meurs
- Division of Neonatal & Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abbot R Laptook
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Providence, RI, USA
| | - Seetha Shankaran
- Department of Pediatrics, Wayne State University, Detroit, MI, USA
| |
Collapse
|
19
|
Elbayiyev S, Çevirici T, Güngör AA, Kadıoğlu Şimşek G, Kanmaz Kutman HG, Canpolat FE. A novel scoring system (YASHMA) predicting brain injury in asphyxiated newborns. J Trop Pediatr 2022; 68:6749661. [PMID: 36201231 DOI: 10.1093/tropej/fmac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy is a complication of adverse intrapartum events and birth asphyxia resulting in brain injury and mortality in late preterm and term newborns. OBJECTIVES In this study, we aimed to predict brain damage on magnetic resonance imaging (MRI) with a new scoring system. METHODS Yieldly And Scorable Holistic Measuring of Asphyxia (YASHMA) is generated for detection of brain injury in asphyxiated newborns. Total scores were calculated according to scores of birth weight, gestation weeks, APGAR scores at first and fifth minutes, aEEG patterns and epileptic status of patients. The major outcome of the scoring system was to determine correlation between poor scores and neonatal brain injury detected on MRI. RESULTS In hypothermia group with brain injury, low gestational weeks and lowest APGAR scores, abnormal aEEG findings were statistically different from others. YASHMA scores were statistically significant with high sensitivity, specificity, AUC and 95% confidence interval values. CONCLUSIONS YASHMA scoring system is feasible and can be suggestive for detecting brain injury in low-income countries.
Collapse
Affiliation(s)
- Sarkhan Elbayiyev
- University of Health Sciences, Ankara City Hospital, Department of Neonatology, Ankara 06800, Turkey
| | - Tevfik Çevirici
- University of Health Sciences, Ankara City Hospital, Department of Neonatology, Ankara 06800, Turkey
| | - Ahmet Alptuğ Güngör
- University of Health Sciences, Ankara City Hospital, Department of Neonatology, Ankara 06800, Turkey
| | - Gülsüm Kadıoğlu Şimşek
- University of Health Sciences, Ankara City Hospital, Department of Neonatology, Ankara 06800, Turkey
| | | | - Fuat Emre Canpolat
- University of Health Sciences, Ankara City Hospital, Department of Neonatology, Ankara 06800, Turkey
| |
Collapse
|
20
|
Lori S, Bertini G, Bastianelli ME, Gabbanini S, Cossu C, Mortilla M, Dani C. Continous somatosensory evoked potentials and brain injury in neonatal hypoxic-ischaemic encephalopathy treated with hypothermia. Dev Med Child Neurol 2022; 64:1123-1130. [PMID: 35225350 DOI: 10.1111/dmcn.15190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
Abstract
AIM To explore whether continuous somatosensory evoked potentials (SEPs) monitoring and video electroencephalograms (VEEG) accurately predict lesions observed on brain magnetic resonance imaging (MRI) in neonates with hypoxic-ischaemic encephalopathy (HIE) receiving therapeutic hypothermia. METHOD This prospective study included 31 neonates (16 males, 15 females; mean [SD] gestational age 39 weeks [1.67]) who received therapeutic hypothermia for HIE. Therapeutic hypothermia was provided for 72 hours, with a target temperature of 33.0°C to 34.0°C and this was followed by a rewarming rate of approximately 0.5°C per hour, up to 36.5°C. SEPs and VEEG were evaluated simultaneously and continuously for 1 hour under normothermic conditions. MRI was carried out at a mean (SD) age of 6 (2) days. RESULTS Our results showed a statistically significant correlation between continuous SEP and MRI scores (r=0.37, p=0.03), but not between the VEEG and MRI scores (r=0.30, p=0.09). Receiver operating characteristic analysis confirmed that continuous SEPs were highly specific and sensitive at predicting MRI abnormalities, whereas the VEEG had high specificity but low sensitivity. INTERPRETATION Continuous monitoring of SEPs could provide early and important prognostic information in neonates with HIE. WHAT THIS PAPER ADDS Early continuous somatosensory evoked potential (SEP) monitoring is correlated with hypoxic-ischaemic encephalopathy (HIE) lesions. Video electroencephalograms (VEEGs) are associated with lesions diagnosed after magnetic resonance imaging. Both showed high specificity, but VEEGs did not show high sensitivity. Continuously monitoring SEPs provides important information about HIE.
Collapse
Affiliation(s)
- Silvia Lori
- Neurophysiology Unit, Neuro-Musculo-Skeletal Department, Careggi University Hospital, Florence, Italy
| | - Giovanna Bertini
- Division of Neonatology, Careggi University Hospital, Florence, Italy
| | - Maria Elena Bastianelli
- Neurophysiology Unit, Neuro-Musculo-Skeletal Department, Careggi University Hospital, Florence, Italy
| | - Simonetta Gabbanini
- Neurophysiology Unit, Neuro-Musculo-Skeletal Department, Careggi University Hospital, Florence, Italy
| | - Cesarina Cossu
- Neurophysiology Unit, Neuro-Musculo-Skeletal Department, Careggi University Hospital, Florence, Italy
| | | | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Children's Health, University of Florence, Florence, Italy
| |
Collapse
|
21
|
Onda K, Catenaccio E, Chotiyanonta J, Chavez-Valdez R, Meoded A, Soares BP, Tekes A, Spahic H, Miller SC, Parker SJ, Parkinson C, Vaidya DM, Graham EM, Stafstrom CE, Everett AD, Northington FJ, Oishi K. Development of a composite diffusion tensor imaging score correlating with short-term neurological status in neonatal hypoxic-ischemic encephalopathy. Front Neurosci 2022; 16:931360. [PMID: 35983227 PMCID: PMC9379310 DOI: 10.3389/fnins.2022.931360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the most common cause of neonatal acquired brain injury. Although conventional MRI may predict neurodevelopmental outcomes, accurate prognostication remains difficult. As diffusion tensor imaging (DTI) may provide an additional diagnostic and prognostic value over conventional MRI, we aimed to develop a composite DTI (cDTI) score to relate to short-term neurological function. Sixty prospective neonates treated with therapeutic hypothermia (TH) for HIE were evaluated with DTI, with a voxel size of 1 × 1 × 2 mm. Fractional anisotropy (FA) and mean diffusivity (MD) from 100 neuroanatomical regions (FA/MD *100 = 200 DTI parameters in total) were quantified using an atlas-based image parcellation technique. A least absolute shrinkage and selection operator (LASSO) regression was applied to the DTI parameters to generate the cDTI score. Time to full oral nutrition [short-term oral feeding (STO) score] was used as a measure of short-term neurological function and was correlated with extracted DTI features. Seventeen DTI parameters were selected with LASSO and built into the final unbiased regression model. The selected factors included FA or MD values of the limbic structures, the corticospinal tract, and the frontotemporal cortices. While the cDTI score strongly correlated with the STO score (rho = 0.83, p = 2.8 × 10-16), it only weakly correlated with the Sarnat score (rho = 0.27, p = 0.035) and moderately with the NICHD-NRN neuroimaging score (rho = 0.43, p = 6.6 × 10-04). In contrast to the cDTI score, the NICHD-NRN score only moderately correlated with the STO score (rho = 0.37, p = 0.0037). Using a mixed-model analysis, interleukin-10 at admission to the NICU (p = 1.5 × 10-13) and tau protein at the end of TH/rewarming (p = 0.036) and after rewarming (p = 0.0015) were significantly associated with higher cDTI scores, suggesting that high cDTI scores were related to the intensity of the early inflammatory response and the severity of neuronal impairment after TH. In conclusion, a data-driven unbiased approach was applied to identify anatomical structures associated with some aspects of neurological function of HIE neonates after cooling and to build a cDTI score, which was correlated with the severity of short-term neurological functions.
Collapse
Affiliation(s)
- Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eva Catenaccio
- Division of Pediatric Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jill Chotiyanonta
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raul Chavez-Valdez
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avner Meoded
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Bruno P. Soares
- Division of Neuroradiology, Department of Radiology, Larner College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Aylin Tekes
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Radiology and Pediatric Neuroradiology, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harisa Spahic
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah C. Miller
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Charlamaine Parkinson
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dhananjay M. Vaidya
- Department of General Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ernest M. Graham
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carl E. Stafstrom
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allen D. Everett
- Division of Pediatric Cardiology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Starodubtseva NL, Eldarov C, Kirtbaya AR, Balashova EN, Gryzunova AS, Ionov OV, Zubkov VV, Silachev DN. Recent advances in diagnostics of neonatal hypoxic ischemic encephalopathy. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prognosis in neonatal hypoxic ischemic encephalopathy (HIE) depends on early differential diagnosis for justified administration of emergency therapeutic hypothermia. The moment of therapy initiation directly affects the long-term neurological outcome: the earlier the commencement, the better the prognosis. This review analyzes recent advances in systems biology that facilitate early differential diagnosis of HIE as a pivotal complement to clinical indicators. We discuss the possibilities of clinical translation for proteomic, metabolomic and extracellular vesicle patterns characteristic of HIE and correlations with severity and prognosis. Identification and use of selective biomarkers of brain damage in neonates during the first hours of life is hindered by systemic effects of hypoxia. Chromatography– mass spectrometry blood tests allow analyzing hundreds and thousands of metabolites in a small biological sample to identify characteristic signatures of brain damage. Clinical use of advanced analytical techniques will facilitate the accurate and timely diagnosis of HIE for enhanced management.
Collapse
Affiliation(s)
- NL Starodubtseva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - ChM Eldarov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - AR Kirtbaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - EN Balashova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - AS Gryzunova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - OV Ionov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - VV Zubkov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - DN Silachev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
23
|
Beltempo M, Wintermark P, Mohammad K, Jabbour E, Afifi J, Shivananda S, Louis D, Redpath S, Lee KS, Fajardo C, Shah PS. Variations in practices and outcomes of neonates with hypoxic ischemic encephalopathy treated with therapeutic hypothermia across tertiary NICUs in Canada. J Perinatol 2022; 42:898-906. [PMID: 35552529 DOI: 10.1038/s41372-022-01412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To characterize variations in practices and outcomes for neonates with hypoxic-ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH) across Canadian tertiary Neonatal Intensive Care Units (NICUs). STUDY DESIGN Retrospective study of neonates admitted for HIE and treated with TH in 24 tertiary NICUs from the Canadian Neonatal Network, 2010-2020. The two primary outcomes of mortality before discharge and MRI-detected brain injury were compared across NICUs using adjusted standardized ratios (SR) with 95% CI. RESULTS Of the 3261 neonates that received TH, 367 (11%) died and 1033 (37%) of the 2822 with MRI results had brain injury. Overall, rates varied significantly across NICUs for mortality (range 5-17%) and brain injury (range 28-51%). Significant variations in use of inotropes, inhaled nitric oxide, blood products, and feeding during TH were identified (p values < 0.01). CONCLUSION Significant variations exist in practices and outcomes of HIE neonates treated with hypothermia across Canada.
Collapse
Affiliation(s)
- Marc Beltempo
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, Canada.
| | - Pia Wintermark
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, Canada
| | - Khorshid Mohammad
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Elias Jabbour
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, Canada
| | - Jehier Afifi
- Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, NS, Canada
| | - Sandesh Shivananda
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Deepak Louis
- Division of Neonatology, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie Redpath
- Division of Neonatology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Kyong-Soon Lee
- Division of Neonatology, Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Carlos Fajardo
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Prakesh S Shah
- Department of Paediatrics, Mount Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
24
|
A practical approach toward interpretation of amplitude integrated electroencephalography in preterm infants. Eur J Pediatr 2022; 181:2187-2200. [PMID: 35260920 DOI: 10.1007/s00431-022-04428-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/03/2022]
Abstract
UNLABELLED The developing preterm brain is vulnerable to injury, especially during periods of clinical instability; therefore, monitoring the brain may provide important information on brain health. Over the last 2 decades, a growing body of literature has been reported on preterm amplitude integrated electroencephalography (aEEG) with regards to normative data and associations with adverse outcomes. Despite this, the use of aEEG for preterm infants remains mostly a research tool with limited clinical applicability. In this article, we review the literature on normal and abnormal aEEG patterns in preterm infants and propose a stepwise clinical algorithm for aEEG assessment at the bedside that takes into account assessment of maturation and identification of pathological patterns. CONCLUSION This algorithm may be used by clinicians at the bedside for interpretation to integrate it in clinical practice for neurological surveillance of preterm infants. WHAT IS KNOWN • Studies have reported normative data on aEEG in preterm infants for different gestational ages. • Burst suppression pattern and absent sleep-wake cycling have been described to be associated with brain pathology and adverse outcomes in preterm infants. WHAT IS NEW • We have synthesized aEEG characteristics in preterm infants across the spectrum of prematurity reported in the literature. • We present a stepwise approach for clinically applicable interpretation of aEEG in preterm infants.
Collapse
|
25
|
Hayakawa K, Tanda K, Nishimura A, Koshino S, Kizaki Z, Ohno K. Diffusion restriction in the corticospinal tract and the corpus callosum of term neonates with hypoxic-ischemic encephalopathy. Pediatr Radiol 2022; 52:1356-1369. [PMID: 35294621 DOI: 10.1007/s00247-022-05331-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Diffusion-weighted imaging performed shortly after brain injury has been shown to facilitate visualization of acute corticospinal tract injury known as "pre-Wallerian degeneration." OBJECTIVE The aim of this study was to determine whether diffusion restriction in the corticospinal tract and corpus callosum occurs within the first 2 weeks after birth in neonates with neonatal hypoxic-ischemic encephalopathy. MATERIALS AND METHODS We enrolled a consecutive series of 66 infants diagnosed with hypoxic-ischemic encephalopathy who underwent MRI. We evaluated diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) values to assess the presence of restricted diffusion in the corticospinal tract and corpus callosum. Next, we compared ADC values in the corticospinal tract and in the splenium and genu of the corpus callosum of infants with abnormal pattern on MRI with those of control infants, who showed a normal pattern on MRI. We attempted to follow all infants with hypoxic-ischemic encephalopathy until 18 months of age and assess them using a standardized neurologic examination. RESULTS After exclusions, we recruited 25 infants with abnormal MRI and 20 with normal MRI (controls). Among these 45 neonates, pre-Wallerian degeneration was visualized in the corticospinal tract in 10 neonates and in the corpus callosum in 12. The ADC values in the corticospinal tract in the first week were significantly lower than they were in the second week. Infants with pre-Wallerian degeneration in the corticospinal tract showed an unfavorable outcome. CONCLUSION Pre-Wallerian degeneration was visualized in the corticospinal tract and corpus callosum and was associated with extensive brain injury caused by hypoxic-ischemic encephalopathy. The changes in signal were observed to evolve over time within the first 2 weeks. The clinical outcome of infants having pre-Wallerian degeneration in the corticospinal tract was unfavorable.
Collapse
Affiliation(s)
- Katsumi Hayakawa
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, 15-749 Hon-machi, Higashiyama-ku, Kyoto, 605-0981, Japan.
| | - Koichi Tanda
- Department of Neonatology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan.,Department of Pediatrics, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Akira Nishimura
- Department of Neonatology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Sachiko Koshino
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, 15-749 Hon-machi, Higashiyama-ku, Kyoto, 605-0981, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Koji Ohno
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, 15-749 Hon-machi, Higashiyama-ku, Kyoto, 605-0981, Japan
| |
Collapse
|
26
|
Combined GFAP, NFL, Tau, and UCH-L1 panel increases prediction of outcomes in neonatal encephalopathy. Pediatr Res 2022; 93:1199-1207. [PMID: 35273370 DOI: 10.1038/s41390-022-01994-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neuroprognostication in neonates with neonatal encephalopathy (NE) may be enhanced by early serial measurement of a panel of four brain-specific biomarkers. METHODS To evaluate serum biomarkers, 40 NE samples and 37 healthy neonates from a biorepository were analyzed. Blood samples were collected at 0-6, 12, 24, 48, and 96 h of life. MRI provided a short-term measure of injury. Long-term outcomes included death or a Bayley III score at 17-24 months of age. RESULTS Glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase-L1 (UCH-L1), and Tau peaked at 0-6 h of life, while neurofilament light chain (NFL) peaked at 96 h of life. These four marker concentrations at 96 h of life differentiated moderate/severe from none/mild brain injury by MRI, while GFAP and Tau showed early discrimination. For long-term outcomes, GFAP, NFL, Tau, and UCH-L1 could differentiate a poor outcome vs good outcome as early as 0-6 h of life, depending on the Bayley domain, and a combination of the four markers enhanced the sensitivity and specificity. Machine learning trajectory analyses identified upward trajectory patients with a high concordance to poor outcomes. CONCLUSION GFAP, NFL, Tau, and UCH-L1 may be of neuroprognostic significance after NE. IMPACT Serial measurements of GFAP, NFL, Tau, and UCH-L1 show promise in aiding the bedside clinician in making treatment decisions in neonatal encephalopathy. The panel of four neuroproteins increased the ability to predict neurodevelopmental outcomes. The study utilized a trajectory analysis that enabled predictive modeling. A panel approach provides the bedside clinician with objective data to individualize care. This study provides the foundation to develop a point of care device in the future.
Collapse
|
27
|
Ten years since the introduction of therapeutic hypothermia in neonates with perinatal hypoxic-ischaemic encephalopathy in Spain. NEUROLOGÍA (ENGLISH EDITION) 2022:S2173-5808(22)00018-9. [DOI: 10.1016/j.nrleng.2020.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/31/2020] [Indexed: 11/17/2022] Open
|
28
|
Flibotte J, Laptook AR, Shankaran S, McDonald SA, Baserga MC, Bell EF, Cotten CM, Das A, DeMauro SB, DuPont TL, Eichenwald EC, Heyne R, Jensen EA, Van Meurs KP, Dysart K. Blanket temperature during therapeutic hypothermia and outcomes in hypoxic ischemic encephalopathy. J Perinatol 2022; 42:348-353. [PMID: 34999716 PMCID: PMC9121861 DOI: 10.1038/s41372-021-01302-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Determine whether blanket temperatures during therapeutic hypothermia (TH) are associated with 18-22 month outcomes for infants with hypoxic ischemic encephalopathy (HIE). STUDY DESIGN Retrospective cohort study of 181 infants with HIE who received TH in two randomized trials within the Neonatal Research Network. We defined summative blanket temperature constructs and evaluated for association with a primary composite outcome of death or moderate/ severe disability at 18-22 months. RESULTS Each 0.5 °C above 33.5 °C in the mean of the highest quartile blanket temperature was associated with a 52% increase in the adjusted odds of death/ disability (aOR 1.52, 95% CI 1.09-2.11). Having >8 consecutive blanket temperatures above 33.5 °C rendered an aOR of death/disability of 5.04 in the first 24 h (95% CI 1.54-16.6) and 6.92 in the first 48 h (95% CI 2.20-21.8) of TH. CONCLUSIONS Higher blanket temperature during TH may be an early, clinically useful biomarker of HIE outcome.
Collapse
Affiliation(s)
- John Flibotte
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Abbot R Laptook
- Department of Pediatrics, Alpert Medical School of Brown University, Providence, RI, USA
| | - Seetha Shankaran
- Department of Pediatrics, Wayne State University, Detroit, MI, USA
| | - Scott A McDonald
- Biostatistics and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Mariana C Baserga
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Edward F Bell
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | | | - Abhik Das
- Biostatistics and Epidemiology, RTI International, Rockville, MD, USA
| | - Sara B DeMauro
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tara L DuPont
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Eric C Eichenwald
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Roy Heyne
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Erik A Jensen
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Krisa P Van Meurs
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kevin Dysart
- Division of Neonatal and Perinatal Medicine, Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| |
Collapse
|
29
|
Garcia-Alix A, Arnaez J. Value of brain damage biomarkers in cerebrospinal fluid in neonates with hypoxic-ischemic brain injury. Biomark Med 2022; 16:117-125. [PMID: 35081738 DOI: 10.2217/bmm-2021-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is one of the leading causes of death and neurological disability worldwide. A key issue in neonates with hypoxic-ischemic encephalopathy is accurately establishing the occurrence and severity of brain lesions soon after a perinatal hypoxic-ischemic event. This is crucial to help with prognosis; guide clinical decision-making, including the use of other therapies; and improve family counseling. Neurobiochemical markers may offer a quantitative approximation for estimating the severity of brain damage and identifying infants who have a high risk of further neurological disability. In addition, they should help identify those neonates who would benefit most from the implementation of other neuroprotective and neuroreparative interventions. Despite considerable progress in this area, relatively few studies have been aimed at examining the clinical utility of brain-specific proteins in cerebrospinal fluid, an important opening to characterizing pathological phenomena associated with hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
| | - Juan Arnaez
- Neonatal Neurology, NeNe Foundation, Madrid, 28010, Spain
- Hospital Universitario de Burgos, Burgos 09006, Spain. Neonatal Neurology, NeNe Foundation, Madrid, 28010, Spain
| |
Collapse
|
30
|
Nanyunja C, Sadoo S, Mambule I, Mathieson SR, Nyirenda M, Webb EL, Mugalu J, Robertson NJ, Nabawanuka A, Gilbert G, Bwambale J, Martinello K, Bainbridge A, Lubowa S, Srinivasan L, Ssebombo H, Morgan C, Hagmann C, Cowan FM, Le Doare K, Wintermark P, Kawooya M, Boylan GB, Nakimuli A, Tann CJ. Protocol for the Birth Asphyxia in African Newborns (Baby BRAiN) Study: a Neonatal Encephalopathy Feasibility Cohort Study. Gates Open Res 2022; 6:10. [PMID: 35614965 PMCID: PMC9110736 DOI: 10.12688/gatesopenres.13557.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND: Neonatal encephalopathy (NE) is a leading cause of child mortality worldwide and contributes substantially to stillbirths and long-term disability. Ninety-nine percent of deaths from NE occur in low-and-middle-income countries (LMICs). Whilst therapeutic hypothermia significantly improves outcomes in high-income countries, its safety and effectiveness in diverse LMIC contexts remains debated. Important differences in the aetiology, nature and timing of neonatal brain injury likely influence the effectiveness of postnatal interventions, including therapeutic hypothermia. METHODS: This is a prospective pilot feasibility cohort study of neonates with NE conducted at Kawempe National Referral Hospital, Kampala, Uganda. Neurological investigations include continuous video electroencephalography (EEG) (days 1-4), serial cranial ultrasound imaging, and neonatal brain Magnetic Resonance Imaging and Spectroscopy (MRI/ MRS) (day 10-14). Neurodevelopmental follow-up will be continued to 18-24 months of age including Prechtl's Assessment of General Movements, Bayley Scales of Infant Development, and a formal scored neurological examination. The primary outcome will be death and moderate-severe neurodevelopmental impairment at 18-24 months. Findings will be used to inform explorative science and larger trials, aiming to develop urgently needed neuroprotective and neurorestorative interventions for NE applicable for use in diverse settings. DISCUSSION: The primary aims of the study are to assess the feasibility of establishing a facility-based cohort of children with NE in Uganda, to enhance our understanding of NE in a low-resource sub-Saharan African setting and provide infrastructure to conduct high-quality research on neuroprotective/ neurorestorative strategies to reduce death and disability from NE. Specific objectives are to establish a NE cohort, in order to 1) investigate the clinical course, aetiology, nature and timing of perinatal brain injury; 2) describe electrographic activity and quantify seizure burden and the relationship with adverse outcomes, and; 3) develop capacity for neonatal brain MRI/S and examine associations with early neurodevelopmental outcomes.
Collapse
Affiliation(s)
| | - Samantha Sadoo
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Ivan Mambule
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | | | - Emily L Webb
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - J Mugalu
- Kawempe National Referral Hospital, Kampala, UK
| | - Nicola J Robertson
- University College London, London, UK
- University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | - Cathy Morgan
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, Australia
| | | | | | - Kirsty Le Doare
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- St George's, University of London, London, UK
| | | | - Michael Kawooya
- Ernest Cook Ultrasound Research and Education Institute (ECUREI), Kampala, Uganda
| | | | - Annettee Nakimuli
- Kawempe National Referral Hospital, Kampala, UK
- Makarere University, Kampala, Uganda
| | - Cally J Tann
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
31
|
Troha Gergeli A, Škofljanec A, Neubauer D, Paro Panjan D, Kodrič J, Osredkar D. Prognostic Value of Various Diagnostic Methods for Long-Term Outcome of Newborns After Hypoxic-Ischemic Encephalopathy Treated With Hypothermia. Front Pediatr 2022; 10:856615. [PMID: 35463898 PMCID: PMC9021608 DOI: 10.3389/fped.2022.856615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Prediction of outcome in newborns with hypoxic-ischemic encephalopathy (HIE) has been modulated by hypothermia treatment (HT). We assessed the predictive value of diagnostic methods commonly used in neonates with HIE for short-term neurodevelopmental outcome and long-term neurological outcome. MATERIALS AND METHODS This longitudinal cohort study followed up 50 term newborns who underwent HT after HIE between July 2006 and August 2015, until preschool age. We estimated sensitivity and specificity for short-term neurodevelopmental outcome at 18 months and long-term neurological outcome at five years based on Amiel-Tison Neurological Assessment (ATNA), electroencephalography (EEG), and magnetic resonance imaging (MRI) performed in the neonatal period. RESULTS The accuracy of all neonatal methods tested was higher for long-term neurological outcome compared to the predictive accuracy for short-term neurodevelopmental outcome at 18-24 months. Sensitivity and specificity in predicting unfavorable long-term neurological outcome were: MRI (sensitivity 1.0 [95%CI 0.96-1.0]; specificity 0.91 [95%CI 0.86-1.0]), EEG (sensitivity 0.94 [95%CI 0.71-1.0]; specificity 1.0 [95% CI 0.89-1.0]), and ATNA (sensitivity 0.94 [95%CI 0.71-1.0]; specificity 0.91 [95%CI 0.76-0.98]). CONCLUSION MRI is a powerful predictor of long-term neurological outcome when performed in the first week after HIE in HT treated infants, as are EEG and ATNA performed in the second or third week postnatally.
Collapse
Affiliation(s)
- Anja Troha Gergeli
- Department of Child, Adolescent and Developmental Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andreja Škofljanec
- Pediatric Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Health Institution Zdravje, Ljubljana, Slovenia
| | - David Neubauer
- Department of Child, Adolescent and Developmental Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Center for Developmental Neuroscience, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Darja Paro Panjan
- Center for Developmental Neuroscience, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Neonatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jana Kodrič
- Unit of Child Psychiatry of the University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Damjan Osredkar
- Department of Child, Adolescent and Developmental Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Center for Developmental Neuroscience, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
32
|
Uzianbaeva L, Yan Y, Joshi T, Yin N, Hsu CD, Hernandez-Andrade E, Mehrmohammadi M. Methods for Monitoring Risk of Hypoxic Damage in Fetal and Neonatal Brains: A Review. Fetal Diagn Ther 2021; 49:1-24. [PMID: 34872080 PMCID: PMC8983560 DOI: 10.1159/000520987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
Fetal, perinatal, and neonatal asphyxia are vital health issues for the most vulnerable groups in human beings, including fetuses, newborns, and infants. Severe reduction in oxygen and blood supply to the fetal brain can cause hypoxic-ischemic encephalopathy (HIE), leading to long-term neurological disorders, including mental impairment and cerebral palsy. Such neurological disorders are major healthcare concerns. Therefore, there has been a continuous effort to develop clinically useful diagnostic tools for accurately and quantitatively measuring and monitoring blood and oxygen supply to the fetal and neonatal brain to avoid severe consequences of asphyxia HIE and neonatal encephalopathy. Major diagnostic technologies used for this purpose include fetal heart rate monitoring, fetus scalp blood sampling, ultrasound imaging, magnetic resonance imaging, X-ray computed tomography, and nuclear medicine. In addition, given the limitations and shortcomings of traditional diagnostic methods, emerging technologies such as near-infrared spectroscopy and photoacoustic imaging have also been introduced as stand-alone or complementary solutions to address this critical gap in fetal and neonatal care. This review provides a thorough overview of the traditional and emerging technologies for monitoring fetal and neonatal brain oxygenation status and describes their clinical utility, performance, advantages, and disadvantages.
Collapse
Affiliation(s)
- Liaisan Uzianbaeva
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Tanaya Joshi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Nina Yin
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
- Department of Anatomy, School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Edgar Hernandez-Andrade
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
33
|
Erdi-Krausz G, Rocha R, Brown A, Myneni A, Lennartsson F, Romsauerova A, Cianfaglione R, Edmonds CJ, Vollmer B. Neonatal hypoxic-ischaemic encephalopathy: Motor impairment beyond cerebral palsy. Eur J Paediatr Neurol 2021; 35:74-81. [PMID: 34666231 DOI: 10.1016/j.ejpn.2021.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/21/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Research investigating neuromotor function in the absence of cerebral palsy (CP) for children who had neonatal HIE is limited. AIMS To investigate school-age neurological and neuromotor function, and correlations with attention, neonatal Magnetic Resonance Imaging (MRI), and neuromotor assessments at toddler age. METHODS Twenty-seven children with neonatal HIE without CP who underwent hypothermia treatment and a comparison group of 20 children were assessed at age 5-7 years for Minor Neurological Dysfunction (MND; simplified Touwen), motor skills (Movement Assessment Battery for Children-2; MABC-2), parental concern over motor function (MABC Checklist), general cognition (Wechsler Preschool and Primary Scale of Intelligence-IV, WPPSI), and attention (DuPaul ADHD Rating Scale). Neurological examination and motor development, using Bayley-3 scales, at age 24-months was extracted from the clinical database. Clinical neonatal MRI was assessed for hypoxic-ischaemic injury. RESULTS In the HIE group, MND was more prevalent (p = 0.026) and M-ABC performance (total score p = 0.006; balance subtest p = 0.008) was worse; parents were more concerned about children's motor function (p = 0.011). HIE group inattention scores were higher (p = 0.032), which correlated with lower MABC-2 scores (rs = -0.590, p = 0.004). Neurological examination at 24-months correlated with MND (rs = 0.437, p = 0.033); Bayley-3 motor scores did not correlate with M-ABC-2 scores (rs = 368, p = 0.133). Neonatal MRI findings were not associated with school-age MND (rs = 0.140, p = 0.523) or MABC-2 (rs = 0.300, p = 0.165). CONCLUSIONS Children with neonatal HIE, without CP, treated with hypothermia may be more likely to develop MND and motor difficulties than typically developing peers. Inattention may contribute to motor performance. In the absence of CP, neonatal MRI and toddler age assessment of motor development have limited predictive value for school-age outcome. Since this was an exploratory study with a small sample size, findings should be confirmed by a definite larger study.
Collapse
Affiliation(s)
- Gergo Erdi-Krausz
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ruben Rocha
- Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Portugal
| | - Alice Brown
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Archana Myneni
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Finn Lennartsson
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Andrea Romsauerova
- Neuroradiology Department, University Hospital of Southampton NHS Foundation Trust, UK
| | - Rina Cianfaglione
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Caroline J Edmonds
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; School of Psychology, University of East London, London, UK
| | - Brigitte Vollmer
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; Neonatal and Paediatric Neurology, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
34
|
Marlow N, Shankaran S, Rogers EE, Maitre NL, Smyser CD. Neurological and developmental outcomes following neonatal encephalopathy treated with therapeutic hypothermia. Semin Fetal Neonatal Med 2021; 26:101274. [PMID: 34330680 DOI: 10.1016/j.siny.2021.101274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In randomized trials, therapeutic hypothermia (TH) is associated with reduced prevalence of the composite outcome mortality or neurodevelopmental morbidity in infants with neonatal encephalopathy (NE). Following systematic review, the reduction in prevalence of both mortality and infant neuromorbidity is clear. Among three trials reporting school age outcomes, the effects of NE and TH suggest that such benefit persists into middle childhood, but none of the major trials were powered to detect differences in these outcomes. Cognitive, educational and behavioural outcomes are all adversely affected by NE in children without moderate or severe neuromorbidity. High-quality longitudinal studies of neurocognitive and educational outcomes following NE in the era of TH, including studies incorporating multimodal neuroimaging assessments, are required to characterise deficits more precisely so that robust interventional targets may be developed, and resource planning can occur. Understanding the impact of NE on families and important educational, social, and behavioural outcomes in childhood is critical to attempts to optimise outcomes through interventions.
Collapse
Affiliation(s)
| | | | | | - Nathalie L Maitre
- Nationwide Children's Hospital, Columbus, OH, USA; Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
35
|
Elmoursi H, Abdalla M, Mesbah BE, Khashana A. Salivary Lactate Dehydrogenase in Relationship to the Severity of Hypoxic-Ischemic Encephalopathy among Newborn Infants. SCIENTIFICA 2021; 2021:9316277. [PMID: 34567822 PMCID: PMC8457975 DOI: 10.1155/2021/9316277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Hypoxic-ischemic encephalopathy (HIE) is defined as a neurological complication that results from perinatal asphyxia. Previous studies had investigated various markers to early detect HIE; however, these markers appeared to have several drawbacks, especially in resource-limited settings. AIM This study aimed at evaluating the predictive value of the salivary lactate dehydrogenase level as a potential predictor of hypoxic-ischemic encephalopathy for newborns. MATERIALS AND METHODS We included 30 neonates with HIE due to perinatal asphyxia and 30 healthy newborns that serve as controls, admitted at the intensive care unit for neonates and maternity ward at Ismailia area Clinics and Hospitals. We measured the LDH levels by using saliva samples that were collected for neonates maximum by 12 h after birth. RESULTS It was found that patients with HIE had a statistically significant higher salivary LDH level (1927 ± 390.3 IU/L) than patients without HIE (523.6 ± 142.8 IU/L) (p < 0.001). Moreover, salivary LDH showed a good discriminative ability where the AUC was 0.966 regarding salivary LDH (95% CI: 0.917-1.0) (p < 0.001). The best cutoff value was 1420 IU/L or more which showed the best results in predicting the occurrence of HIE with 98.3% and 97.6% sensitivity and specificity, respectively. CONCLUSION Salivary LDH can be considered as a useful noninvasive laboratory marker that can accurately predict HIE incidence among neonates with asphyxia within 12 hours from birth. The cases in the HIE group were assigned into three stages according to the Sarnat and Sarnat staging system: stage I: mild (irritable, normal, or hypertonia and poor feeding); stage II: moderate (lethargy, hypotonia, and frequent seizure); stage III: severe (coma, flaccid, absent reflexes, and frequent seizure). There is a positive association between LDH levels and the severity of HIE.
Collapse
Affiliation(s)
- Hend Elmoursi
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Abdalla
- Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | | |
Collapse
|
36
|
Garcia-Alix A, Arnaez J, Arca G, Agut T, Alarcon A, Martín-Ancel A, Girabent-Farres M, Valverde E, Benavente-Fernández I. Development, Reliability, and Testing of a New Rating Scale for Neonatal Encephalopathy. J Pediatr 2021; 235:83-91.e7. [PMID: 33857465 DOI: 10.1016/j.jpeds.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To develop and test the Neonatal Encephalopathy-Rating Scale (NE-RS), a new rating scale to grade the severity of neonatal encephalopathy (NE) within the first 6 hours after birth. STUDY DESIGN A 3-phase process was conducted: (1) design of a comprehensive scale that would be specific, sensitive, brief, and unsophisticated; (2) evaluation in a cohort of infants with neonatal encephalopathy and healthy controls; and (3) validation with brain magnetic resonance imaging findings and outcome at 2 years of age. RESULTS We evaluated the NE-RS in 54 infants with NE and 28 healthy infants. The NE-RS had excellent internal consistency (Cronbach alpha coefficient: 0.93 [95% CI 0.86-0.94]) and reliability (intraclass correlation coefficient in the NE cohort 0.996 [95% CI 0.993-0.998; P < .001]). Alertness, posture, motor response, and spontaneous activity were the top discriminators for degrees of NE. The cut-off value for mild vs moderate NE was 8 points (area under the curve [AUC] 0.99, 95% CI 0.85-1.00) and for moderate vs severe NE, 30 points (AUC 0.93, 95% CI 0.81-0.99). The NE-RS was significantly correlated with the magnetic resonance imaging score (Spearman Rho 0.77, P < .001) and discriminated infants who had an adverse outcome (AUC 0.91, 95% CI 0.83-0.99, sensitivity 0.82, specificity 0.81, positive predictive value 0.87, negative predictive value 0.74). CONCLUSIONS The NE-RS is reliable and performs well in reflecting the severity of NE within the first 6 hours after birth. This tool could be useful when assessing clinical criteria for therapeutic hypothermia in NE.
Collapse
Affiliation(s)
- Alfredo Garcia-Alix
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Deu, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain; NeNe Foundation, Madrid, Spain.
| | - Juan Arnaez
- NeNe Foundation, Madrid, Spain; Hospital Universitario de Burgos, Burgos, Spain
| | - Gemma Arca
- NeNe Foundation, Madrid, Spain; Hospital Clínic (Maternitat)-IDIBAPS, Barcelona, Spain
| | - Thais Agut
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Deu, Barcelona, Spain; NeNe Foundation, Madrid, Spain
| | - Ana Alarcon
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Ana Martín-Ancel
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Montserrat Girabent-Farres
- Department of Physioterapy, School of Health Sciences, TecnoCampus-Pompeu Fabra University, Mataró, Barcelona, Spain
| | - Eva Valverde
- NeNe Foundation, Madrid, Spain; Hospital Universitario La Paz, Madrid, Spain
| | - Isabel Benavente-Fernández
- NeNe Foundation, Madrid, Spain; Hospital Puerta del Mar, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
| |
Collapse
|
37
|
Hayakawa K, Tanda K, Nishimura A, Kinoshita D, Nishimoto M, Kizaki Z, Ohno K. Morphological changes in the pons and cerebellum during the first two weeks in term infants with pontine and cerebellar injury and profound neonatal asphyxia. Acta Radiol 2021; 63:1110-1117. [PMID: 34259022 DOI: 10.1177/02841851211030777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The morphological changes in the pons and cerebellum of neonates experiencing profound asphyxia in the early period of life remain to be clarified. PURPOSE To assess the changes in the size of the pons and cerebellum during the first two weeks of life in term neonates with pontine and cerebellar injury caused by hypoxic-ischemic encephalopathy in comparison with a control group. MATERIAL AND METHODS Two groups were investigated: a group with pontine/cerebellar injury (PCI) (n = 10) demonstrated by magnetic resonance imaging (MRI) diffusion-weighted imaging; and a control group without PCI - focal-multifocal white matter injury and a normal pattern (n = 24). The anteroposterior diameter (APD) and height of the pons and cerebellar vermis, and the transverse width of the cerebellum were measured twice in the first and second weeks of life. Differences between the groups were analyzed statistically using paired and unpaired Student's t-test at a significance level of P < 0.05. RESULTS In the PCI group, the pontine APD and cerebellar vermian height were significantly decreased in the second week. An increase of pons and cerebellar size was evident during the first two weeks of life in the control groups. CONCLUSION Infants with PCI and profound asphyxia show rapid decreases in pontine APD and cerebellar vermian height within the first two weeks of life.
Collapse
Affiliation(s)
- Katsumi Hayakawa
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Koichi Tanda
- Department of Neonatology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
- Department of Pediatrics, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Akira Nishimura
- Department of Neonatology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Daisuke Kinoshita
- Department of Neonatology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Masakazu Nishimoto
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Koji Ohno
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| |
Collapse
|
38
|
Blood Plasma Metabolic Profile of Newborns with Hypoxic-Ischaemic Encephalopathy by GC-MS. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6677271. [PMID: 34258280 PMCID: PMC8249136 DOI: 10.1155/2021/6677271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Background Early diagnosis of hypoxic-ischaemic encephalopathy (HIE) is crucial in preventing neurodevelopmental disabilities and reducing morbidity and mortality. The study was to investigate the plasma metabolic signatures in the peripheral blood of HIE newborns and explore the potential diagnostic biomarkers. Method In the present study, 24 newborns with HIE and 24 healthy controls were recruited. The plasma metabolites were measured by gas chromatography-mass spectrometry (GC-MS), and the raw data was standardized by the EigenMS method. Significantly differential metabolites were identified by multivariate statistics. Pathway enrichment was performed by bioinformatics analysis. Meanwhile, the diagnostic value of candidate biomarkers was evaluated. Result The multivariate statistical models showed a robust capacity to distinguish the HIE cases from the controls. 52 metabolites were completely annotated. 331 significantly changed pathways were enriched based on seven databases, including 33 overlapped pathways. Most of them were related to amino acid metabolism, energy metabolism, neurotransmitter biosynthesis, pyrimidine metabolism, the regulation of HIF by oxygen, and GPCR downstream signaling. 14 candidate metabolites showed great diagnostic potential on HIE. Among them, alpha-ketoglutaric acid has the potential to assess the severity of HIE in particular. Conclusion The blood plasma metabolic profile could comprehensively reflect the metabolic disorders of the whole body under hypoxia-ischaemic injury. Several candidate metabolites may serve as promising biomarkers for the early diagnosis of HIE. Further validation based on large clinical samples and the establishment of guidelines for the clinical application of mass spectrometry data standardization methods are imperative in the future.
Collapse
|
39
|
Baburamani AA, Tran NT, Castillo-Melendez M, Yawno T, Walker DW. Brief hypoxia in late gestation sheep causes prolonged disruption of fetal electrographic, breathing behaviours and can result in early labour. J Physiol 2021; 599:3221-3236. [PMID: 33977538 DOI: 10.1113/jp281266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Brief episodes of severe fetal hypoxia can arise in late gestation as a result of interruption of normal umbilical blood flow Systemic parameters and blood chemistry indicate complete recovery within 1-2 hours, although the long-term effects on fetal brain functions are unknown Fetal sheep were subjected to umbilical cord occlusion (UCO) for 10 min at 131 days of gestation, and then monitored intensively until onset of labour or delivery (<145 days of gestation) Normal patterns of fetal behaviour, including breathing movements, episodes of high and low voltage electorcortical activity, eye movements and postural (neck) muscle activity, were disrupted for 3-10 days after the UCO Preterm labour and delivery occurred in a significant number of the pregnancies after UCO compared to the control (sham-UCO) cohort. ABSTRACT Complications arising from antepartum events such as impaired umbilical blood flow can cause significant fetal hypoxia. These complications can be unpredictable, as well as difficult to detect, and thus we lack a detailed understanding of the (patho)physiological changes that occur between the antenatal in utero event and birth. In the present study, we assessed the consequences of brief (∼10 min) umbilical cord occlusion (UCO) in fetal sheep at ∼0.88 gestation on fetal plasma cortisol concentrations and fetal behaviour [electrocortical (EcoG), electo-oculargram (EOG), nuchal muscle electromyography (EMG) and breathing activities] in the days following UCO. UCO caused a rapid onset of fetal hypoxaemia, hypercapnia, and acidosis; however, by 6 h, all blood parameters and cardiovascular status were normalized and not different from the control (Sham-UCO) cohort. Subsequently, the incidence of fetal breathing movements decreased compared to the control group, and abnormal behavioural patterns developed over the days following UCO and leading up to the onset of labour, which included increased high voltage and sub-low voltage ECoG and EOG activities, as well as decreased nuchal EMG activity. Fetuses subjected to UCO went into labour 7.9 ± 3.6 days post-UCO (139.5 ± 3.2 days of gestation) compared to the control group fetuses at 13.6 ± 3.3 days post-sham UCO (144 ± 2.2 days of gestation; P < 0.05), despite comparable increases in fetal plasma cortisol and a similar body weight at birth. Thus, a single transient episode of complete UCO late in gestation in fetal sheep can result in prolonged effects on fetal brain activity and premature labour, suggesting persisting effects on fetal cerebral metabolism.
Collapse
Affiliation(s)
- Ana A Baburamani
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Nhi T Tran
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Yan K, Xiao F, Jiang Y, Lu C, Zhang Y, Kong Y, Zhou J, Wang J, Lin C, Yang H, Zhang D, Cheng G, Qiao Z, Wang L, Qin Q, Zhou W. Amplitude of low-frequency fluctuation may be an early predictor of delayed motor development due to neonatal hyperbilirubinemia: a fMRI study. Transl Pediatr 2021; 10:1271-1284. [PMID: 34189085 PMCID: PMC8192981 DOI: 10.21037/tp-20-447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Acute bilirubin encephalopathy or kernicterus is the worst consequence of brain damage caused by the elevation of total unbound serum bilirubin (TSB) in neonates. The present study aimed to visualize the characteristic brain regions of neonates with hyperbilirubinemia (HB) using functional magnetic resonance imaging (fMRI) and to measure the amplitude of low-frequency fluctuation (ALFF) values. METHODS This was a prospective cohort study, which included newborns with HB who were hospitalized at the Children's Hospital of Fudan University. The control group included neonates admitted with neonatal simple wet lung or pneumonia without neurological disease or brain injury. Newborns were divided into a severe hyperbilirubinemia group (SHB), moderate HB group, and control group based on TSB levels. The newborns completed routine MRI combined with fMRI scans and brainstem auditory evoked potentials (BAEPs) during their hospitalization. RESULTS A total of 251 newborns were included in this study. There were 45 patients in the SHB group, 65 in the HB group, and 141 in the control group. The average ALFF value in the basal ganglia region in the SHB group was the highest, which was greater than that in the HB and control groups (P<0.001). The ALFF increased with an increase in TSB concentration. Based on the results of the Bayley Scales of infant development assessment, we further found that the most significant difference in ALFF remained in the basal ganglia region between newborns with motor development scores above 70 (including 70) and below 70. Correlation analysis revealed a strong negative correlation between motor development scores and ALFF (r=-0.691, P<0.001). When ALFF alone was used to predict motor development, the sensitivity was 89%. When ALFF was combined with TSB and BEAP results, the area under the ROC curve was the largest (AUC =0.85). The sensitivity and specificity of the model were 67.86% and 90.77%, respectively. CONCLUSIONS The ALFF value may be able to serve as an early imaging biomarker and has a greater sensitivity than TSB or BAEP results in predicting long-term motor development (18 m) in HB.
Collapse
Affiliation(s)
- Kai Yan
- Department of Neonatology, Children' Hospital of Fudan University, Shanghai, China
| | - Feifan Xiao
- Department of Neonatology, Children' Hospital of Fudan University, Shanghai, China
| | - Yuwei Jiang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunmei Lu
- Department of Neonatology, Children' Hospital of Fudan University, Shanghai, China
| | - Yong Zhang
- MR Research, GE Healthcare, Shanghai, China
| | - Yanting Kong
- Department of Neonatology, Children' Hospital of Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Radiology, Children' Hospital of Fudan University, Shanghai, China
| | - Junbo Wang
- Department of Radiology, Children' Hospital of Fudan University, Shanghai, China
| | - Chengxiang Lin
- Department of Radiology, Children' Hospital of Fudan University, Shanghai, China
| | - Haowei Yang
- Department of Radiology, Children' Hospital of Fudan University, Shanghai, China
| | - Dajiang Zhang
- Department of Radiology, Children' Hospital of Fudan University, Shanghai, China
| | - Guoqiang Cheng
- Department of Neonatology, Children' Hospital of Fudan University, Shanghai, China
| | - Zhongwei Qiao
- Department of Radiology, Children' Hospital of Fudan University, Shanghai, China
| | - Liping Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qian Qin
- Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, The Translational Medicine Center of Children Development and Disease of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Department of Neonatology, Children' Hospital of Fudan University, Shanghai, China
| |
Collapse
|
41
|
Wisnowski JL, Bluml S, Panigrahy A, Mathur AM, Berman J, Chen PSK, Dix J, Flynn T, Fricke S, Friedman SD, Head HW, Ho CY, Kline-Fath B, Oveson M, Patterson R, Pruthi S, Rollins N, Ramos YM, Rampton J, Rusin J, Shaw DW, Smith M, Tkach J, Vasanawala S, Vossough A, Whitehead MT, Xu D, Yeom K, Comstock B, Heagerty PJ, Juul SE, Wu YW, McKinstry RC. Integrating neuroimaging biomarkers into the multicentre, high-dose erythropoietin for asphyxia and encephalopathy (HEAL) trial: rationale, protocol and harmonisation. BMJ Open 2021; 11:e043852. [PMID: 33888528 PMCID: PMC8070884 DOI: 10.1136/bmjopen-2020-043852] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION MRI and MR spectroscopy (MRS) provide early biomarkers of brain injury and treatment response in neonates with hypoxic-ischaemic encephalopathy). Still, there are challenges to incorporating neuroimaging biomarkers into multisite randomised controlled trials. In this paper, we provide the rationale for incorporating MRI and MRS biomarkers into the multisite, phase III high-dose erythropoietin for asphyxia and encephalopathy (HEAL) Trial, the MRI/S protocol and describe the strategies used for harmonisation across multiple MRI platforms. METHODS AND ANALYSIS Neonates with moderate or severe encephalopathy enrolled in the multisite HEAL trial undergo MRI and MRS between 96 and 144 hours of age using standardised neuroimaging protocols. MRI and MRS data are processed centrally and used to determine a brain injury score and quantitative measures of lactate and n-acetylaspartate. Harmonisation is achieved through standardisation-thereby reducing intrasite and intersite variance, real-time quality assurance monitoring and phantom scans. ETHICS AND DISSEMINATION IRB approval was obtained at each participating site and written consent obtained from parents prior to participation in HEAL. Additional oversight is provided by an National Institutes of Health-appointed data safety monitoring board and medical monitor. TRIAL REGISTRATION NUMBER NCT02811263; Pre-result.
Collapse
Affiliation(s)
- Jessica L Wisnowski
- Radiology, Children's Hospital of Los Angeles, Los Angeles, California, USA
- Pediatrics, Children's Hospital Los Angeles Division of Neonatology, Los Angeles, California, USA
| | - Stefan Bluml
- Radiology, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Ashok Panigrahy
- Radiology, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Amit M Mathur
- Pediatrics, Division of Neonatal-Perinatal Medicine, SSM Health Cardinal Glennon Children's Hospital, Saint Louis, Missouri, USA
- Pediatrics, Division of Neonatal-Perinatal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - Jeffrey Berman
- Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - James Dix
- Radiology, Methodist Children's Hospital, San Antonio, Texas, USA
| | - Trevor Flynn
- Radiology, University of California San Francisco, San Francisco, California, USA
| | - Stanley Fricke
- Radiology, Children's National Medical Center, Washington, District of Columbia, USA
- Radiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Seth D Friedman
- Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Hayden W Head
- Radiology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Chang Y Ho
- Radiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Beth Kline-Fath
- Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael Oveson
- Radiology, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Richard Patterson
- Radiology, Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Sumit Pruthi
- Radiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Nancy Rollins
- Radiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Yanerys M Ramos
- Radiology, Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - John Rampton
- Radiology, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Jerome Rusin
- Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dennis W Shaw
- Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Mark Smith
- Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jean Tkach
- Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Arastoo Vossough
- Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew T Whitehead
- Radiology, Children's National Medical Center, Washington, District of Columbia, USA
| | - Duan Xu
- Radiology, University of California San Francisco, San Francisco, California, USA
| | - Kristen Yeom
- Radiology, Stanford University, Stanford, California, USA
| | - Bryan Comstock
- Biostatistics, University of Washington, Seattle, Washington, USA
| | - Patrick J Heagerty
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Sandra E Juul
- Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
| | - Yvonne W Wu
- Neurology, University of California San Francisco, San Francisco, California, USA
| | - Robert C McKinstry
- Radiology, St. Louis Children's Hospital and Washington University, Saint Louis, Missouri, USA
| |
Collapse
|
42
|
Shim GH. Which factors predict outcomes of neonates with hypoxic-ischemic encephalopathy following therapeutic hypothermia? Clin Exp Pediatr 2021; 64:169-171. [PMID: 33332951 PMCID: PMC8024122 DOI: 10.3345/cep.2020.01459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/05/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Gyu Hong Shim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Consensus protocol for EEG and amplitude-integrated EEG assessment and monitoring in neonates. Clin Neurophysiol 2021; 132:886-903. [PMID: 33684728 DOI: 10.1016/j.clinph.2021.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022]
Abstract
The aim of this work is to establish inclusive guidelines on electroencephalography (EEG) applicable to all neonatal intensive care units (NICUs). Guidelines on ideal EEG monitoring for neonates are available, but there are significant barriers to their implementation in many centres around the world. These include barriers due to limited resources regarding the availability of equipment and technical and interpretive round-the-clock personnel. On the other hand, despite its limitations, amplitude-integrated EEG (aEEG) (previously called Cerebral Function Monitor [CFM]) is a common alternative used in NICUs. The Italian Neonatal Seizure Collaborative Network (INNESCO), working with all national scientific societies interested in the field of neonatal clinical neurophysiology, performed a systematic literature review and promoted interdisciplinary discussions among experts (neonatologists, paediatric neurologists, neurophysiologists, technicians) between 2017 and 2020 with the aim of elaborating shared recommendations. A consensus statement on videoEEG (vEEG) and aEEG for the principal neonatal indications was established. The authors propose a flexible frame of recommendations based on the complementary use of vEEG and aEEG applicable to the various neonatal units with different levels of complexity according to local resources and specific patient features. Suggestions for promoting cooperation between neonatologists, paediatric neurologists, and neurophysiologists, organisational restructuring, and teleneurophysiology implementation are provided.
Collapse
|
44
|
Benninger KL, Inder TE, Goodman AM, Cotten CM, Nordli DR, Shah TA, Slaughter JC, Maitre NL. Perspectives from the Society for Pediatric Research. Neonatal encephalopathy clinical trials: developing the future. Pediatr Res 2021; 89:74-84. [PMID: 32221474 PMCID: PMC7529683 DOI: 10.1038/s41390-020-0859-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
The next phase of clinical trials in neonatal encephalopathy (NE) focuses on hypothermia adjuvant therapies targeting alternative recovery mechanisms during the process of hypoxic brain injury. Identifying infants eligible for neuroprotective therapies begins with the clinical detection of brain injury and classification of severity. Combining a variety of biomarkers (serum, clinical exam, EEG, movement patterns) with innovative clinical trial design and analyses will help target infants with the most appropriate and timely treatments. The timing of magnetic resonance imaging (MRI) and MR spectroscopy after NE both assists in identifying the acute perinatal nature of the injury (days 3-7) and evaluates the full extent and evolution of the injury (days 10-21). Early, intermediate outcome of neuroprotective interventions may be best defined by the 21-day neuroimaging, with recognition that the full neurodevelopmental trajectory is not yet defined. An initial evaluation of each new therapy at this time point may allow higher-throughput selection of promising therapies for more extensive investigation. Functional recovery can be assessed using a trajectory of neurodevelopmental evaluations targeted to a prespecified and mechanistically derived hypothesis of drug action. As precision medicine revolutionizes healthcare, it should also include the redesign of NE clinical trials to allow safe, efficient, and targeted therapeutics. IMPACT: As precision medicine revolutionizes healthcare, it should also include the redesign of NE clinical trials to allow faster development of safe, effective, and targeted therapeutics. This article provides a multidisciplinary perspective on the future of clinical trials in NE; novel trial design; study management and oversight; biostatistical methods; and a combination of serum, imaging, and neurodevelopmental biomarkers can advance the field and improve outcomes for infants affected by NE. Innovative clinical trial designs, new intermediate trial end points, and a trajectory of neurodevelopmental evaluations targeted to a prespecified and mechanistically derived hypothesis of drug action can help address common challenges in NE clinical trials and allow for faster selection and validation of promising therapies for more extensive investigation.
Collapse
MESH Headings
- Biomarkers/blood
- Biomedical Research/trends
- Brain Diseases/diagnostic imaging
- Brain Diseases/etiology
- Brain Diseases/physiopathology
- Brain Diseases/therapy
- Clinical Trials as Topic
- Consensus
- Delphi Technique
- Diffusion of Innovation
- Forecasting
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diagnostic imaging
- Infant, Newborn, Diseases/etiology
- Infant, Newborn, Diseases/physiopathology
- Infant, Newborn, Diseases/therapy
- Neonatology/trends
- Neuroimaging
- Research Design/trends
- Societies, Medical
- Societies, Scientific
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Kristen L Benninger
- Division of Neonatology and Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy M Goodman
- Division of Child Neurology, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Douglas R Nordli
- Section of Child Neurology, Department of Pediatrics, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Tushar A Shah
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Children's Hospital of The King's Daughters, Eastern Virginia Medical School, Norfolk, VA, USA
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathalie L Maitre
- Division of Neonatology and Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
45
|
Andersen M, Pedersen MV, Andelius TCK, Kyng KJ, Henriksen TB. Neurological Outcome Following Newborn Encephalopathy With and Without Perinatal Infection: A Systematic Review. Front Pediatr 2021; 9:787804. [PMID: 34988041 PMCID: PMC8721111 DOI: 10.3389/fped.2021.787804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Studies have suggested that neurological outcome may differ in newborns with encephalopathy with and without perinatal infection. We aimed to systematically review this association. Methods: We conducted this systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Studies were obtained from four databases including Pubmed, Embase, Web of Science, and The Cochrane Database. Newborns with encephalopathy with and without markers of perinatal infection were compared with regard to neurodevelopmental assessments, neurological disorders, and early biomarkers of brain damage. Risk of bias and quality of evidence were assessed by the Newcastle-Ottawa scale and Grading of Recommendations Assessment, Development and Evaluation (GRADE). Results: We screened 4,284 studies of which eight cohort studies and one case-control study met inclusion criteria. A narrative synthesis was composed due to heterogeneity between studies. Six studies were classified as having low risk of bias, while three studies were classified as having high risk of bias. Across all outcomes, the quality of evidence was very low. The neurological outcome was similar in newborns with encephalopathy with and without markers of perinatal infection. Conclusions: Further studies of higher quality are needed to clarify whether perinatal infection may affect neurological outcome following newborn encephalopathy. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020185717.
Collapse
Affiliation(s)
- Mads Andersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Kasper Jacobsen Kyng
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tine Brink Henriksen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
46
|
Hayakawa K, Tanda K, Koshino S, Nishimura A, Kizaki Z, Ohno K. Pontine and cerebellar injury in neonatal hypoxic-ischemic encephalopathy: MRI features and clinical outcomes. Acta Radiol 2020; 61:1398-1405. [PMID: 31979976 DOI: 10.1177/0284185119900442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Perinatal hypoxic-ischemic encephalopathy (HIE) is a major cause of death and disability in infants. Magnetic resonance imaging (MRI) is valuable for predicting the outcome in high-risk neonates. The relationship of pontine and cerebellar injury to outcome has not been explored sufficiently. PURPOSE To characterize MRI features of pontine and cerebellar injury and to assess the clinical outcomes of these neonates. MATERIAL AND METHODS The retrospective study included 59 term neonates (25 girls) examined by MRI using 1.5-T scanner in the first two weeks of life between 2008 and 2017. Involvement of the pons and cerebellum was judged as a high signal intensity on diffusion-weighted image (DWI) and a restricted diffusion on an apparent diffusion coefficient (ADC) map. RESULTS Pontine involvement was observed in the dorsal portion of pons in eight neonates and cerebellar involvement was observed in dentate nucleus (n = 8), cerebellar vermis (n = 3), and hemisphere (n = 1) in 11 neonates. Combined pontine and cerebellar involvement was observed in eight neonates and only cerebellar involvement in three. The pontine and cerebellar injuries were always associated with very severe brain injury including a basal ganglia/thalamus injury pattern and a total brain injury pattern. In terms of clinical outcome, all but four lost to follow-up, had severe cerebral palsy. CONCLUSION Pontine and cerebellar involvement occurred in the dorsal portion of pons and mostly dentate nucleus and was always associated with a more severe brain injury pattern as well as being predictive of major disability.
Collapse
Affiliation(s)
- Katsumi Hayakawa
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Koichi Tanda
- Department of Neonatology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
- Department of Pediatrics, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Sachiko Koshino
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Akira Nishimura
- Department of Neonatology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Koji Ohno
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| |
Collapse
|
47
|
Garcia-Alix A, Arnaez J, Herranz-Rubia N, Alarcón A, Arca G, Valverde E, Blanco D, Lubian S. Ten years since the introduction of therapeutic hypothermia in neonates with perinatal hypoxic-ischaemic encephalopathy in Spain. Neurologia 2020; 38:S0213-4853(20)30227-9. [PMID: 32988661 DOI: 10.1016/j.nrl.2020.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/01/2020] [Accepted: 05/31/2020] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION More than a decade has passed since therapeutic hypothermia (TH) was introduced in Spain; this is the only neuroprotective intervention that has become standard practice in the treatment of perinatal hypoxic-ischaemic encephalopathy (HIE). This article aims to provide a current picture of the technique and to address the controversies surrounding its use. DEVELOPMENT In the last 10 years, TH has been successfully implemented in the vast majority of tertiary hospitals in Spain, and more than 85% of newborns with moderate or severe HIE currently receive the treatment. The factors that can improve the efficacy of TH include early treatment onset (first 6hours of life) and the control of comorbid factors associated with perinatal asphyxia. In patients with moderate HIE, treatment onset after 6hours seems to have some neuroprotective efficacy. TH duration longer than 72hours or deeper hypothermia do not offer greater neuroprotective efficacy, but instead increase the risk of adverse effects. Unclarified aspects are the sedation of patients during TH, the application of the treatment in infants with mild HIE, and its application in other scenarios. Prognostic information and time frame are one of the most challenging aspects. CONCLUSIONS TH is universal in countries with sufficient economic resources, although certain unresolved controversies remain. While the treatment is widespread in Spain, there is a need for cooling devices for the transfer of these patients and their centralisation.
Collapse
Affiliation(s)
- A Garcia-Alix
- Institut de Recerca Sant Joan de Déu, Hospital Universitario Sant Joan de Dèu, Barcelona, España; Universidad de Barcelona, Barcelona, España; Fundación NeNe, España; Grupo Cerebro Neonatal.
| | - J Arnaez
- Unidad de Neonatología, Hospital Universitario de Burgos, Burgos, España; Fundación NeNe, España; Grupo Cerebro Neonatal
| | - N Herranz-Rubia
- Institut de Recerca Sant Joan de Déu, Hospital Universitario Sant Joan de Dèu, Barcelona, España; Servicio de Neonatología. Hospital Sant Joan de Dèu, Barcelona, España; Universidad de Barcelona, Barcelona, España
| | - A Alarcón
- Institut de Recerca Sant Joan de Déu, Hospital Universitario Sant Joan de Dèu, Barcelona, España; Servicio de Neonatología. Hospital Sant Joan de Dèu, Barcelona, España; Grupo Cerebro Neonatal
| | - G Arca
- Departamento de Neonatología, Hospital Clinic, IDIBAPS, Barcelona, España; Fundación NeNe, España; Grupo Cerebro Neonatal
| | - E Valverde
- Servicio de Neonatología, Hospital Universitario La Paz, Madrid, España; Fundación NeNe, España; Grupo Cerebro Neonatal
| | - D Blanco
- Servicio de Neonatología, Hospital Gregorio Marañón, Madrid, España; Grupo Cerebro Neonatal
| | - S Lubian
- Servicio de Neonatología, Hospital Puerta del Mar, Cádiz, España; Fundación NeNe, España; Grupo Cerebro Neonatal
| |
Collapse
|
48
|
Bale G, Mitra S, Tachtsidis I. Metabolic brain measurements in the newborn: Advances in optical technologies. Physiol Rep 2020; 8:e14548. [PMID: 32889790 PMCID: PMC7507543 DOI: 10.14814/phy2.14548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
Neonatal monitoring in neonatal intensive care is pushing the technological boundaries of newborn brain monitoring in order to improve patient outcome. There is an urgent need of a cot side, real time monitoring for assessment of brain injury severity and neurodevelopmental outcome, in particular for term newborn infants with hypoxic-ischemic brain injury. This topical review discusses why brain tissue metabolic monitoring is important in this group of infants and introduces the currently used neuromonitoring techniques for metabolic monitoring in the neonatal intensive care unit (NICU). New optical techniques that can monitor changes in brain metabolism together with brain hemodynamics at the cot side are presented. Early studies from these emerging technologies have demonstrated their potential to deliver continuous information regarding cerebral physiological changes in sick newborn infants in real time. The promises of these new tools as well as their potential limitations are discussed.
Collapse
Affiliation(s)
- Gemma Bale
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Subhabrata Mitra
- Neonatology, EGA Institute for Women's HealthUniversity College LondonLondonUK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
49
|
Dekkers L, Janssen A, Steiner K, Schaijk NMV, Akkermans R, de Swart B, Nijhuis-van der Sanden M. Individual longitudinal neurodevelopmental trajectories of children treated with hypothermia for perinatal asphyxia from 3 months to 5 years of age. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 102:103659. [PMID: 32438308 DOI: 10.1016/j.ridd.2020.103659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hypothermia for perinatal asphyxia is a common treatment to decrease morbidity. This study aims to describe a) individual longitudinal neurodevelopmental trajectories over 5 years in children with perinatal asphyxia treated with hypothermia and b) the correlation between movement quality at 3 months and motor developmental outcomes at 5 years of age. METHODS In this longitudinal cohort study, 18 children (12 male) were assessed at 3 (t1), 6 (t2), 12 (t3), and 24 (t4) months, and at the age of 5 (t5) years, with standardized norm-referenced tests. RESULTS Six children showed abnormal movement quality assessed with General Movements (t1) and all showed severe neurodevelopmental disabilities at t5. The 12 children without severe disabilities, showed a significant normalization of z-scores over the five assessment points (linear mixed model analysis). At t5, four of these children scored mildly delayed motor or cognitive development. CONCLUSION AND IMPLICATIONS Children without anomalies on the MRI before hospital discharge and normal movement quality at 3 months of age showed normal neurodevelopment at the age of 5, however, individual motor trajectories showed variability over time. Presents of abnormal GMs tend to detect CP and developmental problems, advocating a developmental surveillance to determine need for early intervention.
Collapse
Affiliation(s)
- Lieke Dekkers
- HAN University of Applied Sciences, Department of Allied Health Studies, PO Box 6960, 6503 GL, Nijmegen, the Netherlands; Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Department of Rehabilitation, Pediatric Physical Therapy.
| | - Anjo Janssen
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Department of Rehabilitation, Pediatric Physical Therapy
| | | | | | - Reinier Akkermans
- Radboud University Medical Center, Department of Primary and Community Care
| | - Bert de Swart
- HAN University of Applied Sciences, Department of Allied Health Studies, PO Box 6960, 6503 GL, Nijmegen, the Netherlands; Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Department of Rehabilitation, Pediatric Physical Therapy
| | - Maria Nijhuis-van der Sanden
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Department of Rehabilitation, Pediatric Physical Therapy; Radboud University Medical Center, Scientific Institute for Quality of Health Care, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
50
|
Andelius TCK, Pedersen MV, Andersen HB, Andersen M, Hjortdal VE, Pedersen M, Ringgaard S, Hansen LH, Henriksen TB, Kyng KJ. No Added Neuroprotective Effect of Remote Ischemic Postconditioning and Therapeutic Hypothermia After Mild Hypoxia-Ischemia in a Piglet Model. Front Pediatr 2020; 8:299. [PMID: 32676486 PMCID: PMC7333529 DOI: 10.3389/fped.2020.00299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 01/26/2023] Open
Abstract
Introduction: Hypoxic ischemic encephalopathy (HIE) is a major cause of death and disability in children worldwide. Apart from supportive care, the only established treatment for HIE is therapeutic hypothermia (TH). As TH is only partly neuroprotective, there is a need for additional therapies. Intermittent periods of limb ischemia, called remote ischemic postconditioning (RIPC), have been shown to be neuroprotective after HIE in rats and piglets. However, it is unknown whether RIPC adds to the effect of TH. We tested the neuroprotective effect of RIPC with TH compared to TH alone using magnetic resonance imaging and spectroscopy (MRI/MRS) in a piglet HIE model. Methods: Thirty-two male and female piglets were subjected to 45-min global hypoxia-ischemia (HI). Twenty-six animals were randomized to TH or RIPC plus TH; six animals received supportive care only. TH was induced through whole-body cooling. RIPC was induced 1 h after HI by four cycles of 5 min of ischemia and 5 min of reperfusion in both hind limbs. Primary outcome was Lac/NAA ratio at 24 h measured by MRS. Secondary outcomes were NAA/Cr, diffusion-weighted imaging (DWI), arterial spin labeling, aEGG score, and blood oxygen dependent (BOLD) signal measured by MRI/MRS at 6, 12, and 24 h after the hypoxic-ischemic insult. Results: All groups were subjected to a comparable but mild insult. No difference was found between the two intervention groups in Lac/NAA ratio, NAA/Cr ratio, DWI, arterial spin labeling, or BOLD signal. NAA/Cr ratio at 24 h was higher in the two intervention groups compared to supportive care only. There was no difference in aEEG score between the three groups. Conclusion: Treatment with RIPC resulted in no additional neuroprotection when combined with TH. However, insult severity was mild and only evaluated at 24 h after HI with a short MRS echo time. In future studies more subtle neurological effects may be detected with increased MRS echo time and post mortem investigations, such as brain histology. Thus, the possible neuroprotective effect of RIPC needs further evaluation.
Collapse
Affiliation(s)
| | - Mette V. Pedersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mads Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Vibeke E. Hjortdal
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lærke H. Hansen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Tine B. Henriksen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper J. Kyng
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|