1
|
Yen J, Yang K, Tu XM, Kayser G, Skomal A, Gahagan S, Suarez-Torres J, Hong S, Moore RC, Suarez-Lopez JR. Associations between Neonicotinoid, Pyrethroid, and Organophosphate Insecticide Metabolites and Neurobehavioral Performance in Ecuadorian Adolescents. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.10.24315201. [PMID: 39417138 PMCID: PMC11483003 DOI: 10.1101/2024.10.10.24315201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Organophosphate and pyrethroid insecticides can affect children's neurodevelopment and increase inflammation. Limited evidence exists among adolescents and on whether inflammation may mediate pesticide-neurobehavior associations. We examined the associations between insecticide metabolite concentrations and neurobehavior among adolescents in Ecuadorian agricultural communities. Methods We included 520 participants aged 11-17 years. We measured urinary insecticide metabolites (mass spectrometry) and neurobehavior (NEPSY-II). Associations were adjusted for socio-demographic and anthropometric characteristics. The associations of insecticide mixtures with neurobehavior were evaluated using PLS regression, and mediation by inflammatory biomarkers (TNF-α, IL-6, CRP, SAA, sICAM-1, sVCAM-1 and sCD-14) was conducted. Results Among organophosphates, para-nitrophenol (PNP) and 3,5,6-Trichloro-2-pyridinol (TCPy) were inversely associated with Social Perception (score difference per 50% increase [β 50% ] = -0.26 [95%CI: - 1.07, -0.20] and -0.10 [-0.22, 0.01], respectively). PNP and TCPy also had significant inverse associations with Attention/Inhibitory Control at concentrations >60 th percentile (β 50% = -0.26 [95%CI: -0.51, -0.01] and β 50% = -0.22 [95%CI: -0.43, -0.00], respectively). The pyrethroid, 3-phenoxybenzoic acid (3-PBA), was inversely associated with Language (β 50% = -0.13 [95%CI: -0.19, -0.01]) and had a negative quadratic association with Attention/Inhibitory Control. The neonicotinoid 5-Hydroxy imidacloprid (OHIM) was positively associated with Memory/Learning (β 50% = 0.20 [95%CI: 0.04, 0.37]). Mixtures of all insecticides were significantly negatively related to all domains, except for Memory/Learning, which was positively associated. No mediation by inflammatory markers on these associations was observed. Conclusions Concurrent organophosphate, pyrethroid, and the mixtures of all metabolites were associated with lower performance in all domains except for Memory/Learning. Neonicotinoids were positively associated with Memory/Learning and Social Perception scores.
Collapse
|
2
|
Creed IF, Erratt KJ, Henley P, Tsimbiri PF, Bend JR, Shivoga WA, Trick CG. A geo-gender-based analysis of human health: The presence of cut flower farms can attenuate pesticide exposure in African communities, with women being the most vulnerable. J Glob Health 2024; 14:04064. [PMID: 39388685 PMCID: PMC11466503 DOI: 10.7189/jogh.14.04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Background The rapid expansion of the cut flower industry in Africa has led to pervasive use and potential exposure of pesticides, raising concerns for local communities. Whether the risks associated with pesticide applications are localised or have broader implications remains unclear. Methods We measured biomarkers of real and perceived pesticide exposure in two Kenyan communities: Naivasha, where the cut flower industry is present, and Mogotio, where the cut flower industry is absent. We measured real exposure by the percentage of acetylcholinesterase (AChE) inhibition and perceived exposure by assessing hair cortisol levels, a biomarker of stress. Additionally, we conducted a demographic survey to evaluate the health and socioeconomic status of participants, as well as their perceptions of pesticide risks associated with the cut flower industry. Results Perceived pesticide exposure was more common in Naivasha (n = 36, 56%) compared to Mogotio (n = 0, 0%), according to community surveys. However, Mogotio residents had significantly higher mean hair cortisol levels (mean (x̄) = 790 ng/g, standard deviation (SD) = 233) and percentage of AChE inhibition (x̄ = 28.5%, SD = 7.3) compared to Naivasha residents, who had lower mean hair cortisol levels (x̄ = 548 ng/g, SD = 187) and percentage of AChE inhibition (x̄ = 14.5%, SD = 10.1). Location (proximity to cut flower farms) and gender were significant factors influencing pesticide exposure, with individuals living outside the cut flower industrial complexes being at higher risk. Women in both communities were the most vulnerable demographic, showing significantly higher mean hair cortisol levels (x̄ = 646 ng/g, SD = 267.4) and percentage of AChE inhibition (x̄ = 22.5%, SD = 12.4) compared to men hair cortisol levels (x̄ = 558.2 ng/g, SD = 208.2) and percentage of AChE inhibition (x̄ = 10.4%, SD = 13.1). Conclusions A heightened awareness of the potential risks of pesticide exposure was widespread within cut flower industrial complexes. This may have led to a reduction in exposure of both workers and non-workers living within or close to these complexes. In contrast, communities living outside these complexes showed higher levels of exposure, possibly due to limited chemical awareness and a lack of precautionary measures. Despite this contrast between communities, women remained the most vulnerable members, likely due to their socioeconomic roles in African society. Monitoring women's pesticide exposure is crucial for providing an early warning system for community exposure.
Collapse
Affiliation(s)
- Irena F Creed
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kevin J Erratt
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Phaedra Henley
- Center for One Health, University of Global Health Equity, Butaro, Rwanda
| | - Pamela F Tsimbiri
- Department of Reproductive Health, Faculty of Health Sciences, Egerton University, Egerton, Kenya
| | - John R Bend
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, Ontario, Canada
| | - William A. Shivoga
- Department of Biological Sciences, Centre of Excellence for Water and Environment Resources Management (CEWERM), Kakamega, Kenya
| | - Charles G Trick
- Department of Health & Society, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Oliver Goral R, Lamb PW, Yakel JL. Acetylcholine Neurons Become Cholinergic during Three Time Windows in the Developing Mouse Brain. eNeuro 2024; 11:ENEURO.0542-23.2024. [PMID: 38942474 PMCID: PMC11253243 DOI: 10.1523/eneuro.0542-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024] Open
Abstract
Acetylcholine (ACh) neurons in the central nervous system are required for the coordination of neural network activity during higher brain functions, such as attention, learning, and memory, as well as locomotion. Disturbed cholinergic signaling has been described in many neurodevelopmental and neurodegenerative disorders. Furthermore, cotransmission of other signaling molecules, such as glutamate and GABA, with ACh has been associated with essential roles in brain function or disease. However, it is unknown when ACh neurons become cholinergic during development. Thus, understanding the timeline of how the cholinergic system develops and becomes active in the healthy brain is a crucial part of understanding brain development. To study this, we used transgenic mice to selectively label ACh neurons with tdTomato. We imaged serial sectioned brains and generated whole-brain reconstructions at different time points during pre- and postnatal development. We found three crucial time windows-two in the prenatal and one in the postnatal brain-during which most ACh neuron populations become cholinergic in the brain. We also found that cholinergic gene expression is initiated in cortical ACh interneurons, while the cerebral cortex is innervated by cholinergic projection neurons from the basal forebrain. Taken together, we show that ACh neuron populations are present and become cholinergic before postnatal day 12, which is the onset of major sensory processes, such as hearing and vision. We conclude that the birth of ACh neurons and initiation of cholinergic gene expression are temporally separated during development but highly coordinated by brain anatomical structure.
Collapse
Affiliation(s)
- Rene Oliver Goral
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland 20892
| | - Patricia W Lamb
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
4
|
Chronister BN, Yang K, Yang AR, Lin T, Tu XM, Lopez-Paredes D, Checkoway H, Suarez-Torres J, Gahagan S, Martinez D, Barr D, Moore RC, Suarez-Lopez JR. Urinary Glyphosate, 2,4-D and DEET Biomarkers in Relation to Neurobehavioral Performance in Ecuadorian Adolescents in the ESPINA Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107007. [PMID: 37819080 PMCID: PMC10566341 DOI: 10.1289/ehp11383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Herbicides are the most used class of pesticides worldwide, and insect repellents are widely used globally. Yet, there is a dearth of studies characterizing the associations between these chemical groups and human neurobehavior. Experimental studies suggest that glyphosate and 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides can affect neurobehavior and the cholinergic and glutamatergic pathways in the brain. We aim to assess whether herbicides and insect repellents are associated with neurobehavioral performance in adolescents. METHODS We assessed 519 participants (11-17 years of age) living in agricultural communities in Ecuador. We quantified urinary concentrations of glyphosate, 2,4-D, and two N,N-diethyl-meta-toluamide (DEET) insect repellent metabolites [3-(diethylcarbamoyl)benzoic acid (DCBA) and 3-(ethylcarbamoyl)benzoic acid (ECBA)] using isotope-dilution mass spectrometry. We assessed neurobehavioral performance using 9 subtests across 5 domains (attention/inhibitory control, memory/learning, language, visuospatial processing, and social perception). We characterized the associations using generalized estimating equations and multiple imputation for metabolites below detection limits. Models were adjusted for demographic and anthropometric characteristics, urinary creatinine, and sexual maturation. Mediation by salivary cortisol, dehydroepiandrosterone, 17 β -estradiol , and testosterone was assessed using structural equation modeling. RESULTS The mean of each neurobehavioral domain score was between 7.0 and 8.7 [standard deviation (SD) range: 2.0-2.3]. Glyphosate was detected in 98.3% of participants, 2,4-D in 66.2%, DCBA in 63.3%, and ECBA in 33.4%. 2,4-D was negatively associated with all neurobehavioral domains, but statistically significant associations were observed with attention/inhibition [score difference per 50% higher metabolite concentration ( β ) = - 0.19 95% confidence interval (CI): - 0.31 , - 0.07 ], language [β = - 0.12 (95% CI: - 0.23 , - 0.01 )], and memory/learning [β = - 0.11 (95% CI: - 0.22 , 0.01)]. Glyphosate had a statistically significant negative association only with social perception [β = - 0.08 (95% CI: - 0.14 , - 0.01 )]. DEET metabolites were not associated with neurobehavioral performance. Mediation by gender and adrenal hormones was not observed. CONCLUSION This study describes worse neurobehavioral performance associated with herbicide exposures in adolescents, particularly with 2,4-D. Replication of these findings among other pediatric and adult populations is needed. https://doi.org/10.1289/EHP11383.
Collapse
Affiliation(s)
- Briana N.C. Chronister
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Kun Yang
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Audrey R. Yang
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Tuo Lin
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Xin M. Tu
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | | | - Harvey Checkoway
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | | | - Dana Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Raeanne C. Moore
- Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Jose R. Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| |
Collapse
|
5
|
Antonangeli LM, Kenzhebekova S, Colosio C. Neurobehavioral Effects of Low-Dose Chronic Exposure to Insecticides: A Review. TOXICS 2023; 11:192. [PMID: 36851066 PMCID: PMC9963921 DOI: 10.3390/toxics11020192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The modes of action of insecticides frequently involve a neurotoxic effect; therefore, the study of neurotoxic effects caused by long-term and low-dose insecticide exposure is of particular interest. This study looks at whether or not new studies conducted after 2009 and up to 2021 have provided new evidence for a better understanding of the actual neurobehavioral risk associated with long-term insecticide exposure. We selected and reviewed studies carried out on the neurobehavioral effects of neurotoxic insecticides (organophosphates and/or carbamates, pyrethroids, multiple or undefined insecticides, and organochlorines) considering occupational and non-occupational exposures. The articles were also scored and ranked based on seven parameters. Eighty-six studies were chosen for a final review process from among the 950 scientific papers identified. Twenty-six addressed occupational exposure and six environmental exposure. Among the latter group of studies, 17 focused on rural residents, to be assumed exposed because of living in rural areas, and 43 on the general population. Pending doubts have not been resolved in the last ten years due to the presence of contradictory and hardly comparable results and the fact that in most of the studies showing an evident neurobehavioral impairment the frequent presence of a previous episode of poisoning and hospitalization, with severe brain hypoxia, impaired the possibility of confirming the presence of a causal association with insecticide exposure. Interestingly, the most severely exposed groups, such as applicators who did not wear personal protective equipment, performed worse on neurobehavioral tests. As for residential exposure, there is sufficient evidence to suggest that prenatal OP exposure may increase the risk of ADHD in children.
Collapse
Affiliation(s)
| | - Saniya Kenzhebekova
- Department of Health Sciences, University of Milan, International Centre for Rural Health of the Santi Paolo e Carlo ASST of Milan, 20142 Milano, Italy
| | - Claudio Colosio
- Department of Health Sciences, University of Milan, International Centre for Rural Health of the Santi Paolo e Carlo ASST of Milan, 20142 Milano, Italy
| |
Collapse
|
6
|
Zúñiga-Venegas LA, Hyland C, Muñoz-Quezada MT, Quirós-Alcalá L, Butinof M, Buralli R, Cardenas A, Fernandez RA, Foerster C, Gouveia N, Gutiérrez Jara JP, Lucero BA, Muñoz MP, Ramírez-Santana M, Smith AR, Tirado N, van Wendel de Joode B, Calaf GM, Handal AJ, Soares da Silva A, Cortés S, Mora AM. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:96002. [PMID: 36173136 PMCID: PMC9521041 DOI: 10.1289/ehp9934] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Multiple epidemiological studies have shown that exposure to pesticides is associated with adverse health outcomes. However, the literature on pesticide-related health effects in the Latin American and the Caribbean (LAC) region, an area of intensive agricultural and residential pesticide use, is sparse. We conducted a scoping review to describe the current state of research on the health effects of pesticide exposure in LAC populations with the goal of identifying knowledge gaps and research capacity building needs. METHODS We searched PubMed and SciELO for epidemiological studies on pesticide exposure and human health in LAC populations published between January 2007 and December 2021. We identified 233 publications from 16 countries that met our inclusion criteria and grouped them by health outcome (genotoxicity, neurobehavioral outcomes, placental outcomes and teratogenicity, cancer, thyroid function, reproductive outcomes, birth outcomes and child growth, and others). RESULTS Most published studies were conducted in Brazil (37%, n = 88 ) and Mexico (20%, n = 46 ), were cross-sectional in design (72%, n = 167 ), and focused on farmworkers (45%, n = 105 ) or children (21%, n = 48 ). The most frequently studied health effects included genotoxicity (24%, n = 62 ) and neurobehavioral outcomes (21%, n = 54 ), and organophosphate (OP) pesticides were the most frequently examined (26%, n = 81 ). Forty-seven percent (n = 112 ) of the studies relied only on indirect pesticide exposure assessment methods. Exposure to OP pesticides, carbamates, or to multiple pesticide classes was consistently associated with markers of genotoxicity and adverse neurobehavioral outcomes, particularly among children and farmworkers. DISCUSSION Our scoping review provides some evidence that exposure to pesticides may adversely impact the health of LAC populations, but methodological limitations and inconsistencies undermine the strength of the conclusions. It is critical to increase capacity building, integrate research initiatives, and conduct more rigorous epidemiological studies in the region to address these limitations, better inform public health surveillance systems, and maximize the impact of research on public policies. https://doi.org/10.1289/EHP9934.
Collapse
Affiliation(s)
- Liliana A. Zúñiga-Venegas
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Carly Hyland
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- School of Public Health and Population Science, Boise State University, Boise, Idaho, USA
| | - María Teresa Muñoz-Quezada
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, USA
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Mariana Butinof
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rafael Buralli
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil
| | - Andres Cardenas
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ricardo A. Fernandez
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Foerster
- Instituto de Ciencias de la Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando, Chile
| | - Nelson Gouveia
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan P. Gutiérrez Jara
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Boris A. Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - María Pía Muñoz
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Muriel Ramírez-Santana
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Anna R. Smith
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Noemi Tirado
- Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, Louisiana Paz, Bolivia
| | - Berna van Wendel de Joode
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
- Columbia University Medical Center, New York, New York, USA
| | - Alexis J. Handal
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - Sandra Cortés
- Centro Avanzado de Enfermedades Crónicas (ACCDiS), Centro de Desarrollo Urbano Sustentable, Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana M. Mora
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
7
|
Medithi S, Kasa YD, Kankipati VR, Kodali V, Jee B, Jonnalagadda PR. Impact of Micronutrient Supplementation on Pesticide Residual, Acetylcholinesterase Activity, and Oxidative Stress Among Farm Children Exposed to Pesticides. Front Public Health 2022; 10:872125. [PMID: 35774575 PMCID: PMC9237326 DOI: 10.3389/fpubh.2022.872125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
The present interventional study aimed to assess the impact of micronutrient supplementation on pesticide-residues concentrations, vitamins, minerals, acetylcholinesterase activity and oxidative stress among 129 farm children (9–12 years, n = 66 and 13–15 years, n = 63) involved in farming activities in Ranga Reddy district, Telangana, India. Our data showed the presence of five organophosphorus pesticide residues (chlorpyrifos, diazinon, malathion, monocrotophos, and phosalone) among children before-supplementation (both age-groups); while post-supplementation, only two pesticide residues (chlorpyrifos and diazinon) were detected indicating improved metabolic rate. Vitamin E, copper, magnesium and zinc levels were also improved in both the age-groups and manganese levels were significantly increased only among children of 13–15 years age group. Further, post-supplementation also showed an improvement in acetylcholinesterase activity and a decrease in lipid peroxidation among both the age groups of children. However, further research for ascertaining the ameliorating effect of micronutrients in preventing adverse effects of organophosphorus pesticides must be conducted.
Collapse
Affiliation(s)
- Srujana Medithi
- Symbiosis Institute of Health Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Yogeswar Dayal Kasa
- Food Safety Division, Indian Council of Medical Research – National Institute of Nutrition, Hyderabad, India
| | - Vijay Radhakrishna Kankipati
- National Institute of Nutrition-TATA Centre for Excellence in Public Health Nutrition, Indian Council of Medical Research – National Institute of Nutrition, Hyderabad, India
| | - Venkaiah Kodali
- Biostatics Division, Indian Council of Medical Research – National Institute of Nutrition, Hyderabad, India
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Padmaja R. Jonnalagadda
- Food Safety Division, Indian Council of Medical Research – National Institute of Nutrition, Hyderabad, India
- *Correspondence: Padmaja R. Jonnalagadda ;
| |
Collapse
|
8
|
Skomal AE, Zhang J, Yang K, Yen J, Tu X, Suarez-Torres J, Lopez-Paredes D, Calafat AM, Ospina M, Martinez D, Suarez-Lopez JR. Concurrent urinary organophosphate metabolites and acetylcholinesterase activity in Ecuadorian adolescents. ENVIRONMENTAL RESEARCH 2022; 207:112163. [PMID: 34627797 PMCID: PMC9138777 DOI: 10.1016/j.envres.2021.112163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Organophosphates are insecticides that inhibit the enzymatic activity of acetylcholinesterase (AChE). Because of this, AChE is considered a physiological marker of organophosphate exposure in agricultural settings. However, limited research exists on the associations between urinary organophosphate metabolites and AChE activity in children. METHODS This study included 526 participants from 2 exams (April and July-October 2016) of ages 12-17 years living in agricultural communities in Ecuador. AChE activity was measured at both examinations, and organophosphate metabolites, including para-nitrophenol (PNP), 3,5,6-trichloro-2-pyridinol (TCPy), and malathion dicarboxylic acid (MDA) were measured in urine collected in July-October. We used generalized estimating equation generalized linear model (GEEGLM), adjusting for hemoglobin, creatinine, and other demographic and anthropometric covariates, to estimate associations of urinary metabolite concentrations with AChE activity (July-October) and AChE% change between April and July-October. RESULTS The mean (SD) of AChE and AChE% change (April vs July-October) were 3.67 U/mL (0.54) and -2.5% (15.4%), respectively. AChE activity was inversely associated with PNP concentration, whereas AChE% change was inversely associated with PNP and MDA. There was evidence of a threshold: difference was only significant above the 80th percentile of PNP concentration (AChE difference per SD increase of metabolite = -0.12 U/mL [95%CI: 0.20, -0.04]). Likewise, associations with AChE% change were significant only above the 80th percentile of TCPy (AChE % change per SD increase of metabolite = -1.38% [95%CI: 2.43%, -0.32%]) and PNP -2.47% [95%CI: 4.45%, -0.50%]). PNP concentration at ≥80th percentile was associated with elevated ORs for low AChE activity of 2.9 (95% CI: 1.5, 5.7) and for AChE inhibition of ≤ -10% of 3.7 (95% CI: 1.4, 9.8). CONCLUSIONS Urinary organophosphate metabolites, including PNP, TCPy and MDA, particularly at concentrations above the 80th percentile, were associated with lower AChE activity among adolescents. These findings bring attention to the value of using multiple constructs of pesticide exposure in epidemiologic studies.
Collapse
Affiliation(s)
- Ana E Skomal
- School of Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Jasen Zhang
- Herbert Wertheim School of Public Health, University of California-San Diego, La Jolla, CA, USA
| | - Kun Yang
- School of Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Jessica Yen
- School of Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Xin Tu
- School of Medicine, University of California-San Diego, La Jolla, CA, USA
| | | | | | - Antonia M Calafat
- National Center for Environmental Health, Division of Laboratory Sciences of the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- National Center for Environmental Health, Division of Laboratory Sciences of the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Jose R Suarez-Lopez
- Herbert Wertheim School of Public Health, University of California-San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Espinosa da Silva C, Gahagan S, Suarez-Torres J, Lopez-Paredes D, Checkoway H, Suarez-Lopez JR. Time after a peak-pesticide use period and neurobehavior among ecuadorian children and adolescents: The ESPINA study. ENVIRONMENTAL RESEARCH 2022; 204:112325. [PMID: 34740618 PMCID: PMC9138759 DOI: 10.1016/j.envres.2021.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Limited evidence exists regarding transient neurobehavioral alterations associated with episodic pesticide exposures or agricultural pesticide spray periods. We previously observed that children examined soon after a pesticide spray period (the Mother's Day flower harvest [MDH]) had lower neurobehavioral performance than children examined later. The present study builds on our previous work by incorporating longitudinal analyses from childhood through adolescence. METHODS We examined participants in agricultural communities in Ecuador (ESPINA study) during three periods: July-August 2008 (N = 313, 4-9-year-olds); April 2016 (N = 330, 11-17-year-olds); July-October 2016 (N = 535, 11-17-year-olds). Participants were examined primarily during a period of low floricultural production. Neurobehavior was assessed using the NEPSY-II (domains: Attention/Inhibitory Control, Language, Memory/Learning, Visuospatial Processing, and Social Perception). Linear regression and generalized linear mixed models were used to examine cross-sectional and longitudinal associations between examination date (days) after the MDH and neurobehavioral outcomes, adjusting for demographic, anthropometric, and socio-economic variables. RESULTS Participants were examined between 63 and 171 days after the MDH. Mean neurobehavioral domain scores ranged from 1.0 to 17.0 (SDrange = 2.1-3.1) in 2008 and 1.0 to 15.5 (SDrange = 2.0-2.3) in 2016. In cross-sectional analyses (2016 only; N = 523), we found significant or borderline positive associations between time after the MDH and Attention/Inhibitory Control (difference/10 days [β] = 0.22 points [95% CI = 0.03, 0.41]) and Language (β = 0.16 points [95% CI = -0.03, 0.34]). We also observed positive, longitudinal associations (2008-2016) with Attention/Inhibitory Control (β = 0.19 points [95% CI = 0.04, 0.34]) through 112 days after the harvest and Visuospatial Processing (β = 3.56, β-quadratic = -0.19 [95% CI: -0.29, -0.09]) through 92 days. CONCLUSIONS Children examined sooner after the harvest had lower neurobehavioral performance compared to children examined later, suggesting that peak pesticide spray seasons may transiently affect neurobehavior followed by recovery during low pesticide-use periods. Reduction of pesticide exposure potential for children during peak pesticide-use periods is advised.
Collapse
Affiliation(s)
- C Espinosa da Silva
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA
| | - S Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health, Department of Pediatrics, University of California, San Diego. 9500 Gilman Drive #0832, La Jolla, CA, 92093-0832, USA
| | - J Suarez-Torres
- Fundación Cimas del Ecuador, Quito, Ecuador. De los Olivos E15-18 y las Minas, Quito, Ecuador
| | - D Lopez-Paredes
- Fundación Cimas del Ecuador, Quito, Ecuador. De los Olivos E15-18 y las Minas, Quito, Ecuador
| | - H Checkoway
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA; University of California, San Diego, Department of Neurosciences, 9500 Gilman Drive, #0949, La Jolla, CA, 92093-0949, USA
| | - J R Suarez-Lopez
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA.
| |
Collapse
|
10
|
OUP accepted manuscript. Brain 2022; 145:2250-2275. [DOI: 10.1093/brain/awac096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/13/2022] Open
|
11
|
Xu Y, Wang L, Zhu J, Jiang P, Zhang Z, Li L, Wu Q. Chromium induced neurotoxicity by altering metabolism in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112983. [PMID: 34781135 DOI: 10.1016/j.ecoenv.2021.112983] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Recently, both trivalent chromium Cr (III) and hexavalent chromium Cr (VI) have been reported to produce neurotoxicity. However, the underlying mechanisms of the neurotoxicity caused by different chemical valence of chromium remain unclear. OBJECTIVE The purpose of this study was to investigate the mechanism of neurotoxicity induced by exposure to chromium with different valence states based on metabolic disturbance in zebrafish larvae. METHODS Zebrafish embryos were exposed to 1 mg/L Cr (III) and 1 mg/L Cr (VI) for 120 hpf respectively. The related indexes of neural development were observed by stereoscope and behavior analysis system. 8OH-dG were detected using enzyme-linked immunosorbent assay. The generation of reactive oxygen species was detected using an oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate. AChE activity was determined by a colorimetric assay based on hydrolysis of acetylcholine. The expression levels of neurodevelopmental genes and methyltransferase genes in juvenile zebrafish was analyzed by real-time PCR. The methylation status of neurogenin1 and neurod1 genes was detected by bisulfite sequencing PCR. The binding of H3K27me3 was detected by chromatin immunoprecipitation-qPCR. Metabolic profiles and one carbon metabolic analysis were performed by UPLC-MS. RESULTS There were no significant differences in survival rate, hatching rate and spontaneous movement of zebrafish in both Cr-exposed groups compared to the control. The malformation rate in Cr (VI) -exposed group was obviously increased compared to the control and Cr (III) -exposed group. At 48hpf and 72hpf of exposure, the embryonic heart rate in Cr (III)-exposed group was significantly higher than that of Cr (VI)-exposed group and the control. At 120hpf, zebrafish in both Cr-exposed groups exhibited decreasing changes in swimming distance and disturbance of sensitivity to light and dark. 8OH-dG in Cr (VI)-exposed group were significantly higher than that in the control. The generation of ROS in both Cr -exposed groups was significantly higher than that in the control. The activity of AchE was significantly decreased in both Cr-exposed groups compared to the control. Most of early neurogenesis related genes, such as α-tubulin, elavl3, gap43, sox19b, neurogenin1 and neurod1 in Cr-exposed groups were significantly up-regulated compared to those in the control. The expression of dnmt1 and dnmt3 genes was significantly down-regulated in both Cr-exposed groups. BSP-PCR results showed that genic sequences in the neurogenin1 and neurod1 genes have lower levels of DNA methylation in both Cr-exposed groups, especial in Cr (VI)-exposed group. ChIP analysis showed that there was a decrease in H3K27me3 binding within the corresponding region of neurogenin1 in both Cr-exposed groups and that of neurod1 in Cr (III)-exposed group. Untargeted metabolomic analysis showed that significant changes in metabolites induced by Cr exposure were associated with differences in primary bile acid biosynthesis, phospholipid biosynthesis (phosphatidylcholine biosynthesis and phosphatidylethanolamine biosynthesis), linoleic acid metabolism, arachidonic acid metabolism, amino acid metabolism, purine metabolism, betaine metabolism, spermidine and spermine biosynthesis, and folate metabolism, the last four of which are related to one carbon metabolism. Targeted analysis of one carbon metabolites (5-MT, Gly, Met, SAH and Hcy) related with folate cycle and methionine metabolism were significantly decreased upon Cr exposure. The elevated SAM to SAH ratio in both Cr- exposed group indicated the decreasing capacity for methylation reaction. CONCLUSION Cr (III) and Cr (VI) can induce neurotoxicity by interfering with one carbon metabolism and affecting DNA methylation and histone methylation to regulate the expression of neuro-related genes. Cr exposure also influenced primary bile acid biosynthesis and phospholipid biosynthesis, which are associated with neuroprotective effects and need to be further validated.
Collapse
Affiliation(s)
- Yawen Xu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Li Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Zhu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ping Jiang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhan Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lei Li
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qian Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
12
|
Cerebral Organoids Derived from a Parkinson's Patient Exhibit Unique Pathogenesis from Chikungunya Virus Infection When Compared to a Non-Parkinson's Patient. Pathogens 2021; 10:pathogens10070913. [PMID: 34358063 PMCID: PMC8308834 DOI: 10.3390/pathogens10070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Arboviruses of medical and veterinary significance have been identified on all seven continents, with every human and animal population at risk for exposure. Like arboviruses, chronic neurodegenerative diseases, like Alzheimer’s and Parkinson’s disease, are found wherever there are humans. Significant differences in baseline gene and protein expression have been determined between human-induced pluripotent stem cell lines derived from non-Parkinson’s disease individuals and from individuals with Parkinson’s disease. It was hypothesized that these inherent differences could impact cerebral organoid responses to viral infection. (2) Methods: In this study, cerebral organoids from a non-Parkinson’s and Parkinson’s patient were infected with Chikungunya virus and observed for two weeks. (3) Results: Parkinson’s organoids lost mass and exhibited a differential antiviral response different from non-Parkinson’s organoids. Neurotransmission data from both infected non-Parkinson’s and Parkinson’s organoids had dysregulation of IL-1, IL-10, and IL-6. These cytokines are associated with mood and could be contributing to persistent depression seen in patients following CHIKV infection. Both organoid types had increased expression of CXCL10, which is linked to demyelination. (4) Conclusions: The differential antiviral response of Parkinson’s organoids compared with non-Parkinson’s organoids highlights the need for more research in neurotropic infections in a neurologically compromised host.
Collapse
|
13
|
Phillips S, Suarez-Torres J, Checkoway H, Lopez-Paredes D, Gahagan S, Suarez-Lopez JR. Acetylcholinesterase activity and thyroid hormone levels in Ecuadorian adolescents living in agricultural settings where organophosphate pesticides are used. Int J Hyg Environ Health 2021; 233:113691. [PMID: 33581413 PMCID: PMC7965258 DOI: 10.1016/j.ijheh.2021.113691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Organophosphates are frequently applied insecticides that inhibit acetylcholinesterase (AChE) activity resulting in cholinergic overstimulation. Limited evidence suggests that organophosphates may alter thyroid hormone levels, although studies have yielded inconsistent findings. We aimed to test the associations between AChE activity, a physiological marker of organophosphate exposure, and thyroid function in adolescents. METHODS We included information of 80 adolescent participants (ages 12-17y in 2016, 53% male) growing up in agricultural settings in Ecuador. We measured fingerstick erythrocytic AChE activity and hemoglobin concentration, and concurrent serum thyroid stimulating hormone (TSH) and free-T4 (fT4) concentrations. General linear models were used to test associations which adjusted for demographic and anthropometric variables. TSH associations were further adjusted for fT4. RESULTS The mean (SD) AChE, TSH and fT4 levels were 3.77 U/mL (0.55), 2.82 μIU/ml (1.49) and 1.11 ng/dl (0.13), respectively. Lower AChE activity, indicating greater organophosphate exposure, was marginally associated with greater fT4 concentrations (difference per SD decrease in AChE activity (β) = 0.03 ng/dL, [90% CI: 0.00, 0.06]) but not with TSH (β = -0.01 μIU/ml, [-0.38, 0.36]). Gender modified the AChE-TSH association (p = 0.03). In girls, lower AChE activity was associated with higher fT4 levels (β=0.05 ng/dL [0.01, 0.10]) and lower TSH concentrations (β = -0.51 μIU/ml, [-1.00, -0.023]). No associations were observed in boys. DISCUSSION These cross-sectional findings suggest that alterations in the cholinergic system from organophosphate exposures can increase fT4 levels coupled with a beyond-compensatory downregulation of TSH in female adolescents. This is the first study to characterize these associations in adolescents.
Collapse
Affiliation(s)
- Simone Phillips
- School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Harvey Checkoway
- Herbert Wertheim School of Public Health and Human Longevity Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Sheila Gahagan
- School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jose Ricardo Suarez-Lopez
- School of Medicine, University of California, San Diego, La Jolla, CA, USA; Herbert Wertheim School of Public Health and Human Longevity Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Suarez-Lopez JR, Nguyen A, Klas J, Gahagan S, Checkoway H, Lopez-Paredes D, Noble M. Associations of acetylcholinesterase inhibition between pesticide spray seasons with depression and anxiety symptoms in adolescents, and the role of sex and adrenal hormones on gender moderation. EXPOSURE AND HEALTH 2021; 13:51-64. [PMID: 33748533 PMCID: PMC7968045 DOI: 10.1007/s12403-020-00361-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/04/2020] [Accepted: 05/09/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cholinesterase inhibitor pesticides, especially organophosphates, are endocrine disruptors and a few existing studies have linked self-reports of exposure with increased depression and anxiety. Some evidence suggests that associations may be stronger in women, but the mechanism of this gender difference is unclear. We assessed whether acetylcholinesterase (AChE) inhibition between 2 time points (reflecting greater cholinesterase inhibitor exposure) during different agricultural seasons in the year was associated with anxiety/depression symptoms. METHODS We examined 300 adolescents (ages 11-17y, 51% female) living near agricultural settings in Ecuador (ESPINA study) twice in 2016: April and July-October. We assessed AChE activity (finger stick), estradiol, testosterone, dehydroepiandrosterone, cortisol (saliva) and anxiety and depression scales (CDI-2 and MASC-2). RESULTS The mean (SD) depression and anxiety scores were 52.8 (9.3) and 58.1 (9.6), respectively. The median (25th, 75th percentile) AChE change (July-October vs April) was -3.94% (-10.45%, 5.13%). For every 10% decrease in AChE activity, there was a 0.96 unit (95%CI: 0.01, 1.90) increase in depression symptoms and an OR of elevated depression score of 1.67 (1.04, 2.66). These associations were stronger in girls (OR=2.72 [1.23, 6.00]) than boys (1.18 [0.59, 2.37]). Adjustment for cortisol, testosterone and dehydroepiandrosterone reduced gender differences by 18-62%. No associations were observed with anxiety. DISCUSSION Inhibition of AChE activity at 2 points in time during different pesticide spray periods was associated with greater depression symptoms, affecting girls more than boys. Gender differences may be partly explained by endocrine disruption. These findings suggest that AChE inhibition may transiently affect the mood of adolescents.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew Nguyen
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joel Klas
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sheila Gahagan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Madison Noble
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Anastassiadou M, Choi J, Coja T, Dujardin B, Hart A, Hernandez‐Jerrez AF, Jarrah S, Lostia A, Machera K, Mangas I, Mienne A, Schepens M, Widenfalk A, Mohimont L. Cumulative dietary risk assessment of chronic acetylcholinesterase inhibition by residues of pesticides. EFSA J 2021; 19:e06392. [PMID: 33613737 PMCID: PMC7873834 DOI: 10.2903/j.efsa.2021.6392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A retrospective cumulative risk assessment of dietary exposure to pesticide residues was conducted for chronic inhibition of acetylcholinesterase. The pesticides considered in this assessment were identified and characterised in a previous scientific report on the establishment of cumulative assessment groups of pesticides for their effects on the nervous system. The exposure assessments used monitoring data collected by Member States under their official pesticide monitoring programmes in 2016, 2017 and 2018, and individual food consumption data from 10 populations of consumers from different countries and from different age groups. Exposure estimates were obtained by means of a two-dimensional probabilistic model, which was implemented in SAS ® software. The characterisation of cumulative risk was supported by an uncertainty analysis based on expert knowledge elicitation. For each of the 10 populations, it is concluded with varying degrees of certainty that cumulative exposure to pesticides contributing to the chronic inhibition of acetylcholinesterase does not exceed the threshold for regulatory consideration established by risk managers.
Collapse
|
16
|
Chilipweli PM, Ngowi AV, Manji K. Maternal pesticide exposure and child neuro-development among smallholder tomato farmers in the southern corridor of Tanzania. BMC Public Health 2021; 21:171. [PMID: 33472592 PMCID: PMC7818734 DOI: 10.1186/s12889-020-10097-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/20/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Exposure to pesticides with its associated effects prenatally and in early childhood has not received much attention. There is little scientific data on this aspect in Tanzania therefore this study was meant to contribute to the deficit in the subject. METHOD A cross-sectional study was conducted to a sample of 286 participants of mother to child pair, whereby 172 and 114 were exposed and non-exposed respectively. Mothers who had been working in tomato sprayed farms were exposed and mothers who had not been working in the tomato sprayed farms were un-exposed. Child aged 0-6 years was chosen from each mother sampled but only one child found to be the youngest with the classified age was enrolled. Malawi child development Tool (M-DAT) was employed to assess the child level of development, height, and weight of the children were collected and analyzed by the WHO anthropometric calculator. A checklist and questionnaire were used to observe and assess maternal exposure. Bivariate and Multivariate analysis were conducted to assess the relationship between various factors of exposure. RESULTS Overall 15% of the children examined were not well developed and the most used pesticides were those posing neuro-development effects. On the bivariate analysis model, mothers who worked while pregnant were more likely to have a child with neuro-developmental effect OR=5.8(1.29-26.3). On multivariate analyses adjusted for age of the mother, variables which remain in the model were a distance from home [AOR=9.4(4.2-20.5)], and working while pregnancy [AOR=5.8(1.29-26.3)] other were removed due to collinearity effect. None of confounders had a potential significant effect but only nutrition seems to be the effect modifier [AOR=7.8(1.29-36.3)] when analyzed with working while pregnancy. CONCLUSIONS The findings from this study have indicated that maternal pesticide exposure among farmworker residents in the SAGCOT area has a potential association with child developmental effect.
Collapse
Affiliation(s)
- Peter M. Chilipweli
- Department of environmental health sciences, Ruaha catholic university (RUCU), P.O.BOX 774, Iringa, Tanzania
| | - Aiwerasia Vera Ngowi
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Karim Manji
- Department of Paediatrics and child Health, School of Medicine Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| |
Collapse
|
17
|
Dórea JG. Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. ENVIRONMENTAL RESEARCH 2021; 192:110199. [PMID: 32941839 DOI: 10.1016/j.envres.2020.110199] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 05/24/2023]
Abstract
Environmental (and occupational) exposure to neurotoxic substances is a worldwide problem that can affect children's neurodevelopment (ND). In Latin American and Caribbean (LAC) countries there are over 300 million children living under the threat of neurodevelopmental delays due to toxic environmental exposure. Large industrial centers, intense mining and agricultural activities, along with changing complex ecosystems constitute a mosaic that drives contamination of air, water and the food chain. Neurotoxic contaminants such as pesticides (organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, and manganese fungicides), chemicals of industrial use (phthalates), and metals (Hg, Pb, Al, As, F, Cd, Mo, Mn) are at the center of environmental exposure studies. Exposure to neurotoxic substances singly or in combination with other compounds or socioeconomic stressors (maternal education, socio-economic and nutritional status) intertwined with occupational and para-occupational exposure can affect ND (motor, cognition, behavior) of children. Significant negative effects of pesticides and neurotoxic elements on ND were found in all studied countries, affecting especially the less-privileged children from laboring families. Studies showed that exposures to the neurotoxicants in human milk are secondary to their more lasting effects during prenatal exposure. This review integrates exposure (prenatal and breastfeeding), metabolism, and ND effects of neurotoxicants. It highlights the overwhelming evidence showing that current levels of exposures are hazardous and detrimental to children's ND in LAC countries. The evidence indicates that a reduction in neurotoxicant exposure is essential to protect children's ND. Therefore, it is urgent to adopt policies and actions that prevent and remediate region-specific children's ND issues.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
18
|
Santa-Marina L, Lertxundi N, Andiarena A, Irizar A, Sunyer J, Molinuevo A, Llop S, Julvez J, Beneito A, Ibarluzea J, Imaz L, Ferrin M. Maternal Ferritin Levels during Pregnancy and ADHD Symptoms in 4-Year-Old Children: Results from the INMA-INfancia y Medio Ambiente (Environment and Childhood) Prospective Birth Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217704. [PMID: 33105572 PMCID: PMC7659477 DOI: 10.3390/ijerph17217704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Ferritin status during prenatal brain development may influence the risk of attention deficit and hyperactivity disorder (ADHD) symptoms in childhood. We investigated the association of maternal ferritin in pregnancy and ADHD-like symptoms in offspring. A total of 1095 mother-child pairs from three birth cohorts of the INMA Project (Spain) were studied. Maternal plasma ferritin in pregnancy was measured at 11.57 weeks of gestation. Children′s ADHD-like symptoms at ages 4–5 years were assessed using the ADHD Rating Scale-IV. The count model of the zero-inflated Poisson regression model showed a significant inverse association between ferritin (continuous variable) and inattention, β = −0.19 (−0.32, −0.07), for boys. Comparing ferritin level by tertiles, significant differences were observed between the first tertile ([1.98, 20.92]) and the second ([20.92, 38.79]) and third tertiles ([38.79, 216.5]) (mg/L).The number of symptoms was lower for those in the third tertile, β = −0.3 (−0.55, −0.5), and for those in the second one, β = −0.37 (−0.6, −0.14). The model stratification by sex also showed this inverse association for boys only, β = −0.21 (−0.34, −0.08). No associations were found between ferritin level and hyperactivity or total ADHD symptoms. High ferritin levels during pregnancy show a protective association with child inattentive-type ADHD symptoms.
Collapse
Affiliation(s)
- Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (L.S.-M.); (J.S.); (A.M.); (S.L.); (J.J.); (J.I.)
- Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; (N.L.); (A.A.)
- Public Health Division of Gipuzkoa, Basque Government, 20013 San Sebastian, Spain;
| | - Nerea Lertxundi
- Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; (N.L.); (A.A.)
- Faculty of Psychology, University of the Basque Country (UPV/EHU), Avenida Tolosa 70, 20018 San Sebastian, Spain
| | - Ainara Andiarena
- Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; (N.L.); (A.A.)
- Faculty of Psychology, University of the Basque Country (UPV/EHU), Avenida Tolosa 70, 20018 San Sebastian, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (L.S.-M.); (J.S.); (A.M.); (S.L.); (J.J.); (J.I.)
- Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; (N.L.); (A.A.)
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- Correspondence:
| | - Jordi Sunyer
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (L.S.-M.); (J.S.); (A.M.); (S.L.); (J.J.); (J.I.)
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
- ISGlobal—Instituto de Salud Global de Barcelona–Campus MAR, PRBB, 08003 Barcelona, Spain
| | - Amaia Molinuevo
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (L.S.-M.); (J.S.); (A.M.); (S.L.); (J.J.); (J.I.)
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (L.S.-M.); (J.S.); (A.M.); (S.L.); (J.J.); (J.I.)
- Epidemiology and Environmental Health Joint Research Unit, FISABIO–Universitat Jaume I–Universitat de València, 08003 València, Spain;
| | - Jordi Julvez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (L.S.-M.); (J.S.); (A.M.); (S.L.); (J.J.); (J.I.)
- ISGlobal—Instituto de Salud Global de Barcelona–Campus MAR, PRBB, 08003 Barcelona, Spain
- Institut d′Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO–Universitat Jaume I–Universitat de València, 08003 València, Spain;
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (L.S.-M.); (J.S.); (A.M.); (S.L.); (J.J.); (J.I.)
- Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; (N.L.); (A.A.)
- Public Health Division of Gipuzkoa, Basque Government, 20013 San Sebastian, Spain;
- Faculty of Psychology, University of the Basque Country (UPV/EHU), Avenida Tolosa 70, 20018 San Sebastian, Spain
| | - Liher Imaz
- Public Health Division of Gipuzkoa, Basque Government, 20013 San Sebastian, Spain;
- Biodonostia, Epidemiology and Public Health Area, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastian, Spain
| | - Maite Ferrin
- Haringey Child and Adolescent Mental Health Service, Barnet, Enfield and Haringey NHS Mental Health Trust, London N15 3TH, UK;
- Recognition Health, London W1G 9RU, UK
| |
Collapse
|
19
|
Noschang C, Krolow R, Arcego DM, Marcolin M, Ferreira AG, da Cunha AA, Wyse ATS, Dalmaz C. Early-life stress affects behavioral and neurochemical parameters differently in male and female juvenile Wistar rats. Int J Dev Neurosci 2020; 80:547-557. [PMID: 32683715 DOI: 10.1002/jdn.10050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Neonatal handling is an early life stressor that leads to behavioral and neurochemical changes in adult rats in a sex-specific manner and possibly affects earlier stages of development. Here, we investigated the effects of neonatal handling (days 1-10 after birth) on juvenile rats focusing on biochemical parameters and olfactory memory after weaning. Male neonatal handled rats performed more crossings on the hole-board task, increased Na+ /K+ -ATPase activity in the olfactory bulb, and decreased acetylcholinesterase activity in the hippocampus versus non-handled males. Female neonatal handled animals increased the number of rearing and nose-pokes on the hole-board task, decreased glutathione peroxidase activity, and total thiol content in the hippocampus versus non-handled females. This study reinforces that early life stress affects behavioral and neurochemical parameters in a sex-specific manner even before the puberty onset.
Collapse
Affiliation(s)
- C Noschang
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Krolow
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - D M Arcego
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M Marcolin
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - A G Ferreira
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - A A da Cunha
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - A T S Wyse
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C Dalmaz
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
20
|
Use of computational toxicology (CompTox) tools to predict in vivo toxicity for risk assessment. Regul Toxicol Pharmacol 2020; 116:104724. [PMID: 32640296 DOI: 10.1016/j.yrtph.2020.104724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Computational Toxicology tools were used to predict toxicity for three pesticides: propyzamide (PZ), carbaryl (CB) and chlorpyrifos (CPF). The tools used included: a) ToxCast/Tox21 assays (AC50 s μM: concentration 50% maximum activity); b) in vitro-to-in vivo extrapolation (IVIVE) using ToxCast/Tox21 AC50s to predict administered equivalent doses (AED: mg/kg/d) to compare to known in vivo Lowest-Observed-Effect-Level (LOEL)/Benchmark Dose (BMD); c) high throughput toxicokinetics population based (HTTK-Pop) using AC50s for endpoints associated with the mode of action (MOA) to predict age-adjusted AED for comparison with in vivo LOEL/BMDs. ToxCast/Tox21 active-hit-calls for each chemical were predictive of targets associated with each MOA, however, assays directly relevant to the MOAs for each chemical were limited. IVIVE AEDs were predictive of in vivo LOEL/BMD10s for all three pesticides. HTTK-Pop was predictive of in vivo LOEL/BMD10s for PZ and CPF but not for CB after human age adjustments 11-15 (PZ) and 6-10 (CB) or 6-10 and 11-20 (CPF) corresponding to treated rat ages (in vivo endpoints). The predictions of computational tools are useful for risk assessment to identify targets in chemical MOAs and to support in vivo endpoints. Data can also aid is decisions about the need for further studies.
Collapse
|
21
|
Saint-Amour D, Muckle G, Gagnon-Chauvin A, Rouget F, Monfort C, Michineau L, Thomé JP, Kadhel P, Multigner L, Cordier S. Visual contrast sensitivity in school-age Guadeloupean children exposed to chlordecone. Neurotoxicology 2020; 78:195-201. [DOI: 10.1016/j.neuro.2020.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
|
22
|
Friedman E, Hazlehurst MF, Loftus C, Karr C, McDonald KN, Suarez-Lopez JR. Residential proximity to greenhouse agriculture and neurobehavioral performance in Ecuadorian children. Int J Hyg Environ Health 2020; 223:220-227. [PMID: 31607631 PMCID: PMC6915969 DOI: 10.1016/j.ijheh.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Children living near greenhouse agriculture may have an increased risk of pesticide exposure due to drift or direct contact with pesticide-treated areas. However, little is known about whether this increased potential for chronic exposure may impair their neurodevelopment. METHODS We examined 307 children aged 4-9 years, living in agricultural communities in Ecuador (ESPINA study). The two exposures calculated were residential distance from the nearest flower plantation perimeter and flower plantation surface area within 100 m of homes. Five neurobehavioral domains were assessed: Attention/Inhibitory Control, Memory/Learning, Visuospatial processing and Sensorimotor (higher values reflect better performance). Low scores were defined according to the test's cut-offs. Models were adjusted for demographic, socio-economic and growth variables. RESULTS The mean (SD) residential distance to the nearest flower plantation was 446 m (344). Living 100 m closer to crops was associated with increased odds (OR [95% CI]) of low scores in the domains of Memory/Learning (1.24 [1.05, 1.46]) and Language (1.09 [1.00, 1.19]). Associations were strongest among children living within 50 m, having significantly lower scores in Language (-1.28 which is ~50% of a SD [-2.50, -0.06]), Attention/Inhibitory Control (-1.24 units, [-2.45, -0.04]), and Memory/Learning (-0.91, [-1.99, 0.17]), compared to children living farther than 500 m. Analyses of areas of flower crops near homes concurred with these findings. CONCLUSIONS Close residential proximity to greenhouse floricultural crops was associated with adverse neurobehavioral performance in Attention/Inhibitory Control, Language and Memory/Learning among children. This highlights the importance of reducing pesticide drift from plantations to nearby homes.
Collapse
Affiliation(s)
- Elizabeth Friedman
- School of Medicine, Department of Environmental & Occupational Health Sciences, University of Washington, United States.
| | - Marnie F Hazlehurst
- Department of Epidemiology, School of Public Health, University of Washington, United States.
| | - Christine Loftus
- Department of Pediatrics, University of Washington School of Medicine, Departments of Environmental & Occupational Health Sciences and Epidemiology, School of Public Health, University of Washington, United States.
| | - Catherine Karr
- Department of Pediatrics, University of Washington School of Medicine, Departments of Environmental & Occupational Health Sciences and Epidemiology, School of Public Health, University of Washington, United States.
| | | | - Jose Ricardo Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, San Diego, United States.
| |
Collapse
|
23
|
Suarez-Lopez JR, Hood N, Suárez-Torres J, Gahagan S, Gunnar MR, López-Paredes D. Associations of acetylcholinesterase activity with depression and anxiety symptoms among adolescents growing up near pesticide spray sites. Int J Hyg Environ Health 2019; 222:981-990. [PMID: 31202795 PMCID: PMC6679983 DOI: 10.1016/j.ijheh.2019.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/09/2019] [Accepted: 06/07/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The cholinergic system has an important role in mood regulation. Cholinesterase inhibitor pesticides (e.g. organophosphates) appear to increase depression and anxiety symptoms in the few existing animal and human studies. Human studies have not described such associations using biomarkers of exposure and studies among children are needed. METHODS We studied 529 adolescents (ages 11-17y) in agricultural communities in the Ecuadorian Andes (ESPINA study). Acetylcholinesterase (AChE) activity was measured in a finger-stick sample. Anxiety and depression symptoms were assessed using the CDI-2 and MASC-2 (greater scores reflect greater internalizing symptoms). Models adjusted for age, gender, hemoglobin, income among others. RESULTS The median age was 14.38y and 51% were female. The mean (SD) of the following parameters were: AChE 3.7 U/mL (0.55), depression T-score 53.0 (9.4) and anxiety T-score: 57.6 (9.8). Lower AChE activity (reflecting greater cholinesterase inhibitor exposure) was associated with higher depression symptoms (difference per SD decrease of AChE [β [95% CI:]]: 1.09 [0.02, 2.16]), was stronger among girls (β = 1.61) than boys (β = 0.69), and among younger (<14.38y, β = 1.61) vs. older children (β = 0.57). The associations were strongest among girls <14.38y (β = 3.30 [0.54, 6.05], OR for elevated symptoms per SD decrease in AChE = 2.58 [1.26, 5.27]). No associations were observed with anxiety scores. Analyses of AChE change between 2008 and 2016 concurred with these findings. DISCUSSION We observed associations between a biomarker of pesticide exposure and children's depression symptoms. Lower AChE activity may create risk for depression in teenagers, particularly among girls during early adolescence.
Collapse
Affiliation(s)
| | - Naomi Hood
- University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | - Sheila Gahagan
- University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | | |
Collapse
|
24
|
Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology 2018; 410:125-131. [DOI: 10.1016/j.tox.2018.09.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022]
|
25
|
Saez M, Barceló MA, Farrerons M, López-Casasnovas G. The association between exposure to environmental factors and the occurrence of attention-deficit/hyperactivity disorder (ADHD). A population-based retrospective cohort study. ENVIRONMENTAL RESEARCH 2018; 166:205-214. [PMID: 29890425 DOI: 10.1016/j.envres.2018.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND A number of factors contribute to attention deficit hyperactivity disorder (ADHD) and although they are not fully known, the occurrence of ADHD seems to be a consequence of an interaction between multiple genetic and environmental factors. However, apart from pesticides, the evidence is inadequate and inconsistent as it differs not only in the population and time period analysed, but also in the type of study, the control of the confounding variables and the statistical methods used. In the latter case, the studies also differ in the adjustment of spatial and temporal variability. Our objective here, is to provide evidence on an association between environmental factors and ADHD. METHODS In our study, we used a population-based retrospective cohort in which we matched cases and controls (children free of the disease) by sex and year of birth (n = 5193, 78.9% boys). The cases were children born between 1998 and 2012 and diagnosed with ADHD (n = 116). To evaluate whether there was a geographical pattern in the incidence of ADHD, we first represented the smoothed standardized incidence rates on a map of the region being studied. We then estimated the probability of being a case by using a generalized liner mixed model with a binomial link. As explanatory variables of interest, we included the following environmental variables: distance to agricultural areas, distance to roads (stratified into three categories according to traffic density and intensity), distance to petrol stations, distance to industrial estates, and land use. We control for both observed (individual and family specific variables and deprivation index) and unobserved confounders (in particular, individual and familial heterogeneity). In addition, we adjusted for spatial extra variability. RESULTS We found a north-south pattern containing two clusters (one in the centre of the study region and another in the south) in relation to the risk of developing ADHD. The results from the multivariate model suggest that these clusters could be related to some of the environmental variables. Specifically, living within 100 m from an agricultural area or a residential street and/or living fewer than 300 m from a motorway, dual carriageway or one of the industrial estates analysed was associated (statistically significant) with an increased risk of ADHD. CONCLUSION Our results indicate that some environmental factors could be associated with ADHD occurring, particularly those associated with exposure to pesticides, organochlorine compounds and air pollutants because of traffic.
Collapse
Affiliation(s)
- Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Center for Research in Health and Economics (CRES), Universitat Pompeu Fabra, Barcelona, Spain.
| | - Maria A Barceló
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Center for Research in Health and Economics (CRES), Universitat Pompeu Fabra, Barcelona, Spain
| | - Mònica Farrerons
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain; Medical Student, University of Girona, Spain
| | - Guillem López-Casasnovas
- Center for Research in Health and Economics (CRES), Universitat Pompeu Fabra, Barcelona, Spain; Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Spain; Barcelona Graduate School (BSGE), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
26
|
Mostafalou S, Abdollahi M. The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental diseases based on evidence and mechanisms. Toxicology 2018; 409:44-52. [PMID: 30053494 DOI: 10.1016/j.tox.2018.07.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Organophosphorus (OP) compounds have been known as the most widely used pesticides during the past half century and there have been a huge body of literature regarding their association with human chronic diseases. Neurodegenerative and neurodevelopmental disorders including Alzheimer, Parkinson, amyotrophic lateral sclerosis (ALS), attention deficit hyperactivity disorder (ADHD), and autism are among the afflicting neurological diseases which overshadow human life and their higher risk in relation to OP exposures have been uncovered by epidemiological studies. In addition, experimental studies exploring the underlying mechanisms have provided some evidence for involvement of cholinergic deficit, oxidative stress, neuro-inflammation, and epigenetic modifications as the processes which are common in the toxicity of the OP and pathophysiology of the mentioned diseases. In addition, genetic mutations and polymorphisms of different variants of some genes like paraoxonase have been shown to be implicated in both susceptibility to OPs toxicity and neurological diseases. In this article, we reviewed the epidemiological as well as experimental studies evidencing the association of exposure to OPs and incidence of neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Comfort N, Re DB. Sex-Specific Neurotoxic Effects of Organophosphate Pesticides Across the Life Course. Curr Environ Health Rep 2018; 4:392-404. [PMID: 29063415 DOI: 10.1007/s40572-017-0171-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW This review discusses the sex-specific effects of exposure to various organophosphate (OP) pesticides throughout the life course and potential reasons for the differential vulnerabilities observed across sexes. RECENT FINDINGS Sex is a crucial factor in the response to toxicants, yet the sex-specific effects of OP exposure, particularly in juveniles and adults, remain unresolved. This is largely due to study design and inconsistencies in exposure and outcome assessments. Exposure to OPs results in multiple adverse outcomes influenced by many factors including sex. Reported sex-specific effects suggest that males are more susceptible to OPs, which reflects the sex-dependent prevalence of various neurodevelopmental and neurodegenerative disorders such as autism and amyotrophic lateral sclerosis (ALS), in which males are at greater risk. Thus, this review proposes that the biological sex-specific effects elicited by OP exposure may in part underlie the dimorphic susceptibilities observed in neurological disorders. Understanding the immediate and long-term effects of OP exposure across sexes will be critical in advancing our understanding of OP-induced neurotoxicity and disease.
Collapse
Affiliation(s)
- Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA. .,NIEHS Center for Environmental Health Sciences in Northern Manhattan, Columbia University, New York, NY, 10032, USA. .,, 722 W 168th Street, 11th floor, New York, NY, 10032, USA.
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA. .,NIEHS Center for Environmental Health Sciences in Northern Manhattan, Columbia University, New York, NY, 10032, USA. .,Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA. .,, 722 W 168th Street Suite 1107B, New York, NY, 10032, USA.
| |
Collapse
|
28
|
Suarez-Lopez JR, Checkoway H, Jacobs DR, Al-Delaimy WK, Gahagan S. Potential short-term neurobehavioral alterations in children associated with a peak pesticide spray season: The Mother's Day flower harvest in Ecuador. Neurotoxicology 2017; 60:125-133. [PMID: 28188819 PMCID: PMC5447476 DOI: 10.1016/j.neuro.2017.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Exposures to cholinesterase inhibitor pesticides (e.g. organophosphates) have been associated with children's neurobehavioral alterations, including attention deficit and impulsivity. Animal studies have observed transient alterations in neurobehavioral performance in relation to cholinesterase inhibitor pesticide exposures; however, limited evidence exists regarding transient effects in humans. METHODS We estimated the associations between neurobehavioral performance and time after Mother's Day flower harvest (the end of a heightened pesticide usage period) among 308 4-to 9-year-old children living in floricultural communities in Ecuador in 2008 who participated in the ESPINA study. Children's neurobehavior was examined once (NEPSY-II: 11 subtests covering 5 domains), between 63 and 100days (SD: 10.8days) after Mother's Day harvest (blood acetylcholinesterase activity levels can take 82days to normalize after irreversible inhibition with organophosphates). RESULTS The mean (SD) neurobehavioral scaled scores across domains ranged from 6.6 (2.4) to 9.9 (3.3); higher values reflect greater performance. Children examined sooner after Mother's Day had lower neurobehavioral scores than children examined later, in the domains of (score difference per 10.8days, 95%CI): Attention/Inhibitory Control (0.38, 0.10-0.65), Visuospatial Processing (0.60, 0.25-0.95) and Sensorimotor (0.43, 0.10-0.77). Scores were higher with longer time post-harvest among girls (vs. boys) in Attention/Inhibitory Control. CONCLUSIONS Our findings, although cross-sectional, are among the first in non-worker children to suggest that a peak pesticide use period may transiently affect neurobehavioral performance, as children examined sooner after the flower harvest had lower neurobehavioral performance than children examined later. Studies assessing pre- and post-exposure measures are needed.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Division of Global Health, Department of Family Medicine and Public Health, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA 92024-0725, USA; Fundacion Cimas del Ecuador, De los Olivos E14-226 y las Minas, Quito, Pichincha, Ecuador.
| | - Harvey Checkoway
- Division of Global Health, Department of Family Medicine and Public Health, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA 92024-0725, USA.
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, 1300 South 2nd Street, Suite 300, Minneapolis, MN 55454, USA.
| | - Wael K Al-Delaimy
- Division of Global Health, Department of Family Medicine and Public Health, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA 92024-0725, USA
| | - Sheila Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health, Department of Pediatrics, University of California, 9500 Gilman Drive #0832, La Jolla, CA 92024-0832, USA.
| |
Collapse
|
29
|
Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. ENVIRONMENT INTERNATIONAL 2017; 99:55-77. [PMID: 27908457 PMCID: PMC5285268 DOI: 10.1016/j.envint.2016.11.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/19/2023]
Abstract
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Departamento de Ciências Fisiologicas, Universidade do Estado do Rio de Janeiro (UERJ), RJ, Brazil
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
30
|
Pesticides: an update of human exposure and toxicity. Arch Toxicol 2016; 91:549-599. [PMID: 27722929 DOI: 10.1007/s00204-016-1849-x] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.
Collapse
|
31
|
The Red Blood Cell Acetylcholinesterase Levels of Depressive Patients with Suicidal Behavior in an Agricultural Area. Indian J Clin Biochem 2016; 31:473-9. [PMID: 27605747 DOI: 10.1007/s12291-016-0558-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Long-term exposure to organophosphate pesticides (OPs) without acute poisoning can lead to various OPs. Environmental exposure to organophosphate pesticides may be associated with depression and suicide attempts in a population living in a rural agricultural area. Patients (n = 149) suffering from major depressive disorder (with and without attempted suicide) and a control group of healthy individuals (n = 64) who had been living in the same rural district for at least 1 year were selected. Red blood cell acetylcholine esterase (RBC-AChE) activity was examined as the basis of evaluating the degree of chronic environmental exposure to OPs residues. There were negative association between RBC-AChE activity levels and suicide attempts, the number of past suicide attempts and hopelessness levels in the depressive patients. The results of the study may support the idea that environmental exposure to OPs may be associated with mental health in individuals living in agricultural districts who are not farmers or working in occupations with access to OPs.
Collapse
|
32
|
A Review on Potential Mechanisms of Terminalia chebula in Alzheimer's Disease. Adv Pharmacol Sci 2016; 2016:8964849. [PMID: 26941792 PMCID: PMC4749770 DOI: 10.1155/2016/8964849] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/13/2022] Open
Abstract
The current management of Alzheimer's disease (AD) focuses on acetylcholinesterase inhibitors (AChEIs) and NMDA receptor antagonists, although outcomes are not completely favorable. Hence, novel agents found in herbal plants are gaining attention as possible therapeutic alternatives. The Terminalia chebula (Family: Combretaceae) is a medicinal plant with a wide spectrum of medicinal properties and is reported to contain various biochemicals such as hydrolysable tannins, phenolic compounds, and flavonoids, so it may prove to be a good therapeutic alternative. In this research, we reviewed published scientific literature found in various databases: PubMed, Science Direct, Scopus, Web of Science, Scirus, and Google Scholar, with the keywords: T. chebula, AD, neuroprotection, medicinal plant, antioxidant, ellagitannin, gallotannin, gallic acid, chebulagic acid, and chebulinic acid. This review shows that T. chebula extracts and its constituents have AChEI and antioxidant and anti-inflammatory effects, all of which are currently relevant to the treatment of Alzheimer's disease.
Collapse
|
33
|
Shiue I. Arsenic, heavy metals, phthalates, pesticides, hydrocarbons and polyfluorinated compounds but not parabens or phenols are associated with adult remembering condition: US NHANES, 2011-2012. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6381-6386. [PMID: 25744817 DOI: 10.1007/s11356-015-4261-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Links between environmental chemicals and human health have emerged, but the effects on cognition were less studied. Therefore, it was aimed to study the relationships of different sets of environmental chemicals and the remembering condition in a national and population-based study in recent years. Data was retrieved from the US National Health and Nutrition Examination Surveys, 2011-2012, including demographics, blood pressure readings, serum measurements, lifestyle factors, self-reported remembering condition and urinary environmental chemical concentrations. Analyses included Chi-square test, t test and survey-weighted logistic and multi-nominal regression models. Among the elderly aged 60-80 (n = 1791), 320 (17.9%) had difficulties in thinking or remembering. People who had difficulties in thinking or remembering had higher levels of urinary heavy metals, phthalates, pesticides and hydrocarbon concentrations but lower levels of urinary arsenic and polyfluorinated compound concentrations. During the recent past week, 146 people (8.2%) had trouble remembering for more than three times while 619 people (35.2%) had that for one to three times. These people had higher levels of urinary heavy metals, phthalates, pesticides and hydrocarbon concentrations but lower levels of urinary polyfluorinated compound concentrations. There were no associations with urinary bisphenols, parabens, perchlorate, nitrate or thiocyanate concentrations. This is the first time observing statistically significant risk associations of urinary heavy metals, phthalates, pesticides and hydrocarbon concentrations and the remembering condition specifically in the elderly, although the causality cannot be established. Elimination of such environmental chemicals in humans might need to be considered in future health policy and intervention programs.
Collapse
Affiliation(s)
- Ivy Shiue
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, EH14 4AS, Edinburgh, Scotland, UK,
| |
Collapse
|
34
|
Megahed T, Hattiangady B, Shuai B, Shetty AK. Parvalbumin and neuropeptide Y expressing hippocampal GABA-ergic inhibitory interneuron numbers decline in a model of Gulf War illness. Front Cell Neurosci 2015; 8:447. [PMID: 25620912 PMCID: PMC4288040 DOI: 10.3389/fncel.2014.00447] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/12/2014] [Indexed: 01/30/2023] Open
Abstract
Cognitive dysfunction is amongst the most conspicuous symptoms in Gulf War illness (GWI). Combined exposure to the nerve gas antidote pyridostigmine bromide (PB), pesticides and stress during the Persian Gulf War-1 (PGW-1) are presumed to be among the major causes of GWI. Indeed, our recent studies in rat models have shown that exposure to GWI-related (GWIR) chemicals and mild stress for 4 weeks engenders cognitive impairments accompanied with several detrimental changes in the hippocampus. In this study, we tested whether reduced numbers of hippocampal gamma-amino butyric acid (GABA)-ergic interneurons are among the pathological changes induced by GWIR-chemicals and stress. Animals were exposed to low doses of GWIR-chemicals and mild stress for 4 weeks. Three months after this exposure, subpopulations of GABA-ergic interneurons expressing the calcium binding protein parvalbumin (PV), the neuropeptide Y (NPY) and somatostatin (SS) in the hippocampus were stereologically quantified. Animals exposed to GWIR-chemicals and stress for 4 weeks displayed reduced numbers of PV-expressing GABA-ergic interneurons in the dentate gyrus and NPY-expressing interneurons in the CA1 and CA3 subfields. However, no changes in SS+ interneuron population were observed in the hippocampus. Furthermore, GABA-ergic interneuron deficiency in these animals was associated with greatly diminished hippocampus neurogenesis. Because PV+ and NPY+ interneurons play roles in maintaining normal cognitive function and neurogenesis, and controlling the activity of excitatory neurons in the hippocampus, reduced numbers of these interneurons may be one of the major causes of cognitive dysfunction and reduced neurogenesis observed in GWI. Hence, strategies that improve inhibitory neurotransmission in the hippocampus may prove beneficial for reversing cognitive dysfunction in GWI.
Collapse
Affiliation(s)
- Tarick Megahed
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System Temple, TX, USA ; Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White Temple, TX, USA
| | - Bharathi Hattiangady
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System Temple, TX, USA ; Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White Temple, TX, USA ; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine College Station, TX, USA
| | - Bing Shuai
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System Temple, TX, USA ; Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White Temple, TX, USA ; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine College Station, TX, USA
| | - Ashok K Shetty
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System Temple, TX, USA ; Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White Temple, TX, USA ; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine College Station, TX, USA
| |
Collapse
|
35
|
Bhagya V, Srikumar B, Raju T, Shankaranarayana Rao B. The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression. J Neurosci Res 2014; 93:104-20. [DOI: 10.1002/jnr.23473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022]
Affiliation(s)
- V. Bhagya
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - B.N. Srikumar
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - T.R. Raju
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - B.S. Shankaranarayana Rao
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| |
Collapse
|