1
|
Kamio N, Cueno ME, Takagi A, Imai K. Porphyromonas gingivalis gingipain potentially activates influenza A virus infectivity through proteolytic cleavage of viral hemagglutinin. J Biol Chem 2025:108166. [PMID: 39793895 DOI: 10.1016/j.jbc.2025.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/03/2024] [Accepted: 11/30/2024] [Indexed: 01/13/2025] Open
Abstract
Influenza is a worldwide health problem that causes significant morbidity and mortality among the elderly; therefore, its prevention is important. During influenza virus infection, the cleavage of hemagglutinin (HA) is essential for the virus to enter host cells. Influenza virus-bacteria interactions influence the pathogenicity of infections, and specific bacteria contribute to the severity of the disease by participating in HA cleavage. Poor oral hygiene and the presence of oral bacteria are associated with influenza. Porphyromonas gingivalis, a periodontopathic bacterium, is particularly associated with influenza; however, the underlying mechanisms remain unclear. In the present study, we observed P. gingivalis culture supernatant promoted viral release and cell-to-cell spread of the infection. Further investigation revealed that the supernatant contained cleaved HA. Therefore, we focused on gingipains (Rgp and Kgp) which are trypsin-like proteases produced by P. gingivalis. We determined that the Rgp inhibitor inhibited both HA cleavage and the increase in virus release associated with the P. gingivalis culture supernatant, whereas such effects were not observed with the Kgp inhibitor. In addition, Rgp-deficient P. gingivalis culture supernatant failed to cleave HA, enhance virus spread, or increase virus release. In contrast, Kgp-deficient P. gingivalis culture supernatant cleaved HA and promoted infection. These results indicated that P. gingivalis-secreted Rgp has the potential to activate influenza virus infectivity through HA cleavage, suggesting that understanding the effects of P. gingivalis on influenza virus infection will contribute to the establishment of influenza prevention measures.
Collapse
Affiliation(s)
- Noriaki Kamio
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Marni E Cueno
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Asako Takagi
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
2
|
Śmiga M, Ślęzak P, Tracz M, Cierpisz P, Wagner M, Olczak T. Defining the role of Hmu and Hus systems in Porphyromonas gingivalis heme and iron homeostasis and virulence. Sci Rep 2024; 14:31156. [PMID: 39730829 DOI: 10.1038/s41598-024-82326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P. gingivalis is the main pathogen responsible for dysbiosis in the oral microbiome and the initiation and progression of chronic periodontitis. It utilizes Hmu and Hus systems for heme uptake, including HmuY and HusA hemophore-like proteins and their cognate HmuR and HusB TonB-dependent outer membrane heme receptors. Although the mechanisms of heme uptake are relatively well characterized in P. gingivalis, little is known about the importance of heme uptake systems in heme and iron homeostasis and virulence. Therefore, this work aimed to investigate these mechanisms in detail. We characterized the P. gingivalis double mutant strain deficient in functional hmuY and hmuR or husA and husB genes. Global gene expression and phenotypic analyses revealed that the Hmu system significantly influences heme homeostasis, confirming its main role in heme supply. Both systems, particularly the Hus system, affect the virulence of P. gingivalis. Our results demonstrate the diverse role of Hmu and Hus systems in P. gingivalis heme and iron homeostasis and virulence.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
| | - Michał Tracz
- Laboratory of Protein Mass Spectrometry, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
| | - Patryk Cierpisz
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
| | - Mateusz Wagner
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
| |
Collapse
|
3
|
Hix-Janssens T, Davies JR, Turner NW, Sellergren B, Sullivan MV. Molecularly imprinted nanogels as synthetic recognition materials for the ultrasensitive detection of periodontal disease biomarkers. Anal Bioanal Chem 2024; 416:7305-7316. [PMID: 38898327 PMCID: PMC11584468 DOI: 10.1007/s00216-024-05395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Periodontal disease affects supporting dental structures and ranks among one of the top most expensive conditions to treat in the world. Moreover, in recent years, the disease has also been linked to cardiovascular and Alzheimer's diseases. At present, there is a serious lack of accurate diagnostic tools to identify people at severe risk of periodontal disease progression. Porphyromonas gingivalis is often considered one of the most contributing factors towards disease progression. It produces the Arg- and Lys-specific proteases Rgp and Kgp, respectively. Within this work, a short epitope sequence of these proteases is immobilised onto a magnetic nanoparticle platform. These are then used as a template to produce high-affinity, selective molecularly imprinted nanogels, using the common monomers N-tert-butylacrylamide (TBAM), N-isopropyl acrylamide (NIPAM), and N-(3-aminopropyl) methacrylamide hydrochloride (APMA). N,N-Methylene bis(acrylamide) (BIS) was used as a crosslinking monomer to form the interconnected polymeric network. The produced nanogels were immobilised onto a planar gold surface and characterised using the optical technique of surface plasmon resonance. They showed high selectivity and affinity towards their template, with affinity constants of 79.4 and 89.7 nM for the Rgp and Kgp epitope nanogels, respectively. From their calibration curves, the theoretical limit of detection was determined to be 1.27 nM for the Rgp nanogels and 2.00 nM for the Kgp nanogels. Furthermore, they also showed excellent selectivity against bacterial culture supernatants E8 (Rgp knockout), K1A (Kgp knockout), and W50-d (wild-type) strains in complex medium of brain heart infusion (BHI).
Collapse
Affiliation(s)
- Thomas Hix-Janssens
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 205 06, Malmö, Sweden
| | - Nicholas W Turner
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Börje Sellergren
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden.
| | - Mark V Sullivan
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK.
| |
Collapse
|
4
|
Leiva-Sabadini C, Saavedra P, Inostroza C, Aguayo S. Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions. Crit Rev Microbiol 2024:1-18. [PMID: 39563638 DOI: 10.1080/1040841x.2024.2427656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Extracellular vesicles (EVs) are cell membrane-derived structures between 20-400 nm in size. In bacteria, EVs play a crucial role in molecule secretion, cell wall biogenesis, cell-cell communication, biofilm development, and host-pathogen interactions. Despite these increasing reports of bacterial-derived vesicles, there remains a limited number of studies that summarize oral bacterial EVs, their cargo, and their main biological functions. Therefore, the aim of this review is to present the latest research on oral bacteria-derived EVs and how they can modulate various physiological and pathological processes in the oral cavity, including the pathogenesis of highly relevant diseases such as dental caries and periodontitis and their systemic complications. Overall, caries-associated bacteria (such as Streptococcus mutans) as well as periodontal pathogens (including the red complex pathogens Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) have all been shown to produce EVs that carry an array of virulent factors and molecules involved in biofilm and immune modulation, bacterial adhesion, and extracellular matrix degradation. As bacterial EV production is strongly impacted by genotypic and environmental variations, the inhibition of EV genesis and secretion remains a key potential future approach against oral diseases.
Collapse
Affiliation(s)
- Camila Leiva-Sabadini
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Saavedra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla Inostroza
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Aguayo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Munar-Bestard M, Vargas-Alfredo N, Ramis JM, Monjo M. Mangostanin hyaluronic acid hydrogel as an effective biocompatible alternative to chlorhexidine. Int J Biol Macromol 2024; 279:135187. [PMID: 39216568 DOI: 10.1016/j.ijbiomac.2024.135187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Periodontal disease (PD) prevention and treatment products typically demonstrate excellent antibacterial activity, but recent studies have raised concerns about their toxicity on oral tissues. Therefore, finding a biocompatible alternative that retains antimicrobial properties is imperative. In this study, a chemically modified hyaluronic acid (HA) hydrogel containing mangostanin (MGTN) was developed. Native HA was chemically modified, incorporating amino and aldehyde groups in different batches of HA, allowing spontaneous crosslinking and gelation when combined at room temperature. MGTN at different concentrations was incorporated before gelation. The structure, swelling characteristics MGTN release, rheological parameters, and in vitro degradation performance of the loaded hydrogel were first evaluated in the study. Then, antimicrobial properties were tested on Porphyromonas gingivalis and its biocompatibility in 3D-engineered human gingiva. HA hydrogel was very stable and showed a sustained release for MGTN for at least 7 days. MGTN-loaded HA hydrogel showed equivalent antimicrobial activity compared to a commercial gel of HA containing 0.2 % chlorhexidine (CHX). In contrast, while MGTN HA hydrogel was biocompatible, CHX gel showed high cytotoxicity, causing cell death and tissue damage. Modified HA hydrogel allows controlled release of MGTN, resulting in a highly biocompatible hydrogel with antibacterial properties. This hydrogel is a suitable alternative therapy to prevent and treat PD.
Collapse
Affiliation(s)
- Marta Munar-Bestard
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain.
| | - Nelson Vargas-Alfredo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joana Maria Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; Department of Fundamental Biology and Health Sciences Fundamental Biology, UIB, Spain.
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; Department of Fundamental Biology and Health Sciences Fundamental Biology, UIB, Spain.
| |
Collapse
|
6
|
Liao L, Wang Q, Feng Y, Li G, Lai R, Jameela F, Zhan X, Liu B. Advances and challenges in the development of periodontitis vaccines: A comprehensive review. Int Immunopharmacol 2024; 140:112650. [PMID: 39079346 DOI: 10.1016/j.intimp.2024.112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 09/01/2024]
Abstract
Periodontitis is a prevalent polymicrobial disease. It damages soft tissues and alveolar bone, and causes a significant public-health burden. Development of an advanced therapeutic approach and exploration of vaccines against periodontitis hold promise as potential treatment avenues. Clinical trials for a periodontitis vaccine are lacking. Therefore, it is crucial to address the urgent need for developing strategies to implement vaccines at the primary level of prevention in public health. A deep understanding of the principles and mechanisms of action of vaccines plays a crucial role in the successful development of vaccines and their clinical translation. This review aims to provide a comprehensive summary of potential directions for the development of highly efficacious periodontitis vaccines. In addition, we address the limitations of these endeavors and explore future possibilities for the development of an efficacious vaccine against periodontitis.
Collapse
Affiliation(s)
- Lingzi Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Qi Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yujia Feng
- School of Stomatology, Jinan University, Guangzhou, China
| | - Guojiang Li
- School of Stomatology, Jinan University, Guangzhou, China
| | - Renfa Lai
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, MI, USA
| | - Xiaozhen Zhan
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China.
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Gorr SU, Chen R, Abrahante JE, Joyce PBM. The oral pathogen Porphyromonas gingivalis gains tolerance to the antimicrobial peptide DGL13K by synonymous mutations in hagA. PLoS One 2024; 19:e0312200. [PMID: 39446776 PMCID: PMC11500903 DOI: 10.1371/journal.pone.0312200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen for periodontal disease. The bacteria are black-pigmented and require heme for growth. P. gingivalis exhibit resistance to many antimicrobial peptides, which contributes to their success in the oral cavity. P. gingivalis W50 was resistant to the antimicrobial peptide LGL13K but susceptible to the all-D-amino acid stereoisomer, DGL13K. Upon prolonged exposure to DGL13K, a novel non-pigmented mutant was isolated. Exposure to the L-isomer, LGL13K, did not produce a non-pigmented mutant. The goal of this study was to characterize the genomic and cellular changes that led to the non-pigmented phenotype upon treatment with DGL13K. The non-pigmented mutant showed a low minimum inhibitory concentration and two-fold extended minimum duration for killing by DGL13K, consistent with tolerance to this peptide. The DGL13K-tolerant bacteria exhibited synonymous mutations in the hagA gene. The mutations did not prevent mRNA expression but were predicted to alter mRNA structure. The non-pigmented bacteria were deficient in hemagglutination and hemoglobin binding, suggesting that the HagA protein was not expressed. This was supported by whole cell enzyme-linked immunosorbent assay and gingipain activity assays, which suggested the absence of HagA but not of two closely related gingipains. In vivo virulence was similar for wild type and non-pigmented bacteria in the Galleria mellonella model. The results suggest that, unlike LGL13K, DGL13K can defeat multiple bacterial resistance mechanisms but bacteria can gain tolerance to DGL13K through mutations in the hagA gene.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul B. M. Joyce
- Department of Chemistry and Biochemistry, Centre for Structural and Functional Genomics, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
8
|
Catalan EA, Seguel-Fuentes E, Fuentes B, Aranguiz-Varela F, Castillo-Godoy DP, Rivera-Asin E, Bocaz E, Fuentes JA, Bravo D, Schinnerling K, Melo-Gonzalez F. Oral Pathobiont-Derived Outer Membrane Vesicles in the Oral-Gut Axis. Int J Mol Sci 2024; 25:11141. [PMID: 39456922 PMCID: PMC11508520 DOI: 10.3390/ijms252011141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Oral pathobionts are essential in instigating local inflammation within the oral cavity and contribute to the pathogenesis of diseases in the gastrointestinal tract and other distant organs. Among the Gram-negative pathobionts, Porphyromonas gingivalis and Fusobacterium nucleatum emerge as critical drivers of periodontitis, exerting their influence not only locally but also as inducers of gut dysbiosis, intestinal disturbances, and systemic ailments. This dual impact is facilitated by their ectopic colonization of the intestinal mucosa and the subsequent mediation of distal systemic effects by releasing outer membrane vesicles (OMVs) into circulation. This review elucidates the principal components of oral pathobiont-derived OMVs implicated in disease pathogenesis within the oral-gut axis, detailing virulence factors that OMVs carry and their interactions with host epithelial and immune cells, both in vitro and in vivo. Additionally, we shed light on the less acknowledged interplay between oral pathobionts and the gut commensal Akkermansia muciniphila, which can directly impede oral pathobionts' growth and modulate bacterial gene expression. Notably, OMVs derived from A. muciniphila emerge as promoters of anti-inflammatory effects within the gastrointestinal and distant tissues. Consequently, we explore the potential of A. muciniphila-derived OMVs to interact with oral pathobionts and prevent disease in the oral-gut axis.
Collapse
Affiliation(s)
- Eduardo A. Catalan
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Emilio Seguel-Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Brandon Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Aranguiz-Varela
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Daniela P. Castillo-Godoy
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elizabeth Rivera-Asin
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elisa Bocaz
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile;
| | - Denisse Bravo
- Cellular Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile;
| | - Katina Schinnerling
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Melo-Gonzalez
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| |
Collapse
|
9
|
Kim B, Hwang J, Im S, Do H, Shim YS, Lee JH. First crystal structure of the DUF2436 domain of virulence proteins from Porphyromonas gingivalis. Acta Crystallogr F Struct Biol Commun 2024; 80:252-262. [PMID: 39325582 PMCID: PMC11448926 DOI: 10.1107/s2053230x24008185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/28/2024] Open
Abstract
Porphyromonas gingivalis is a major pathogenic oral bacterium that is responsible for periodontal disease. It is linked to chronic periodontitis, gingivitis and aggressive periodontitis. P. gingivalis exerts its pathogenic effects through mechanisms such as immune evasion and tissue destruction, primarily by secreting various factors, including cysteine proteases such as gingipain K (Kgp), gingipain R (RgpA and RgpB) and PrtH (UniProtKB ID P46071). Virulence proteins comprise multiple domains, including the pro-peptide region, catalytic domain, K domain, R domain and DUF2436 domain. While there is a growing database of knowledge on virulence proteins and domains, there was no prior evidence or information regarding the structure and biological function of the well conserved DUF2436 domain. In this study, the DUF2436 domain of PrtH from P. gingivalis (PgDUF2436) was determined at 2.21 Å resolution, revealing a noncanonical β-jelly-roll sandwich topology with two antiparallel β-sheets and one short α-helix. Although the structure of PgDUF2436 was determined by the molecular-replacement method using an AlphaFold model structure as a template, there were significant differences in the positions of β1 between the AlphaFold model and the experimentally determined PgDUF2436 structure. The Basic Local Alignment Search Tool sequence-similarity search program showed no sequentially similar proteins in the Protein Data Bank. However, DaliLite search results using structure-based alignment revealed that the PgDUF2436 structure has structural similarity Z-scores of 5.9-5.4 with the C-terminal domain of AlgF, the D4 domain of cytolysin, IglE and the extracellular domain structure of PepT2. This study has elucidated the structure of the DUF2436 domain for the first time and a comparative analysis with similar structures has been performed.
Collapse
Affiliation(s)
- Bogeun Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jisub Hwang
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sehyeok Im
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Hackwon Do
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Youn Soo Shim
- Department of Dental Hygiene, Sunmoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
10
|
Hager-Mair FF, Bloch S, Schäffer C. Glycolanguage of the oral microbiota. Mol Oral Microbiol 2024; 39:291-320. [PMID: 38515284 DOI: 10.1111/omi.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
Collapse
Affiliation(s)
- Fiona F Hager-Mair
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
11
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
12
|
Talapko J, Erić S, Meštrović T, Stipetić MM, Juzbašić M, Katalinić D, Bekić S, Muršić D, Flam J, Belić D, Lešić D, Fureš R, Markanović M, Škrlec I. The Impact of Oral Microbiome Dysbiosis on the Aetiology, Pathogenesis, and Development of Oral Cancer. Cancers (Basel) 2024; 16:2997. [PMID: 39272855 PMCID: PMC11394246 DOI: 10.3390/cancers16172997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. Although the oral cavity is an easily accessible area for visual examination, the OSCC is more often detected at an advanced stage. The global prevalence of OSCC is around 6%, with increasing trends posing a significant health problem due to the increase in morbidity and mortality. The oral cavity microbiome has been the target of numerous studies, with findings highlighting the significant role of dysbiosis in developing OSCC. Dysbiosis can significantly increase pathobionts (bacteria, viruses, fungi, and parasites) that trigger inflammation through their virulence and pathogenicity factors. In contrast, chronic bacterial inflammation contributes to the development of OSCC. Pathobionts also have other effects, such as the impact on the immune system, which can alter immune responses and contribute to a pro-inflammatory environment. Poor oral hygiene and carbohydrate-rich foods can also increase the risk of developing oral cancer. The risk factors and mechanisms of OSCC development are not yet fully understood and remain a frequent research topic. For this reason, this narrative review concentrates on the issue of dysbiosis as the potential cause of OSCC, as well as the underlying mechanisms involved.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
- Department for Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marinka Mravak Stipetić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dora Muršić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dino Belić
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Rajko Fureš
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Gynecology and Obstetrics, Zabok General Hospital and Croatian Veterans Hospital, 49210 Zabok, Croatia
| | - Manda Markanović
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
13
|
Saini RS, Vaddamanu SK, Dermawan D, Bavabeedu SS, Khudaverdyan M, Mosaddad SA, Heboyan A. In Silico Docking of Medicinal Herbs Against P. gingivalis for Chronic Periodontitis Intervention. Int Dent J 2024:S0020-6539(24)00187-4. [PMID: 39127518 DOI: 10.1016/j.identj.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE This study aimed to explore the therapeutic potential of medicinal herbs for chronic periodontitis by examining the molecular interactions between specific herbal compounds and the heme-binding protein of Porphyromonas gingivalis, a key pathogen involved in the disease. METHODS The crystal structure of heme-binding protein was obtained from the Protein Data Bank. Herbal compounds were identified through an extensive literature review. Molecular docking simulations were performed to predict binding affinities, followed by Absorption, Distribution, Metabolism, and Excretion (ADME) parameter prediction. Drug-likeness was assessed based on Lipinski's Rule of Five, and pharmacophore modeling was conducted to identify key molecular interactions. RESULTS The molecular docking simulations revealed that chelidonine, rotenone, and myricetin exhibited significant binding affinities to the heme-binding protein, with docking scores of -6.5 kcal/mol, -6.4 kcal/mol, and -6.1 kcal/mol, respectively. These compounds formed stable interactions with key amino acid residues within the binding pocket. ADME analysis indicated that all 3 compounds had favourable pharmacokinetic properties, with no violations of Lipinski's rules and minimal predicted toxicity. Pharmacophore modeling further elucidated the interaction profiles, highlighting specific hydrogen bonds and hydrophobic interactions critical for binding efficacy. CONCLUSIONS Chelidonine, rotenone, and myricetin emerged as promising therapeutic candidates for chronic periodontitis due to their strong binding affinities, favorable ADME profiles, and lack of significant toxicity. The detailed pharmacophore modeling provided insights into the molecular mechanisms underpinning their inhibitory effects on the heme-binding protein of P. gingivalis. These findings suggest that these compounds have the potential for further development as effective treatments for chronic periodontitis. Future research should focus on in vitro and in vivo validation of these findings to confirm the efficacy and safety of these compounds in biological systems.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Margarita Khudaverdyan
- The Center for Excellence in Dental Education, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India; Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India; Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia; Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Saran A, Kim HM, Manning I, Hancock MA, Schmitz C, Madej M, Potempa J, Sola M, Trempe JF, Zhu Y, Davey ME, Zeytuni N. Unveiling the molecular mechanisms of the type IX secretion system's response regulator: Structural and functional insights. PNAS NEXUS 2024; 3:pgae316. [PMID: 39139265 PMCID: PMC11320123 DOI: 10.1093/pnasnexus/pgae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The type IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo. First, our structural studies revealed PorX harbors a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the nonpathogenic Flavobacterium johnsoniae, but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
Collapse
Affiliation(s)
- Anshu Saran
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
| | - Hey-Min Kim
- Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Ireland Manning
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN 56001, USA
| | - Mark A Hancock
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Claus Schmitz
- Department of Structural Biology, Molecular Biology Institute of Barcelona, Spanish Research Council, Barcelona Science Park, Barcelona E-08028, Spain
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków PL-30-387, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków PL-30-387, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, 501 S Preston St, Louisville, KY 40202, USA
| | - Maria Sola
- Department of Structural Biology, Molecular Biology Institute of Barcelona, Spanish Research Council, Barcelona Science Park, Barcelona E-08028, Spain
| | - Jean-François Trempe
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Yongtao Zhu
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN 56001, USA
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Mary Ellen Davey
- Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
15
|
Nadaf R, Kumbar VM, Ghagane S. Unravelling the intricacies of Porphyromonas gingivalis: virulence factors, lifecycle dynamics and phytochemical interventions for periodontal disease management. APMIS 2024. [PMID: 39030947 DOI: 10.1111/apm.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024]
Abstract
Porphyromonas gingivalis is a gram-negative anaerobic bacterium recognized for its pivotal role in the pathogenesis of periodontal diseases. This review covers an overview of the virulence factors and lifecycle stages of P. gingivalis, with a specific focus on attachment and colonization, biofilm formation, growth and multiplication, dormancy survival and dissemination. Additionally, we explore the significance of inter-bacterial cross-feeding within biofilms. Furthermore, we discuss potential phytochemical-based strategies to target P. gingivalis, including the use of curcumin, apigenin, quercetin and resveratrol. Understanding the virulence factors and lifecycle stages of P. gingivalis, along with the promising phytochemical-based interventions, holds promise for advancing strategies in periodontal disease management and oral health promotion.
Collapse
Affiliation(s)
- Rubeen Nadaf
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Shridhar Ghagane
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| |
Collapse
|
16
|
Tubero Euzebio Alves V, Alves T, Silva Rovai E, Hasturk H, Van Dyke T, Holzhausen M, Kantarci A. Arginine-specific gingipains (RgpA/RgpB) knockdown modulates neutrophil machinery. J Oral Microbiol 2024; 16:2376462. [PMID: 38988325 PMCID: PMC11234918 DOI: 10.1080/20002297.2024.2376462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Background Gingipains are important virulence factors present in Porphyromonas gingivalis. Arginine-specific gingipains (RgpA and RgpB) are critically associated with increased proteolytic activity and immune system dysfunction, including neutrophilic activity. In this study, we assessed the impact of gingipains (RgpA and RgpB) on neutrophil function. Methods Peripheral blood samples were obtained; neutrophils were isolated and incubated with P. gingivalis A7436, W50, and the double RgpA/RgpB double knockout mutant E8 at MOI 20 for 2 hours. Neutrophil viability was assessed by Sytox staining. Phagocytic capacity and apoptosis were measured by flow cytometry. Superoxide release was measured by superoxide dismutase and cytochrome c reduction assay. Gene expression of TLR2, p47-phox, p67-phox, and P2 × 7was measured by qPCR. Inflammatory cytokine and chemokine production was measured by IL-1β, IL-8, RANTES, and TNF-α in cell supernatants. Results Neutrophil TLR2 gene expression was reduced in the absence of RgpA/RgpB (p < 0.05), while superoxide production was not significantly impacted. RgpA/RgpB-/- significantly impaired neutrophil phagocytic function (p < 0.05) and increased TNF-α production when compared with the wild-type control (p < 0.05). Neutrophil apoptosis was not altered when exposed to RgpA/RgpB-/- E8 (p > 0.05). Conclusion These data suggest that arginine-specific gingipains (RgpA/RgpB) can modulate neutrophil responses against P. gingivalis infection.
Collapse
Affiliation(s)
- Vanessa Tubero Euzebio Alves
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Tomaz Alves
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emanuel Silva Rovai
- Division of Periodontology, São Paulo State University – School of Dentistry, São José dos Campos, Brazil
| | - Hatice Hasturk
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Thomas Van Dyke
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Marinella Holzhausen
- Division of Periodontology, São Paulo State University – School of Dentistry, São José dos Campos, Brazil
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
17
|
Chuang WC, Yang CN, Wang HW, Lin SK, Yu CC, Syu JH, Chiang CP, Shiao YJ, Chen YW. The mechanisms of Porphyromonas gingivalis-derived outer membrane vesicles-induced neurotoxicity and microglia activation. J Dent Sci 2024; 19:1434-1442. [PMID: 39035337 PMCID: PMC11259672 DOI: 10.1016/j.jds.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Periodontitis is associated with various systemic diseases, potentially facilitated by the passage of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs). Several recent studies have suggested a connection between Pg-OMVs and neuroinflammation and neurodegeneration, but the precise causal relationship remains unclear. This study aimed to investigate the mechanisms underlying these associations using in vitro models. Materials and methods Isolated Pg-OMVs were characterized by morphology, size, and gingipain activity. We exposed SH-SY5Y neuroblastoma cells and BV-2 microglial cells to various concentrations of Pg-OMVs. Cell morphology, a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, an enzyme-linked immunosorbent assay, and Western blot analysis were used to evaluate the cellular mechanism underlying Pg-OMV-induced neurotoxicity in neuronal cells and inflammatory responses in microglial cells. Results Exposure to Pg-OMVs induced neurotoxicity in SH-SY5Y cells, as evidenced by cellular shrinkage, reduced viability, activation of apoptotic pathways, and diminished neuronal differentiation markers. Gingipain inhibition mitigated these effects, suggesting that gingipain mediates Pg-OMVs-induced neurotoxicity in SH-SY5Y cells. Our research on neuroinflammation suggests that upon endocytosis of Pg-OMVs by BV-2 cells, lipopolysaccharide (LPS) can modulate the production of inducible nitric oxide synthase and tumor necrosis factor-alpha by activating pathways that involve phosphorylated AKT and the phosphorylated JNK pathway. Conclusion Our study demonstrated that following the endocytosis of Pg-OMVs, gingipain can induce neurotoxicity in SH-SY5Y cells. Furthermore, the Pg-OMVs-associated LPS can trigger neuroinflammation via AKT and JNK signaling pathways in BV-2 cells.
Collapse
Affiliation(s)
- Wei-Chun Chuang
- Department of Dentistry, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chu Yu
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Jhe-Hao Syu
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Chiang
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Plaza C, Capallere C, Meyrignac C, Arcioni M, Imbert I. Development of 3D gingival in vitro models using primary gingival cells. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00923-1. [PMID: 38888654 DOI: 10.1007/s11626-024-00923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Since March 2013, animal testing for toxicity evaluation of cosmetic ingredients is banned in Europe. This directive applies to all personal care ingredients including oral ingredients. Gingival in vitro 3D models are commercially available. However, it is essential to develop "in house model" to modulate several parameters to study oral diseases, determine the toxicity of ingredients, test biocompatibility, and evaluate different formulations of cosmetic ingredients. Our expertise in tissue engineering allowed us to reconstruct human oral tissues from normal human gingival cells (fibroblasts and keratinocytes). Indeed, isolation from surgical leftover was performed to culture these gingival cells. These cells keep their endogenous capacity to proliferate allowing reconstruction of equivalent tissue close to in vivo tissue. Reconstruction of gingival epithelium, chorion equivalent, and the combination of these two tissues (full thickness) using primary gingival cells displayed all characteristics of an in vivo gingival model.
Collapse
Affiliation(s)
- Christelle Plaza
- Ashland Specialties France, 655 Route du Pin Montard, 06904, Sophia Antipolis, France.
| | - Christophe Capallere
- Ashland Specialties France, 655 Route du Pin Montard, 06904, Sophia Antipolis, France
| | - Celine Meyrignac
- Ashland Specialties France, 655 Route du Pin Montard, 06904, Sophia Antipolis, France
| | - Marianne Arcioni
- Ashland Specialties France, 655 Route du Pin Montard, 06904, Sophia Antipolis, France
| | - Isabelle Imbert
- Ashland Specialties France, 655 Route du Pin Montard, 06904, Sophia Antipolis, France
| |
Collapse
|
19
|
Saran A, Kim HM, Manning I, Hancock MA, Schmitz C, Madej M, Potempa J, Sola M, Trempe JF, Zhu Y, Davey ME, Zeytuni N. Unveiling the Molecular Mechanisms of the Type-IX Secretion System's Response Regulator: Structural and Functional Insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594396. [PMID: 38798656 PMCID: PMC11118453 DOI: 10.1101/2024.05.15.594396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The Type-IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo . First, our structural studies revealed PorX harbours a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the non-pathogenic Flavobacterium johnsoniae , but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
Collapse
|
20
|
Kandaswamy K, Subramanian R, Giri J, Guru A, Arockiaraj J. A Robust Strategy Against Multi-Resistant Pathogens in Oral Health: Harnessing the Potency of Antimicrobial Peptides in Nanofiber-Mediated Therapies. Int J Pept Res Ther 2024; 30:35. [DOI: 10.1007/s10989-024-10613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 01/12/2025]
|
21
|
Shiheido-Watanabe Y, Maejima Y, Nakagama S, Fan Q, Tamura N, Sasano T. Porphyromonas gingivalis, a periodontal pathogen, impairs post-infarcted myocardium by inhibiting autophagosome-lysosome fusion. Int J Oral Sci 2023; 15:42. [PMID: 37723152 PMCID: PMC10507114 DOI: 10.1038/s41368-023-00251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
While several previous studies have indicated the link between periodontal disease (PD) and myocardial infarction (MI), the underlying mechanisms remain unclear. Autophagy, a cellular quality control process that is activated in several diseases, including heart failure, can be suppressed by Porphyromonas gingivalis (P.g.). However, it is uncertain whether autophagy impairment by periodontal pathogens stimulates the development of cardiac dysfunction after MI. Thus, this study aimed to investigate the relationship between PD and the development of MI while focusing on the role of autophagy. Neonatal rat cardiomyocytes (NRCMs) and MI model mice were inoculated with wild-type P.g. or gingipain-deficient P.g. to assess the effect of autophagy inhibition by P.g. Wild-type P.g.-inoculated NRCMs had lower cell viability than those inoculated with gingipain-deficient P.g. This study also revealed that gingipains can cleave vesicle-associated membrane protein 8 (VAMP8), a protein involved in lysosomal sensitive factor attachment protein receptors (SNAREs), at the 47th lysine residue, thereby inhibiting autophagy. Wild-type P.g.-inoculated MI model mice were more susceptible to cardiac rupture, with lower survival rates and autophagy activity than gingipain-deficient P.g.-inoculated MI model mice. After inoculating genetically modified MI model mice (VAMP8-K47A) with wild-type P.g., they exhibited significantly increased autophagy activation compared with the MI model mice inoculated with wild-type P.g., which suppressed cardiac rupture and enhanced overall survival rates. These findings suggest that gingipains, which are virulence factors of P.g., impair the infarcted myocardium by cleaving VAMP8 and disrupting autophagy. This study confirms the strong association between PD and MI and provides new insights into the potential role of autophagy in this relationship.
Collapse
Affiliation(s)
- Yuka Shiheido-Watanabe
- Department of Cardiovascular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shun Nakagama
- Department of Cardiovascular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Qintao Fan
- Department of Cardiovascular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsuko Tamura
- Department of Cardiovascular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Tsimpiris A, Tsolianos I, Grigoriadis A, Tsimtsiou Z, Goulis DG, Grigoriadis N. Association of chronic periodontitis with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2023; 77:104874. [PMID: 37478676 DOI: 10.1016/j.msard.2023.104874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Chronic periodontitis (CP) is a multifactorial, chronic inflammatory disease of microbial etiology that manifests as a result of the dysfunction of the immune mechanism, culminating in the destruction of the alveolar bone of the jaws. Multiple sclerosis (MS) is an autoimmune disorder that affects the central nervous system (CNS), leads to demyelination and degeneration of nerve axons and often causes severe physical and/or cognitive impairment. As CP and MS involve inflammatory mechanisms and immune dysfunction, researchers have attempted to study the association between them. AIM To systematically review the literature on the epidemiological association between CP and MS in adults. METHODS PRISMA 2020 statement was used in the study protocol. The design was done according to the Cochrane methodology. A comprehensive literature search was performed in PubMed, Scopus and Cochrane databases; a manual search and evaluation of the gray literature was also performed. The meta-analysis was performed by Review Manager (RevMan) 5.4. Odds ratio (OR) with 95% confidence interval (CI) was defined as the effect size of the outcome. Heterogeneity was assessed by Chi-square and I2. The articles evaluated were written in English, without a time limit, concern observational studies (patient-controls) and report the diagnostic criteria of the diseases. Duplicate entries were excluded. To evaluate the reliability of the results of each study, Newcastle-Ottawa Scale (NOS) and GRADE tools were used. Two independent reviewers did all evaluations with a resolution of discrepancies by a third. RESULTS Meta-analysis included three observation studies examined 3376 people. MS patients are significantly more likely to be diagnosed with CP than healthy controls (OR 1.93, 95% CI 1.54-2.42, p<0.0001). CONCLUSION A high prevalence of CP was found among MS patients compared with healthy controls. Healthcare professionals should be aware of the association between these pathological entities to provide patients with high-quality care through an effective and holistic diagnostic and therapeutic approach.
Collapse
Affiliation(s)
| | - Ioannis Tsolianos
- Dental School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Grigoriadis
- Dental Sector, 424 General Military Training Hospital, Thessaloniki, Greece; Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zoi Tsimtsiou
- Department of Hygiene, Social-Preventive Medicine and Medical Statistics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Department of Neurology, AHEPA Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
23
|
Visentin D, Gobin I, Maglica Ž. Periodontal Pathogens and Their Links to Neuroinflammation and Neurodegeneration. Microorganisms 2023; 11:1832. [PMID: 37513004 PMCID: PMC10385044 DOI: 10.3390/microorganisms11071832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Pathogens that play a role in the development and progression of periodontitis have gained significant attention due to their implications in the onset of various systemic diseases. Periodontitis is characterized as an inflammatory disease of the gingival tissue that is mainly caused by bacterial pathogens. Among them, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia are regarded as the main periodontal pathogens. These pathogens elicit the release of cytokines, which in combination with their virulence factors induce chronic systemic inflammation and subsequently impact neural function while also altering the permeability of the blood-brain barrier. The primary objective of this review is to summarize the existing information regarding periodontal pathogens, their virulence factors, and their potential association with neuroinflammation and neurodegenerative diseases. We systematically reviewed longitudinal studies that investigated the association between periodontal disease and the onset of neurodegenerative disorders. Out of the 24 studies examined, 20 showed some degree of positive correlation between periodontal disease and neurodegenerative disorders, with studies focusing on cognitive function demonstrating the most robust effects. Therefore, periodontal pathogens might represent an exciting new approach to develop novel preventive treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- David Visentin
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Željka Maglica
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
24
|
Hix-Janssens T, Shinde S, Abouhany R, Davies J, Neilands J, Svensäter G, Sellergren B. Microcontact-Imprinted Optical Sensors for Virulence Factors of Periodontal Disease. ACS OMEGA 2023; 8:15259-15265. [PMID: 37151489 PMCID: PMC10157856 DOI: 10.1021/acsomega.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Periodontitis (gum disease) is a common biofilm-mediated oral condition, with around 7% of the adult population suffering from severe disease with risk for tooth loss. Moreover, periodontitis virulence markers have been found in atherosclerotic plaque and brain tissue, suggesting a link to cardiovascular and Alzheimer's diseases. The lack of accurate, fast, and sensitive clinical methods to identify patients at risk leads, on the one hand, to patients being undiagnosed until the onset of severe disease and, on the other hand, to overtreatment of individuals with mild disease, diverting resources from those patients most in need. The periodontitis-associated bacterium, Porphyromonas gingivalis, secrete gingipains which are highly active proteases recognized as key virulence factors during disease progression. This makes them interesting candidates as predictive biomarkers, but currently, there are no methods in clinical use for monitoring them. Quantifying the levels or proteolytic activity of gingipains in the periodontal pocket surrounding the teeth could enable early-stage disease diagnosis. Here, we report on a monitoring approach based on high-affinity microcontact imprinted polymer-based receptors for the Arg and Lys specific gingipains Rgp and Kgp and their combination with surface plasmon resonance (SPR)-based biosensor technology for quantifying gingipain levels in biofluids and patient samples. Therefore, Rgp and Kgp were immobilized on glass coverslips followed by microcontact imprinting of poly-acrylamide based films anchored to gold sensor chips. The monomers selected were N-isopropyl acrylamide (NIPAM), N-hydroxyethyl acrylamide (HEAA) and N-methacryloyl-4-aminobenzamidine hydrochloride (BAM), with N,N'-methylene bis(acrylamide) (BIS) as the crosslinker. This resulted in imprinted surfaces exhibiting selectivity towards their templates high affinity and selectivity for the templated proteins with dissociation constants (K d) of 159 and 299 nM for the Rgp- and Kgp-imprinted, surfaces respectively. The former surface displayed even higher affinity (K d = 71 nM) when tested in dilute cell culture supernatants. Calculated limits of detection for the sensors were 110 and 90 nM corresponding to levels below clinically relevant concentrations.
Collapse
Affiliation(s)
- Thomas Hix-Janssens
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Sudhirkumar Shinde
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Rahma Abouhany
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Julia Davies
- Section
for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden
| | - Jessica Neilands
- Section
for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden
| | - Gunnel Svensäter
- Section
for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden
| | - Börje Sellergren
- Department
of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| |
Collapse
|
25
|
Knowles AA, Campbell SG, Cross NA, Stafford P. Dysregulation of Stress-Induced Translational Control by Porphyromonas gingivalis in Host Cells. Microorganisms 2023; 11:microorganisms11030606. [PMID: 36985180 PMCID: PMC10057856 DOI: 10.3390/microorganisms11030606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Porphyromonas gingivalis contributes to the chronic oral disease periodontitis, triggering the activation of host inflammatory responses, inducing cellular stresses such as oxidation. During stress, host cells can activate the Integrated Stress Response (ISR), a pathway which determines cellular fate, by either downregulating protein synthesis and initiating a stress–response gene expression program, or by initiating programmed cell death. Recent studies have implicated the ISR within both host antimicrobial defenses and the pathomechanism of certain microbes. In this study, using a combination of immunofluorescence confocal microscopy and immunoblotting, the molecular mechanisms by which P. gingivalis infection alters translation attenuation during oxidative stress-induced activation of the ISR in oral epithelial cells were investigated. P. gingivalis infection alone did not result in ISR activation. In contrast, infection coupled with stress caused differential stress granule formation and composition. Infection heightened stress-induced translational repression independently of core ISR mediators. Heightened translational repression during stress was observed with both P. gingivalis–conditioned media and outer membrane vesicles, implicating a secretory factor in this exacerbated translational repression. The effects of gingipain inhibitors and gingipain-deficient P. gingivalis mutants confirmed these pathogen-specific proteases as the effector of exacerbated translational repression. Gingipains are known to degrade the mammalian target of rapamycin (mTOR) and the findings of this study implicate the gingipain-mTOR axis as the effector of host translational dysregulation during stress.
Collapse
|
26
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMID: 36380339 PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
27
|
Chow YC, Yam HC, Gunasekaran B, Lai WY, Wo WY, Agarwal T, Ong YY, Cheong SL, Tan SA. Implications of Porphyromonas gingivalis peptidyl arginine deiminase and gingipain R in human health and diseases. Front Cell Infect Microbiol 2022; 12:987683. [PMID: 36250046 PMCID: PMC9559808 DOI: 10.3389/fcimb.2022.987683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a major pathogenic bacterium involved in the pathogenesis of periodontitis. Citrullination has been reported as the underlying mechanism of the pathogenesis, which relies on the interplay between two virulence factors of the bacterium, namely gingipain R and the bacterial peptidyl arginine deiminase. Gingipain R cleaves host proteins to expose the C-terminal arginines for peptidyl arginine deiminase to citrullinate and generate citrullinated proteins. Apart from carrying out citrullination in the periodontium, the bacterium is found capable of citrullinating proteins present in the host synovial tissues, atherosclerotic plaques and neurons. Studies have suggested that both virulence factors are the key factors that trigger distal effects mediated by citrullination, leading to the development of some non-communicable diseases, such as rheumatoid arthritis, atherosclerosis, and Alzheimer’s disease. Thus, inhibition of these virulence factors not only can mitigate periodontitis, but also can provide new therapeutic solutions for systematic diseases involving bacterial citrullination. Herein, we described both these proteins in terms of their unique structural conformations and biological relevance to different human diseases. Moreover, investigations of inhibitory actions on the enzymes are also enumerated. New approaches for identifying inhibitors for peptidyl arginine deiminase through drug repurposing and virtual screening are also discussed.
Collapse
Affiliation(s)
- Yoke Chan Chow
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Weng Yeen Lai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Weng Yue Wo
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Tarun Agarwal
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Yien Yien Ong
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| |
Collapse
|
28
|
Purification of RgpA from external outer membrane vesicles of Porphyromonas gingivalis. Anaerobe 2022; 77:102647. [PMID: 36116685 DOI: 10.1016/j.anaerobe.2022.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Purification of native gingipains is challenging because these proteases are frequently associated with the cell surface, which affects yield. This study aimed to purify native Arg-gingipain (RgpA) from Porphyromonas gingivalis Outer Membrane Vesicles (OMV). METHODS Native RgpA was purified from P. gingivalis strain ATCC33277 OMV using a strategy including ultracentrifugation, sonication, and successive anionic and cationic fast protein liquid chromatography (FPLC). The presence and purity of the protease were confirmed by SDS-PAGE and detection of protease activity using fluorogenic substrates. Rat antibodies produced against the unique adhesin hemagglutinin (H1) domain of RgpA (amino acids 719-865) were titrated by ELISA at a 1:100 dilution using whole P. gingivalis lysate as an antigen and western blotting to detect a 75 kDa band corresponding to RgpA. RESULTS Double anionic-cationic FLPC yielded prominent peaks with evident amidolytic gingipain activity of the appropriate molecular weight, as confirmed by western blotting. The final RgpA yield from 1 L of bacterial culture with colony forming unit (CFU) (Log10) 7.4 ± 0.08/mL was of 12.6% (2 mg/mL), with 3.2 FU/μg of amidolytic activity. CONCLUSIONS This protocol allows purification of native RgpA from OMV that retains protease activity.
Collapse
|
29
|
Proteolytic Activity-Independent Activation of the Immune Response by Gingipains from Porphyromonas gingivalis. mBio 2022; 13:e0378721. [PMID: 35491845 PMCID: PMC9239244 DOI: 10.1128/mbio.03787-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis, a keystone pathogen in periodontitis (PD), produces cysteine proteases named gingipains (RgpA, RgpB, and Kgp), which strongly affect the host immune system. The range of action of gingipains is extended by their release as components of outer membrane vesicles, which efficiently diffuse into surrounding gingival tissues. However, away from the anaerobic environment of periodontal pockets, increased oxygen levels lead to oxidation of the catalytic cysteine residues of gingipains, inactivating their proteolytic activity. In this context, the influence of catalytically inactive gingipains on periodontal tissues is of significant interest. Here, we show that proteolytically inactive RgpA induced a proinflammatory response in both gingival keratinocytes and dendritic cells. Inactive RgpA is bound to the cell surface of gingival keratinocytes in the region of lipid rafts, and using affinity chromatography, we identified RgpA-interacting proteins, including epidermal growth factor receptor (EGFR). Next, we showed that EGFR interaction with inactive RgpA stimulated the expression of inflammatory cytokines. The response was mediated via the EGFR–phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which when activated in the gingival tissue rich in dendritic cells in the proximity of the alveolar bone, may significantly contribute to bone resorption and the progress of PD. Taken together, these findings broaden our understanding of the biological role of gingipains, which in acting as proinflammatory factors in the gingival tissue, create a favorable milieu for the growth of inflammophilic pathobionts.
Collapse
|
30
|
Jiang X, Li C, Fan X, Chen X, Guo M, Lan J. Kgp DNA Vaccine Prevents Experimental Periodontitis. ORAL HEALTH & PREVENTIVE DENTISTRY 2021; 19:683-688. [PMID: 34918502 PMCID: PMC11641464 DOI: 10.3290/j.ohpd.b2448589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/12/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE To investigate the prophylactic effect of lysine-specific protease (Kgp) vaccine on experimental periodontitis in mice. MATERIALS AND METHODS We constructed the eukaryotic expression plasmid pVAX1-kgp and immunised mice with the recombinant plasmid. Mice were divided into two groups and immunised with pVAX1-kgp or pVAX1 three times at 2-week intervals. Immunoglobulin (Ig)G, IgG1 and IgG2a antibodies were detected by enzyme-linked immunosorbent assay (ELISA) before and after immunisation. At the last immunisation, a silk ligature infiltrated with Porphyromonas gingivalis (P. gingivalis) was tied at the neck of the maxillary second molar to induce experimental periodontitis. Each group was euthanised after 10 days, and microcomputed tomography (micro-CT) and hematoxylin-eosin (HE) staining were used to detect the loss of alveolar bone. RESULTS Comparison with the pVAX1 group indicated that mice immunised with Kgp had higher levels of IgG (P < 0.05); the levels of the IgG1 were statistically significantly different (p < 0.05), and the levels of the IgG2a subtype were not significantly different. The results of micro-CT and HE staining showed that the alveolar bone loss in the pVAX1-kgp group was statistically significantly less than that in the pVAX1 group (p < 0.05). The expression of the related inflammatory factors, including interleukin-1β (IL-β), tumour necrosis factor (TNF-α) and interleukin-6 (IL-6), was lower in the pVAX1-kgp group than in the pVAX1 group. CONCLUSION The Kgp DNA vaccine can enhance IgG levels in a model of experimental periodontitis, effectively activate immunity, and mitigate alveolar bone loss.
Collapse
Affiliation(s)
- Xiao Jiang
- Postgraduate, Department of Prosthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China. *Contributed equally and share first authorship; study design, data analysis, and interpretation, drafted and critically revised the manuscript
| | - Chuanhua Li
- Lecturer, Department of Prosthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China. *Contributed equally and share first authorship; study design, data analysis, and interpretation, drafted and critically revised the manuscript
| | - Xin Fan
- Lecturer, Stomatology Department, The Affiliated Hospital of Weifang Medical University, Stomatology department, the affiliated hospital of Weifang Medical University Weifang Shandong China. Study concept, data acquisition, drafted the manuscript
| | - Xu Chen
- Postgraduate, Department of Prosthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China. Handled the animals/attached ligature, analysed histology results, and performed statistical analysis
| | - Meihua Guo
- Lecturer, Department of Prosthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China. Handle the animals/attached ligature, analysed histology results, performed statistical analysis
| | - Jing Lan
- Professor, Department of Prosthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China. Study concept and design, data interpretation, critically revised the manuscript
| |
Collapse
|
31
|
Singh S, Singh AK. Porphyromonas gingivalis in oral squamous cell carcinoma: A review. Microbes Infect 2021; 24:104925. [PMID: 34883247 DOI: 10.1016/j.micinf.2021.104925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Oral cancer contributes significantly to the global cancer burden. Oral bacteria play an important role in the spread of oral cancer, according to mounting evidence. The most proven instance is the carcinogenic implications of Porphyromonas gingivalis, a key pathogen in chronic periodontitis. It is imperative to understand the pathogenesis of P. gingivalis in OSCC. This review aims to gather and assess scientific shreds of evidence on the involvement of Porphyromonas gingivalis in the molecular mechanism of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India.
| |
Collapse
|
32
|
Nowakowska Z, Madej M, Grad S, Wang T, Hackett M, Miller DP, Lamont RJ, Potempa J. Phosphorylation of major Porphyromonas gingivalis virulence factors is crucial for their processing and secretion. Mol Oral Microbiol 2021; 36:316-326. [PMID: 34569151 PMCID: PMC10148667 DOI: 10.1111/omi.12354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
The main etiological agent of periodontitis is the anaerobic bacterium Porphyromonas gingivalis. Virulence of this pathogen is controlled by various mechanisms and executed by major virulence factors including the gingipain proteases, peptidylarginine deiminase (PPAD), and RagB, an outer membrane macromolecular transport component. Although the structures and functions of these proteins are well characterized, little is known about their posttranslational maturation. Here, we determined the phosphoproteome of P. gingivalis in which phosphorylated tyrosine residues constitute over 80% of all phosphoresidues. Multiple phosphotyrosines were found in gingipains, PPAD, and RagB. Although mutation of phosphorylated residues in PPAD and RagB had no effect on secretion or activity, site-directed mutagenesis showed that phosphorylation in hemagglutinin/adhesin domains of RgpA and Kgp, and in the catalytic domain of RgpB, had a strong influence on secretion, processing, and enzymatic activity. Moreover, preventing phosphorylation of one gingipain influenced the others, suggesting multiple phosphorylation-dependent pathways of gingipain maturation in P. gingivalis. Various candidate kinases including Ptk1 BY kinase and ubiquitous bacterial kinase 1 (UbK1) may be involved, but their contribution to gingipain processing and activation remains to be confirmed.
Collapse
Affiliation(s)
- Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Grad
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tiansong Wang
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Murray Hackett
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Daniel P. Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
33
|
Parra-Torres V, Melgar-Rodríguez S, Muñoz-Manríquez C, Sanhueza B, Cafferata EA, Paula-Lima AC, Díaz-Zúñiga J. Periodontal bacteria in the brain-Implication for Alzheimer's disease: A systematic review. Oral Dis 2021; 29:21-28. [PMID: 34698406 DOI: 10.1111/odi.14054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Periodontitis is a chronic non-communicable disease caused by a dysbiotic microbiota. Pathogens can spread to the bloodstream, colonize other tissues or organs, and favor the onset of other pathologies, such as Alzheimer's disease (AD). Pathogens could permanently or transiently colonize the brain and induce an immune response. Thus, we analyzed the evidence combining oral bacteria's detection in the brain, both in animals and humans affected with AD. This systematic review was carried out following the PRISMA guideline. Studies that detected oral bacteria at the brain level were selected. The search was carried out in the Medline, Latindex, SciELO, and Cochrane Library databases. SYRCLE tool and Newcastle-Ottawa Scale were used for the risk of bias assessment. 23 studies were selected according to the eligibility criteria. Infection with oral pathogens in animals was related to developing neuropathological characteristics of AD and bacteria detection in the brain. In patients with AD, oral bacteria were detected in brain tissues, and increased levels of pro-inflammatory cytokines were also detected. There is evidence of a microbiological susceptibility to develop AD when the most dysbiosis-associated oral bacteria are present. The presence of bacteria in the brain is related to AD's pathological characteristics, suggesting an etiological oral-brain axis.
Collapse
Affiliation(s)
- Valeria Parra-Torres
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | | | - Benjamín Sanhueza
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Andrea C Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Medicine, Faculty of Medicine, Universidad de Atacama, Copiapo, Chile
| |
Collapse
|
34
|
Elwishahy A, Antia K, Bhusari S, Ilechukwu NC, Horstick O, Winkler V. Porphyromonas Gingivalis as a Risk Factor to Alzheimer's Disease: A Systematic Review. J Alzheimers Dis Rep 2021; 5:721-732. [PMID: 34755046 PMCID: PMC8543378 DOI: 10.3233/adr-200237] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease that accounts for more than 50% of all dementia cases worldwide. There is wide consensus on the risk factors of AD; however, a clear etiology remains unknown. Evidence suggests that the inflammatory-mediated disease model, such as that found with periodontal disease due to Porphyromonas gingivalis (P. gingivalis), plays a role in AD progression. OBJECTIVE This study aims to systematically review the literature on the association between P. gingivalis to AD, and to identify the homogeneity of the methods used across studies to measure P. gingivalis involvement in AD. METHODS We systematically searched studies on Cochrane library, Ovid Medline, PubMed, Web of Science, WHOLIS, Google Scholar databases, and reference lists of identified studies. RESULTS 6 studies out of 636 identified records fulfilled all eligibility criteria. Results showed no clear pathophysiology of AD due to P. gingivalis and its various virulence factors. No consensus was found in the literature pertaining to the method of measurement of AD or P. gingivalis and its virulence factors. CONCLUSION The included studies suggest that P. gingivalis bacteria play a role in the process of systemic inflammation which leads to cerebrospinal fluid inflammation and indirectly cause hastening of AD onset and progression. Our included studies revealed heterogeneity in the methodologies of measurement of AD and/or P. gingivalis and its virulence factors, which opens discussion about the benefits and weakness of possible standardization.
Collapse
Affiliation(s)
- Abdelrahman Elwishahy
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Khatia Antia
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Sneha Bhusari
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Olaf Horstick
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Winkler
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
35
|
Okamura H, Hirota K, Yoshida K, Weng Y, He Y, Shiotsu N, Ikegame M, Uchida-Fukuhara Y, Tanai A, Guo J. Outer membrane vesicles of Porphyromonas gingivalis: Novel communication tool and strategy. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:138-146. [PMID: 34484474 PMCID: PMC8399048 DOI: 10.1016/j.jdsr.2021.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have been recognized as a universal method of cellular communications and are reportedly produced in bacteria, archaea, and eukaryotes. Bacterial EVs are often called “Outer Membrane Vesicles” (OMVs) as they were the result of a controlled blebbing of the outer membrane of gram-negative bacteria such as Porphyromonas gingivalis (P. gingivalis). Bacterial EVs are natural messengers, implicated in intra- and inter-species cell-to-cell communication among microorganism populations present in microbiota. Bacteria can incorporate their pathogens into OMVs; the content of OMVs differs, depending on the type of bacteria. The production of distinct types of OMVs can be mediated by different factors and routes. A recent study highlighted OMVs ability to carry crucial molecules implicated in immune modulation, and, nowadays, they are considered as a way to communicate and transfer messages from the bacteria to the host and vice versa. This review article focuses on the current understanding of OMVs produced from major oral bacteria, P. gingivalis: generation, characteristics, and contents as well as the involvement in signal transduction of host cells and systemic diseases. Our recent study regarding the action of P. gingivalis OMVs in the living body is also summarized.
Collapse
Affiliation(s)
- Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Katsuhiko Hirota
- Department of Medical Hygiene, Dental Hygiene Course, Kochi Gakuen College, Kochi 780-0955, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Yuhan He
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Noriko Shiotsu
- Comprehensive Dental Clinic, Okayama University Hospital, Okayama University, Okayama, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Yoko Uchida-Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Airi Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Jiajie Guo
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan.,Department of Endodontics, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, China
| |
Collapse
|
36
|
Villard A, Boursier J, Andriantsitohaina R. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis? Am J Physiol Gastrointest Liver Physiol 2021; 320:G485-G495. [PMID: 33471632 DOI: 10.1152/ajpgi.00362.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver and intestine communicate in a bidirectional way through the biliary tract, portal vein, and other components of the gut-liver axis. The gut microbiota is one of the major contributors to the production of several proteins and bile acids. Imbalance in the gut bacterial community, called dysbiosis, participates in the development and progression of several chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). NAFLD is currently considered the main chronic liver disease worldwide. Dysbiosis contributes to NAFLD development and progression, notably by a greater translocation of pathogen-associated molecular patterns (PAMPs) in the blood. Lipopolysaccharide (LPS) is a PAMP that activates Toll-like receptor 4 (TLR4), induces liver inflammation, and participates in the development of fibrogenesis. LPS can be transported by bacterial extracellular vesicles (EVs). EVs are spherical structures produced by eukaryotic and prokaryotic cells that transfer information to distant cells and may represent new players in NAFLD development and progression. The present review summarizes the role of eukaryotic EVs, either circulating or tissue-derived, in NAFLD features, such as liver inflammation, angiogenesis, and fibrosis. Circulating EV levels are dynamic and correlate with disease stage and severity. However, scarce information is available concerning the involvement of bacterial EVs in liver disease. The present review highlights a potential role of bacterial EVs in insulin resistance and liver inflammation, although the mechanism involved has not been elucidated. In addition, because of their distinct signatures, eukaryotic and prokaryotic EVs may also represent a promising NAFLD diagnostic tool as a "liquid biopsy" in the future.
Collapse
Affiliation(s)
- Alexandre Villard
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, Université d'Angers, Université Bretagne Loire, Angers, France.,EA 3859, Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques (HIFIH), Angers, France
| | - Jérôme Boursier
- EA 3859, Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques (HIFIH), Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, Université d'Angers, Université Bretagne Loire, Angers, France
| |
Collapse
|
37
|
Oleoresins and naturally occurring compounds of Copaifera genus as antibacterial and antivirulence agents against periodontal pathogens. Sci Rep 2021; 11:4953. [PMID: 33654123 PMCID: PMC7925542 DOI: 10.1038/s41598-021-84480-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Invasion of periodontal tissues by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can be associated with aggressive forms of periodontitis. Oleoresins from different copaifera species and their compounds display various pharmacological properties. The present study evaluates the antibacterial and antivirulence activity of oleoresins obtained from different copaifera species and of ten isolated compounds against two causative agents of periodontitis. The following assays were performed: determination of the minimum inhibitory concentration (MIC), determination of the minimum bactericidal concentration (MBC), and determination of the antibiofilm activity by inhibition of biofilm formation and biofilm eradication tests. The antivirulence activity was assessed by hemagglutination, P. gingivalis Arg-X and Lis-X cysteine protease inhibition assay, and A. actinomycetemcomitans leukotoxin inhibition assay. The MIC and MBC of the oleoresins and isolated compounds 1, 2, and 3 ranged from 1.59 to 50 μg/mL against P. gingivalis (ATCC 33277) and clinical isolates and from 6.25 to 400 μg/mL against A. actinomycetemcomitans (ATCC 43717) and clinical isolates. About the antibiofilm activity, the oleoresins and isolated compounds 1, 2, and 3 inhibited biofilm formation by at least 50% and eradicated pre-formed P. gingivalis and A. actinomycetemcomitans biofilms in the monospecies and multispecies modes. A promising activity concerning cysteine protease and leucotoxin inhibition was also evident. In addition, molecular docking analysis was performed. The investigated oleoresins and their compounds may play an important role in the search for novel sources of agents that can act against periodontal pathogens.
Collapse
|
38
|
Zhang Z, Liu D, Liu S, Zhang S, Pan Y. The Role of Porphyromonas gingivalis Outer Membrane Vesicles in Periodontal Disease and Related Systemic Diseases. Front Cell Infect Microbiol 2021; 10:585917. [PMID: 33585266 PMCID: PMC7877337 DOI: 10.3389/fcimb.2020.585917] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Periodontal disease is a chronic infectious disease associated with a variety of bacteria, which can cause damage to the periodontal support structure and affect a variety of systemic system diseases such as cancer, cardiovascular disease, diabetes, rheumatoid arthritis, non-alcoholic fatty liver, and Alzheimer's disease. Porphyromonas gingivalis (P. gingivalis) is the most important pathogenic bacteria for periodontal disease. It can produce outer membrane vesicles (OMVs) and release them into the environment, playing an important role in its pathogenesis. This article focuses on P. gingivalis OMVs, reviews its production and regulation, virulence components, mode of action and related diseases, with a view to providing new ideas for the prevention and treatment of diseases related to P. gingivalis infections.
Collapse
Affiliation(s)
- Zhiying Zhang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Sai Liu
- Department of Dental Materials, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shuwei Zhang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
39
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
40
|
Miya C, Cueno ME, Suzuki R, Maruoka S, Gon Y, Kaneko T, Yonehara Y, Imai K. Porphyromonas gingivalis gingipains potentially affect MUC5AC gene expression and protein levels in respiratory epithelial cells. FEBS Open Bio 2020; 11:446-455. [PMID: 33332733 PMCID: PMC7876492 DOI: 10.1002/2211-5463.13066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
Porphyromonas gingivalis (Pg) is a periodontopathic pathogen that may affect MUC5AC‐related mucus hypersecretion along airway epithelial cells. Here, we attempted to establish whether Pg virulence factors (lipopolysaccharide, FimA fimbriae, gingipains) affect MUC5AC in immortalized and primary bronchial cells. We report that MUC5AC gene expression and protein levels are affected by Pg culture supernatant, but not by lipopolysaccharide or FimA fimbriae. Cells treated with either Pg single (Kgp or Rgp) or double (Kgp/Rgp) mutants had altered levels of MUC5AC gene expression and protein levels, and MUC5AC staining of double mutant‐treated mouse lung cells showed that MUC5AC protein levels were unaffected. Taken together, we propose that Pg gingipains may be the primary virulence factor that influences both MUC5AC gene expression and protein levels.
Collapse
Affiliation(s)
- Chihiro Miya
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryuta Suzuki
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuichiro Maruoka
- Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
41
|
Marre ATDO, Domingues RMCP, Lobo LA. Adhesion of anaerobic periodontal pathogens to extracellular matrix proteins. Braz J Microbiol 2020; 51:1483-1491. [PMID: 32557245 PMCID: PMC7688880 DOI: 10.1007/s42770-020-00312-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) proteins are highly abundant in the human body and can be found in various tissues, most prominently in connective tissue and basement membrane. For invasive bacterial pathogens, these structures function as physical barriers that block access to underlying tissues. The ability to bind and degrade these barriers is important for the establishment of infections and migration to other body sites. In the oral cavity, the ECM and the basement membrane (BM) are important components of the Junctional epithelium (JE) that closes the gap between the teeth surface and the mucosa. In periodontitis, the JE is breached by invading pathogenic bacteria, particularly strict anaerobic species. In periodontitis, invading microorganisms induce an unregulated and destructive host response through polymicrobial synergism and dysbiosis that attracts immune cells and contributes to the destruction of connective tissue and bone in the periodontal pocket. Colonization of the periodontal pocket is the first step to establish this infection, and binding to ECM is a major advantage in this site. Several species of strict anaerobic bacteria are implicated in acute and chronic periodontitis, and although binding to ECM proteins was studied in these species, few adhesins were identified so far, and the mechanisms involved in adhesion are largely unidentified. This review summarizes the data available on the interaction of strict anaerobic bacteria and components of the ECM.
Collapse
Affiliation(s)
- Andressa Temperine de Oliveira Marre
- Medical Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, CCS - Centro de Ciências da Saúde, 373 Avenida Carlos Chagas Filho, Bloco I - sala I2-06, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Regina M C P Domingues
- Medical Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, CCS - Centro de Ciências da Saúde, 373 Avenida Carlos Chagas Filho, Bloco I - sala I2-06, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Leandro A Lobo
- Medical Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, CCS - Centro de Ciências da Saúde, 373 Avenida Carlos Chagas Filho, Bloco I - sala I2-06, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
42
|
Nakanishi H, Nonaka S, Wu Z. Microglial Cathepsin B and Porphyromonas gingivalis Gingipains as Potential Therapeutic Targets for Sporadic Alzheimer’s Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:495-502. [DOI: 10.2174/1871527319666200708125130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 01/19/2023]
Abstract
Many efforts have been made to develop therapeutic agents for Alzheimer’s Disease (AD)
based on the amyloid cascade hypothesis, but there is no effective therapeutic agent at present. Now,
much attention has been paid to infiltrate pathogens in the brain as a trigger of AD. These pathogens,
or their virulence factors, may directly cross a weakened blood-brain barrier, reach the brain and cause
neurological damage by eliciting neuroinflammation. Moreover, there is growing clinical evidence of
a correlation between periodontitis and cognitive decline in AD patients. Recent studies have revealed
that microglial cathepsin B is increasingly induced by lipopolysaccharide of Porphylomonas gingivalis,
a major pathogen of periodontal disease. Moreover, gingipains produced by P. gingivalis play
critical roles in neuroinflammation mediated by microglia and cognitive decline in mice. Furthermore,
an orally bioavailable and brain-permeable inhibitor of gingipain is now being tested in AD patients. It
is largely expected that clinical studies countering bacterial virulence factors may pave the way to establish
the prevention and early treatment of AD.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan
| | - Saori Nonaka
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan
| | - Zhou Wu
- OBT Research Center, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
43
|
Díaz-Zúñiga J, More J, Melgar-Rodríguez S, Jiménez-Unión M, Villalobos-Orchard F, Muñoz-Manríquez C, Monasterio G, Valdés JL, Vernal R, Paula-Lima A. Alzheimer's Disease-Like Pathology Triggered by Porphyromonas gingivalis in Wild Type Rats Is Serotype Dependent. Front Immunol 2020; 11:588036. [PMID: 33240277 PMCID: PMC7680957 DOI: 10.3389/fimmu.2020.588036] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Periodontal disease is a disease of tooth-supporting tissues. It is a chronic disease with inflammatory nature and infectious etiology produced by a dysbiotic subgingival microbiota that colonizes the gingivodental sulcus. Among several periodontal bacteria, Porphyromonas gingivalis (P. gingivalis) highlights as a keystone pathogen. Previous reports have implied that chronic inflammatory response and measurable bone resorption are observed in young mice, even after a short period of periodontal infection with P. gingivalis, which has been considered as a suitable model of experimental periodontitis. Also, encapsulated P. gingivalis strains are more virulent than capsular-defective mutants, causing an increased immune response, augmented osteoclastic activity, and accrued alveolar bone resorption in these rodent experimental models of periodontitis. Recently, P. gingivalis has been associated with Alzheimer’s disease (AD) pathogenesis, either by worsening brain pathology in AD-transgenic mice or by inducing memory impairment and age-dependent neuroinflammation middle-aged wild type animals. We hypothesized here that the more virulent encapsulated P. gingivalis strains could trigger the appearance of brain AD-markers, neuroinflammation, and cognitive decline even in young rats subjected to a short periodontal infection exposure, due to their higher capacity of activating brain inflammatory responses. To test this hypothesis, we periodontally inoculated 4-week-old male Sprague-Dawley rats with K1, K2, or K4 P. gingivalis serotypes and the K1-isogenic non-encapsulated mutant (GPA), used as a control. 45-days after periodontal inoculations with P. gingivalis serotypes, rat´s spatial memory was evaluated for six consecutive days in the Oasis maze task. Following functional testing, the animals were sacrificed, and various tissues were removed to analyze alveolar bone resorption, cytokine production, and detect AD-specific biomarkers. Strikingly, only K1 or K2 P. gingivalis-infected rats displayed memory deficits, increased alveolar bone resorption, pro-inflammatory cytokine production, changes in astrocytic morphology, increased Aβ1-42 levels, and Tau hyperphosphorylation in the hippocampus. None of these effects were observed in rats infected with the non-encapsulated bacterial strains. Based on these results, we propose that the bacterial virulence factors constituted by capsular polysaccharides play a central role in activating innate immunity and inflammation in the AD-like pathology triggered by P. gingivalis in young rats subjected to an acute experimental infection episode.
Collapse
Affiliation(s)
- Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jamileth More
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Matías Jiménez-Unión
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | | | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
44
|
Pierce JV, Fellows JD, Anderson DE, Bernstein HD. A clostripain-like protease plays a major role in generating the secretome of enterotoxigenic Bacteroides fragilis. Mol Microbiol 2020; 115:290-304. [PMID: 32996200 DOI: 10.1111/mmi.14616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/27/2022]
Abstract
Bacteroides fragilis toxin (BFT) is a protein secreted by enterotoxigenic (ETBF) strains of B. fragilis. BFT is synthesized as a proprotein (proBFT) that is predicted to be a lipoprotein and that is cleaved into two discrete fragments by a clostripain-like protease called fragipain (Fpn). In this study, we obtained evidence that Fpn cleaves proBFT following its transport across the outer membrane. Remarkably, we also found that the disruption of the fpn gene led to a strong reduction in the level of >100 other proteins, many of which are predicted to be lipoproteins, in the culture medium of an ETBF strain. Experiments performed with purified Fpn provided direct evidence that the protease releases at least some of these proteins from the cell surface. The observation that wild-type cells outcompeted an fpn- strain in co-cultivation assays also supported the notion that Fpn plays an important role in cell physiology and is not simply dedicated to toxin biogenesis. Finally, we found that purified Fpn altered the adhesive properties of HT29 intestinal epithelial cells. Our results suggest that Fpn is a broad-spectrum protease that not only catalyzes the protein secretion on a wide scale but that also potentially cleaves host cell proteins during colonization.
Collapse
Affiliation(s)
- Jessica V Pierce
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin D Fellows
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Miller DP, Scott DA. Inherently and Conditionally Essential Protein Catabolism Genes of Porphyromonas gingivalis. Trends Microbiol 2020; 29:54-64. [PMID: 33071035 DOI: 10.1016/j.tim.2020.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Proteases are critical virulence determinants of Porphyromonas gingivalis, an emerging Alzheimer's disease, cancer, and arthritis pathogen and established agent of periodontitis. Transposon sequencing has been employed to define the core essential genome of this bacterium and genes conditionally essential in multiple environments - abscess formation; epithelial colonization; and cigarette smoke toxin exposure; as well as to elucidate genes required for iron acquisition and a functional type 9 secretion system. Validated and predicted protein catabolism genes identified include a combination of established virulence factors and a larger set of seemingly more mundane proteolytic genes. The functions and relevance of genes that share essentiality in multiple disease-relevant conditions are examined. These common stress-related genes may represent particularly attractive therapeutic targets for the control of P. gingivalis infections.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
46
|
Dagnino APA, Campos MM, Silva RBM. Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090215. [PMID: 32867272 PMCID: PMC7558425 DOI: 10.3390/ph13090215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Kinins and their receptors have been implicated in a series of pathological alterations, representing attractive pharmacological targets for several diseases. The present review article aims to discuss the role of the kinin system in infectious diseases. Literature data provides compelling evidence about the participation of kinins in infections caused by diverse agents, including viral, bacterial, fungal, protozoan, and helminth-related ills. It is tempting to propose that modulation of kinin actions and production might be an adjuvant strategy for management of infection-related complications.
Collapse
|
47
|
Iqbal UH, Zeng E, Pasinetti GM. The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease. Int J Mol Sci 2020; 21:E4920. [PMID: 32664669 PMCID: PMC7404195 DOI: 10.3390/ijms21144920] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The aggregation and accumulation of amyloid-β plaques and tau proteins in the brain have been central characteristics in the pathophysiology of Alzheimer's disease (AD), making them the focus of most of the research exploring potential therapeutics for this neurodegenerative disease. With success in interventions aimed at depleting amyloid-β peptides being limited at best, a greater understanding of the physiological role of amyloid-β peptides is needed. The development of amyloid-β plaques has been determined to occur 10-20 years prior to AD symptom manifestation, hence earlier interventions might be necessary to address presymptomatic AD. Furthermore, recent studies have suggested that amyloid-β peptides may play a role in innate immunity as an antimicrobial peptide. These findings, coupled with the evidence of pathogens such as viruses and bacteria in AD brains, suggests that the buildup of amyloid-β plaques could be a response to the presence of viruses and bacteria. This has led to the foundation of the antimicrobial hypothesis for AD. The present review will highlight the current understanding of amyloid-β, and the role of bacteria and viruses in AD, and will also explore the therapeutic potential of antimicrobial and antiviral drugs in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (U.H.I.); (E.Z.)
| |
Collapse
|
48
|
Kumbar VM, Peram MR, Kugaji MS, Shah T, Patil SP, Muddapur UM, Bhat KG. Effect of curcumin on growth, biofilm formation and virulence factor gene expression of Porphyromonas gingivalis. Odontology 2020; 109:18-28. [PMID: 32279229 DOI: 10.1007/s10266-020-00514-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen and major colonizer in host tissue which plays a pivotal role in periodontitis among the other polymicrobial infections. Increasing facts demonstrate that curcumin has antibacterial activity and anti-biofilm effect against the periodontopathogens through diverse mechanisms that have a positive impact on periodontal health. The present study was aimed to elucidate the effect of curcumin on biofilm formation and virulence factor gene expression of P. gingivalis. By using gene expression studies, we exploited the mechanism of anti-biofilm effects of curcumin on P. gingivalis. The minimum inhibitory concentration and minimum bactericidal concentration of curcumin for both ATCC and clinical strains of P. gingivalis were found to be 62.5 and 125 µg ml-1 respectively. Curcumin prevented bacterial adhesion and biofilm formation in a dose-dependent manner. Further, curcumin attenuated the virulence of P. gingivalis by reducing the expression of genes coding for major virulence factors, including adhesions (fimA, hagA, and hagB) and proteinases (rgpA, rgpB, and kgp). The results indicated that curcumin has shown anti-biofilm as well as antibacterial activity against P. gingivalis. Further, curcumin because of its pleiotropic actions could be a simple and inexpensive therapeutic strategy in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Vijay M Kumbar
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
| | - Malleswara Rao Peram
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
- Department of Pharmaceutics, Maratha Mandal's College of Pharmacy, Belgaum, Karnataka, 590 010, India
| | - Manohar S Kugaji
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
| | - Tejas Shah
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Vadgaon Budruk, Sinhagad Road, Pune, Maharashtra, 411 0 41, India
| | - Sanjivani P Patil
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
| | - Uday M Muddapur
- Department of Biotechnology, KLE Technological University (Formerly Known as B.V.Bhoomaraddi College of Engineering and Technology), BVB Campus, Hubli, Karnataka, 580031, India
| | - Kishore G Bhat
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India.
| |
Collapse
|
49
|
Śmiga M, Olczak T. PgRsp Is a Novel Redox-Sensing Transcription Regulator Essential for Porphyromonas gingivalis Virulence. Microorganisms 2019; 7:microorganisms7120623. [PMID: 31795139 PMCID: PMC6955866 DOI: 10.3390/microorganisms7120623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas gingivalis is one of the etiological agents of chronic periodontitis. Both heme and oxidative stress impact expression of genes responsible for its survival and virulence. Previously we showed that P. gingivalis ferric uptake regulator homolog affects expression of a gene encoding a putative Crp/Fnr superfamily member, termed P. gingivalis redox-sensing protein (PgRsp). Although PgRsp binds heme and shows the highest similarity to proteins assigned to the CooA family, it could be a member of a novel, separate family of proteins with unknown function. Expression of the pgrsp gene is autoregulated and iron/heme dependent. Genes encoding proteins engaged in the oxidative stress response were upregulated in the pgrsp mutant (TO11) strain compared with the wild-type strain. The TO11 strain showed higher biomass production, biofilm formation, and coaggregation ability with Tannerella forsythia and Prevotella intermedia. We suggest that PgRsp may regulate production of virulence factors, proteases, Hmu heme acquisition system, and FimA protein. Moreover, we observed growth retardation of the TO11 strain under oxidative conditions and decreased survival ability of the mutant cells inside macrophages. We conclude that PgRsp protein may play a role in the oxidative stress response using heme as a ligand for sensing changes in redox status, thus regulating the alternative pathway of the oxidative stress response alongside OxyR.
Collapse
|
50
|
The Distinct Immune-Stimulatory Capacities of Porphyromonas gingivalis Strains 381 and ATCC 33277 Are Determined by the fimB Allele and Gingipain Activity. Infect Immun 2019; 87:IAI.00319-19. [PMID: 31570556 DOI: 10.1128/iai.00319-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/19/2019] [Indexed: 11/20/2022] Open
Abstract
The Porphyromonas gingivalis strain ATCC 33277 (33277) and 381 genomes are nearly identical. However, strain 33277 displays a significantly diminished capacity to stimulate host cell Toll-like receptor 2 (TLR2)-dependent signaling and interleukin-1β (IL-1β) production relative to 381, suggesting that there are strain-specific differences in one or more bacterial immune-modulatory factors. Genomic sequencing identified a single nucleotide polymorphism in the 33277 fimB allele (A→T), creating a premature stop codon in the 33277 fimB open reading frame relative to the 381 fimB allele. Gene exchange experiments established that the 33277 fimB allele reduces the immune-stimulatory capacity of this strain. Transcriptome comparisons revealed that multiple genes related to carboxy-terminal domain (CTD) family proteins, including the gingipains, were upregulated in 33277 relative to 381. A gingipain substrate degradation assay demonstrated that cell surface gingipain activity is higher in 33277, and an isogenic mutant strain deficient for the gingipains exhibited an increased ability to induce TLR2 signaling and IL-1β production. Furthermore, 33277 and 381 mutant strains lacking CTD cell surface proteins were more immune-stimulatory than the parental wild-type strains, consistent with an immune-suppressive role for the gingipains. Our data show that the combination of an intact fimB allele and limited cell surface gingipain activity in P. gingivalis 381 renders this strain more immune-stimulatory. Conversely, a defective fimB allele and high-level cell surface gingipain activity reduce the capacity of P. gingivalis 33277 to stimulate host cell innate immune responses. In summary, genomic and transcriptomic comparisons identified key virulence characteristics that confer divergent host cell innate immune responses to these highly related P. gingivalis strains.
Collapse
|