1
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Mukit FA, Manley A, Patel AB, Hashemi M, Laplant JF, Fleming JC, Fowler BT. Side Effects and Adverse Events After Treatment With Teprotumumab for Thyroid Eye Disease: A Retrospective Observational Case Series. Cureus 2024; 16:e58585. [PMID: 38765324 PMCID: PMC11102658 DOI: 10.7759/cureus.58585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
As the use of teprotumumab for thyroid eye disease (TED) becomes more prolific, there remains a scarcity of literature regarding the associated side effects and adverse events of teprotumumab use. The authors present a single-center retrospective, observational case review of TED patients who received at least a single dose of teprotumumab infusion at the oculofacial plastic surgery service between February 2020 and July 2023. The most predominant recollected side effects were fatigue, brittle nails, dry eye symptoms, hair loss, muscle spasms, and dry mouth. Significant adverse events were limited to two cases of a blood clot and a single case of pulmonary embolism. This is the first retrospective study of patient-reported side effects and adverse events experienced by a cohort of teprotumumab users.
Collapse
Affiliation(s)
| | - Andrew Manley
- Ophthalmology, The University of Tennessee Health Science Center, Memphis, USA
| | - Akash B Patel
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Marium Hashemi
- Ophthalmology, The University of Tennessee Health Science Center, Memphis, USA
| | - Jacquelyn F Laplant
- Ophthalmic Plastic and Reconstructive Surgery, Medical College of Wisconsin, Milwaukee, USA
| | - James C Fleming
- Oculofacial Plastic and Reconstructive Surgery, Hamilton Eye Institute, Memphis, USA
| | - Brian T Fowler
- Oculofacial Plastic and Reconstructive Surgery, Hamilton Eye Institute, Memphis, USA
| |
Collapse
|
4
|
Je M, Kang K, Yoo JI, Kim Y. The Influences of Macronutrients on Bone Mineral Density, Bone Turnover Markers, and Fracture Risk in Elderly People: A Review of Human Studies. Nutrients 2023; 15:4386. [PMID: 37892460 PMCID: PMC10610213 DOI: 10.3390/nu15204386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is a health condition that involves weak bone mass and a deteriorated microstructure, which consequently lead to an increased risk of bone fractures with age. In elderly people, a fracture attributable to osteoporosis elevates mortality. The objective of this review was to examine the effects of macronutrients on bone mineral density (BMD), bone turnover markers (BTMs), and bone fracture in elderly people based on human studies. A systematic search was conducted in the PubMed®/MEDLINE® database. We included human studies published up to April 2023 that investigated the association between macronutrient intake and bone health outcomes. A total of 11 meta-analyses and 127 individual human studies were included after screening the records. Carbohydrate consumption seemed to have neutral effects on bone fracture in limited studies, but human studies on carbohydrates' effects on BMD or/and BTMs are needed. The human studies analyzed herein did not clearly show whether the intake of animal, vegetable, soy, or milk basic proteins has beneficial effects on bone health due to inconsistent results. Moreover, several individual human studies indicated an association between eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and osteocalcin. Further studies are required to draw a clear association between macronutrients and bone health in elderly people.
Collapse
Affiliation(s)
- Minkyung Je
- Department of Food and Nutrition, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (M.J.); (K.K.)
| | - Kyeonghoon Kang
- Department of Food and Nutrition, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (M.J.); (K.K.)
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Inha University Hospital, 27 Inhang-Ro, Incheon 22332, Republic of Korea;
| | - Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Kukreja RC, Wang R, Koka S, Das A, Samidurai A, Xi L. Treating diabetes with combination of phosphodiesterase 5 inhibitors and hydroxychloroquine-a possible prevention strategy for COVID-19? Mol Cell Biochem 2023; 478:679-696. [PMID: 36036333 PMCID: PMC9421626 DOI: 10.1007/s11010-022-04520-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/30/2022] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is one of the major risk factors for developing cardiovascular disease and the resultant devastating morbidity and mortality. The key features of T2D are hyperglycemia, hyperlipidemia, insulin resistance, and impaired insulin secretion. Patients with diabetes and myocardial infarction have worse prognosis than those without T2D. Moreover, obesity and T2D are recognized risk factors in developing severe form of COVID-19 with higher mortality rate. The current lines of drug therapy are insufficient to control T2D and its serious cardiovascular complications. Phosphodiesterase 5 (PDE5) is a cGMP specific enzyme, which is the target of erectile dysfunction drugs including sildenafil, vardenafil, and tadalafil. Cardioprotective effects of PDE5 inhibitors against ischemia/reperfusion (I/R) injury were reported in normal and diabetic animals. Hydroxychloroquine (HCQ) is a widely used antimalarial and anti-inflammatory drug and its hyperglycemia-controlling effect in diabetic patients is also under investigation. This review provides our perspective of a potential use of combination therapy of PDE5 inhibitor with HCQ to reduce cardiovascular risk factors and myocardial I/R injury in T2D. We previously observed that diabetic mice treated with tadalafil and HCQ had significantly reduced fasting blood glucose and lipid levels, increased plasma insulin and insulin-like growth factor-1 levels, and improved insulin sensitivity, along with smaller myocardial infarct size following I/R. The combination treatment activated Akt/mTOR cellular survival pathway, which was likely responsible for the salutary effects. Therefore, pretreatment with PDE5 inhibitor and HCQ may be a potentially useful therapy not only for controlling T2D but also reducing the rate and severity of COVID-19 infection in the vulnerable population of diabetics.
Collapse
Affiliation(s)
- Rakesh C Kukreja
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| | - Rui Wang
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Saisudha Koka
- Department of Microbiology, Immunology and Pharmacology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916-6024, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Arun Samidurai
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| |
Collapse
|
6
|
Samak M, Kues A, Kaltenborn D, Klösener L, Mietsch M, Germena G, Hinkel R. Dysregulation of Krüppel-like Factor 2 and Myocyte Enhancer Factor 2D Drive Cardiac Microvascular Inflammation and Dysfunction in Diabetes. Int J Mol Sci 2023; 24:2482. [PMID: 36768805 PMCID: PMC9916909 DOI: 10.3390/ijms24032482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Cardiovascular complications are the main cause of morbidity and mortality from diabetes. Herein, vascular inflammation is a major pathological manifestation. We previously characterized the cardiac microvascular inflammatory phenotype in diabetic patients and highlighted micro-RNA 92a (miR-92a) as a driver of endothelial dysfunction. In this article, we further dissect the molecular underlying of these findings by addressing anti-inflammatory Krüppel-like factors 2 and 4 (KLF2 and KLF4). We show that KLF2 dysregulation in diabetes correlates with greater monocyte adhesion as well as migratory defects in cardiac microvascular endothelial cells. We also describe, for the first time, a role for myocyte enhancer factor 2D (MEF2D) in cardiac microvascular dysfunction in diabetes. We show that both KLFs 2 and 4, as well as MEF2D, are dysregulated in human and porcine models of diabetes. Furthermore, we prove a direct interaction between miR-92a and all three targets. Altogether, our data strongly qualify miR-92a as a potential therapeutic target for diabetes-associated cardiovascular disease.
Collapse
Affiliation(s)
- Mostafa Samak
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Andreas Kues
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
| | - Diana Kaltenborn
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
| | - Lina Klösener
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Matthias Mietsch
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Giulia Germena
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine, 30173 Hannover, Germany
| |
Collapse
|
7
|
Macvanin M, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. New insights on the cardiovascular effects of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1142644. [PMID: 36843588 PMCID: PMC9947133 DOI: 10.3389/fendo.2023.1142644] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Cardiovascular (CV) disorders are steadily increasing, making them the world's most prevalent health issue. New research highlights the importance of insulin-like growth factor 1 (IGF-1) for maintaining CV health. METHODS We searched PubMed and MEDLINE for English and non-English articles with English abstracts published between 1957 (when the first report on IGF-1 identification was published) and 2022. The top search terms were: IGF-1, cardiovascular disease, IGF-1 receptors, IGF-1 and microRNAs, therapeutic interventions with IGF-1, IGF-1 and diabetes, IGF-1 and cardiovascular disease. The search retrieved original peer-reviewed articles, which were further analyzed, focusing on the role of IGF-1 in pathophysiological conditions. We specifically focused on including the most recent findings published in the past five years. RESULTS IGF-1, an anabolic growth factor, regulates cell division, proliferation, and survival. In addition to its well-known growth-promoting and metabolic effects, there is mounting evidence that IGF-1 plays a specialized role in the complex activities that underpin CV function. IGF-1 promotes cardiac development and improves cardiac output, stroke volume, contractility, and ejection fraction. Furthermore, IGF-1 mediates many growth hormones (GH) actions. IGF-1 stimulates contractility and tissue remodeling in humans to improve heart function after myocardial infarction. IGF-1 also improves the lipid profile, lowers insulin levels, increases insulin sensitivity, and promotes glucose metabolism. These findings point to the intriguing medicinal potential of IGF-1. Human studies associate low serum levels of free or total IGF-1 with an increased risk of CV and cerebrovascular illness. Extensive human trials are being conducted to investigate the therapeutic efficacy and outcomes of IGF-1-related therapy. DISCUSSION We anticipate the development of novel IGF-1-related therapy with minimal side effects. This review discusses recent findings on the role of IGF-1 in the cardiovascular (CVD) system, including both normal and pathological conditions. We also discuss progress in therapeutic interventions aimed at targeting the IGF axis and provide insights into the epigenetic regulation of IGF-1 mediated by microRNAs.
Collapse
Affiliation(s)
- Mirjana Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Mirjana Macvanin,
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacol Rep 2022; 74:790-817. [PMID: 36149598 DOI: 10.1007/s43440-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.
Collapse
|
9
|
Masodsai K, Lin YY, Lin SY, Su CT, Lee SD, Yang AL. Aging Additively Influences Insulin- and Insulin-Like Growth Factor-1-Mediated Endothelial Dysfunction and Antioxidant Deficiency in Spontaneously Hypertensive Rats. Biomedicines 2021; 9:biomedicines9060676. [PMID: 34203897 PMCID: PMC8232669 DOI: 10.3390/biomedicines9060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
This study aimed to investigate the aging-related endothelial dysfunction mediated by insulin and insulin-like growth factor-1 (IGF-1) and antioxidant deficiency in hypertension. Male spontaneously hypertensive rats (SHRs) and age-matched normotensive Wistar–Kyoto rats (WKYs) were randomly divided into 24-week-old (younger) and 48-week-old (older) groups, respectively. The endothelial function was evaluated by the insulin- and IGF-1-mediated vasorelaxation of aortic rings via the organ bath system. Serum levels of nitric oxide (NO), malondialdehyde (MDA), catalase, and total antioxidant capacity (TAC) were examined. The insulin- and IGF-1-mediated vasorelaxation was significantly impaired in both 24- and 48-week-old SHRs compared with age-matched WKYs and was significantly worse in the 48-week-old SHR than the 24-week-old SHR. After pretreatments of phosphoinositide 3-kinase (PI3K) or NO synthase (NOS) inhibitors, the insulin- and IGF-1-mediated vasorelaxation became similar among four groups. The serum level of MDA was significantly increased, while the NO, catalase, and TAC were significantly reduced in the 48-week-old SHR compared with the 24-week-old SHR. This study demonstrated that the process of aging additively affected insulin- and IGF-1-mediated endothelial dysfunction in SHRs, which could be partly attributed to the reduced NO production and antioxidant deficiency.
Collapse
Affiliation(s)
- Kunanya Masodsai
- Faculty of Sports Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Institute of Sports Sciences, University of Taipei, Taipei 11153, Taiwan;
| | - Yi-Yuan Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11257, Taiwan;
| | - Sih-Yin Lin
- Institute of Sports Sciences, University of Taipei, Taipei 11153, Taiwan;
| | - Chia-Ting Su
- Department of Occupational Therapy, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan;
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, Weifang 261000, China
| | - Ai-Lun Yang
- Institute of Sports Sciences, University of Taipei, Taipei 11153, Taiwan;
- Correspondence: or ; Tel.: +886-2-2871-8288 (ext. 5815)
| |
Collapse
|
10
|
Kim SY, Kim M, Oh Y, Lee DY. Relationship of Serum Total Insulin-Like Growth Factor Binding Protein-3 with Insulin-Like Growth Factor-I and Glucose Tolerance in Korean Children and Adolescents. Int J Endocrinol 2021; 2021:9966114. [PMID: 34239560 PMCID: PMC8241499 DOI: 10.1155/2021/9966114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022] Open
Abstract
Insulin is important in glucose metabolism. However, insulin-like growth factor binding protein (IGFBP) also plays an important role in glucose homeostasis, although the IGF-independent role of IGFBP-3 in the glucose intolerance state is poorly understood. We investigated the relationship of serum IGF-I with total IGFBP-3 levels and glucose tolerance in Korean children and adolescents who underwent the oral glucose tolerance test (OGTT). A total of 187 children without known diabetes underwent OGTT, and data related to their clinical and laboratory parameters were collected. Serum IGF-I and total IGFBP-3 levels, fasting plasma glucose levels, lipid profiles, insulin levels, C-peptide levels, homeostasis model assessment of insulin resistance (HOMA-IR) index, and glycated hemoglobin (HbA1c) levels were measured. Serum IGF-I and total IGFBP-3 levels were significantly higher in individuals with impaired glucose tolerance and type 2 diabetes (DM) than in those with normal glucose tolerance (NGT) (P < 0.05). Serum IGF-I and IGFBP-3 levels were correlated with age, HbA1c, C-peptide, insulin, and HOMA-IR in the NGT group. However, these relationships were altered in patients with glucose intolerance, especially in those with DM. In the DM group, serum IGF-I and total IGFBP-3 levels were positively correlated with fasting plasma glucose and HbA1c levels. In addition, total IGFBP-3 levels were positively correlated with total cholesterol and low-density lipoprotein cholesterol and IGF-I levels but not with age or body mass index. The IGF-I-IGFBP-3 axis, especially IGFBP-3, may be involved in the pathogenesis and metabolic control of glucose intolerance, specifically in diabetes patients. Moreover, IGFBP-3 might be a therapeutic marker.
Collapse
Affiliation(s)
- Sun-Young Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Minsun Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Pediatrics, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Youngman Oh
- Department of Pathology, School of Medicine Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dae-Yeol Lee
- Department of Pediatrics, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
11
|
Ferrannini E, Murthy AC, Lee YH, Muscelli E, Weiss S, Ostroff RM, Sattar N, Williams SA, Ganz P. Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics. Diabetes Care 2020; 43:2183-2189. [PMID: 32527800 DOI: 10.2337/dc20-0456] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics. RESEARCH DESIGN AND METHODS Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected P < 0.05) was discerned through Ingenuity Pathway Analysis. RESULTS Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid-binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration. CONCLUSIONS SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design.
Collapse
Affiliation(s)
| | - Ashwin C Murthy
- Cardiovascular Division, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Yong-Ho Lee
- Department of Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | | | - Peter Ganz
- Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA
| |
Collapse
|
12
|
Kazemi M, Jarrett BY, Parry SA, Thalacker-Mercer AE, Hoeger KM, Spandorfer SD, Lujan ME. Osteosarcopenia in Reproductive-Aged Women with Polycystic Ovary Syndrome: A Multicenter Case-Control Study. J Clin Endocrinol Metab 2020; 105:5866600. [PMID: 32614948 PMCID: PMC7418445 DOI: 10.1210/clinem/dgaa426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Osteosarcopenia (loss of skeletal muscle and bone mass and/or function usually associated with aging) shares pathophysiological mechanisms with polycystic ovary syndrome (PCOS). However, the relationship between osteosarcopenia and PCOS remains unclear. OBJECTIVE We evaluated skeletal muscle index% (SMI% = [appendicular muscle mass/weight (kg)] × 100) and bone mineral density (BMD) in PCOS (hyperandrogenism + oligoamenorrhea), and contrasted these musculoskeletal markers against 3 reproductive phenotypes (i): HA (hyperandrogenism + eumenorrhea) (ii); OA (normoandrogenic + oligoamenorrhea) and (iii), controls (normoandrogenic + eumenorrhea). Endocrine predictors of SMI% and BMD were evaluated across the groups. DESIGN, SETTING, AND PARTICIPANTS Multicenter case-control study of 203 women (18-48 years old) in New York State. RESULTS PCOS group exhibited reduced SMI% (mean [95% confidence interval (CI)]; 26.2% [25.1,27.3] vs 28.8% [27.7,29.8]), lower-extremity SMI% (57.6% [56.7,60.0] vs 62.5% [60.3,64.6]), and BMD (1.11 [1.08,1.14] vs 1.17 [1.14,1.20] g/cm2) compared to controls. PCOS group also had decreased upper (0.72 [0.70,0.74] vs 0.77 [0.75,0.79] g/cm2) and lower (1.13 [1.10,1.16] vs 1.19 [1.16,1.22] g/cm2) limb BMD compared to HA. Matsuda index was lower in PCOS vs controls and positively associated with SMI% in all groups (all Ps ≤ 0.05). Only controls showed associations between insulin-like growth factor (IGF) 1 and upper (r = 0.84) and lower (r = 0.72) limb BMD (all Ps < 0.01). Unlike in PCOS, IGF-binding protein 2 was associated with SMI% in controls (r = 0.45) and HA (r = 0.67), and with upper limb BMD (r = 0.98) in HA (all Ps < 0.05). CONCLUSIONS Women with PCOS exhibit early signs of osteosarcopenia when compared to controls likely attributed to disrupted insulin function. Understanding the degree of musculoskeletal deterioration in PCOS is critical for implementing targeted interventions that prevent and delay osteosarcopenia in this clinical population.
Collapse
Affiliation(s)
- Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NY, US
| | - Brittany Y Jarrett
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NY, US
| | - Stephen A Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, US
| | - Anna E Thalacker-Mercer
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NY, US
| | - Kathleen M Hoeger
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven D Spandorfer
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, US
| | - Marla E Lujan
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NY, US
| |
Collapse
|
13
|
Majidi Z, Sadati Lamardi SN, Mohajjel-Nayebi A, Vatankhah AM, Asnaashari S, Zakeri-Milani P. Effects of Heracleum persicum Hydroalcoholic Extract on Insulin, Serum Anti-Oxidant Enzymes, Glucose, and Lipid Profiles in Alloxan-Induced Diabetic Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2020; 45:199-206. [PMID: 32546886 PMCID: PMC7253490 DOI: 10.30476/ijms.2019.45805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: Heracleum persicum (H. persicum) is a medicinal herb used in Iranian traditional medicine for its anti-toxic property.
It is commonly consumed in the form of food additives and as a medicinal herbal tonic to treat liver and kidney diseases.
The present study aimed to investigate the anti-oxidant, anti-diabetic, and anti-hyperlipidemic effects of H. persicum hydroalcoholic extract in alloxan-induced diabetic rats. Methods: Adult male Wistar rats (n=30) were assigned to five groups: a normal group, a diabetic control group, and three
diabetic groups treated orally with 200 and 400 mg/kg of the extract and 5 mg/kg of glibenclamide, respectively,
for two weeks. Blood glucose and bodyweight were measured at the end of each week. On day 15, blood samples were
collected to measure the levels of insulin, insulin growth factor-I (IGF-I), antioxidant markers for malondialdehyde
(MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), total antioxidant activity (TAS), total cholesterol (TC),
triglycerides (TG), high-density lipoprotein cholesterol (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein
(VLDL) using commercial kits. The data were analyzed using SPSS Software (version 22.0). Results: Daily treatment with 400 mg/kg of the extract significantly reduced the blood glucose level (P<0.001)
and improved bodyweight (P=0.002), insulin (P<0.001), IGF-I (P=0.024), SOD (P=0.001), GPx (P=0.009), MDA (P<0.001),
TAS (P=0.006), TG (P<0.001), HDL (P=0.023), LDL (P=0.005), and VLDL (P<0.001) compared with the diabetic control group. Conclusion: Beneficial effects of H. persicum for the treatment of diabetes were confirmed.
Collapse
Affiliation(s)
- Zahra Majidi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Mohajjel-Nayebi
- Drug Applied Research Center, Department of Pharmacology and Toxicology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center, Department of Pharmaceutics and School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Obradovic M, Zafirovic S, Soskic S, Stanimirovic J, Trpkovic A, Jevremovic D, Isenovic ER. Effects of IGF-1 on the Cardiovascular System. Curr Pharm Des 2019; 25:3715-3725. [DOI: 10.2174/1381612825666191106091507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
:Cardiovascular (CV) diseases are the most common health problems worldwide, with a permanent increase in incidence. Growing evidence underlines that insulin-like growth factor 1 (IGF-1) is a very important hormone responsible for normal CV system physiology. IGF-1 is an anabolic growth hormone, responsible for cell growth, differentiation, proliferation, and survival. Despite systemic effects, IGF-1 exerts a wide array of influences in the CV system affecting metabolic homeostasis, vasorelaxation, cardiac contractility and hypertrophy, autophagy, apoptosis, and antioxidative processes. The vasodilatory effect of IGF-1, is achieved through the regulation of the activity of endothelial nitric oxide synthase (eNOS) and, at least partly, through enhancing inducible NOS (iNOS) activity. Also, IGF-1 stimulates vascular relaxation through regulation of sodium/potassiumadenosine- triphosphatase. Numerous animal studies provided evidence of diverse influences of IGF-1 in the CV system such as vasorelaxation, anti-apoptotic and prosurvival effects. Human studies indicate that low serum levels of free or total IGF-1 contribute to an increased risk of CV and cerebrovascular disease. Large human trials aiming at finding clinical efficacy and outcome of IGF-1-related therapy are of great interest.:We look forward to the development of new IGF 1 therapies with minor side effects. In this review, we discuss the latest literature data regarding the function of IGF-1 in the CV system in the physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Milan Obradovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Sonja Zafirovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Sanja Soskic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Julijana Stanimirovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Andreja Trpkovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Danimir Jevremovic
- Faculty of Stomatology, Pancevo, University Business Academy, 21000 Novi Sad, Serbia
| | - Esma R. Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Giuliani C, Garagnani P, Franceschi C. Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework. Circ Res 2019; 123:745-772. [PMID: 30355083 DOI: 10.1161/circresaha.118.312562] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human longevity is a complex trait, and to disentangle its basis has a great theoretical and practical consequences for biomedicine. The genetics of human longevity is still poorly understood despite several investigations that used different strategies and protocols. Here, we argue that such rather disappointing harvest is largely because of the extraordinary complexity of the longevity phenotype in humans. The capability to reach the extreme decades of human lifespan seems to be the result of an intriguing mixture of gene-environment interactions. Accordingly, the genetics of human longevity is here described as a highly context-dependent phenomenon, within a new integrated, ecological, and evolutionary perspective, and is presented as a dynamic process, both historically and individually. The available literature has been scrutinized within this perspective, paying particular attention to factors (sex, individual biography, family, population ancestry, social structure, economic status, and education, among others) that have been relatively neglected. The strength and limitations of the most powerful and used tools, such as genome-wide association study and whole-genome sequencing, have been discussed, focusing on prominently emerged genes and regions, such as apolipoprotein E, Forkhead box O3, interleukin 6, insulin-like growth factor-1, chromosome 9p21, 5q33.3, and somatic mutations among others. The major results of this approach suggest that (1) the genetics of longevity is highly population specific; (2) small-effect alleles, pleiotropy, and the complex allele timing likely play a major role; (3) genetic risk factors are age specific and need to be integrated in the light of the geroscience perspective; (4) a close relationship between genetics of longevity and genetics of age-related diseases (especially cardiovascular diseases) do exist. Finally, the urgent need of a global approach to the largely unexplored interactions between the 3 genetics of human body, that is, nuclear, mitochondrial, and microbiomes, is stressed. We surmise that the comprehensive approach here presented will help in increasing the above-mentioned harvest.
Collapse
Affiliation(s)
- Cristina Giuliani
- From the Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology (C.G.), University of Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom (C.G.).,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Italy (C.G.)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) (P.G.), University of Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden (P.G.)
| | | |
Collapse
|
16
|
Cardiovascular Manifestations of Mitochondrial Disease. BIOLOGY 2019; 8:biology8020034. [PMID: 31083569 PMCID: PMC6628328 DOI: 10.3390/biology8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Genetic mitochondrial cardiomyopathies are uncommon causes of heart failure that may not be seen by most physicians. However, the prevalence of mitochondrial DNA mutations and somatic mutations affecting mitochondrial function are more common than previously thought. In this review, the pathogenesis of genetic mitochondrial disorders causing cardiovascular disease is reviewed. Treatment options are presently limited to mostly symptomatic support, but preclinical research is starting to reveal novel approaches that may lead to better and more targeted therapies in the future. With better understanding and clinician education, we hope to improve clinician recognition and diagnosis of these rare disorders in order to improve ongoing care of patients with these diseases and advance research towards discovering new therapeutic strategies to help treat these diseases.
Collapse
|
17
|
Twelve-Week Protocatechuic Acid Administration Improves Insulin-Induced and Insulin-Like Growth Factor-1-Induced Vasorelaxation and Antioxidant Activities in Aging Spontaneously Hypertensive Rats. Nutrients 2019; 11:nu11030699. [PMID: 30934575 PMCID: PMC6471824 DOI: 10.3390/nu11030699] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023] Open
Abstract
Protocatechuic acid (PCA), a strong antioxidant, has been reported for its cardiovascular-protective effects. This study aimed to investigate the effects of PCA administration on vascular endothelial function, mediated by insulin and insulin-like growth factor-1 (IGF-1), and antioxidant activities in aging hypertension. Thirty-six-week-old male aging spontaneously hypertensive rats were randomly divided into vehicle control (SHR) and PCA (SHR+PCA) groups, while age-matched Wistar–Kyoto rats (WKY) served as the normotensive vehicle control group. The oral PCA (200 mg/kg/day) was administered daily for a total of 12 weeks. When the rats reached the age of 48 weeks, the rat aortas were isolated for the evaluation of vascular reactivity and Western blotting. Also, nitric oxide (NO) production and antioxidant activities were examined among the three groups. The results showed that, when compared with the SHR group, the insulin-induced and IGF-1-induced vasorelaxation were significantly improved in the SHR+PCA group. There was no significant difference in the endothelium-denuded vessels among the three groups. After the pre-incubation of phosphatidylinositol 3-kinase (PI3K) or NO synthase (NOS) inhibitors, the vasorelaxation was abolished and comparable among the three groups. The protein levels of insulin receptors, IGF-1 receptors, phospho-protein kinase B (p-Akt)/Akt, and phospho-endothelial NOS (p-eNOS)/eNOS in aortic tissues were significantly enhanced in the SHR+PCA group when compared with the SHR group. Moreover, significant improvements of nitrate/nitrite concentration and antioxidant activities, including superoxide dismutase, catalase, and total antioxidants, were also found in the SHR+PCA group. In conclusion, the 12 weeks of PCA administration remarkably improved the endothelium-dependent vasorelaxation induced by insulin and IGF-1 in aging hypertension through enhancing the PI3K–NOS–NO pathway. Furthermore, the enhanced antioxidant activities partly contributed to the improved vasorelaxation.
Collapse
|
18
|
Choe G, Park J, Jo H, Kim YS, Ahn Y, Lee JY. Studies on the effects of microencapsulated human mesenchymal stem cells in RGD-modified alginate on cardiomyocytes under oxidative stress conditions using in vitro biomimetic co-culture system. Int J Biol Macromol 2018; 123:512-520. [PMID: 30445088 DOI: 10.1016/j.ijbiomac.2018.11.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Stem cell therapy has been recognized as a promising approach for myocardium regeneration post myocardial infarction (MI); however, it unfortunately often remains a challenge because of poor survival of transplanted cells and a lack of clear understanding of their interactions with host cells. High oxidative stress at heart tissues post MI is considered one of the important factors damaging transplanted cells and native cells/tissues. Here, we employed an in vitro co-culture system, capable of mimicking cases of stem cell transplantation into the myocardium presenting high oxidative stress, using human mesenchymal stem cells (hMSCs) encapsulated in alginate or cell interactive Arg-Gly-Asp (RGD) peptide-modified alginate micro-hydrogels. Under H2O2-induced oxidative stress conditions, viabilities of hMSCs and CMs were significantly higher in their co-culture than in their individual monolayer cultures. Expression of cardiac muscle markers remained high even with H2O2 treatment when cardiomyocytes (CMs) were co-cultured with hMSCs in RGD-alginate. Higher levels of various growth factors (associated with angiogenesis, cardiac regeneration, and contractility) were found in co-culture (noticeably with RGD-alginate) compared to monolayer cultures of CMs or hMSCs. These results can benefit the study of in vivo MI progression with transplanted stem cells and the development of effective stem cell-based therapeutic strategies for various oxidative stress-related diseases.
Collapse
Affiliation(s)
- Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyerim Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
19
|
Abstract
Progressive loss of proteostasis is a hallmark of aging that is marked by declines in various components of proteostasis machinery, including: autophagy, ubiquitin-mediated degradation, protein synthesis, and others. While declines in proteostasis have historically been observed as changes in these processes, or as bulk changes in the proteome, recent advances in proteomic methodologies have enabled the comprehensive measurement of turnover directly at the level of individual proteins in vivo. These methods, which utilize a combination of stable-isotope labeling, mass spectrometry, and specialized software analysis, have now been applied to various studies of aging and longevity. Here we review the role of proteostasis in aging and longevity, with a focus on the proteomic methods available to conduct protein turnover in aging models and the insights these studies have provided thus far.
Collapse
|
20
|
Jung SY, Rohan T, Strickler H, Bea J, Zhang ZF, Ho G, Crandall C. Genetic variants and traits related to insulin-like growth factor-I and insulin resistance and their interaction with lifestyles on postmenopausal colorectal cancer risk. PLoS One 2017; 12:e0186296. [PMID: 29023587 PMCID: PMC5638514 DOI: 10.1371/journal.pone.0186296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023] Open
Abstract
Genetic variants and traits in metabolic signaling pathways may interact with lifestyle factors such as obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal colorectal cancer (CRC) risk, but these interrelated pathways are not fully understood. In this case-cohort study, we examined 33 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/ insulin resistance (IR) traits and signaling pathways, using data from 704 postmenopausal women in Women’s Health Initiative Observation ancillary studies. Stratifying by the lifestyle modifiers, we assessed the effects of IGF-I/IR traits (fasting total and free IGF-I, IGF binding protein-3, insulin, glucose, and homeostatic model assessment–insulin resistance) on CRC risk as a mediator or influencing factor. Six SNPs in the INS, IGF-I, and IGFBP3 genes were associated with CRC risk, and those associations differed between non-obese/active and obese/inactive women and between E nonusers and users. Roughly 30% of the cancer risk due to the SNP was mediated by IGF-I/IR traits. Likewise, carriers of 11 SNPs in the IRS1 and AKT1/2 genes (signaling pathway–related genetic variants) had different associations with CRC risk between strata, and the proportion of the SNP–cancer association explained by traits varied from 30% to 50%. Our findings suggest that IGF-I/IR genetic variants interact with obesity, physical activity, and exogenous E, altering postmenopausal CRC risk, through IGF-I/IR traits, but also through different pathways. Unraveling gene–phenotype–lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce CRC risk.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Thomas Rohan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Howard Strickler
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jennifer Bea
- Medicine & Nutritional Sciences, University of Arizona Cancer Center, Tucson, Arizona, United States of America
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Gloria Ho
- Department of Occupational Medicine, Epidemiology and Prevention, Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, Great Neck, New York, United States of America
| | - Carolyn Crandall
- Division of General Internal Medicine, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
21
|
Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk. Breast Cancer Res Treat 2017; 164:475-495. [PMID: 28478612 DOI: 10.1007/s10549-017-4272-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. METHODS We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. RESULTS Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. CONCLUSIONS Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.
Collapse
|
22
|
Cady G, Landeryou T, Garratt M, Kopchick JJ, Qi N, Garcia-Galiano D, Elias CF, Myers MG, Miller RA, Sandoval DA, Sadagurski M. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons. Mol Metab 2017; 6:393-405. [PMID: 28462074 PMCID: PMC5404104 DOI: 10.1016/j.molmet.2017.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 12/22/2022] Open
Abstract
Objective The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR). The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. GHR and LepRb are co-localized in the ARH, DMH and LHA neurons. GHR signaling does not regulate food intake and body weight in LepRb neurons. Diminished GHR signaling in LepRb neurons impairs hepatic glucose production.
Collapse
Key Words
- ARH, arcuate nucleus of the hypothalamus
- CNS, central nervous system
- DMH, dorsomedial hypothalamic nucleus
- GH, growth hormone
- GHR, growth hormone receptor
- Glucose production
- Growth hormone receptor
- Hypothalamus
- LHA, lateral hypothalamus
- Lepr, leptin receptor
- Leptin receptor
- Liver
- POMC, proopiomelanocortin
- PVH, paraventricular hypothalamic nucleus
- Stat3, signal transducer and activator of transcription 3
- Stat5, signal transducer and activator of transcription 5
Collapse
Affiliation(s)
- Gillian Cady
- Department of Pathology and Geriatrics Center, University of Michigan Medical School, USA
| | - Taylor Landeryou
- Department of Pathology and Geriatrics Center, University of Michigan Medical School, USA
| | - Michael Garratt
- Department of Pathology and Geriatrics Center, University of Michigan Medical School, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Nathan Qi
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Garcia-Galiano
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin G Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan Medical School, USA
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marianna Sadagurski
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Wang R, Xi L, Kukreja RC. PDE5 Inhibitor Tadalafil and Hydroxychloroquine Cotreatment Provides Synergistic Protection against Type 2 Diabetes and Myocardial Infarction in Mice. J Pharmacol Exp Ther 2017; 361:29-38. [PMID: 28123046 DOI: 10.1124/jpet.116.239087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Diabetes is associated with a high risk for ischemic heart disease. We have previously shown that phosphodiesterase 5 inhibitor tadalafil (TAD) induces cardioprotection against ischemia/ reperfusion (I/R) injury in diabetic mice. Hydroxychloroquine (HCQ) is a widely used antimalarial and anti-inflammatory drug that has been reported to reduce hyperglycemia in diabetic patients. Therefore, we hypothesized that a combination of TAD and HCQ may induce synergistic cardioprotection in diabetes. We also investigated the role of insulin-Akt-mammalian target of rapamycin (mTOR) signaling, which regulates protein synthesis and cell survival. Adult male db/db mice were randomized to receive vehicle, TAD (6 mg/kg), HCQ (50 mg/kg), or TAD + HCQ daily by gastric gavage for 7 days. Hearts were isolated and subjected to 30-minute global ischemia, followed by 1-hour reperfusion in Langendorff mode. Cardiac function and myocardial infarct size were determined. Plasma glucose, insulin and lipid levels, and relevant pancreatic and cardiac protein markers were measured. Treatment with TAD + HCQ reduced myocardial infarct size (17.4% ± 4.3% vs. 37.8% ± 4.9% in control group, P < 0.05) and enhanced the production of ATP. The TAD + HCQ combination treatment also reduced fasting blood glucose, plasma free fatty acids, and triglyceride levels. Furthermore, TAD + HCQ increased plasma insulin levels (513 ± 73 vs. 232 ± 30 mU/liter, P < 0.05) with improved insulin sensitivity, larger pancreatic β-cell area, and pancreas mass. Insulin-like growth factor-1 (IGF-1) levels were also elevated by TAD + HCQ (343 ± 14 vs. 262 ± 22 ng/ml, P < 0.05). The increased insulin/IGF-1 resulted in activation of downstream Akt/mTOR cellular survival pathway. These results suggest that combination treatment with TAD and HCQ could be a novel and readily translational pharmacotherapy for reducing cardiovascular risk factors and protecting against myocardial I/R injury in type 2 diabetes.
Collapse
Affiliation(s)
- Rui Wang
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University. Richmond, Virginia
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University. Richmond, Virginia
| | - Rakesh C Kukreja
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University. Richmond, Virginia
| |
Collapse
|
24
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Gómez-Mauricio G, Moscoso I, Martín-Cancho MF, Crisóstomo V, Prat-Vidal C, Báez-Díaz C, Sánchez-Margallo FM, Bernad A. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model. Stem Cell Res Ther 2016; 7:94. [PMID: 27423905 PMCID: PMC4947339 DOI: 10.1186/s13287-016-0350-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/13/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
Background Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Methods Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Results Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. Conclusions The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0350-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guadalupe Gómez-Mauricio
- Jesús Usón Minimally Invasive Surgery Center, Cáceres, Spain.,Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Isabel Moscoso
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Cardiovascular Area, CIMUS, Instituto de Investigación Sanitaria, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Cristina Prat-Vidal
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | | | | | - Antonio Bernad
- Department of Cardiovascular Development and Repair, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain. .,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3 (Campus UAM Cantoblanco), 28049, Madrid, Spain.
| |
Collapse
|
26
|
Abstract
The objectives of this study were to investigate left ventricular (LV) function, aortic dilation, and atherosclerosis in children with mildly deteriorated isolated bicuspid aortic valve (BAV) function using echocardiographic studies and biochemical markers of atherosclerosis and to correlate results with normal children. Biochemical analyses indicating cardiovascular risk of atherosclerosis and vascular changes in the aorta in relation to BAV were performed in 41 children aged 5-15 years old with isolated BAV and in 25 children with tricuspid aortic valves. Evaluations of aortic valve structures and functions; examinations of the LV M-mode and ascending aorta Doppler; and measurements of the LV Tei index (MPI), propagation velocity, ascending aorta at four levels, and carotid intima-media thickness (CIMT) were performed. There were no statistically significant differences in CIMTs, plasma matrix metalloproteinase-9, tissue metalloproteinase inhibitor-1 levels, or other biochemical parameters indicating cardiovascular risk or atherosclerosis between study and control groups. Deterioration of LV function, which could not be seen with M-mode echocardiography, was evident by MPI. MPI values in the study versus control groups were 0.46 ± 0.080 versus 0.40 ± 0.086 (p < 0.05). Diameters of the aorta in the study and control groups were 19.7 ± 4.7 and 17.2 ± 2.8 mm (p < 0.05) at the sinotubular junction level and 20.6 (14.4-40.5) and 18.3 (12.4-24) mm at the ascending aorta level (p < 0.05). Increased aortic valve insufficiency was related to increased aortic diameter. No sign of atherosclerosis was detected in children with BAV. Deterioration of LV function was seen using MPI, and aortic dilation was related to the severity of aortic valve insufficiency.
Collapse
|
27
|
Wu JH, Wang YH, Wang W, Shen W, Sang YZ, Liu L, Chen CM. MiR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. Int J Biochem Cell Biol 2016; 73:41-52. [PMID: 26851511 DOI: 10.1016/j.biocel.2016.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are important for the proliferation of endothelial cells and have been shown to be involved in diabetic retinopathy (DR). In previous study, we found that miRNAs might play a critical role in hyperglycemia-induced endothelial cell proliferation based on miRNA expression profiling. Here, the roles of microRNA-18b (miR-18b) in the proliferation of human retinal endothelial cells (HRECs) were investigated in an in vitro model of HRECs grown in high glucose. We identified that levels of miR-18b were decreased in high-glucose-induced HRECs, compared with those in cells incubated in normal glucose. However, the reduction of miR-18b up-regulated vascular endothelial growth factor (VEGF) secretion and promoted effects on in vitro proliferation of HRECs. Mechanistically, insulin growth factor-1 (IGF-1) was identified as a target of miR-18b. IGF-1 simulation could antagonize the effect induced by miR-18b up-regulation, promoting cell proliferation and increasing VEGF production. In contrast, the opposite results were observed with silencing IGF-1, which was consistent with the effects of miR-18b overexpression. MiR-18b exerted its function on VEGF synthesis and cell proliferation by suppressing the IGF-1/insulin growth factor-1 receptor (IGF1R) pathway, consequently inhibiting the downstream phosphorylation of Akt, MEK, and ERK. Hence, this may provide a new insight into understanding the mechanism of DR pathogenesis, as well as a potential therapeutic target for proliferative DR.
Collapse
Affiliation(s)
- Jin-Hui Wu
- Departments of Ophthalmology at Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Yi-Han Wang
- Departments of Ophthalmology at Renji Hospital, Shanghai, China
| | - Wei Wang
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Wei Shen
- Departments of Ophthalmology at Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Zhi Sang
- Departments of Ophthalmology at Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lin Liu
- Departments of Ophthalmology at Renji Hospital, Shanghai, China
| | - Cui-Min Chen
- Departments of Central Sterile Supply at Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
28
|
Quarles EK, Dai DF, Tocchi A, Basisty N, Gitari L, Rabinovitch PS. Quality control systems in cardiac aging. Ageing Res Rev 2015; 23:101-15. [PMID: 25702865 PMCID: PMC4686341 DOI: 10.1016/j.arr.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. These degenerative changes are intimately associated with quality control mechanisms. This review provides a general overview of the clinical and cellular changes which manifest in cardiac aging, and the quality control mechanisms involved in maintaining homeostasis and retarding aging. These mechanisms include autophagy, ubiquitin-mediated turnover, apoptosis, mitochondrial quality control and cardiac matrix homeostasis. Finally, we discuss aging interventions that have been observed to impact cardiac health outcomes. These include caloric restriction, rapamycin, resveratrol, GDF11, mitochondrial antioxidants and cardiolipin-targeted therapeutics. A greater understanding of the quality control mechanisms that promote cardiac homeostasis will help to understand the benefits of these interventions, and hopefully lead to further improved therapeutic modalities.
Collapse
Affiliation(s)
- Ellen K Quarles
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Dao-Fu Dai
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Autumn Tocchi
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Nathan Basisty
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Lemuel Gitari
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Peter S Rabinovitch
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| |
Collapse
|
29
|
Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS. Mitochondrial dysfunction in cardiac aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1424-33. [PMID: 26191650 DOI: 10.1016/j.bbabio.2015.07.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are the leading cause of death in most developed nations. While it has received the least public attention, aging is the dominant risk factor for developing cardiovascular diseases, as the prevalence of cardiovascular diseases increases dramatically with increasing age. Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. Mitochondria play a great role in these processes, as cardiac function is an energetically demanding process. In this review, we examine mitochondrial dysfunction in cardiac aging. Recent research has demonstrated that mitochondrial dysfunction can disrupt morphology, signaling pathways, and protein interactions; conversely, mitochondrial homeostasis is maintained by mechanisms that include fission/fusion, autophagy, and unfolded protein responses. Finally, we describe some of the recent findings in mitochondrial targeted treatments to help meet the challenges of mitochondrial dysfunction in aging.
Collapse
Affiliation(s)
- Autumn Tocchi
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Ellen K Quarles
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Nathan Basisty
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Lemuel Gitari
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Peter S Rabinovitch
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| |
Collapse
|
30
|
Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 2014; 118:1-18. [PMID: 24582776 DOI: 10.1016/j.pneurobio.2014.02.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/09/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
Insulin and Insulin Growth Factor-1 (IGF-1) play a major role in body homeostasis and glucose regulation. They also have paracrine/autocrine functions in the brain. The Insulin/IGF-1 signaling pathway contributes to the control of neuronal excitability, nerve cell metabolism and cell survival. Glucagon like peptide-1 (GLP-1), known as an insulinotropic hormone has similar functions and growth like properties as insulin/IGF-1. Growing evidence suggests that dysfunction of these pathways contribute to the progressive loss of neurons in Alzheimer's disease (AD) and Parkinson's disease (PD), the two most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting insulin/IGF-1 and GLP-1 signaling with currently available anti-diabetics. These studies have shown that administration of insulin, IGF-1 and GLP-1 agonists reverses signaling abnormalities and has positive effects on surrogate markers of neurodegeneration and behavioral outcomes. Several proof-of-concept studies are underway that attempt to translate the encouraging preclinical results to patients suffering from AD and PD. In the first part of this review, we discuss physiological functions of insulin/IGF-1 and GLP-1 signaling pathways including downstream targets and receptors distribution within the brain. In the second part, we undertake a comprehensive overview of preclinical studies targeting insulin/IGF-1 or GLP-1 signaling for treating AD and PD. We then detail the design of clinical trials that have used anti-diabetics for treating AD and PD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into treatments for patients with AD and PD.
Collapse
|
31
|
Hung TM, Ho CM, Liu YC, Lee JL, Liao YR, Wu YM, Ho MC, Chen CH, Lai HS, Lee PH. Up-regulation of microRNA-190b plays a role for decreased IGF-1 that induces insulin resistance in human hepatocellular carcinoma. PLoS One 2014; 9:e89446. [PMID: 24586785 PMCID: PMC3930738 DOI: 10.1371/journal.pone.0089446] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/20/2014] [Indexed: 02/08/2023] Open
Abstract
Background & Aims Insulin-like growth factor, (IGF)-1, is produced mainly by the liver and plays important roles in promoting growth and regulating metabolism. Previous study reported that development of hepatocellular carcinoma (HCC) was accompanied by a significant reduction in serum IGF-1 levels. Here, we hypothesized that dysregulation of microRNAs (miRNA) in HCC can modulate IGF-1 expression post-transcriptionally. Methods The miRNAs expression profiles in a dataset of 29 HCC patients were examined using illumina BeadArray. Specific miRNA (miR)-190b, which was significantly up-regulated in HCC tumor tissues when compared with paired non-tumor tissues, was among those predicted to interact with 3′-untranslated region (UTR) of IGF-1. In order to explore the regulatory effects of miR-190b on IGF-1 expression, luciferase reporter assay, quantitative real-time PCR, western blotting and immunofluorecence analysis were performed in HCC cells. Results Overexpression of miR-190b in Huh7 cells attenuated the expression of IGF-1, whereas inhibition of miR-190b resulted in up-regulation of IGF-1. Restoration of IGF-1 expression reversed miR-190b-mediated impaired insulin signaling in Huh7 cells, supporting that IGF-1 was a direct and functional target of miR-190b. Additionally, low serum IGF-1 level was associated with insulin resistance and poor overall survival in HCC patients. Conclusions Increased expression of miR-190 may cause decreased IGF-1 in HCC development. Insulin resistance appears to be a part of the physiopathologic significance of decreased IGF-1 levels in HCC progression. This study provides a novel miRNA-mediated regulatory mechanism for controlling IGF-1 expression in HCC and elucidates the biological relevance of this interaction in HCC.
Collapse
MESH Headings
- Adult
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Case-Control Studies
- Cell Proliferation
- Enzyme-Linked Immunosorbent Assay
- Female
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Insulin Resistance
- Insulin-Like Growth Factor I/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- MicroRNAs/genetics
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Tzu-Min Hung
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, E-DA Hospital, Kaohsiung, Taiwan
| | - Cheng-Maw Ho
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Chun Liu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, E-DA Hospital, Kaohsiung, Taiwan
| | - Jia-Ling Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yow-Rong Liao
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Hung Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Surgery, E-DA Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Pan Y, Liang H, Liu H, Li D, Chen X, Li L, Zhang CY, Zen K. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. THE JOURNAL OF IMMUNOLOGY 2013; 192:437-46. [PMID: 24307738 DOI: 10.4049/jimmunol.1301790] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platelets play a significant role in atherosclerosis, stroke, and asthma through active interaction with neutrophils, monocytes, and vascular endothelial cells. The mechanism underlying these intercellular interactions, however, is incompletely understood. In this study, we report that platelets can remotely modulate vascular endothelial cell apoptosis through releasing microRNA-223 (miR-223)-containing microvesicles (MVs). First, platelets expressed abundant miRNAs, and miR-223 had the highest level of expression. Platelet miR-223 and other miRNAs can be upregulated by the stimulation with thrombopoietin (TPO) or thrombin. Unlike leukocytes, platelets contained high levels of pre-miRNAs, and upregulation of mature platelet miRNAs by TPO was correlated with decreased pre-miRNAs. Second, under stimulation with TPO, platelets released a large amount of MVs, which also contain higher levels of miR-223. Elevation of miR-223 inside circulating platelet MVs (P-MVs) was also observed in plasma samples from patients with enteritis, hepatitis, nephritis, or atherosclerosis. Third, incubation of P-MVs with HUVECs, which had significantly lower levels of miR-223 than platelets, showed that P-MVs effectively delivered miR-223 into HUVECs. Finally, in HUVECs, exogenous platelet miR-223 decreased the level of insulin-like growth factor 1 receptor and thus promoted HUVEC apoptosis induced by advanced glycation end products. The proapoptotic effect of P-MVs on HUVECs was largely abolished by depleting cellular miR-223 using anti-miR-223 antisense oligonucleotide. In conclusion, our study presents the first evidence, to our knowledge, that platelet-released miR-223 promotes advanced glycation end product-induced vascular endothelial cell apoptosis via targeting insulin-like growth factor 1 receptor.
Collapse
Affiliation(s)
- Yi Pan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
D'Elia P, Ionta V, Chimenti I, Angelini F, Miraldi F, Pala A, Messina E, Giacomello A. Analysis of pregnancy-associated plasma protein A production in human adult cardiac progenitor cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:190178. [PMID: 24312907 PMCID: PMC3842074 DOI: 10.1155/2013/190178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022]
Abstract
IGF-binding proteins (IGFBPs) and their proteases regulate IGFs bioavailability in multiple tissues. Pregnancy-associated plasma protein A (PAPP-A) is a protease acting by cleaving IGFBP2, 4, and 5, regulating local bioavailability of IGFs. We have previously shown that IGFs and IGFBPs are produced by human adult cardiac progenitor cells (haCPCs) and that IGF-1 exerts paracrine therapeutic effects in cardiac cell therapy with CPCs. Using immunofluorescence and enzyme immunoassays, we firstly report that PAPP-A is produced and secreted in surprisingly high amounts by haCPCs. In particular, the homodimeric, enzymatically active, PAPP-A is secreted in relevant concentrations in haCPC-conditioned media, while the enzymatically inactive PAPPA/proMBP complex is not detectable in the same media. Furthermore, we show that both homodimeric PAPP-A and proMBP can be detected as cell associated, suggesting that the previously described complex formation at the cell surface does not occur easily, thus positively affecting IGF signalling. Therefore, our results strongly support the importance of PAPP-A for the IGFs/IGFBPs/PAPP-A axis in CPCs biology.
Collapse
Affiliation(s)
- Piera D'Elia
- Department of Gynaecology, Obstetrics and Urologic Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Vittoria Ionta
- Department of Molecular Medicine, Cenci Bolognetti Foundation, Pasteur Institute, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Francesco Angelini
- Department of Molecular Medicine, Cenci Bolognetti Foundation, Pasteur Institute, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Fabio Miraldi
- Department of Cardiocirculatory Pathophysiology, Anesthesiology and General Surgery, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alessandro Pala
- Department of Gynaecology, Obstetrics and Urologic Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Elisa Messina
- Department of Molecular Medicine, Cenci Bolognetti Foundation, Pasteur Institute, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alessandro Giacomello
- Department of Molecular Medicine, Cenci Bolognetti Foundation, Pasteur Institute, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
34
|
Zhu X, Wang H, Liu F, Chen L, Luo W, Su P, Li W, Yu L, Yang X, Cai J. Identification of micro-RNA networks in end-stage heart failure because of dilated cardiomyopathy. J Cell Mol Med 2013; 17:1173-87. [PMID: 23998897 PMCID: PMC4118176 DOI: 10.1111/jcmm.12096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023] Open
Abstract
Micro-RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end-stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal-Network, miRNA-GO-Network and miRNA-Gene-Network. According to the fold change in the network and probability values in the microarray cohort, RT-PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR-340 achieved statistically significant. miR-340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR-340 in cultured neonatal rat cardiomyocytes to identify whether miR-340 plays a determining role in the progression of heart failure. ANP, BNP and caspase-3 were significantly elevated in the miR-340 transfected cells compared with controls (P < 0.05). The cross-sectional area of overexpressing miR-340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end-stage heart failure and identified miR-340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.
Collapse
Affiliation(s)
- Xiaoming Zhu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang S, Zhao Y, Hu X, Liu Z, Chen X, Chen X, Du J. Distinct post-transcriptional regulation of Igfbp1 gene by hypoxia in lowland mouse and Qinghai-Tibet plateau root vole Microtus oeconomus. Mol Cell Endocrinol 2013; 376:33-42. [PMID: 23748030 DOI: 10.1016/j.mce.2013.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
Our previous study revealed the particular expression patterns of insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 1 (IGFBP1) in the Qinghai-Tibet plateau root vole (Microtus oeconomus) under hypoxic challenge. Here we report the molecular mechanisms of Igf gene regulation associated with adaptation to hypoxia. M. oeconomus IGF1 and IGFBP1 were shown to be highly conserved. Hypoxia (8.0% O2, 6h) did not change the liver-derived Igf1 expression in either M. oeconomus or mouse. Hypoxia significantly upregulated hepatic Igfbp1 gene expression and IGFBP1 levels in the liver and plasma of the mouse, but not in M. oeconomus. A functional U-rich element in the 3' untranslated region was found in mouse Igfbp1 mRNA, which was associated with Igfbp1 mRNA stabilization and upregulation under hypoxia, and this U-rich element was eliminated in the M. oeconomus Igfbp1, resulting in blunted Igfbp1 mRNA upregulation, which might be understood as a sequence variation modified during molecular evolution under hypoxia.
Collapse
Affiliation(s)
- Shengting Zhang
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Yin D, Sleight B, Alvey C, Hansson AG, Bello A. Pharmacokinetics and Pharmacodynamics of Figitumumab, a Monoclonal Antibody Targeting the Insulin-Like Growth Factor 1 Receptor, in Healthy Participants. J Clin Pharmacol 2013; 53:21-8. [DOI: 10.1177/0091270011432934] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/09/2011] [Indexed: 01/03/2023]
Affiliation(s)
- Donghua Yin
- Oncology Business Unit, Pfizer, Inc; Groton, CT; USA
| | | | | | - Arne G. Hansson
- New Haven Clinical Research Unit, Pfizer, Inc; New Haven, CT; USA
| | | |
Collapse
|
37
|
Peplow PV, Baxter GD. Testing Infrared Laser Phototherapy (810 nm) to Ameliorate Diabetes: Irradiation on Body Parts of Diabetic Mice. Lasers Surg Med 2013; 45:240-5. [DOI: 10.1002/lsm.22130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Philip V. Peplow
- Department of Anatomy; University of Otago; Dunedin 9010 New Zealand
| | - G. David Baxter
- Centre for Physiotherapy Research, School of Physiotherapy, University of Otago; Dunedin 9010 New Zealand
| |
Collapse
|
38
|
Qiliqiangxin inhibits the development of cardiac hypertrophy, remodeling, and dysfunction during 4 weeks of pressure overload in mice. J Cardiovasc Pharmacol 2012; 59:268-80. [PMID: 22075750 DOI: 10.1097/fjc.0b013e31823f888f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Qiliqiangxin (QL), a traditional Chinese medicine, has been used in the treatment of chronic heart failure. However, whether QL can benefit cardiac remodeling in the hypertensive state is unknown. We here examined the effects of QL on the development of cardiac hypertrophy through comparing those of losartan in C57BL/6 mice underlying transverse aorta constriction for 4 weeks. QL and losartan were administrated at 0.6 mg and 13.4 mg·kg·d, respectively. Cardiac hypertrophy, function, and remodeling were evaluated by echocardiography, catheterization, histology, and examination of specific gene expression and ERK phosphorylation. Cardiac apoptosis, autophagy, tumor necrosis factor α/insulin-like growth factor-1, and angiotensin II type 1 receptor expression and especially the proliferation of cardiomyocytes and phosphorylation of ErbB receptors were examined in vivo to elucidate the mechanisms. Transverse aorta constriction for 2 weeks resulted in a significant cardiac hypertrophy, which was significantly suppressed by either QL or losartan treatment. At 4 weeks after transverse aorta constriction, although the development of cardiac dysfunction and remodeling and the increases in apoptosis, autophagy, tumor necrosis factor α/insulin-like growth factor-1, and angiotensin II type 1 receptor expression were abrogated comparably between QL and losartan treatments, QL, but not losartan, enhanced proliferation of cardiomyocytes, which was paralleled with dowregulation of CCAAT/enhancer-binding protein β, upregulation of CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4, and increases in ErbB2 and ErbB4 phosphorylation. Furthermore, inhibition of either ErbB2 or CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4 abolished the cardiac protective effects of QL. Thus, QL inhibits myocardial inflammation and cardiomyocyte death and promotes cardiomyocyte proliferation, leading to an ameliorated cardiac remodeling and function in a mouse model of pressure overload. The possible mechanisms may involve inhibition of angiotensin II type 1 receptor and activation of ErbB receptors.
Collapse
|
39
|
Abstract
Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
40
|
Sherajee SJ, Fujita Y, Rafiq K, Nakano D, Mori H, Masaki T, Hara T, Kohno M, Nishiyama A, Hitomi H. Aldosterone induces vascular insulin resistance by increasing insulin-like growth factor-1 receptor and hybrid receptor. Arterioscler Thromb Vasc Biol 2011; 32:257-63. [PMID: 22173225 DOI: 10.1161/atvbaha.111.240697] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We previously showed that aldosterone induces insulin resistance in rat vascular smooth muscle cells (VSMCs). Because insulin-like growth factor-1 receptor (IGF1R) affects insulin signaling, we hypothesized that aldosterone induces vascular insulin resistance and remodeling via upregulation of IGF1R and its hybrid insulin/insulin-like growth factor-1 receptor. METHODS AND RESULTS Hybrid receptor expression was measured by immunoprecipitation. Hypertrophy of VSMCs was evaluated by (3)H-labeled leucine incorporation. Aldosterone (10 nmol/L) significantly increased protein and mRNA expression of IGF1R and hybrid receptor in VSMCs but did not affect insulin receptor expression. Mineralocorticoid receptor blockade with eplerenone inhibited aldosterone-induced increases in IGF1R and hybrid receptor. Aldosterone augmented insulin (100 nmol/L)-induced extracellular signal-regulated kinase 1/2 phosphorylation. Insulin-induced leucine incorporation and α-smooth muscle actin expression were also augmented by aldosterone in VSMCs. These aldosterone-induced changes were significantly attenuated by eplerenone or picropodophyllin, an IGF1R inhibitor. Chronic infusion of aldosterone (0.75 μg/hour) increased blood pressure and aggravated glucose metabolism in rats. Expression of hybrid receptor, azan-positive area, and oxidative stress in aorta was increased in aldosterone-infused rats. Spironolactone and tempol prevented these aldosterone-induced changes. CONCLUSIONS Aldosterone induces vascular remodeling through IGF1R- and hybrid receptor-dependent vascular insulin resistance. Mineralocorticoid receptor blockade may attenuate angiopathy in hypertensive patients with hyperinsulinemia.
Collapse
Affiliation(s)
- Shamshad J Sherajee
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Relation of serum insulin-like growth factor-1 (IGF-1) levels with hepatitis C virus infection and insulin resistance. Transl Res 2011; 158:155-62. [PMID: 21867981 DOI: 10.1016/j.trsl.2011.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 01/13/2023]
Abstract
The prospect of the growing worldwide epidemic of hepatitis C virus (HCV) infection and type 2 diabetes mellitus certainly merits attention toward their controversial relationship. Insulin-like growth factor-1 (IGF-1) plays an important role in glucose homeostasis. This study is a cross-sectional study considered as an initial investigation aimed to evaluate the effect of HCV infection on serum IGF-1, as well as to find out whether IGF-1 has a role in development of insulin resistance (IR) in HCV infection. A total of 45 subjects divided into 3 groups were included in the study: chronic HCV-infected patients (15 patients), chronic HCV-infected diabetic patients (15 patients), and diabetic patients without HCV infection (15 patients), along with 15 healthy controls. HCV RNA was quantified using real-time polymerase chain reaction (PCR). Serum IGF-1 levels were measured by enzyme-linked immunosorbent assay (ELISA). Homeostasis model assessment of insulin resistance [HOMA-IR], insulin sensitivity [HOMA-S], and β-cell function [HOMA-β] were determined by previously validated mathematic indexes. Fasting blood glucose, insulin levels, and liver parameters including alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. IGF-1 levels were significantly lower in the 3 patient groups compared with controls (P = 0.001). The HCV group demonstrated high HOMA-IR and HOMA-β with a positive correlation between HOMA-IR and either HOMA-β or fasting insulin (P < 0.001). In addition, a negative correlation was found between IGF-1 levels and both AST and ALT, and HOMA-IR was correlated positively with AST activity (P < 0.05). In HCV patients with detectable viremia, IGF-1 levels were correlated negatively with HOMA-β (P < 0.01) and with HOMA-IR. However, this correlation did not reach statistical significance (P = 0.074). No significant correlation was found between HCV viral load and the studied parameters. In conclusion, low IGF-I levels might have a role in IR among HCV viremic patients.
Collapse
|
42
|
SHEN JUILUNG, HSU TSAICHING, CHEN YICHEN, HSU JENGDONG, YANG LIENCHUAN, TSAI FUUJEN, LI CHENGCHIEN, CHENG YAWEN, HUANG CHIHYANG, TZANG BORSHOW. EFFECTS OF DEEP-SEA WATER ON CARDIAC ABNORMALITY IN HIGH-CHOLESTEROL DIETARY MICE. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00498.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Wang Z, Olumi AF. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic hyperplasia. Differentiation 2011; 82:261-71. [PMID: 21536370 DOI: 10.1016/j.diff.2011.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 01/22/2023]
Abstract
Diabetes significantly increases the risk of benign prostatic hyperplasia (BPH) and low urinary tract symptoms (LUTS). The major endocrine aberration in connection with the metabolic syndrome is hyperinsulinemia. Insulin is an independent risk factor and a promoter of BPH. Insulin resistance may change the risk of BPH through several biological pathways. Hyperinsulinemia stimulates the liver to produce more insulin-like growth factor (IGF), another mitogen and an anti-apoptotic agent which binds insulin receptor/IGF receptor and stimulates prostate growth. The levels of IGFs and IGF binding proteins (IGFBPs) in prostate tissue and in blood are associated with BPH risk, with the regulation of circulating androgen and growth hormone. Stromal-epithelial interactions play a critical role in the development and growth of the prostate gland and BPH. Previously, we have shown that the expression of c-Jun in the fibroblastic stroma can promote secretion of IGF-I, which stimulates prostate epithelial cell proliferation through activating specific target genes. Here, we will review the epidemiologic, clinical, and molecular findings which have evaluated the relation between diabetes and development of BPH.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, 55 Fruit St., Yawkey Building 7E, Boston, MA 02114, USA
| | | |
Collapse
|
44
|
Hirai H, Kanaya R, Maeda M, Qungfang D, Ina K, Hayashi T. The role of insulin growth factor on atherosclerosis and endothelial function: the effect on hyperlipidemia and aging. Life Sci 2011; 88:425-31. [PMID: 21219916 DOI: 10.1016/j.lfs.2010.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/21/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
AIMS Insulin/insulin-like growth factor (IGF-1) signaling is important for a variety of age-related processes. However, whether or not it affects atherosclerosis is unknown. MAIN METHODS Six groups of 6 male New Zealand white rabbits were treated for 12 weeks under the following conditions: Groups YC and YIGF: Young rabbits (10 weeks old) were fed regular chow w/wo IGF-1(Somazon 0.1 mg/kg/day, s.c.). Groups HC and HIGF: young rabbits were fed HCD (0.5% cholesterol plus regular chow) w/wo IGF-1. Groups OC and OIGF: old rabbits (120 weeks old) were fed regular chow w/wo IGF-1. KEY FINDINGS Plasma lipid levels, endothelial responses and morphological findings did not differ between groups YIGF and YC. Animals in group HC had increased plasma lipid levels and atheromas. In group HIGF, IGF led to atheromas with increased plasma insulin growth factor binding protein 3 (IBP3), inducible nitric oxide synthase(iNOS) expression and nitrotyrosine staining, macrophage staining, SM1 staining and SM embryo staining compared to HC. Basal nitric oxide (NO) release evaluated by plasma NO metabolites (NOx) and cGMP levels were lowest in the HIGF group. SIGNIFICANCE Overall, IGF-1 promoted atherosclerosis by affecting endothelial function and aging. These findings indicate that Insulin/IGF1 may contribute to atherogenesis in the elderly.
Collapse
Affiliation(s)
- Hisako Hirai
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Farrés J, Pujol A, Coma M, Ruiz JL, Naval J, Mas JM, Molins A, Fondevila J, Aloy P. Revealing the molecular relationship between type 2 diabetes and the metabolic changes induced by a very-low-carbohydrate low-fat ketogenic diet. Nutr Metab (Lond) 2010; 7:88. [PMID: 21143928 PMCID: PMC3009973 DOI: 10.1186/1743-7075-7-88] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/09/2010] [Indexed: 12/21/2022] Open
Abstract
Background The prevalence of type 2 diabetes is increasing worldwide, accounting for 85-95% of all diagnosed cases of diabetes. Clinical trials provide evidence of benefits of low-carbohydrate ketogenic diets in terms of clinical outcomes on type 2 diabetes patients. However, the molecular events responsible for these improvements still remain unclear in spite of the high amount of knowledge on the primary mechanisms of both the diabetes and the metabolic state of ketosis. Molecular network analysis of conditions, diseases and treatments might provide new insights and help build a better understanding of clinical, metabolic and molecular relationships among physiological conditions. Accordingly, our aim is to reveal such a relationship between a ketogenic diet and type 2 diabetes through systems biology approaches. Methods Our systemic approach is based on the creation and analyses of the cell networks representing the metabolic state in a very-low-carbohydrate low-fat ketogenic diet. This global view might help identify unnoticed relationships often overlooked in molecule or process-centered studies. Results A strong relationship between the insulin resistance pathway and the ketosis main pathway was identified, providing a possible explanation for the improvement observed in clinical trials. Moreover, the map analyses permit the formulation of some hypothesis on functional relationships between the molecules involved in type 2 diabetes and induced ketosis, suggesting, for instance, a direct implication of glucose transporters or inflammatory processes. The molecular network analysis performed in the ketogenic-diet map, from the diabetes perspective, has provided insights on the potential mechanism of action, but also has opened new possibilities to study the applications of the ketogenic diet in other situations such as CNS or other metabolic dysfunctions.
Collapse
Affiliation(s)
- Judith Farrés
- Institute for Research in Biomedicine, Join IRB-BSC program in Computational Biology, C/Baldiri i Reixac 10-12, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huang YCT, Schmitt M, Yang Z, Que LG, Stewart JC, Frampton MW, Devlin RB. Gene expression profile in circulating mononuclear cells after exposure to ultrafine carbon particles. Inhal Toxicol 2010; 22:835-46. [PMID: 20507211 DOI: 10.3109/08958378.2010.486419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Exposure to particulate matter (PM) is associated with systemic health effects, but the cellular and molecular mechanisms are unclear. OBJECTIVE We hypothesized that, if circulating mononuclear cells play an important role in mediating systemic effects of PM, they would show gene expression changes following exposure. MATERIALS AND METHODS Peripheral blood samples were collected before (0 h) and at 24 h from healthy subjects exposed to filtered air (FA) and ultrafine carbon particles (UFPs, 50 microg/m(3)) for 2 h in a previous study (n = 3 each). RNA from mononuclear cell fraction (> 85% lymphocytes) was extracted, amplified and hybridized to Affymetrix HU133 plus 2 microarrays. Selected genes were confirmed in five additional subjects from the same study. RESULTS We identified 1713 genes (UFP 24 h vs. FA 0 and 24 h, P < 0.05, false discovery rate of 0.01). The top 10 upregulated genes (fold) were CDKN1C (1.86), ZNF12 (1.83), SRGAP2 (1.82), FYB (1.79), LSM14B (1.79), CD93 (1.76), NCSTN (1.70), DUSP6 (1.69), TACC1 (1.68), and H2AFY (1.68). Upregulation of CDKN1C and SRGAP2 was confirmed by real-time-PCR. We entered 1020 genes with a ratio >1.1 or <-1.1 into the Ingenuity Pathway Analysis and identified pathways related to inflammation, tissue growth and host defense against environmental insults, such as, insulin growth factor 1 signaling, insulin receptor signaling and NF-E2-related factor-2-mediated oxidative stress response pathway. DISCUSSION AND CONCLUSIONS Two-hour exposures to UFP produced gene expression changes in circulating mononuclear cells. These gene changes provide biologically plausible links to PM-induced systemic health effects, especially those in the cardiovascular system and glucose metabolism.
Collapse
Affiliation(s)
- Yuh-Chin T Huang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev 2010; 9:324-53. [PMID: 19853062 DOI: 10.1016/j.arr.2009.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Collapse
|
48
|
Thrombospondin-1: A proatherosclerotic protein augmented by hyperglycemia. J Vasc Surg 2010; 51:1238-47. [DOI: 10.1016/j.jvs.2009.11.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 10/19/2009] [Accepted: 11/14/2009] [Indexed: 01/19/2023]
|
49
|
Receptor and nonreceptor tyrosine kinases in vascular biology of hypertension. Curr Opin Nephrol Hypertens 2010; 19:169-76. [DOI: 10.1097/mnh.0b013e3283361c24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano M, Otsu K, Snider P, Conway SJ, Nagai R. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 2009; 120:254-65. [PMID: 20038803 DOI: 10.1172/jci40295] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/21/2009] [Indexed: 12/28/2022] Open
Abstract
Fibroblasts, which are the most numerous cell type in the heart, interact with cardiomyocytes in vitro and affect their function; however, they are considered to play a secondary role in cardiac hypertrophy and failure. Here we have shown that cardiac fibroblasts are essential for the protective and hypertrophic myocardial responses to pressure overload in vivo in mice. Haploinsufficiency of the transcription factor-encoding gene Krüppel-like factor 5 (Klf5) suppressed cardiac fibrosis and hypertrophy elicited by moderate-intensity pressure overload, whereas cardiomyocyte-specific Klf5 deletion did not alter the hypertrophic responses. By contrast, cardiac fibroblast-specific Klf5 deletion ameliorated cardiac hypertrophy and fibrosis, indicating that KLF5 in fibroblasts is important for the response to pressure overload and that cardiac fibroblasts are required for cardiomyocyte hypertrophy. High-intensity pressure overload caused severe heart failure and early death in mice with Klf5-null fibroblasts. KLF5 transactivated Igf1 in cardiac fibroblasts, and IGF-1 subsequently acted in a paracrine fashion to induce hypertrophic responses in cardiomyocytes. Igf1 induction was essential for cardioprotective responses, as administration of a peptide inhibitor of IGF-1 severely exacerbated heart failure induced by high-intensity pressure overload. Thus, cardiac fibroblasts play a pivotal role in the myocardial adaptive response to pressure overload, and this role is partly controlled by KLF5. Modulation of cardiac fibroblast function may provide a novel strategy for treating heart failure, with KLF5 serving as an attractive target.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|