1
|
Farrell LA, O’Rourke MB, Padula MP, Souza-Fonseca-Guimaraes F, Caramori G, Wark PAB, Dharmage SC, Hansbro PM. The Current Molecular and Cellular Landscape of Chronic Obstructive Pulmonary Disease (COPD): A Review of Therapies and Efforts towards Personalized Treatment. Proteomes 2024; 12:23. [PMID: 39189263 PMCID: PMC11348234 DOI: 10.3390/proteomes12030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks as the third leading cause of global illness and mortality. It is commonly triggered by exposure to respiratory irritants like cigarette smoke or biofuel pollutants. This multifaceted condition manifests through an array of symptoms and lung irregularities, characterized by chronic inflammation and reduced lung function. Present therapies primarily rely on maintenance medications to alleviate symptoms, but fall short in impeding disease advancement. COPD's diverse nature, influenced by various phenotypes, complicates diagnosis, necessitating precise molecular characterization. Omics-driven methodologies, including biomarker identification and therapeutic target exploration, offer a promising avenue for addressing COPD's complexity. This analysis underscores the critical necessity of improving molecular profiling to deepen our comprehension of COPD and identify potential therapeutic targets. Moreover, it advocates for tailoring treatment strategies to individual phenotypes. Through comprehensive exploration-based molecular characterization and the adoption of personalized methodologies, innovative treatments may emerge that are capable of altering the trajectory of COPD, instilling optimism for efficacious disease-modifying interventions.
Collapse
Affiliation(s)
- Luke A. Farrell
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew B. O’Rourke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | | | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Peter A. B. Wark
- School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia;
| | - Shymali C. Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Phillip M. Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| |
Collapse
|
2
|
Zheng H, Mei H, Li X, Li D, Liu W. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in Aspergillus fumigatus. Curr Microbiol 2024; 81:74. [PMID: 38253771 PMCID: PMC10803526 DOI: 10.1007/s00284-023-03565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024]
Abstract
Aspergillus fumigatus is the significant causative agent in cases of invasive aspergillosis, leading to a high mortality rate in immunocompromised patients. A comprehensive understanding of its growth patterns and metabolic processes within the host is a critical prerequisite for the development of effective antifungal strategies. Lysine 2-hydroxyisobutyrylation (Khib) is a highly conserved protein posttranslational modifications (PTM) found in various organisms. In this study, we investigate the biological impact of Khib in A. fumigatus. Using a combination of antibody enrichment with the conventional LC-MS/MS method, the pattern of Khib-modification in proteins and their respective sites were analyzed in a wild type strain of A. fumigatus. Our findings revealed 3494 Khib-modified proteins with a total of 18,091 modified sites in this strain. Functional enrichment analysis indicated that these Khib-modified proteins participate in a diverse range of cellular functions, spanning various subcellular locations such as ribosome biosynthesis, protein synthesis and nucleocytoplasmic transport. Notably, when compared with other reported eukaryotes, A. fumigatus exhibited consistently higher numbers of Khib-modified proteins, suggesting the potential significance of this modification in this organism. An interesting observation is the prevalence of Khib modifications in most enzymes involved in the ergosterol synthesis pathway. The insights gathered from this study provide new avenue for studying PTM-associated mechanisms in fungal growth and offer potential implication for antifungal drug development.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Huan Mei
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Xiaofang Li
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Cao C, Magalhães P, Krapp LF, Bada Juarez JF, Mayer SF, Rukes V, Chiki A, Lashuel HA, Dal Peraro M. Deep Learning-Assisted Single-Molecule Detection of Protein Post-translational Modifications with a Biological Nanopore. ACS NANO 2024; 18:1504-1515. [PMID: 38112538 PMCID: PMC10795472 DOI: 10.1021/acsnano.3c08623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in countless biological processes, profoundly modulating protein properties on both spatial and temporal scales. Protein PTMs have also emerged as reliable biomarkers for several diseases. However, only a handful of techniques are available to accurately measure their levels, capture their complexity at a single molecule level, and characterize their multifaceted roles in health and disease. Nanopore sensing provides high sensitivity for the detection of low-abundance proteins, holding the potential to impact single-molecule proteomics and PTM detection, in particular. Here, we demonstrate the ability of a biological nanopore, the pore-forming toxin aerolysin, to detect and distinguish α-synuclein-derived peptides bearing single or multiple PTMs, namely, phosphorylation, nitration, and oxidation occurring at different positions and in various combinations. The characteristic current signatures of the α-synuclein peptide and its PTM variants could be confidently identified by using a deep learning model for signal processing. We further demonstrate that this framework can quantify α-synuclein peptides at picomolar concentrations and detect the C-terminal peptides generated by digestion of full-length α-synuclein. Collectively, our work highlights the advantage of using nanopores as a tool for simultaneous detection of multiple PTMs and facilitates their use in biomarker discovery and diagnostics.
Collapse
Affiliation(s)
- Chan Cao
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
- Department
of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Pedro Magalhães
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Lucien F. Krapp
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Juan F. Bada Juarez
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Simon Finn Mayer
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Verena Rukes
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Anass Chiki
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Jiang G, Shao J, Tang T, Wang M, Wang J, Jia X, Lai S. TMT-Based Proteomics Analysis Revealed the Protein Changes in Perirenal Fat from Obese Rabbits. Int J Mol Sci 2023; 24:17167. [PMID: 38138996 PMCID: PMC10743514 DOI: 10.3390/ijms242417167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity has become increasingly prevalent in recent years, and there is a need for a deeper understanding of the complex pathogenesis underlying the obesity condition. Therefore, the objective of this study was to investigate how a high-fat diet (HFD) affects protein expression in a female-rabbit model compared to a standard normal-diet group (SND), to gain comprehensive insights into the molecular mechanisms involved in obesity. To achieve this objective, a tandem mass tag (TMT)-based quantitative proteomics analysis was conducted to examine the molecular changes occurring in the white adipose tissue (WAT) from the HFD and SND groups. The sequencing results identified a total of 4215 proteins, among which 151 proteins exhibited significant differential expression. Specifically, there were 85 upregulated proteins and 66 downregulated proteins in the HFD group compared to the SND group. Further analysis of these differentially expressed proteins (DEPs) revealed their involvement in crucial biological processes, including energy metabolism, hormonal regulation, and inflammatory response. In conclusion, this study sheds light on the impact of HFD on protein expression in a female-rabbit model, providing new insights into the molecular mechanisms underlying obesity and the associated metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.J.); (J.S.); (T.T.); (M.W.); (J.W.); (X.J.)
| |
Collapse
|
5
|
Rejeeth C, Varukattu NB, Kumar RS, Almansour AI, Arumugam N. A novel device for swift and efficient CD44 protein digestion of pipette tips in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123840. [PMID: 37494752 DOI: 10.1016/j.jchromb.2023.123840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
For molecular diagnostics in modern biomedical research, electrospray ionisation mass spectrometry (ESI-MS) based on proteome profiling is important. Now a days, sample preparation such as proteolysis and protein extraction remain incredibly challenging and inefficient. Recent sample-preparation methods based on micro tips show promising results toward the aim "a proteome in an hour". Proteolysis at the tip, is still infrequently observed and does not represent the processing of complex bio-samples. In this study, we outline a unique technique for detecting and extracting human serum CD44 biomarkers by ligand-protein interactions. This method employs macropores silica particles (MPSP) or (MOSF) modified with hyaluronic acid (HA). In order to assist in the profile of the human serum proteome, we limitations of immunoassays for rapid and multimodal proteolysis. For effective in situ proteolysis, in micropipette tips, MPSP were designed as nanoreactors with variable pore size and surface chemistry. In MS-based bottom-up proteome analysis, the device as-built demonstrated favourable sensitivity (LOD of 0.304 ± 0.007 ng/mL and LOQ of 0.973 ± 0.054 ng/mL), selectivity, durability (at -20 °C for 2 months), reuse (at least 10 times), and minimal memory impact. In addition, we examined into specific surface chemistries of nanoparticles for the absorption of proteins in serum and profiled the HA-binding serum proteome, setting a new preliminary benchmark for future databases. Our study not only helped establish a new platform for extracting/detection of CD44 and identifying the HA-binding proteome, but it also offered design recommendations for ligand affinity-based techniques for the antibody-free study of serum biomarkers with a view towards diagnostic applications.
Collapse
Affiliation(s)
- Chandrababu Rejeeth
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | - Nipun Babu Varukattu
- Department of Nutrition and Health Sciences, The University of Nebraska Lincoln, Lincoln, NE 68583-0806, USA
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Large-Scale Quantitative Proteomic Analysis during Different Stages of Somatic Embryogenesis in Larix olgensis. Curr Issues Mol Biol 2023; 45:2021-2034. [PMID: 36975500 PMCID: PMC10047913 DOI: 10.3390/cimb45030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Larix olgensis is an economically important tree species native to northeastern China. The use of somatic embryogenesis (SE) is efficient and enables the rapid production of varieties with desirable qualities. Here, isobaric labeling via tandem mass tags was used to conduct a large-scale quantitative proteomic analysis of proteins in three critically important stages of SE in L. olgensis: the primary embryogenic callus, the single embryo, and the cotyledon embryo. We identified 6269 proteins, including 176 shared differentially expressed proteins across the three groups. Many of these proteins are involved in glycolipid metabolism, hormone response/signal transduction, cell synthesis and differentiation, and water transport; proteins involved in stress resistance and secondary metabolism, as well as transcription factors, play key regulatory roles in SE. The results of this study provide new insights into the key pathways and proteins involved in SE in Larix. Our findings have implications for the expression of totipotency, the preparation of synthetic seeds, and genetic transformation.
Collapse
|
7
|
Ajmal MR. Protein Misfolding and Aggregation in Proteinopathies: Causes, Mechanism and Cellular Response. Diseases 2023; 11:30. [PMID: 36810544 PMCID: PMC9944956 DOI: 10.3390/diseases11010030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Proteins are central to life functions. Alterations in the structure of proteins are reflected in their function. Misfolded proteins and their aggregates present a significant risk to the cell. Cells have a diverse but integrated network of protection mechanisms. Streams of misfolded proteins that cells are continuously exposed to must be continually monitored by an elaborated network of molecular chaperones and protein degradation factors to control and contain protein misfolding problems. Aggregation inhibition properties of small molecules such as polyphenols are important as they possess other beneficial properties such as antioxidative, anti-inflammatory, and pro-autophagic properties and help neuroprotection. A candidate with such desired features is important for any possible treatment development for protein aggregation diseases. There is a need to study the protein misfolding phenomenon so that we can treat some of the worst kinds of human ailments related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Mohammad Rehan Ajmal
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
8
|
Han B, Zhang L, Ma Y, Hou Y, Xie K, Zhong J, Zhou P. Quantitative Phosphoproteome of Infant Formula: New Insights into the Difference of Phosphorylation in Milk Proteins between Bovine and Goat Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3531-3540. [PMID: 36719709 DOI: 10.1021/acs.jafc.2c07326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phosphorylation is a broad post-translational protein modification, and the level of phosphorylation of milk proteins is associated with lactation, coagulation properties, and digestibility. However, phosphoproteins in bovine milk-based and goat milk-based infant formula have not been systematically explored. Here, we have analyzed six bovine and six goat milk-based infant formula using a quantitative phosphoproteomics approach, from which we identified 200 phosphoproteins with 276 phosphorylation sites and 156 phosphorylation sites from 75 phosphoproteins, respectively. Of these, 99 phosphorylation sites from 26 shared phosphoproteins were differentially expressed between bovine and goat milk-based infant formula. Especially, CSN1S1 was the most phosphoprotein with 25 quantified phosphorylation sites. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the identified phosphoproteins not only provide nutrition to the infant but also have anti-inflammatory, antipathogenic, and other biological functions. Our results shed light on the composition, phosphorylation sites, and biological functions of phosphoproteins in bovine milk and goat milk-based infant formula, which provide new insights into the key role of protein modifications during infant development. It also helps us to better understand the differences in digestibility of infant formula from different animal milk sources and thus guides the choice of milk source for infant formula.
Collapse
Affiliation(s)
- Binsong Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ying Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, Hunan, China
| | - Kui Xie
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, Hunan, China
| | - Jinjing Zhong
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, Hunan, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) is an elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2D-GE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The use of an internal pooled standard makes 2D-DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. Technical limitations of this technique (i.e., underrating of low abundant, high molecular mass and integral membrane proteins) are counterbalanced by the incomparable separation power which allows proteoforms and unknown PTM (posttranslational modification) identification. Moreover, the image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.
Collapse
Affiliation(s)
- Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy.
| |
Collapse
|
10
|
Vašíček J, Skiadopoulou D, Kuznetsova KG, Wen B, Johansson S, Njølstad PR, Bruckner S, Käll L, Vaudel M. Finding haplotypic signatures in proteins. Gigascience 2022; 12:giad093. [PMID: 37919975 PMCID: PMC10622322 DOI: 10.1093/gigascience/giad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The nonrandom distribution of alleles of common genomic variants produces haplotypes, which are fundamental in medical and population genetic studies. Consequently, protein-coding genes with different co-occurring sets of alleles can encode different amino acid sequences: protein haplotypes. These protein haplotypes are present in biological samples and detectable by mass spectrometry, but they are not accounted for in proteomic searches. Consequently, the impact of haplotypic variation on the results of proteomic searches and the discoverability of peptides specific to haplotypes remain unknown. FINDINGS Here, we study how common genetic haplotypes influence the proteomic search space and investigate the possibility to match peptides containing multiple amino acid substitutions to a publicly available data set of mass spectra. We found that for 12.42% of the discoverable amino acid substitutions encoded by common haplotypes, 2 or more substitutions may co-occur in the same peptide after tryptic digestion of the protein haplotypes. We identified 352 spectra that matched to such multivariant peptides, and out of the 4,582 amino acid substitutions identified, 6.37% were covered by multivariant peptides. However, the evaluation of the reliability of these matches remains challenging, suggesting that refined error rate estimation procedures are needed for such complex proteomic searches. CONCLUSIONS As these procedures become available and the ability to analyze protein haplotypes increases, we anticipate that proteomics will provide new information on the consequences of common variation, across tissues and time.
Collapse
Affiliation(s)
- Jakub Vašíček
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5008, Norway
| | - Dafni Skiadopoulou
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5008, Norway
| | - Ksenia G Kuznetsova
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5008, Norway
| | - Bo Wen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, United States
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen 5021, Norway
| | - Stefan Bruckner
- Chair of Visual Analytics, Institute for Visual and Analytic Computing, University of Rostock, Rostock 18051, Germany
| | - Lukas Käll
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH–Royal Institute of Technology, Solna 17121, Sweden
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5008, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo 0473, Norway
| |
Collapse
|
11
|
Surrogate peptide selection and internal standardization for accurate quantification of endogenous proteins. Bioanalysis 2022; 14:949-961. [PMID: 36017716 DOI: 10.4155/bio-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Relative quantification techniques have dominated the field of proteomics. However, biomarker discovery, mathematical model development and studies on transporter-mediated drug disposition still need absolute quantification of proteins. The quality of data of trace-level protein quantification is solely dependent on the specific selection of surrogate peptides. Selection of surrogate peptides has a major impact on the accuracy of the method. In this article, the advanced approaches for selection of surrogate peptides, which can provide absolute quantification of the proteins are discussed. In addition, internal standardization, which accounts for variations in the quantitation process to achieve absolute protein quantification is discussed.
Collapse
|
12
|
Zhou C, Zou Y, Huang J, Zhao Z, Zhang Y, Wei Y, Ye K. TMT-Based Quantitative Proteomic Analysis of Intestinal Organoids Infected by Listeria monocytogenes Strains with Different Virulence. Int J Mol Sci 2022; 23:ijms23116231. [PMID: 35682909 PMCID: PMC9181811 DOI: 10.3390/ijms23116231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
L. monocytogenes, consisting of 13 serotypes, is an opportunistic food-borne pathogen that causes different host reactions depending on its serotypes. In this study, highly toxic L. monocytogenes 10403s resulted in more severe infections and lower survival rates. Additionally, to investigate the remodeling of the host proteome by strains exhibiting differential toxicity, the cellular protein responses of intestinal organoids were analyzed using tandem mass tag (TMT) labeling and high-performance liquid chromatography−mass spectrometry. The virulent strain 10403s caused 102 up-regulated and 52 down-regulated proteins, while the low virulent strain M7 caused 188 up-regulated and 25 down-regulated proteins. Based on the analysis of gene ontology (GO) and KEGG databases, the expressions of differential proteins in organoids infected by L. monocytogenes 10403s (virulent strain) or M7 (low virulent strain) were involved in regulating essential processes such as the biological metabolism, the energy metabolism, and immune system processes. The results showed that the immune system process, as the primary host defense response to L. monocytogenes, comprised five pathways, including ECM−receptor interaction, the complement and coagulation cascades, HIF-1, ferroptosis, and NOD-like receptor signaling pathways. As for the L. monocytogenes 10403s vs. M7 group, the expression of differential proteins was involved in two pathways: systemic lupus erythematosus and transcriptional mis-regulation in cancer. All in all, these results revealed that L. monocytogenes strains with different toxicity induced similar biological functions and immune responses while having different regulations on differential proteins in the pathway.
Collapse
|
13
|
Thum C, Wall C, Day L, Szeto IMY, Li F, Yan Y, Barnett MPG. Changes in Human Milk Fat Globule Composition Throughout Lactation: A Review. Front Nutr 2022; 9:835856. [PMID: 35634409 PMCID: PMC9137899 DOI: 10.3389/fnut.2022.835856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
There has been a growing interest in understanding how the relative levels of human milk fat globule (MFG) components change over the course of lactation, how they differ between populations, and implications of these changes for the health of the infant. In this article, we describe studies published over the last 30 years which have investigated components of the MFG in term milk, focusing on changes over the course of lactation and highlighting infant and maternal factors that may influence these changes. We then consider how the potential health benefits of some of the milk fat globule membrane (MFGM) components and derived ingredients relate to compositional and functional aspects and how these change throughout lactation. The results show that the concentrations of phospholipids, gangliosides, cholesterol, fatty acids and proteins vary throughout lactation, and such changes are likely to reflect the changing requirements of the growing infant. There is a lack of consistent trends for changes in phospholipids and gangliosides across lactation which may reflect different methodological approaches. Other factors such as maternal diet and geographical location have been shown to influence human MFGM composition. The majority of research on the health benefits of MFGM have been conducted using MFGM ingredients derived from bovine milk, and using animal models which have clearly demonstrated the role of the MFGM in supporting cognitive and immune health of infants at different stages of growth and development.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch Ltd, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- *Correspondence: Caroline Thum
| | - Clare Wall
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Li Day
- AgResearch Ltd, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Ignatius M. Y. Szeto
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | - Fang Li
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | - Yalu Yan
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | | |
Collapse
|
14
|
Azevedo R, Jacquemin C, Villain N, Fenaille F, Lamari F, Becher F. Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications. Cells 2022; 11:1279. [PMID: 35455959 PMCID: PMC9031030 DOI: 10.3390/cells11081279] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative diseases are incurable, heterogeneous, and age-dependent disorders that challenge modern medicine. A deeper understanding of the pathogenesis underlying neurodegenerative diseases is necessary to solve the unmet need for new diagnostic biomarkers and disease-modifying therapy and reduce these diseases' burden. Specifically, post-translational modifications (PTMs) play a significant role in neurodegeneration. Due to its proximity to the brain parenchyma, cerebrospinal fluid (CSF) has long been used as an indirect way to measure changes in the brain. Mass spectrometry (MS) analysis in neurodegenerative diseases focusing on PTMs and in the context of biomarker discovery has improved and opened venues for analyzing more complex matrices such as brain tissue and blood. Notably, phosphorylated tau protein, truncated α-synuclein, APP and TDP-43, and many other modifications were extensively characterized by MS. Great potential is underlying specific pathological PTM-signatures for clinical application. This review focuses on PTM-modified proteins involved in neurodegenerative diseases and highlights the most important and recent breakthroughs in MS-based biomarker discovery.
Collapse
Affiliation(s)
- Rita Azevedo
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Chloé Jacquemin
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Nicolas Villain
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
- Institut du Cerveau (ICM), Pitié-Salpêtrière Hospital, 75013 Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, AP-HP Sorbonne Université, CEDEX 13, 75651 Paris, France
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Foudil Lamari
- Department of Metabolic Biochemistry (AP-HP Sorbonne), Pitié-Salpêtrière Hospital, CEDEX 13, 75651 Paris, France;
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| |
Collapse
|
15
|
Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med 2022; 86:101097. [PMID: 35400524 PMCID: PMC9378605 DOI: 10.1016/j.mam.2022.101097] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Protein post-translational modifications (PTMs) profoundly influence protein functions and play crucial roles in essentially all cell biological processes. The diverse realm of PTMs and their crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. The pathological roles of various PTMs are implicated in all aspects of cancer hallmark functions, cancer metabolism and regulation of tumor microenvironment. Study of PTMs has become an important area in cancer research to understand cancer biology and discover novel biomarkers and therapeutic targets. With a limited scope, this review attempts to discuss some PTMs of high frequency with recognized importance in cancer biology, including phosphorylation, acetylation, glycosylation, palmitoylation and ubiquitination, as well as their implications in clinical applications. These protein modifications are among the most abundant PTMs and profoundly implicated in carcinogenesis.
Collapse
|
16
|
Loroch S, Kopczynski D, Schneider AC, Schumbrutzki C, Feldmann I, Panagiotidis E, Reinders Y, Sakson R, Solari FA, Vening A, Swieringa F, Heemskerk JWM, Grandoch M, Dandekar T, Sickmann A. Toward Zero Variance in Proteomics Sample Preparation: Positive-Pressure FASP in 96-Well Format (PF96) Enables Highly Reproducible, Time- and Cost-Efficient Analysis of Sample Cohorts. J Proteome Res 2022; 21:1181-1188. [PMID: 35316605 PMCID: PMC8981309 DOI: 10.1021/acs.jproteome.1c00706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
As novel liquid chromatography–mass
spectrometry (LC-MS)
technologies for proteomics offer a substantial increase in LC-MS
runs per day, robust and reproducible sample preparation emerges as
a new bottleneck for throughput. We introduce a novel strategy for
positive-pressure 96-well filter-aided sample preparation (PF96) on
a commercial positive-pressure solid-phase extraction device. PF96
allows for a five-fold increase in throughput in conjunction with
extraordinary reproducibility with Pearson product-moment correlations
on the protein level of r = 0.9993, as demonstrated
for mouse heart tissue lysate in 40 technical replicates. The targeted
quantification of 16 peptides in the presence of stable-isotope-labeled
reference peptides confirms that PF96 variance is barely assessable
against technical variation from nanoLC-MS instrumentation. We further
demonstrate that protein loads of 36–60 μg result in
optimal peptide recovery, but lower amounts ≥3 μg can
also be processed reproducibly. In summary, the reproducibility, simplicity,
and economy of time provide PF96 a promising future in biomedical
and clinical research.
Collapse
Affiliation(s)
- Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Dominik Kopczynski
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Adriana C Schneider
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany.,Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, 44227 Dortmund, Germany
| | - Cornelia Schumbrutzki
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Ingo Feldmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | | | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Roman Sakson
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Alicia Vening
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Maria Grandoch
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany.,Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, AB24 3FX Aberdeen, United Kingdom
| |
Collapse
|
17
|
He Y, Zheng Q, Huang H, Ji Y, Lin Z. Synergistic synthesis of hydrophilic hollow zirconium organic frameworks for simultaneous recognition and capture of phosphorylated and glycosylated peptides. Anal Chim Acta 2022; 1198:339552. [DOI: 10.1016/j.aca.2022.339552] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/26/2022]
|
18
|
Analysis of protein phosphorylation using Phos-tag gels. J Proteomics 2022; 259:104558. [DOI: 10.1016/j.jprot.2022.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
|
19
|
Jia B, Xiang D, Shao Q, Hong Q, Quan G, Wu G. Proteomic Exploration of Porcine Oocytes During Meiotic Maturation in vitro Using an Accurate TMT-Based Quantitative Approach. Front Vet Sci 2022; 8:792869. [PMID: 35198619 PMCID: PMC8859466 DOI: 10.3389/fvets.2021.792869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 01/19/2023] Open
Abstract
The dynamic changes in protein expression are well known to be required for oocyte meiotic maturation. Although proteomic analysis has been performed in porcine oocytes during in vitro maturation, there is still no full data because of the technical limitations at that time. Here, a novel tandem mass tag (TMT)-based quantitative approach was used to compare the proteomic profiles of porcine immature and in vitro mature oocytes. The results of our study showed that there were 763 proteins considered with significant difference−450 over-expressed and 313 under-expressed proteins. The GO and KEGG analyses revealed multiple regulatory mechanisms of oocyte nuclear and cytoplasmic maturation such as spindle and chromosome configurations, cytoskeletal reconstruction, epigenetic modifications, energy metabolism, signal transduction and others. In addition, 12 proteins identified with high-confidence peptide and related to oocyte maturation were quantified by a parallel reaction monitoring technique to validate the reliability of TMT results. In conclusion, we provided a detailed proteomics dataset to enrich the understanding of molecular characteristics underlying porcine oocyte maturation in vitro.
Collapse
Affiliation(s)
- Baoyu Jia
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Decai Xiang
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qingyong Shao
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guobo Quan
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Guobo Quan
| | - Guoquan Wu
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- Guoquan Wu
| |
Collapse
|
20
|
Yao J, Li R, Cheng Y, Li Z. A combined transcriptomic and proteomic analysis of chrysanthemum provides new insights into petal senescence. PLANTA 2021; 255:22. [PMID: 34918180 DOI: 10.1007/s00425-021-03808-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Numerous transcription factor genes and methylation-related genes were differentially expressed in senescent petals compared with control petals. Studying petal senescence is crucial for extending the postharvest longevity of cut flowers, but petal senescence remains relatively unexplored compared to well-studied leaf senescence. In this study, a combined transcriptomic and proteomic analysis of senescent (22 days after cutting) and control (0 day after cutting) petals was performed to investigate the molecular processes underlying petal senescence of chrysanthemum (Chrysanthemum morifolium Ramat.), an important cut flower crop worldwide. A total of 11,324 differentially expressed genes (DEGs), including 4888 up-regulated and 6436 down-regulated genes, and 403 differentially expressed proteins (DEPs), including 210 up-regulated and 193 down-regulated proteins, were identified at transcript and protein levels, respectively. A cross-comparison of transcriptomic and proteomic data identified 257 consistent DEGs/DEPs, including 122 up-regulated and 135 down-regulated DEGs/DEPs. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that "cutin, suberine and wax biosynthesis" is a main pathway for both DEGs and DEPs, especially for down-regulated DEGs/DEPs. Functional analysis indicated that chrysanthemum genes mainly encoding putative cytochrome P450s, non-specific lipid-transfer proteins, subtilisin-like proteases, AAA-ATPases, proteins essential for cuticular wax biosynthesis, and proteins in hormone signal transduction or ubiquitination were differentially expressed at both transcript and protein levels. In addition, numerous transcription factor genes and methylation-related genes were also differentially expressed, inferring an involvement of transcriptional and epigenetic regulation in petal senescence. These results provide a valuable resource of studying chrysanthemum senescence and significant insights into petal senescence.
Collapse
Affiliation(s)
- Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
21
|
Li Y, Li X, Zhang J, Li D, Yan L, You M, Zhang J, Lei X, Chang D, Ji X, An J, Li M, Bai S, Yan J. Physiological and Proteomic Responses of Contrasting Alfalfa ( Medicago sativa L.) Varieties to High Temperature Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:753011. [PMID: 34956258 PMCID: PMC8695758 DOI: 10.3389/fpls.2021.753011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
High temperature (HT) is an important factor for limiting global plant distribution and agricultural production. As the global temperature continues to rise, it is essential to clarify the physiological and molecular mechanisms of alfalfa responding the high temperature, which will contribute to the improvement of heat resistance in leguminous crops. In this study, the physiological and proteomic responses of two alfalfa (Medicago sativa L.) varieties contrasting in heat tolerance, MS30 (heat-tolerant) and MS37 (heat-sensitive), were comparatively analyzed under the treatments of continuously rising temperatures for 42 days. The results showed that under the HT stress, the chlorophyll content and the chlorophyll fluorescence parameter (Fv/Fm) of alfalfa were significant reduced and some key photosynthesis-related proteins showed a down-regulated trend. Moreover, the content of Malondialdehyde (MDA) and the electrolyte leakage (EL) of alfalfa showed an upward trend, which indicates both alfalfa varieties were damaged under HT stress. However, because the antioxidation-reduction and osmotic adjustment ability of MS30 were significantly stronger than MS37, the damage degree of the photosynthetic system and membrane system of MS30 is significantly lower than that of MS37. On this basis, the global proteomics analysis was undertaken by tandem mass tags (TMT) technique, a total of 6,704 proteins were identified and quantified. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that a series of key pathways including photosynthesis, metabolism, adjustment and repair were affected by HT stress. Through analyzing Venn diagrams of two alfalfa varieties, 160 and 213 differentially expressed proteins (DEPs) that had dynamic changes under HT stress were identified from MS30 and MS37, respectively. Among these DEPs, we screened out some key DEPs, such as ATP-dependent zinc metalloprotease FTSH protein, vitamin K epoxide reductase family protein, ClpB3, etc., which plays important functions in response to HT stress. In conclusion, the stronger heat-tolerance of MS30 was attributed to its higher adjustment and repair ability, which could cause the metabolic process of MS30 is more conducive to maintaining its survival and growth than MS37, especially at the later period of HT stress. This study provides a useful catalog of the Medicago sativa L. proteomes with the insight into its future genetic improvement of heat-resistance.
Collapse
Affiliation(s)
- Yingzhu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xinrui Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jin Zhang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Lijun Yan
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Minghong You
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jianbo Zhang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiong Lei
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dan Chang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiaofei Ji
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jinchan An
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Mingfeng Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Shiqie Bai
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jiajun Yan
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| |
Collapse
|
22
|
Motone K, Cardozo N, Nivala J. Herding cats: Label-based approaches in protein translocation through nanopore sensors for single-molecule protein sequence analysis. iScience 2021; 24:103032. [PMID: 34527891 PMCID: PMC8433247 DOI: 10.1016/j.isci.2021.103032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteins carry out life's essential functions. Comprehensive proteome analysis technologies are thus required for a full understanding of the operating principles of biological systems. While current proteomics techniques suffer from limitations in sensitivity and/or throughput, nanopore technology has the potential to enable de novo protein identification through single-molecule sequencing. However, a significant barrier to achieving this goal is controlling protein/peptide translocation through the nanopore sensor for processive strand analysis. Here, we review recent approaches that use a range of techniques, from oligonucleotide conjugation to molecular motors, aimed at driving protein strands and peptides through protein nanopores. We further discuss site-specific protein conjugation chemistry that could be combined with these translocation approaches as future directions to achieve single-molecule protein detection and sequencing of native proteins.
Collapse
Affiliation(s)
- Keisuke Motone
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Nicolas Cardozo
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Qiu C, Sun J, Shen J, Zhang S, Ding Y, Gai Z, Fan K, Song L, Chen B, Ding Z, Wang Y. Fulvic acid enhances drought resistance in tea plants by regulating the starch and sucrose metabolism and certain secondary metabolism. J Proteomics 2021; 247:104337. [PMID: 34298183 DOI: 10.1016/j.jprot.2021.104337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
The aim of this work was to gain insight into the molecular mechanisms underlying the effect of fulvic acid on drought-exposed tea plants. We performed proteomic analysis of fulvic acid-treated tea leaves from the target plants using tandem mass tag quantitative labeling technology and compared the results with those of a previous transcriptomic analysis. We identified 48 and 611 differentially abundant proteins in the leaves of tea plants treated with fulvic acid compared with the control under mild and severe drought, respectively. Comparative analysis showed that, under severe drought, 55 genes had similar expression patterns at the transcriptome and proteome levels, such as PAL, GBE, GBSS and bAS. Bioinformatic analysis revealed that those genes were mainly related to the starch and sucrose metabolism, phenylpropanoid biosynthesis and triterpenoid biosynthesis. SIGNIFICANCE: This study broadens the understanding of the molecular mechanisms underlying the improved drought resistance seen in tea plants in the presence of fulvic acid and provides a basis for further research on the genomics of drought tolerance in these plants. In addition, these findings could be used to develop new guidance strategies for improved drought management systems in tea plantation.
Collapse
Affiliation(s)
- Chen Qiu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jianhao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Rizhao, Shandong, China
| | - Shuning Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yiqian Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhongshuai Gai
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lubin Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Bo Chen
- Tai'an Agricultural and Rural Bureau, Taian, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Rizhao, Shandong, China; Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China.
| | - Yu Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Rizhao, Shandong, China; Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
24
|
Malard F, Wulff-Fuentes E, Berendt RR, Didier G, Olivier-Van Stichelen S. Automatization and self-maintenance of the O-GlcNAcome catalog: a smart scientific database. Database (Oxford) 2021; 2021:baab039. [PMID: 34279596 PMCID: PMC8288053 DOI: 10.1093/database/baab039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022]
Abstract
Post-translational modifications (PTMs) are ubiquitous and essential for protein function and signaling, motivating the need for sustainable benefit and open models of web databases. Highly conserved O-GlcNAcylation is a case example of one of the most recently discovered PTMs, investigated by a growing community. Historically, details about O-GlcNAcylated proteins and sites were dispersed across literature and in non-O-GlcNAc-focused, rapidly outdated or now defunct web databases. In a first effort to fill the gap, we recently published a human O-GlcNAcome catalog with a basic web interface. Based on the enthusiasm generated by this first resource, we extended our O-GlcNAcome catalog to include data from 42 distinct organisms and released the O-GlcNAc Database v1.2. In this version, more than 14 500 O-GlcNAcylated proteins and 11 000 O-GlcNAcylation sites are referenced from the curation of 2200 publications. In this article, we also present the extensive features of the O-GlcNAc Database, including the user-friendly interface, back-end and client-server interactions. We particularly emphasized our workflow, involving a mostly automatized and self-maintained database, including machine learning approaches for text mining. We hope that this software model will be useful beyond the O-GlcNAc community, to set up new smart, scientific online databases, in a short period of time. Indeed, this database system can be administrated with little to no programming skills and is meant to be an example of a useful, sustainable and cost-efficient resource, which exclusively relies on free open-source software elements (www.oglcnac.mcw.edu).
Collapse
Affiliation(s)
- Florian Malard
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA
| | - Eugenia Wulff-Fuentes
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA
| | - Rex R Berendt
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA
| | - Guillaume Didier
- Optionizr SAS, 9 Allée Claude Monet, Levallois-Perret 92300, France
| | | |
Collapse
|
25
|
Identification of significant potential signaling pathways and differentially expressed proteins in patients with wheat intolerance based on quantitative proteomics. J Proteomics 2021; 246:104317. [PMID: 34217887 DOI: 10.1016/j.jprot.2021.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Wheat intolerance has various systemic manifestations that can affect people's quality of life, and few studies have focused on the mechanism of wheat intolerance and the signaling pathways involved in wheat intolerance have not been fully identified. We compared the protein profiles of patients with wheat intolerance with those of healthy controls using LASSO (least absolute shrinkage and selection operator) and PLS (partial least squares regression) to obtain DEPs (differentially expressed proteins) for GO (Gene Ontology) analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis, and PPI (protein-protein interaction) network analysis. Internal validation and external validation were conducted for target proteomics testing. The correlation between differently expressed protein and the wheat-specific IgG antibody concentration was analyzed. Then ROC curve (receiver operating characteristic curve) was generated to validate the differentially expressed proteins. We identified 33 DEPs as significant candidate proteins of wheat intolerance. These proteins were mainly enriched in complement and coagulation cascade pathways, immune activation, and immune response-related pathways. After internal and external target proteomics validation, CFHR3 (complement factor H-related protein 3) was identified as a key protein that may have an important role in wheat intolerance. We found CFHR3 protein expression abundance and the wheat-specific IgG antibody concentration were significantly negatively correlated (P = 0.035; Spearman correlation coefficient r = -0.565). The AUC (median area under the ROC curve) of CFHR3 is 0.857 in external verification data. This study provides insights into wheat intolerance that can be used to further explore the pathogenesis of this condition. SIGNIFICANCE: Proteomics has performed important potential in food allergy research and is conducive to improving our comprehension on molecular mechanisms of food allergy. The present study identified significant signaling pathways and differentially expressed proteins in patients with wheat intolerance by means of bioinformatics from the viewpoint of mass spectrometry-based proteomics, which provided insights into further research on the pathogenesis and timely diagnosis of wheat intolerance.
Collapse
|
26
|
Kwon H, Kim J, Jho EH. Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS J 2021; 289:5798-5818. [PMID: 34173335 DOI: 10.1111/febs.16091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
The Hippo pathway is a crucial signaling mechanism that inhibits the growth of cells and organs during development and in disease. When the Hippo pathway is activated, YAP/TAZ transcriptional coactivators are phosphorylated by upstream kinases, preventing nuclear localization of YAP/TAZ. However, when the Hippo pathway is inhibited, YAP/TAZ localize mainly in the nucleus and induce the expression of target genes related to cell proliferation. Abnormal proliferation of cells is one of the hallmarks of cancer initiation, and activation of Hippo pathway dampens such cell proliferation. Various types of diseases including cancer can occur due to the dysregulation of the Hippo pathway. Therefore, a better understanding of the Hippo pathway signaling mechanisms, and in particular how YAP/TAZ exist in the nucleus, may lead to the identification of new therapeutic targets for treating cancer and other diseases. In this review, we summarize the overall Hippo pathway and discuss mechanisms related to nuclear localization of YAP/TAZ.
Collapse
Affiliation(s)
- Hyeryun Kwon
- Department of Life Science, University of Seoul, Korea
| | - Jiyoung Kim
- Department of Life Science, University of Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Korea
| |
Collapse
|
27
|
Abstract
Biomarkers factor into the diagnosis and treatment of almost every patient with cancer. The innovation in proteomics follows improvement of mass spectrometry techniques and data processing strategy. Recently, proteomics and typical biological studies have been the answer for clinical applications. The clinical proteomics techniques are now actively adapted to protein identification in large patient cohort, biomarker development for more sensitive and specific screening based on quantitative data. And, it is important for clinical, translational researchers to be acutely aware of the issues surrounding appropriate biomarker development, in order to facilitate entry of clinically useful biomarkers into the clinic. Here, we discuss in detail include the case research for clinical proteomics. Furthermore, we give an overview on the current developments and novel findings in proteomics-based cancer biomarker research.
Collapse
|
28
|
Rong T, Chunchun Z, Wei G, Yuchen G, Fei X, Tao L, Yuanyuan J, Chenbin W, Wenda X, Wenqing W. Proteomic insights into protostane triterpene biosynthesis regulatory mechanism after MeJA treatment in Alisma orientale (Sam.) Juz. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140671. [PMID: 33991668 DOI: 10.1016/j.bbapap.2021.140671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Protostane triterpenes in Alisma orientale (Sam.) Juz. have unique structural features with distinct pharmacological activities. Previously we have demonstrated that protostane triterpene biosynthesis could be regulated by methyl jasmonate (MeJA) induction in A. orientale. Here, proteomic investigation reveals the MeJA mediated regulation of protostane triterpene biosynthesis. In our study, 281 differentially abundant proteins were identified from MeJA-treated compared to control groups, while they were mainly associated with triterpene biosynthesis, α-linolenic acid metabolism, carbohydrate metabolism and response to stress/defense. Key enzymes 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), squalene epoxidase (SE), oxidosqualene cyclase (OSC) and cytochrome P450s which potentially involved in protostane triterpene biosynthesis were significantly enriched in MeJA-treated group. Basic Helix-loop-helix (bHLH), MYB, and GRAS transcription factors were enhanced after MeJA treatment, and they also improved the expressions of key enzymes in Mevalonate pathway and protostane triterpene. Then, MeJA also could increase the expression of α-galactosidase (α-GAL), thereby promoting carbohydrate decomposition, and providing energy and carbon skeletons for protostane triterpene precursor biosynthesis. As well, exogenous MeJA treatment upregulated 13-lipoxygenase (13-LOX), allene oxide synthase (AOS) and allene oxide cyclase (AOC) involved in α-linolenic acid metabolism, leading to the accumulation of endogenous MeJA and activation of the protostane triterpene biosynthesis transduction. Finally, MeJA upregulated stress/defence-related proteins, as to enhance the defence responses activity of plants. These results were further verified by quantitative real-time PCR analysis of 19 selected genes and content analysis of protostane triterpene. The results provide some new insights into the role of MeJA in protostane triterpene biosynthesis.
Collapse
Affiliation(s)
- Tian Rong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhang Chunchun
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Gu Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Gu Yuchen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji Yuanyuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Chenbin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Wenda
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wu Wenqing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
29
|
Li X, Chen D, Li B, Yang Y, Yang Y. Combined transcriptomic, proteomic and biochemical approaches to identify the cadmium hyper-tolerance mechanism of turnip seedling leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22458-22473. [PMID: 33420687 DOI: 10.1007/s11356-020-11454-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution is a prominent environment problem, and great interests have been developed towards the molecular mechanism of Cd accumulation in plants. In this study, we conducted combined transcriptomic, proteomic and biochemical approaches to explore the detoxification of a Cd-hyperaccumulating turnip landrace exposed to 5 μM (T5) and 25 μM (T25) Cd treatments. A total of 1090 and 2111 differentially expressed genes (DEGs) and 161 and 303 differentially expressed proteins (DEPs) were identified in turnips under T5 and T25, respectively. However, poor correlations were observed in expression changes between mRNA and protein levels. The enriched KEGG pathways of DEGs with a high proportion (> 80%) of upregulated genes were focused on the flavonoid biosynthesis, sulphur metabolism and glucosinolate biosynthesis pathways, whereas those of DEPs were enriched on the glutathione metabolism pathway. This result suggests that these pathways contribute to Cd detoxification in turnips. Furthermore, induced antioxidant enzymes, heat stock proteins and stimulated protein acetylation modification seemed to play important roles in Cd tolerance in turnips. In addition, several metal transporters were found responsible for the Cd accumulation capacity of turnips. This study may serve as a basis for breeding low-Cd-accumulating vegetables for foodstuff or high-Cd-abstracting plants for phytoremediation.
Collapse
Affiliation(s)
- Xiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Di Chen
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Boqun Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
30
|
Shevchuk O, Begonja AJ, Gambaryan S, Totzeck M, Rassaf T, Huber TB, Greinacher A, Renne T, Sickmann A. Proteomics: A Tool to Study Platelet Function. Int J Mol Sci 2021; 22:ijms22094776. [PMID: 33946341 PMCID: PMC8125008 DOI: 10.3390/ijms22094776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Platelets are components of the blood that are highly reactive, and they quickly respond to multiple physiological and pathophysiological processes. In the last decade, it became clear that platelets are the key components of circulation, linking hemostasis, innate, and acquired immunity. Protein composition, localization, and activity are crucial for platelet function and regulation. The current state of mass spectrometry-based proteomics has tremendous potential to identify and quantify thousands of proteins from a minimal amount of material, unravel multiple post-translational modifications, and monitor platelet activity during drug treatments. This review focuses on the role of proteomics in understanding the molecular basics of the classical and newly emerging functions of platelets. including the recently described role of platelets in immunology and the development of COVID-19.The state-of-the-art proteomic technologies and their application in studying platelet biogenesis, signaling, and storage are described, and the potential of newly appeared trapped ion mobility spectrometry (TIMS) is highlighted. Additionally, implementing proteomic methods in platelet transfusion medicine, and as a diagnostic and prognostic tool, is discussed.
Collapse
Affiliation(s)
- Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Correspondence: (O.S.); (A.S.)
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez pr. 44, 194223 St. Petersburg, Russia;
| | - Matthias Totzeck
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tienush Rassaf
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany;
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Medizinisches Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Correspondence: (O.S.); (A.S.)
| |
Collapse
|
31
|
Aggarwal S, Tolani P, Gupta S, Yadav AK. Posttranslational modifications in systems biology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:93-126. [PMID: 34340775 DOI: 10.1016/bs.apcsb.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biological complexity cannot be captured by genes or proteins alone. The protein posttranslational modifications (PTMs) impart functional diversity to the proteome and regulate protein structure, activity, localization and interactions. Their dynamics drive cellular signaling, growth and development while their dysregulation causes many diseases. Mass spectrometry based quantitative profiling of PTMs and bioinformatics analysis tools allow systems level insights into their network architecture. High-resolution profiling of PTM networks will advance disease understanding and precision medicine. It can accelerate the discovery of biomarkers and drug targets. This requires better tools for unbiased, high-throughput and accurate PTM identification, site localization and automated annotation on a systems level.
Collapse
Affiliation(s)
- Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Priya Tolani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srishti Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
32
|
Nalbantoglu S, Karadag A. Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: Paving the way toward integrative multiomics. J Pharm Biomed Anal 2021; 199:114031. [PMID: 33857836 DOI: 10.1016/j.jpba.2021.114031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Systems biology adopted functional and integrative multiomics approaches enable to discover the whole set of interacting regulatory components such as genes, transcripts, proteins, metabolites, and metabolite dependent protein modifications. This interactome build up the midpoint of protein-protein/PTM, protein-DNA/RNA, and protein-metabolite network in a cell. As the key drivers in cellular metabolism, metabolites are precursors and regulators of protein post-translational modifications [PTMs] that affect protein diversity and functionality. The precisely orchestrated core pattern of metabolic networks refer to paradigm 'metabolites regulate PTMs, PTMs regulate enzymes, and enzymes modulate metabolites' through a multitude of feedback and feed-forward pathway loops. The concept represents a flawless PTM-metabolite-enzyme(protein) regulomics underlined in reprogramming cancer metabolism. Immense interconnectivity of those biomolecules in their spectacular network of intertwined metabolic pathways makes integrated proteomics and metabolomics an excellent opportunity, and the central component of integrative multiomics framework. It will therefore be of significant interest to integrate global proteome and PTM-based proteomics with metabolomics to achieve disease related altered levels of those molecules. Thereby, present update aims to highlight role and analysis of interacting metabolites/oncometabolites, and metabolite-regulated PTMs loop which may function as translational monitoring biomarkers along the reprogramming continuum of oncometabolism.
Collapse
Affiliation(s)
- Sinem Nalbantoglu
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey.
| | - Abdullah Karadag
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey
| |
Collapse
|
33
|
Liu J, Zhong L, Guo R. The Role of Posttranslational Modification and Mitochondrial Quality Control in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635836. [PMID: 33680284 PMCID: PMC7910068 DOI: 10.1155/2021/6635836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world. The mechanism behind CVDs has been studied for decades; however, the pathogenesis is still controversial. Mitochondrial homeostasis plays an essential role in maintaining the normal function of the cardiovascular system. The alterations of any protein function in mitochondria may induce abnormal mitochondrial quality control and unexpected mitochondrial dysfunction, leading to CVDs. Posttranslational modifications (PTMs) affect protein function by reversibly changing their conformation. This review summarizes how common and novel PTMs influence the development of CVDs by regulating mitochondrial quality control. It provides not only ideas for future research on the mechanism of some types of CVDs but also ideas for CVD treatments with therapeutic potential.
Collapse
Affiliation(s)
- Jinlin Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
34
|
Abstract
C. albicans is one of the most commonly reported fungal pathogens in mucosal and systemic infections. A better understanding of its growth habits and metabolic processes in the host should help improve defense strategies. Candida albicans is the most common human fungal pathogen, causing diseases ranging from mucosal to systemic infections for both immunocompetent and immunocompromised individuals. Lysine 2-hydroxyisobutyrylation is a highly conserved posttranslational modification found in a wide variety of organisms. In this study, we surveyed the biological impact of 2-hydroxyisobutyrylation on lysine residuals (Khib) in C. albicans. Using an antibody enrichment approach along with the traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, we analyzed the pattern of Khib-modified proteins and sites in one wild-type strain of C. albicans. We identified 1,438 Khib-modified proteins with 6,659 modified sites in this strain, and a more detailed bioinformatics analysis indicated that the Khib-modified proteins are involved in a wide range of cellular functions with diverse subcellular locations. Functional enrichment analysis featured several prominent functional pathways, including ribosome, biosynthesis of antibiotics, biosynthesis of secondary metabolites, biosynthesis of amino acids and carbon metabolism, of which the ribosome pathway is the most affected pathway. Even compared with the reported numbers of lysine acetylation (Kac) and succinylation (Ksuc) sites, the numbers of Khib-modified sites on ribosomal proteins remained the highest for C. albicans. These bioinformatic results suggest that 2-hydroxyisobutyrylation may play an indispensable role in the regulation of the ribosomal biogenesis and protein translation. Findings in this study may provide new insights for studying posttranslational modification (PTM)-associated mechanisms in fungal development and pathogenicity. IMPORTANCEC. albicans is one of the most commonly reported fungal pathogens in mucosal and systemic infections. A better understanding of its growth habits and metabolic processes in the host should help improve defense strategies. The newly discovered protein posttranslational modification (PTM) on histones is one epigenetic mechanism which has been linked to many pathogenic events, including cancers. The types of PTM and their pathogenic roles in C. albicans are still somewhat poorly understood, even though studies of C. albicans based on acetylation inhibitors have shed some light on their function, and it seems that PTMs regulate pathogenic adhesion factors. Here, we quantified and analyzed the occurrence of lysine 2-hydroxyisobutyrylation (Khib) in C. albicans. The Khib-modified proteins are enriched with respect to carbon metabolism, ribosomal biogenesis, and protein translation in C. albicans.
Collapse
|
35
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
36
|
Bermudez A, Pitteri SJ. Enrichment of Intact Glycopeptides Using Strong Anion Exchange and Electrostatic Repulsion Hydrophilic Interaction Chromatography. Methods Mol Biol 2021; 2271:107-120. [PMID: 33908003 DOI: 10.1007/978-1-0716-1241-5_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosylation is a biologically important and complex protein posttranslational modification. The emergence of glycoproteomic technologies to identify and characterize glycans on proteins has the potential to enable a better understanding the role of glycosylation in biology, disease states, and other areas of interest. In particular, the analysis of intact glycopeptides by mass spectrometry allows information about glycan location and composition to be ascertained. However, such analysis is often complicated by extensive glycan diversity and the low abundance of glycopeptides in a complex mixture relative to nonglycosylated peptides. Enrichment of glycopeptides from a protein enzymatic digest is an effective approach to overcome such challenges. In this chapter, we described a glycopeptide enrichment method combining strong anion exchange, electrostatic repulsion, and hydrophilic interaction chromatography (SAX-ERLIC). Following enzymatic digestion of proteins into peptides, SAX-ERLIC is performed by solid phase extraction to enrich glycopeptides from biological samples with subsequent LC-MS/MS analysis. Glycopeptide data generated using the SAX-ERLIC enrichment yields a high number of total and unique glycopeptide identifications which can be mapped back to proteins. The enrichment strategy is robust, easy to perform, and does not require cleavage of glycans prior to LC-MS/MS analysis.
Collapse
Affiliation(s)
- Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
37
|
Jia B, Xiang D, Fu X, Shao Q, Hong Q, Quan G, Wu G. Proteomic Changes of Porcine Oocytes After Vitrification and Subsequent in vitro Maturation: A Tandem Mass Tag-Based Quantitative Analysis. Front Cell Dev Biol 2020; 8:614577. [PMID: 33425922 PMCID: PMC7785821 DOI: 10.3389/fcell.2020.614577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 01/01/2023] Open
Abstract
Cryopreservation of immature germinal vesicle (GV) oocytes is a promising strategy in pigs but still results in reduced oocyte quality due to inevitable cryodamages. Recently, there has been more focus on the molecular changes of oocytes after vitrification, but the alteration in the proteome level remains elusive. The aim of this study therefore was to decipher the proteomic characteristics of porcine GV oocytes following vitrification and in vitro maturation (IVM) by using tandem mass tag (TMT)-based quantitative approach and bioinformatics analysis. A total of 4,499 proteins were identified, out of which 153 presented significant difference. There were 94 up-regulated and 59 down-regulated proteins expressed differentially in the vitrified oocytes. Functional classification and enrichment analyses revealed that many of these proteins were involved in metabolism, signal transduction, response to stimulus, immune response, complement, coagulation cascades, and so on. Moreover, a parallel reaction monitoring technique validated the reliability of TMT data through quantitative analysis for 10 candidate proteins. In conclusion, our results provided a novel perspective of proteomics to comprehend the quality change in the vitrified porcine GV oocytes after IVM.
Collapse
Affiliation(s)
- Baoyu Jia
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Decai Xiang
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Xiangwei Fu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingyong Shao
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guobo Quan
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
38
|
Zhang J, Peng Q, Zhao W, Sun W, Yang J, Liu N. Proteomics in Influenza Research: The Emerging Role of Posttranslational Modifications. J Proteome Res 2020; 20:110-121. [PMID: 33348980 DOI: 10.1021/acs.jproteome.0c00778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Influenza viruses continue evolving and have the ability to cause a global pandemic, so it is very important to elucidate its pathogenesis and find new treatment methods. In recent years, proteomics has made important contributions to describing the dynamic interaction between influenza viruses and their hosts, especially in posttranslational regulation of a variety of key biological processes. Protein posttranslational modifications (PTMs) increase the diversity of functionality of the organismal proteome and affect almost all aspects of pathogen biology, primarily by regulating the structure, function, and localization of the modified proteins. Considerable technical achievements in mass spectrometry-based proteomics have been made in a large number of proteome-wide surveys of PTMs in many different organisms. Herein we specifically focus on the proteomic studies regarding a variety of PTMs that occur in both the influenza viruses, mainly influenza A viruses (IAVs), and their hosts, including phosphorylation, ubiquitination and ubiquitin-like modification, glycosylation, methylation, acetylation, and some types of acylation. Integration of these data sets provides a unique scenery of the global regulation and interplay of different PTMs during the interaction between IAVs and their hosts. Various techniques used to globally profiling these PTMs, mostly MS-based approaches, are discussed regarding their increasing roles in mechanical regulation of interaction between influenza viruses and their hosts.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Qisheng Peng
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Weizheng Zhao
- Clinical Medical College, Jilin University, Changchun 130021, PR China
| | - Wanchun Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Jingbo Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Ning Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| |
Collapse
|
39
|
Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species. Biointerphases 2020; 15:061008. [PMID: 33238712 DOI: 10.1116/6.0000529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cold physical plasmas are emerging tools for wound care and cancer control that deliver reactive oxygen species (ROS) and nitrogen species (RNS). Alongside direct effects on cellular signaling processes, covalent modification of biomolecules may contribute to the observed physiological consequences. The potential of ROS/RNS generated by two different plasma sources (kINPen and COST-Jet) to introduce post-translational modifications (PTMs) in the peptides angiotensin and bradykinin was explored. While the peptide backbone was kept intact, a significant introduction of oxidative PTMs was observed. The modifications cluster at aromatic (tyrosine, histidine, and phenylalanine) and neutral amino acids (isoleucine and proline) with the introduction of one, two, or three oxygen atoms, ring cleavages of histidine and tryptophan, and nitration/nitrosylation predominantly observed. Alkaline and acidic amino acid (arginine and aspartic acid) residues showed a high resilience, indicating that local charges and the chemical environment at large modulate the attack of the electron-rich ROS/RNS. Previously published simulations, which include only OH radicals as ROS, do not match the experimental results in full, suggesting the contribution of other short-lived species, i.e., atomic oxygen, singlet oxygen, and peroxynitrite. The observed PTMs are relevant for the biological activity of peptides and proteins, changing polarity, folding, and function. In conclusion, it can be assumed that an introduction of covalent oxidative modifications at the amino acid chain level occurs during a plasma treatment. The introduced changes, in part, mimic naturally occurring patterns that can be interpreted by the cell, and subsequently, these PTMs allow for prolonged secondary effects on cell physiology.
Collapse
|
40
|
Fan J, Qi L, Han H, Ding L. Array-Based Discriminative Optical Biosensors for Identifying Multiple Proteins in Aqueous Solution and Biofluids. Front Chem 2020; 8:572234. [PMID: 33330361 PMCID: PMC7673422 DOI: 10.3389/fchem.2020.572234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Identification of proteins is an important issue both in medical research and in clinical practice as a large number of proteins are closely related to various diseases. Optical sensor arrays with recognition ability have been flourished to apply for distinguishing multiple chemically or structurally similar analytes and analyzing unknown or mixed samples. This review gives an overview of the recent development of array-based discriminative optical biosensors for recognizing proteins and their applications in real samples. Based on the number of sensor elements and the complexity of constructing array-based discriminative systems, these biosensors can be divided into three categories, which include multi-element-based sensor arrays, environment-sensitive sensor arrays and multi-wavelength-based single sensing systems. For each strategy, the construction of sensing platform and detection mechanism are particularly introduced. Meanwhile, the differences and connections between different strategies were discussed. An understanding of these aspects may help to facilitate the development of novel discriminative biosensors and expand their application prospects.
Collapse
Affiliation(s)
- Junmei Fan
- Department of Chemistry, Taiyuan Normal University, Jinzhong, China
| | - Lu Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Hongfei Han
- Department of Chemistry, Taiyuan Normal University, Jinzhong, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
41
|
Wang Z, Kavdia K, Dey KK, Pagala VR, Kodali K, Liu D, Lee DG, Sun H, Chepyala SR, Cho JH, Niu M, High AA, Peng J. High-throughput and Deep-proteome Profiling by 16-plex Tandem Mass Tag Labeling Coupled with Two-dimensional Chromatography and Mass Spectrometry. J Vis Exp 2020:10.3791/61684. [PMID: 32894271 PMCID: PMC7752892 DOI: 10.3791/61684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Isobaric tandem mass tag (TMT) labeling is widely used in proteomics because of its high multiplexing capacity and deep proteome coverage. Recently, an expanded 16-plex TMT method has been introduced, which further increases the throughput of proteomic studies. In this manuscript, we present an optimized protocol for 16-plex TMT-based deep-proteome profiling, including protein sample preparation, enzymatic digestion, TMT labeling reaction, two-dimensional reverse-phase liquid chromatography (LC/LC) fractionation, tandem mass spectrometry (MS/MS), and computational data processing. The crucial quality control steps and improvements in the process specific for the 16-plex TMT analysis are highlighted. This multiplexed process offers a powerful tool for profiling a variety of complex samples such as cells, tissues, and clinical specimens. More than 10,000 proteins and posttranslational modifications such as phosphorylation, methylation, acetylation, and ubiquitination in highly complex biological samples from up to 16 different samples can be quantified in a single experiment, providing a potent tool for basic and clinical research.
Collapse
Affiliation(s)
- Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital
| | - Kaushik Kumar Dey
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | | | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital
| | - Danting Liu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Dong Geun Lee
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Huan Sun
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Surendhar Reddy Chepyala
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital;
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital;
| |
Collapse
|
42
|
Xiao S, Liu L, Zhang Y, Sun H, Zhang K, Bai Z, Dong H, Liu Y, Li C. Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2020; 20:328. [PMID: 32652934 PMCID: PMC7353779 DOI: 10.1186/s12870-020-02531-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide. Fine roots are the central part of the root system that contributes to plant water and nutrient uptake. However, the mechanisms underlying the response of cotton fine roots to soil drought remains unclear. To elucidate the proteomic changes in fine roots of cotton plants under drought stress, 70-75% and 40-45% soil relative water content treatments were imposed on control (CK) and drought stress (DS) groups, respectively. Then, tandem mass tags (TMT) technology was used to determine the proteome profiles of fine root tissue samples. RESULTS Drought significantly decreased the value of average root diameter of cotton seedlings, whereas the total root length and the activities of antioxidases were increased. To study the molecular mechanisms underlying drought response further, the proteome differences between tissues under CK and DS treatments were compared pairwise at 0, 30, and 45 DAD (days after drought stress). In total, 118 differentially expressed proteins (DEPs) were up-regulated and 105 were down-regulated in the 'DS30 versus CK30' comparison; 662 DEPs were up-regulated, and 611 were down-regulated in the 'DS45 versus CK45' comparison. The functions of these DEPs were classified according to their pathways. Under early stage drought (30 DAD), some DEPs involved in the 'Cutin, suberin, and wax synthesis' pathway were up-regulated, while the down-regulated DEPs were mainly enriched within the 'Monoterpenoid biosynthesis' pathway. Forty-five days of soil drought had a greater impact on DEPs involved in metabolism. Many proteins involving 'Carbohydrate metabolism,' 'Energy metabolism,' 'Fatty acid metabolism,' 'Amino acid metabolism,' and 'Secondary metabolite biosynthesis' were identified as DEPs. Additionally, proteins related to ion transport, stress/defense, and phytohormones were also shown to play roles in determining the fine root growth of cotton plants under drought stress. CONCLUSIONS Our study identified potential biological pathways and drought-responsive proteins related to stress/defense responses and plant hormone metabolism under drought stress. Collectively, our results provide new insights for further improving drought tolerance in cotton and other crops.
Collapse
Affiliation(s)
- Shuang Xiao
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Liantao Liu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Yongjiang Zhang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Hongchun Sun
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Ke Zhang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Zhiying Bai
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Hezhong Dong
- Cotton Research Center/ Key Laboratory of Cotton Breeding and Cultivation in Huang-huai-hai Plain, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Yuchun Liu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Cundong Li
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China.
| |
Collapse
|
43
|
Campos-Laborie FJ, Risueño A, Ortiz-Estévez M, Rosón-Burgo B, Droste C, Fontanillo C, Loos R, Sánchez-Santos JM, Trotter MW, De Las Rivas J. DECO: decompose heterogeneous population cohorts for patient stratification and discovery of sample biomarkers using omic data profiling. Bioinformatics 2020; 35:3651-3662. [PMID: 30824909 PMCID: PMC6761977 DOI: 10.1093/bioinformatics/btz148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 02/09/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Motivation Patient and sample diversity is one of the main challenges when dealing with clinical cohorts in biomedical genomics studies. During last decade, several methods have been developed to identify biomarkers assigned to specific individuals or subtypes of samples. However, current methods still fail to discover markers in complex scenarios where heterogeneity or hidden phenotypical factors are present. Here, we propose a method to analyze and understand heterogeneous data avoiding classical normalization approaches of reducing or removing variation. Results DEcomposing heterogeneous Cohorts using Omic data profiling (DECO) is a method to find significant association among biological features (biomarkers) and samples (individuals) analyzing large-scale omic data. The method identifies and categorizes biomarkers of specific phenotypic conditions based on a recurrent differential analysis integrated with a non-symmetrical correspondence analysis. DECO integrates both omic data dispersion and predictor–response relationship from non-symmetrical correspondence analysis in a unique statistic (called h-statistic), allowing the identification of closely related sample categories within complex cohorts. The performance is demonstrated using simulated data and five experimental transcriptomic datasets, and comparing to seven other methods. We show DECO greatly enhances the discovery and subtle identification of biomarkers, making it especially suited for deep and accurate patient stratification. Availability and implementation DECO is freely available as an R package (including a practical vignette) at Bioconductor repository (http://bioconductor.org/packages/deco/). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- F J Campos-Laborie
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| | - A Risueño
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - M Ortiz-Estévez
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - B Rosón-Burgo
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| | - C Droste
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| | - C Fontanillo
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - R Loos
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - J M Sánchez-Santos
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| | - M W Trotter
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - J De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| |
Collapse
|
44
|
Babele P, Kumar RB, Rajoria S, Rashid F, Malakar D, Bhagyawant SS, Kamboj DV, Alam SI. Putative serum protein biomarkers for epsilon toxin exposure in mouse model using LC-MS/MS analysis. Anaerobe 2020; 63:102209. [PMID: 32387808 DOI: 10.1016/j.anaerobe.2020.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens Type B or type D strains, is a potential biological and toxin warfare (BTW) agent, largely for its very high toxicity. The toxin is implicated in several animal diseases. Using LC-MS/MS analysis, we report here elucidation of putative serum maker proteins for ETX exposure with an objective of the early diagnosis of intoxication. Of 166 consensus proteins (488 peptides), showing ETX-induced alterations, 119 proteins exhibited increase and 47 proteins showed decreased abundance in serum, as revealed by SWATH (DIA) acquisition on LC-MS/MS and label free quantitative analysis of control and test samples. Complement and coagulation cascade, nitrogen metabolism, negative regulation of peptidase activity, and response to ROS were among the biological processes and pathways perturbed by the ETX exposure. Interaction network indicated enzyme inhibitor activity, detoxification of ROS, and steroid binding functions were the major interaction networks for the proteins with increased abundance, while, hemostasis and structural molecule activity were the prominent networks for the down-regulated proteins. Validation studies were carried out by immunoprecipitation, ELISA, and Western blot analysis of selected proteins to demonstrate diagnostic potential of the putative marker proteins of ETX exposure.
Collapse
Affiliation(s)
- Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Faraz Rashid
- Sciex, 121 DHR, Udyog Vihar, Gurugram, Haryana, India
| | - Dipankar Malakar
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | | | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
45
|
Chang HY, Kong AT, da Veiga Leprevost F, Avtonomov DM, Haynes SE, Nesvizhskii AI. Crystal-C: A Computational Tool for Refinement of Open Search Results. J Proteome Res 2020; 19:2511-2515. [PMID: 32338005 DOI: 10.1021/acs.jproteome.0c00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Shotgun proteomics using liquid chromatography coupled to mass spectrometry (LC-MS) is commonly used to identify peptides containing post-translational modifications. With the emergence of fast database search tools such as MSFragger, the approach of enlarging precursor mass tolerances during the search (termed "open search") has been increasingly used for comprehensive characterization of post-translational and chemical modifications of protein samples. However, not all mass shifts detected using the open search strategy represent true modifications, as artifacts exist from sources such as unaccounted missed cleavages or peptide co-fragmentation (chimeric MS/MS spectra). Here, we present Crystal-C, a computational tool that detects and removes such artifacts from open search results. Our analysis using Crystal-C shows that, in a typical shotgun proteomics data set, the number of such observations is relatively small. Nevertheless, removing these artifacts helps to simplify the interpretation of the mass shift histograms, which in turn should improve the ability of open search-based tools to detect potentially interesting mass shifts for follow-up investigation.
Collapse
Affiliation(s)
- Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andy T Kong
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Dmitry M Avtonomov
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah E Haynes
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Minamiki T, Kubota R, Sasaki Y, Asano K, Minami T. Protein Assays on Organic Electronics: Rational Device and Material Designs for Organic Transistor-Based Sensors. ChemistryOpen 2020; 9:573-581. [PMID: 32405448 PMCID: PMC7216454 DOI: 10.1002/open.202000025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/22/2020] [Indexed: 01/23/2023] Open
Abstract
Artificial receptor-based protein assays have various attractive features such as a long-term stability, a low-cost production process, and the ease of tuning the target specificity. However, such protein sensors are still immature compared with conventional immunoassays. To enhance the application potential of synthetic sensing materials, organic field-effect transistors (OFETs) are some of the suitable platforms for protein assays because of their solution processability, durability, and compact integration. Importantly, OFETs enable the electrical readout of the protein recognition phenomena of artificial receptors on sensing electrodes. Thus, we believe that OFETs functionalized with artificial protein receptors will be a powerful tool for the on-site analyses of target proteins. In this Minireview, we summarize the recent progress of the OFET-based protein assays including the rational design strategies for devices and sensing materials.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Riku Kubota
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Yui Sasaki
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Koichiro Asano
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Tsuyoshi Minami
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| |
Collapse
|
47
|
TMT-based quantitative proteomic analysis of cumulus cells derived from vitrified porcine immature oocytes following in vitro maturation. Theriogenology 2020; 152:8-17. [PMID: 32361306 DOI: 10.1016/j.theriogenology.2020.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/26/2022]
Abstract
As the immature oocytes are submitted to cryopreservation, their surrounding cumulus cells (CCs) will inevitably suffer, which may have some adverse effects on subsequent oocyte maturation and development. So far, little is known about the molecular differences in CCs of immature oocytes after vitrification. The aim of this study therefore was to analyze the protein profile of CCs derived from vitrified porcine immature oocytes following in vitro maturation, using TMT-based quantitative proteomic approach. A total of 5910 proteins were identified, and 88 of them presented significant difference, with 46 up-regulated and 42 down-regulated proteins. Gene Ontology enrichment analysis revealed that cell cycle phase transition, mitotic cell cycle phase transition, positive regulation of cell differentiation and regulation of oogenesis were significantly down-regulated within the biological process. After Kyoto Encyclopedia of Genes and Genomes pathway analysis, some up-regulated proteins were significantly enriched in TGF-beta signaling pathway and 4 pathways related to steroid hormones. Furthermore, 10 selected proteins were quantified and verified by a parallel reaction monitoring technique, indicating a high reliability of the TMT results. In conclusion, vitrification affects protein profile of CCs as well as their biological functions, which will offer a new perspective to understand the reasons for decline in maturation quality of vitrified immature oocytes.
Collapse
|
48
|
Application of Solid-State Nanopore in Protein Detection. Int J Mol Sci 2020; 21:ijms21082808. [PMID: 32316558 PMCID: PMC7215903 DOI: 10.3390/ijms21082808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
A protein is a kind of major biomacromolecule of life. Its sequence, structure, and content in organisms contains quite important information for normal or pathological physiological process. However, research of proteomics is facing certain obstacles. Only a few technologies are available for protein analysis, and their application is limited by chemical modification or the need for a large amount of sample. Solid-state nanopore overcomes some shortcomings of the existing technology, and has the ability to detect proteins at a single-molecule level, with its high sensitivity and robustness of device. Many works on detection of protein molecules and discriminating structure have been carried out in recent years. Single-molecule protein sequencing techniques based on solid-state nanopore are also been proposed and developed. Here, we categorize and describe these efforts and progress, as well as discuss their advantages and drawbacks.
Collapse
|
49
|
Yang M, Deng W, Cao X, Wang L, Yu N, Zheng Y, Wu J, Wu R, Yue X. Quantitative Phosphoproteomics of Milk Fat Globule Membrane in Human Colostrum and Mature Milk: New Insights into Changes in Protein Phosphorylation during Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4546-4556. [PMID: 32208690 DOI: 10.1021/acs.jafc.9b06850] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phosphorylation is a widespread posttranslational protein modification and is important in various biological processes. However, milk fat globule membrane (MFGM) phosphoproteins have not been explored systematically in human milk. Here, we used quantitative phosphoproteomics to analyze phosphorylation sites in human MFGM proteins and their differences at different stages of lactation; 305 phosphorylation sites on 170 proteins and 269 phosphorylation sites on 170 proteins were identified in colostrum and mature MFGM, respectively. Among these, 71 phosphorylation sites on 48 proteins were differentially expressed between the different stages of lactation. Osteopontin in human MFGM was the most heavily phosphorylated protein, with a total of 39 identified phosphorylation sites. Our results shed light on phosphorylation sites, composition, and biological functions of MFGM phosphoproteins in human colostrum and mature milk, and provide novel insights into the crucial roles of protein phosphorylation during infant development.
Collapse
Affiliation(s)
- Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Wei Deng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Lijie Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Na Yu
- Liaoning General Fair Testing Company, Ltd, Shenyang 110026, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| |
Collapse
|
50
|
Märker R, Blank-Landeshammer B, Beier-Rosberger A, Sickmann A, Kück U. Phosphoproteomic analysis of STRIPAK mutants identifies a conserved serine phosphorylation site in PAK kinase CLA4 to be important in fungal sexual development and polarized growth. Mol Microbiol 2020; 113:1053-1069. [PMID: 32022307 DOI: 10.1111/mmi.14475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
The highly conserved striatin-interacting phosphatases and kinases (STRIPAK) complex regulates phosphorylation/dephosphorylation of developmental proteins in eukaryotic microorganisms, animals and humans. To first identify potential targets of STRIPAK, we performed extensive isobaric tags for relative and absolute quantification-based proteomic and phosphoproteomic analyses in the filamentous fungus Sordaria macrospora. In total, we identified 4,193 proteins and 2,489 phosphoproteins, which are represented by 10,635 phosphopeptides. By comparing phosphorylation data from wild type and mutants, we identified 228 phosphoproteins to be regulated in all three STRIPAK mutants, thus representing potential targets of STRIPAK. To provide an exemplarily functional analysis of a STRIPAK-dependent phosphorylated protein, we selected CLA4, a member of the conserved p21-activated kinase family. Functional characterization of the ∆cla4 deletion strain showed that CLA4 controls sexual development and polarized growth. To determine the functional relevance of CLA4 phosphorylation and the impact of specific phosphorylation sites on development, we next generated phosphomimetic and -deficient variants of CLA4. This analysis identified (de)phosphorylation of a highly conserved serine (S685) residue in the catalytic domain of CLA4 as being important for fungal cellular development. Collectively, these analyses significantly contribute to the understanding of the mechanistic function of STRIPAK as a phosphatase and kinase signaling complex.
Collapse
Affiliation(s)
- Ramona Märker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | | | - Anna Beier-Rosberger
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| |
Collapse
|