1
|
Casas-Recasens S, Cassim R, Mendoza N, Agusti A, Lodge C, Li S, Bui D, Martino D, Dharmage SC, Faner R. Epigenome-Wide Association Studies of Chronic Obstructive Pulmonary Disease and Lung Function: A Systematic Review. Am J Respir Crit Care Med 2024; 210:766-778. [PMID: 38422471 DOI: 10.1164/rccm.202302-0231oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) results from gene-environment interactions over the lifetime. These interactions are captured by epigenetic changes, such as DNA methylation. Objectives: To systematically review the evidence form epigenome-wide association studies related to COPD and lung function. Methods: A systematic literature search performed on PubMed, Embase, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases identified 1,947 articles that investigated epigenetic changes associated with COPD and/or lung function; 17 of them met our eligibility criteria, from which data were manually extracted. Differentially methylated positions (DMPs) and/or annotated genes were considered replicated if identified by two or more studies with a P < 1 × 10-4. Measurements and Main Results: Ten studies profiled DNA methylation changes in blood and seven in respiratory samples, including surgically resected lung tissue (n = 3), small airway epithelial brushings (n = 2), BAL (n = 1), and sputum (n = 1). Main results showed: 1) high variability in study design, covariates, and effect sizes, which prevented a formal meta-analysis; 2) in blood samples, 51 DMPs were replicated in relation to lung function and 12 related to COPD; 3) in respiratory samples, 42 DMPs were replicated in relation to COPD but none in relation to lung function; and 4) in COPD versus control studies, 123 genes (2.6% of total) were shared between one or more blood and one or more respiratory samples and associated with chronic inflammation, ion transport, and coagulation. Conclusions: There is high heterogeneity across published COPD and/or lung function epigenome-wide association studies. A few genes (n = 123; 2.6%) were replicated in blood and respiratory samples, suggesting that blood can recapitulate some changes in respiratory tissues. These findings have implications for future research. Systematic Review [protocol] registered with Open Science Framework (OSF).
Collapse
Affiliation(s)
- Sandra Casas-Recasens
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Núria Mendoza
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Alvar Agusti
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Respiratory Institute, Hospital Clinic, Barcelona, Spain
- Catedra Salud Respiratoria and
| | | | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Dinh Bui
- Allergy and Lung Health Unit and
| | - David Martino
- Walyun Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia; and
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Rosa Faner
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Catedra Salud Respiratoria and
- Biomedicine Department, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Chatziparasidis G, Chatziparasidi MR, Kantar A, Bush A. Time-dependent gene-environment interactions are essential drivers of asthma initiation and persistence. Pediatr Pulmonol 2024; 59:1143-1152. [PMID: 38380964 DOI: 10.1002/ppul.26935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Asthma is a clinical syndrome caused by heterogeneous underlying mechanisms with some of them having a strong genetic component. It is known that up to 82% of atopic asthma has a genetic background with the rest being influenced by environmental factors that cause epigenetic modification(s) of gene expression. The interaction between the gene(s) and the environment has long been regarded as the most likely explanation of asthma initiation and persistence. Lately, much attention has been given to the time frame the interaction occurs since the host response (immune or biological) to environmental triggers, differs at different developmental ages. The integration of the time variant into asthma pathogenesis is appearing to be equally important as the gene(s)-environment interaction. It seems that, all three factors should be present to trigger the asthma initiation and persistence cascade. Herein, we introduce the importance of the time variant in asthma pathogenesis and emphasize the long-term clinical significance of the time-dependent gene-environment interactions in childhood.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, Volos, Greece
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamashi, Bergamo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, UK
| |
Collapse
|
3
|
Kettawan A, Ruangklai S, Rungruang T, Thongam J, Kettawan AK, Nirmal N, Srisuma S. Rice Bran Oil Improves Emphysema in Cigarette Smoke Extract-Induced Mice through Anti-Inflammatory and Antioxidative Effects. Nutrients 2024; 16:433. [PMID: 38337717 PMCID: PMC10857134 DOI: 10.3390/nu16030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Lung inflammation and alveolar enlargement are the major pathological conditions of chronic obstructive pulmonary disease (COPD) patients. Rice bran oil (RBO), a natural anti-inflammatory and antioxidative agent, has been used for therapeutic purposes in several inflammatory diseases. This study aimed to investigate the anti-inflammatory and antioxidative effect of RBO on a cigarette smoke extract (CSE)-induced emphysema model in mice. The results indicated that CSE significantly induced airspace enlargement in mouse lung. Increased inflammatory cells, macrophage, and TNF-alpha levels in bronchoalveolar lavage fluid (BALF) were noticed in CSE-treated mice. RBO (low and high dose)-supplemented mice showed decreased total BALF inflammatory cell, macrophage, and neutrophil numbers and TNF-alpha levels (p < 0.05). Additionally, the administration of RBO decreased the mean linear alveolar intercept (MLI) in the CSE-treated group. Additionally, RBO treatment significantly increased the total antioxidant capacity in both mouse BALF and serum. However, RBO did not have an effect on the malondialdehyde (MDA) level. These findings suggested that RBO treatment ameliorates lung inflammation in a CSE-induced emphysema mice model through anti-inflammatory and antioxidant pathways. Therefore, the supplementation of RBO could be a new potential therapeutic to relieve the severity of COPD.
Collapse
Affiliation(s)
- Aikkarach Kettawan
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand; (A.K.); (A.K.K.); (N.N.)
| | - Sukpattaraporn Ruangklai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand (J.T.)
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Julalux Thongam
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand (J.T.)
| | | | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand; (A.K.); (A.K.K.); (N.N.)
| | - Sorachai Srisuma
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand (J.T.)
| |
Collapse
|
4
|
Agusti A, Vogelmeier CF. GOLD 2024: a brief overview of key changes. J Bras Pneumol 2023; 49:e20230369. [PMID: 38126685 PMCID: PMC10760434 DOI: 10.36416/1806-3756/e20230369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Alvar Agusti
- . Respiratory Institute, Clinic Barcelona, University of Barcelona, IDIBAPS, CIBERES, Spain
| | - Claus F Vogelmeier
- . Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
5
|
Agustí A, Melén E, DeMeo DL, Breyer-Kohansal R, Faner R. Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene-environment interactions across the lifespan. THE LANCET. RESPIRATORY MEDICINE 2022; 10:512-524. [PMID: 35427533 PMCID: PMC11428195 DOI: 10.1016/s2213-2600(21)00555-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The traditional view of chronic obstructive pulmonary disease (COPD) as a self-inflicted disease caused by tobacco smoking in genetically susceptible individuals has been challenged by recent research findings. COPD can instead be understood as the potential end result of the accumulation of gene-environment interactions encountered by an individual over the life course. Integration of a time axis in pathogenic models of COPD is necessary because the biological responses to and clinical consequences of different exposures might vary according to both the age of an individual at which a given gene-environment interaction occurs and the cumulative history of previous gene-environment interactions. Future research should aim to understand the effects of dynamic interactions between genes (G) and the environment (E) by integrating information from basic omics (eg, genomics, epigenomics, proteomics) and clinical omics (eg, phenomics, physiomics, radiomics) with exposures (the exposome) over time (T)-an approach that we refer to as GETomics. In the context of this approach, we argue that COPD should be viewed not as a single disease, but as a clinical syndrome characterised by a recognisable pattern of chronic symptoms and structural or functional impairments due to gene-environment interactions across the lifespan that influence normal lung development and ageing.
Collapse
Affiliation(s)
- Alvar Agustí
- Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, Spain; Respiratory Institute, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Dawn L DeMeo
- Channing Division of Network Medicine, and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
6
|
Li N, Dai Z, Wang Z, Deng Z, Zhang J, Pu J, Cao W, Pan T, Zhou Y, Yang Z, Li J, Li B, Ran P. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res 2021; 22:274. [PMID: 34696775 PMCID: PMC8543848 DOI: 10.1186/s12931-021-01872-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dysbiosis of the gut microbiome is involved in the pathogenesis of various diseases, but the contribution of gut microbes to the progression of chronic obstructive pulmonary disease (COPD) is still poorly understood. METHODS We carried out 16S rRNA gene sequencing and short-chain fatty acid analyses in stool samples from a cohort of 73 healthy controls, 67 patients with COPD of GOLD stages I and II severity, and 32 patients with COPD of GOLD stages III and IV severity. Fecal microbiota from the three groups were then inoculated into recipient mice for a total of 14 times in 28 days to induce pulmonary changes. Furthermore, fecal microbiota from the three groups were inoculated into mice exposed to smoke from biomass fuel to induce COPD-like changes. RESULTS We observed that the gut microbiome of COPD patients varied from that of healthy controls and was characterized by a distinct overall microbial diversity and composition, a Prevotella-dominated gut enterotype and lower levels of short-chain fatty acids. After 28 days of fecal transplantation from COPD patients, recipient mice exhibited elevated lung inflammation. Moreover, when mice were under both fecal transplantation and biomass fuel smoke exposure for a total of 20 weeks, accelerated declines in lung function, severe emphysematous changes, airway remodeling and mucus hypersecretion were observed. CONCLUSION These data demonstrate that altered gut microbiota in COPD patients is associated with disease progression in mice model.
Collapse
Affiliation(s)
- Naijian Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhouli Dai
- College of Medicine, Lishui University, Lishui, Zhejiang, People's Republic of China
| | - Zhang Wang
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, Guangdong, People's Republic of China
| | - Zhishan Deng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Jiahuan Zhang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Jinding Pu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Weitao Cao
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Tianhui Pan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Yumin Zhou
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Bing Li
- The GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Pixin Ran
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Trivedi GY, Saboo B. Bhramari Pranayama - A simple lifestyle intervention to reduce heart rate, enhance the lung function and immunity. J Ayurveda Integr Med 2021; 12:562-564. [PMID: 34364739 PMCID: PMC8377171 DOI: 10.1016/j.jaim.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 12/04/2022] Open
Abstract
Individuals with chronic diseases have a higher risk of infection and show lung function impairment. Poor lifestyle choices such as physical inactivity, poor diet, stress, excess tobacco, and alcohol, and sleep disruption increase the risk of chronic inflammation and immune impairment but the evidence does not quantify the specific risk factor(s) and their correlation with the immune system impairment. COVID-19 related uncertainty has created a more urgent need to understand the need to identify interventions that could help in managing the risk factors, especially for healthy individuals who are at a higher risk of infection and/or immune system impairment. The role of three parameters, the Resting Heart Rate (HR), increased Heart Rate Variability (HRV), and lung function is considered as risk factors for systemic inflammation and chronic diseases. The evidence on Bhramari Pranayama is presented for possible lifestyle interventions to reduce the risk of infection, increase lung function, enhance autonomic function, and improve sleep quality in healthy individuals.
Collapse
Affiliation(s)
- Gunjan Y Trivedi
- Society for Energy & Emotions, Wellness Space, JJT University, India.
| | - Banshi Saboo
- Diabetologist and Chairman, Dia Care, Ahmedabad, India
| |
Collapse
|
8
|
Wang Z, Liang W, Ma C, Wang J, Gao X, Wei L. Macrophages Inhibit Ciliary Protein Levels by Secreting BMP-2 Leading to Airway Epithelial Remodeling Under Cigarette Smoke Exposure. Front Mol Biosci 2021; 8:663987. [PMID: 33981724 PMCID: PMC8107431 DOI: 10.3389/fmolb.2021.663987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with high morbidity and mortality worldwide. So far, smoking is still its leading cause. The characteristics of COPD are emphysema and airway remodeling, as well as chronic inflammation, which were predominated by macrophages. Some studies have reported that macrophages were involved in emphysema and chronic inflammation, but whether there is a link between airway remodeling and macrophages remains unclear. In this study, we found that both acute and chronic cigarette smoke exposure led to an increase of macrophages in the lung and a decrease of ciliated cells in the airway epithelium of a mouse model. The results of in vitro experiments showed that the ciliary protein (β-tubulin-IV) levels of BEAS-2B cells could be inhibited when co-cultured with human macrophage line THP-1, and the inhibitory effect was augmented with the stimulation of cigarette smoke extract (CSE). Based on the results of transcriptome sequencing, we focused on the protein, bone morphogenetic protein-2 (BMP-2), secreted by the macrophage, which might mediate this inhibitory effect. Further studies confirmed that BMP-2 protein inhibited β-tubulin-IV protein levels of BEAS-2B cells under the stimulation of CSE. Coincidentally, this inhibitory effect could be nearly blocked by the BMP receptor inhibitor, LDN, or could be interfered with BMP-2 siRNA. This study suggests that activation and infiltration of macrophages in the lung induced by smoke exposure lead to a high expression of BMP-2, which in turn inhibits the ciliary protein levels of the bronchial epithelial cells, contributing to the remodeling of airway epithelium, and aggravates the development of COPD.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China.,Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang, China
| | - Wenzhang Liang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Xue Gao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Lee YJ, Choi S, Kwon SY, Lee Y, Lee JK, Heo EY, Chung HS, Kim DK. A Genome-Wide Association Study in Early COPD: Identification of One Major Susceptibility Loci. Int J Chron Obstruct Pulmon Dis 2020; 15:2967-2975. [PMID: 33235445 PMCID: PMC7680157 DOI: 10.2147/copd.s269263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background Identifying the genetic basis of airflow limitation is one of the most interesting issues for understanding chronic obstructive pulmonary disease (COPD) pathophysiology. Several studies have shown that some genetic variants associated with COPD have been identified in genome-wide association study (GWAS), especially in patients with moderate to severe COPD; genetic susceptibility for airflow limitation in the early COPD phase has not been widely studied. Objective We investigated the genetic variants in early COPD. Methods The present study analyzed Gene-environment interaction and phenotype (GENIE) cohort that included participants who received health screening examination. The association between single nucleotide polymorphism (SNP) and susceptibility to early COPD (FEV1 predicted ≥50% and FEV1/FVC <0.7) was tested. Results A total of 130 patients with early COPD and 3478 controls (1700 ever smokers and 1778 never smokers) were recruited. When compared with the total controls, certain SNPs (rs2818103, rs875033, rs9354627, rs34552148) on chromosome 6 were included at the top of our list (p= 5.6 × 10–7 ~9.6 × 10–6) although they did not reach genome-wide significance. When compared with the never smoker controls, two SNPs (rs2857210, rs2621419) of the HLA-DQB2 gene class were persistently associated with susceptibility to early COPD. Conclusion Certain SNPs located on chromosome 6 or the HLA-DQB2 gene were the top-scoring SNPs for the association with susceptibility to early COPD in the Korean GENIE cohort.
Collapse
Affiliation(s)
- Ye-Jin Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - SeungHo Choi
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 135-984 Korea
| | - Sung-Youn Kwon
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 135-984 Korea
| | - Yunhwan Lee
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 135-984 Korea
| | - Jung Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Eun Young Heo
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hee Soon Chung
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Cruz T, López-Giraldo A, Noell G, Guirao A, Casas-Recasens S, Garcia T, Saco A, Sellares J, Agustí A, Faner R. Smoking Impairs the Immunomodulatory Capacity of Lung-Resident Mesenchymal Stem Cells in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2019; 61:575-583. [DOI: 10.1165/rcmb.2018-0351oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tamara Cruz
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Alejandra López-Giraldo
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Guillaume Noell
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Angela Guirao
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Tamara Garcia
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Adela Saco
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Jacobo Sellares
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Alvar Agustí
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Rosa Faner
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| |
Collapse
|
11
|
Cruz T, López-Giraldo A, Noell G, Casas-Recasens S, Garcia T, Molins L, Juan M, Fernandez MA, Agustí A, Faner R. Multi-level immune response network in mild-moderate Chronic Obstructive Pulmonary Disease (COPD). Respir Res 2019; 20:152. [PMID: 31299954 PMCID: PMC6626346 DOI: 10.1186/s12931-019-1105-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is associated with an abnormal pulmonary and systemic immune response to tobacco smoking. Yet, how do immune cells relate within and between these two biological compartments, how the pulmonary infiltrate influences the lung transcriptome, and what is the role of active smoking vs. presence of disease is unclear. Methods To investigate these questions, we simultaneously collected lung tissue and blood from 65 individuals stratified by smoking habit and presence of the disease. The immune cell composition of both tissues was assessed by flow cytometry, whole lung transcriptome was determined with Affymetrix arrays, and we used Weighted Gene Co-expression Network Analysis (WGCNA) to integrate results. Results Main results showed that: (1) current smoking and the presence of COPD were both independently associated with a reduction in the proportion of lung T cells and an increase of macrophages, specifically those expressing CD80 + CD163+; (2) changes in the proportion of infiltrating macrophages, smoking status or the level of airflow limitation were associated to different WGCNA modules, which were enriched in iron ion transport, extracellular matrix and cilium organization gene ontologies; and, (3) circulating white blood cells counts were correlated with lung macrophages and T cells. Conclusions Mild-moderated COPD lung immune infiltrate is associated with the active smoking status and presence of disease; is associated with changes in whole lung tissue transcriptome and marginally reflected in blood. Electronic supplementary material The online version of this article (10.1186/s12931-019-1105-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara Cruz
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra López-Giraldo
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Guillaume Noell
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sandra Casas-Recasens
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Tamara Garcia
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laureano Molins
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Immunology Service, Centre Diagnostic Biomèdic, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Marco A Fernandez
- Flow Cytometry Facility, Institut de Recerca Germans Trias I Pujol, Barcelona, Spain
| | - Alvar Agustí
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Rosa Faner
- CIBER Enfermedades Respiratorias, Barcelona, Spain. .,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,CIBERES, IDIBAPS-CELLEX. Facultat de Medicina P2A, c/Casanova 143, 08036, Barcelona, Spain.
| |
Collapse
|
12
|
Myc LA, Shim YM, Laubach VE, Dimastromatteo J. Role of medical and molecular imaging in COPD. Clin Transl Med 2019; 8:12. [PMID: 30989390 PMCID: PMC6465368 DOI: 10.1186/s40169-019-0231-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/09/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is expected to climb on the podium of the leading causes of mortality worldwide in the upcoming decade. Clinical diagnosis of COPD has classically relied upon detecting irreversible airflow obstruction on pulmonary function testing as a global assessment of pulmonary physiology. However, the outcome is still not favorable to decrease mortality due to COPD. Progress made in both medical and molecular imaging fields are beginning to offer additional tools to address this clinical problem. This review aims to describe medical and molecular imaging modalities used to diagnose COPD and to select patients for appropriate treatments and to monitor response to therapy.
Collapse
Affiliation(s)
- Lukasz A Myc
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, P.O. Box 400546, Charlottesville, VA, USA
| | - Yun M Shim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, P.O. Box 400546, Charlottesville, VA, USA
| | - Victor E Laubach
- Department of Surgery, Division of Thoracic Surgery, University of Virginia School of Medicine, P.O. Box 801359, Charlottesville, VA, USA
| | - Julien Dimastromatteo
- Department of Biomedical Engineering, University of Virginia School of Medicine, P.O. Box 800759, Charlottesville, VA, 22908, USA.
| |
Collapse
|
13
|
Wu JH, Zhou M, Jin Y, Meng ZJ, Xiong XZ, Sun SW, Miao SY, Han HL, Tao XN. Generation and Immune Regulation of CD4 +CD25 -Foxp3 + T Cells in Chronic Obstructive Pulmonary Disease. Front Immunol 2019; 10:220. [PMID: 30842769 PMCID: PMC6392103 DOI: 10.3389/fimmu.2019.00220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
The imbalance of CD4+Foxp3+ T cell subsets is reportedly involved in abnormal inflammatory immune responses in patients with chronic obstructive pulmonary disease (COPD). However, the possible role of CD4+CD25-Foxp3+ T cells in immune regulation in COPD remains to be investigated. In the current study, distribution and phenotypic characteristics of CD4+CD25-Foxp3+ T cells from peripheral blood were determined by flow cytometry; the origin, immune function and ultimate fate of CD4+CD25-Foxp3+ T cells were further explored in vitro. It was observed that circulating CD4+CD25-Foxp3+ T cells were significantly increased in stable COPD patients (SCOPD) and resembled central memory or effector memory T cells. Compared with peripheral CD4+CD25+Foxp3+ T cells, peripheral CD4+CD25-Foxp3+ T cells showed a lower expression of Foxp3, CTLA-4, HELIOS, and TIGIT, but a higher expression of CD127 and KI-67, suggesting that CD4+CD25-Foxp3+ T cells lost the expression of Tregs-associated molecules following the reduction in CD25. Unexpectedly, our study found that transforming growth factor-β1 (TGFβ1) decreased CD25 expression and played a critical role in the generation of CD4+CD25-Foxp3+ T cells from CD4+CD25+Foxp3+ T cells. Phenotypic analysis further revealed that both inducible and peripheral CD4+CD25-Foxp3+ T cells exhibited the features of activated conventional T cells. Importantly, memory CD4+CD25-Foxp3+ T cells facilitated the proliferation and differentiation of naïve CD4+ T cells into Th17 cells in the presence of IL-1β, IL-6, IL-23, and TGFβ1. Finally, a fraction of CD4+CD25-Foxp3+ T cells, exhibiting instability and plasticity, were converted to Th17 cells when subjected to Th17 cell-polarizing condition. Taken together, we propose that TGFβ1 is responsible for the generation of CD4+CD25-Foxp3+ T cells, and these cells functionally exert an auxiliary effect on Th17 cells generation and might perpetuate chronic inflammation in COPD.
Collapse
Affiliation(s)
- Jiang-Hua Wu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Ji Meng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-Wen Sun
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai-Ying Miao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Li Han
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Nan Tao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells. Toxicol Lett 2018; 299:40-46. [PMID: 30227238 DOI: 10.1016/j.toxlet.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 09/11/2018] [Indexed: 12/26/2022]
Abstract
Cigarette smoke has significant toxic effects on the immune system, and increases the risk of developing autoimmune diseases; one immunosuppressive effect of cigarette smoke is that it inhibits the T cell-stimulating, immunogenic properties of myeloid dendritic cells (DCs). As the functions of DCs are regulated by intra-cellular signaling pathways, we investigated the effects of cigarette smoke extract (CSE) and nicotine on multiple signaling molecules and other regulatory proteins in human DCs to elucidate the molecular basis of the inhibition of DC maturation and function by CSE and nicotine. Maturation of monocyte-derived DCs was induced with the TLR3-agonist poly I:C or with the TLR4-agonist lipopolysaccharide, in the absence or presence of CSE or nicotine. Reverse-phase protein microarray was used to quantify multiple signaling molecules and other proteins in cell lysates. Particularly in poly I:C-matured DCs, cigarette smoke constituents and nicotine suppressed the expression of signaling molecules associated with DC maturation and T cell stimulation, cell survival and cell migration. In conclusion, constituents of tobacco smoke suppress the immunogenic potential of DCs at the signaling pathway level.
Collapse
|
15
|
Yu HS, Pan ZC, Liao JL. Network modeling of inflammatory dynamics induced by biomass smoke leading to chronic obstructive pulmonary disease. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1801001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hai-shan Yu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-chao Pan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie-lou Liao
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Liang Y, Shen Y, Kuang L, Zhou G, Zhang L, Zhong X, Zhang J, Liu J. Cigarette smoke exposure promotes differentiation of CD4 + T cells toward Th17 cells by CD40-CD40L costimulatory pathway in mice. Int J Chron Obstruct Pulmon Dis 2018; 13:959-968. [PMID: 29606863 PMCID: PMC5868633 DOI: 10.2147/copd.s155754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose This study aimed to investigate the impact of cigarette smoke exposure upon CD40–CD40L ligation between bone marrow-derived dendritic cells (BMDCs)and CD4+T cells, and to examine the effects of cigarette smoke exposure upon differentiation of CD4+T cells toward Th17 cells through blockade of CD40-CD40L pathway in mice. Methods The study was processed in vivo and in vitro. In vivo, Th17 cells, CD40, interleukin (IL)-17A, and IL-27 in the lung tissues were quantified and compared between mice with and without cigarette smoke exposure. In vitro, Th17 cells, IL-17A, and IL-27 yielded by multiple cell cultivations in which BMDCs from mice with or without cigarette smoke exposure were fostered with CD4+ T cells from healthy mice spleens in the presence of antagonistic CD40 antibody and/or cigarette smoke extract (CSE) were quantified and compared. The flow cytometry was used to detect expressions of Th17 cells and CD40, and the liquid chip was used to detect levels of IL-17A and IL-27. Results Both in vivo exposed to cigarette smoke and in vitro to CSE, CD40 expressions noticeably escalated on the surfaces of BMDCs. The presence of Th17 cells, IL-17A, and IL-27 in the lung tissues prominently increased in mice exposed to cigarette smoke. The in vitro culture of CD4+ T cells and BMDCs significantly enhanced the differentiation of CD4+ T cells toward Th17 cells and secretions of IL-17A and IL-27 in the case that BMDCs were produced from mice exposed to cigarette smoke or the culture occurred in the presence of CSE. Usage of antagonistic CD40 antibody evidently reduced the number of Th17 cells, IL-17A, and IL-27 that increased due to cigarette smoke exposure. Conclusion The CD40–CD40L ligation is associated with the quantities of Th17 cells and relevant cytokines in the context of cigarette smoke exposure. Reducing the number of Th17 cells via the usage of antagonistic CD40 antibody can be an inspiration for pursuing a novel therapeutic target for immune inflammation in COPD.
Collapse
Affiliation(s)
- Yi Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University
| | - Ying Shen
- Division of General Practice, General Practice School of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Liangjian Kuang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University
| | - Guang Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University
| | - Longju Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University
| | - Jifeng Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University
| |
Collapse
|
17
|
Shindi R, Almehairi A, Negm OH, Kalsheker N, Gale NS, Shale DJ, Harrison TW, Bolton CE, John M, Todd I, Tighe PJ, Fairclough LC. Autoantibodies of IgM and IgG classes show differences in recognition of multiple autoantigens in chronic obstructive pulmonary disease. Clin Immunol 2017; 183:344-353. [DOI: 10.1016/j.clim.2017.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/10/2017] [Accepted: 09/22/2017] [Indexed: 12/22/2022]
|
18
|
Agustí A, Celli B, Faner R. What does endotyping mean for treatment in chronic obstructive pulmonary disease? Lancet 2017; 390:980-987. [PMID: 28872030 DOI: 10.1016/s0140-6736(17)32136-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease, both at the clinical and biological level. However, COPD is still diagnosed and treated according to simple clinical measures (level of airflow limitation, symptoms, and frequency of previous exacerbations). To address this clinical and biological complexity and to move towards precision medicine in COPD, we need to integrate (bioinformatics) and interpret (clinical science) the vast amount of high-throughput information that existing technology provides (systems biology and network medicine) so diagnosis, stratification, and treatment of patients with COPD can occur on the basis of their pathobiological mechanism (ie, endotypes). Therefore, this Series paper discusses a possible new taxonomy of COPD, the role of endotypes and associated biomarkers and phenotypes, the gaps (and opportunities) in existing knowledge of COPD pathobiology, how systems biology and network medicine can improve understanding of the disease and help to identify relevant endotypes and their specific biomarkers, and how endotypes and their biomarkers can improve the precision, effectiveness, and safety of the treatment of patients with COPD.
Collapse
Affiliation(s)
- Alvar Agustí
- Respiratory Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain.
| | - Bartolome Celli
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rosa Faner
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain; CIBER Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
19
|
Toyokawa G, Shimokawa M, Kozuma Y, Matsubara T, Haratake N, Takamori S, Akamine T, Takada K, Katsura M, Shoji F, Okamoto T, Maehara Y. Invasive features of small-sized lung adenocarcinoma adjoining emphysematous bullae. Eur J Cardiothorac Surg 2017; 53:372-378. [DOI: 10.1093/ejcts/ezx295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/04/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
|
20
|
Faner R, Cruz T, Casserras T, López-Giraldo A, Noell G, Coca I, Tal-Singer R, Miller B, Rodriguez-Roisin R, Spira A, Kalko SG, Agustí A. Network Analysis of Lung Transcriptomics Reveals a Distinct B-Cell Signature in Emphysema. Am J Respir Crit Care Med 2017; 193:1242-53. [PMID: 26735770 DOI: 10.1164/rccm.201507-1311oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation caused by a combination of airways disease (bronchiolitis) and parenchymal destruction (emphysema), whose relative proportion varies from patient to patient. OBJECTIVES To explore and contrast the molecular pathogenesis of emphysema and bronchiolitis in COPD. METHODS We used network analysis of lung transcriptomics (Affymetrix arrays) in 70 former smokers with COPD to compare differential expression and gene coexpression in bronchiolitis and emphysema. MEASUREMENTS AND MAIN RESULTS We observed that in emphysema (but not in bronchiolitis) (1) up-regulated genes were enriched in ontologies related to B-cell homing and activation; (2) the immune coexpression network had a central core of B cell-related genes; (3) B-cell recruitment and immunoglobulin transcription genes (CXCL13, CCL19, and POU2AF1) correlated with emphysema severity; (4) there were lymphoid follicles (CD20(+)IgM(+)) with active B cells (phosphorylated nuclear factor-κB p65(+)), proliferation markers (Ki-67(+)), and class-switched B cells (IgG(+)); and (5) both TNFRSF17 mRNA and B cell-activating factor protein were up-regulated. These findings were by and large reproduced in a group of patients with incipient emphysema and when patients with emphysema were matched for the severity of airflow limitation of those with bronchiolitis. CONCLUSIONS Our study identifies enrichment in B cell-related genes in patients with COPD with emphysema that is absent in bronchiolitis. These observations contribute to a better understanding of COPD pathobiology and may open new therapeutic opportunities for patients with COPD.
Collapse
Affiliation(s)
- Rosa Faner
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Tamara Cruz
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Teresa Casserras
- 3 Bioinformatics Platform Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alejandra López-Giraldo
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Guillaume Noell
- 2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ignacio Coca
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | | | | | - Roberto Rodriguez-Roisin
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,5 Respiratory Institute, Pulmonary Service, Hospital Clinic, Institut d'investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; and
| | - Avrum Spira
- 6 Boston University School of Medicine, Boston, Massachusetts
| | - Susana G Kalko
- 3 Bioinformatics Platform Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alvar Agustí
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,5 Respiratory Institute, Pulmonary Service, Hospital Clinic, Institut d'investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; and
| |
Collapse
|
21
|
Morrow JD, Zhou X, Lao T, Jiang Z, DeMeo DL, Cho MH, Qiu W, Cloonan S, Pinto-Plata V, Celli B, Marchetti N, Criner GJ, Bueno R, Washko GR, Glass K, Quackenbush J, Choi AMK, Silverman EK, Hersh CP. Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci Rep 2017; 7:44232. [PMID: 28287180 PMCID: PMC5347019 DOI: 10.1038/srep44232] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
In comparison to genome-wide association studies (GWAS), there has been poor replication of gene expression studies in chronic obstructive pulmonary disease (COPD). We performed microarray gene expression profiling on a large sample of resected lung tissues from subjects with severe COPD. Comparing 111 COPD cases and 40 control smokers, 204 genes were differentially expressed; none were at significant GWAS loci. The top differentially expressed gene was HMGB1, which interacts with AGER, a known COPD GWAS gene. Differentially expressed genes showed enrichment for putative interactors of the first three identified COPD GWAS genes IREB2, HHIP, and FAM13A, based on gene sets derived from protein and RNA binding studies, RNA-interference, a murine smoking model, and expression quantitative trait locus analyses. The gene module most highly associated for COPD in Weighted Gene Co-Expression Network Analysis (WGCNA) was enriched for B cell pathways, and shared seventeen genes with a mouse smoking model and twenty genes with previous emphysema studies. As in other common diseases, genes at COPD GWAS loci were not differentially expressed; however, using a combination of network methods, experimental studies and careful phenotype definition, we found differential expression of putative interactors of these genes, and we replicated previous human and mouse microarray results.
Collapse
Affiliation(s)
- Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Taotao Lao
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhiqiang Jiang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Suzanne Cloonan
- Department of Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Victor Pinto-Plata
- Department of Critical Care Medicine and Pulmonary Disease, Baystate Medical Center, Springfield, MA, USA
| | - Bartholome Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nathaniel Marchetti
- Division of Pulmonary and Critical Care Medicine, Temple University, Philadelphia, PA, USA
| | - Gerard J Criner
- Division of Pulmonary and Critical Care Medicine, Temple University, Philadelphia, PA, USA
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Augustine M K Choi
- Department of Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Chen DL, Cheriyan J, Chilvers ER, Choudhury G, Coello C, Connell M, Fisk M, Groves AM, Gunn RN, Holman BF, Hutton BF, Lee S, MacNee W, Mohan D, Parr D, Subramanian D, Tal-Singer R, Thielemans K, van Beek EJR, Vass L, Wellen JW, Wilkinson I, Wilson FJ. Quantification of Lung PET Images: Challenges and Opportunities. J Nucl Med 2017; 58:201-207. [PMID: 28082432 DOI: 10.2967/jnumed.116.184796] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023] Open
Abstract
Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with 18F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating 18F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.
Collapse
Affiliation(s)
- Delphine L Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph Cheriyan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gourab Choudhury
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Martin Connell
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Fisk
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ashley M Groves
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Roger N Gunn
- Imanova Ltd., London, United Kingdom.,Department of Medicine, Imperial College London, London, United Kingdom
| | - Beverley F Holman
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Brian F Hutton
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Sarah Lee
- Medical Image Analysis Consultant, London, United Kingdom
| | - William MacNee
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Divya Mohan
- Clinical Discovery, Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania
| | - David Parr
- University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | | | - Ruth Tal-Singer
- Clinical Discovery, Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Edwin J R van Beek
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Laurence Vass
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy W Wellen
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts; and
| | - Ian Wilkinson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Frederick J Wilson
- Experimental Medicine Imaging, GlaxoSmithKline, Stevenage, United Kingdom
| |
Collapse
|
23
|
Toyokawa G, Takada K, Okamoto T, Kozuma Y, Matsubara T, Haratake N, Takamori S, Akamine T, Katsura M, Shoji F, Oda Y, Maehara Y. High Frequency of Programmed Death-ligand 1 Expression in Emphysematous Bullae-associated Lung Adenocarcinomas. Clin Lung Cancer 2016; 18:504-511.e1. [PMID: 28038981 DOI: 10.1016/j.cllc.2016.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Emphysematous bullae (EB) are known to be associated with a high incidence of lung cancer; however, the reason for this has yet to be elucidated. The objective of the present study was to clarify the prevalence of programmed death-ligand-1 (PD-L1) expression in EB-associated lung adenocarcinomas. PATIENTS AND METHODS A total of 369 patients with resected lung adenocarcinoma whose preoperative computed tomography findings were available for the examination of EB were analyzed for PD-L1 expression by immunohistochemistry and evaluated to determine the association between PD-L1 expression and EB-related adenocarcinomas. RESULTS Among 369 patients, EB and cancer adjoining EB (Ca-ADJ) were identified in 81 (22.0%) and 50 (13.6%) patients, respectively. EB and Ca-ADJ were significantly associated with male gender, a smoking habit, a decreased forced expiratory volume in 1 second, a relatively higher tumor grade, advanced T status and stage, the presence of pleural and vessel invasion, invasive pathologic subtypes, and wild-type epidermal growth factor receptor. Seventy patients (19.0%) were positive for PD-L1 expression, whereas the remaining 299 patients (81.0%) were negative. Thirty-six (44.4%) and 29 (58.0%) of 81 and 50 patients with EB and Ca-ADJ, respectively, were positive for PD-L1 expression, which was shown to be significant by the Fisher exact test (P < .001 and P < .001, respectively). Among the 81 lung adenocarcinomas with EB, Ca-ADJ was significantly associated with PD-L1 expression (P = .021). In a multivariate analysis, the presence of Ca-ADJ was found to be an independent predictor of PD-L1 expression. CONCLUSIONS EB-associated lung adenocarcinomas express PD-L1 protein more frequently than those without EB.
Collapse
Affiliation(s)
- Gouji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kazuki Takada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Kozuma
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taichi Matsubara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masakazu Katsura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiro Shoji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Liu YZ, Zhang L, Roy-Engel AM, Saito S, Lasky JA, Wang G, Wang H. Carcinogenic effects of oil dispersants: A KEGG pathway-based RNA-seq study of human airway epithelial cells. Gene 2016; 602:16-23. [PMID: 27866042 DOI: 10.1016/j.gene.2016.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
The health impacts of the BP oil spill are yet to be further revealed as the toxicological effects of oil products and dispersants on human respiratory system may be latent and complex, and hence difficult to study and follow up. Here we performed RNA-seq analyses of a system of human airway epithelial cells treated with the BP crude oil and/or dispersants Corexit 9500 and Corexit 9527 that were used to help break up the oil spill. Based on the RNA-seq data, we then systemically analyzed the transcriptomic perturbations of the cells at the KEGG pathway level using two pathway-based analysis tools, GAGE (generally applicable gene set enrichment) and GSNCA (Gene Sets Net Correlations Analysis). Our results suggested a pattern of change towards carcinogenesis for the treated cells marked by upregulation of ribosomal biosynthesis (hsa03008) (p=1.97E-13), protein processing (hsa04141) (p=4.09E-7), Wnt signaling (hsa04310) (p=6.76E-3), neurotrophin signaling (hsa04722) (p=7.73E-3) and insulin signaling (hsa04910) (p=1.16E-2) pathways under the dispersant Corexit 9527 treatment, as identified by GAGE analysis. Furthermore, through GSNCA analysis, we identified gene co-expression changes for several KEGG cancer pathways, including small cell lung cancer pathway (hsa05222, p=9.99E-5), under various treatments of oil/dispersant, especially the mixture of oil and Corexit 9527. Overall, our results suggested carcinogenic effects of dispersants (in particular Corexit 9527) and their mixtures with the BP crude oil, and provided further support for more stringent safety precautions and regulations for operations involving long-term respiratory exposure to oil and dispersants.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Dept. of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Su Zhou, China
| | - Astrid M Roy-Engel
- Dept. of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Shigeki Saito
- Dept. of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joseph A Lasky
- Dept. of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Guangdi Wang
- Dept. of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - He Wang
- Dept. of Chronic Respiratory Diseases, School of Health Sciences, University of Newcastle, Callaghan, Australia
| |
Collapse
|
25
|
Borisov AG, Savchenko AA, Cherdantsev DV, Zdzitovetsky DE, Pervova OV, Kudryavtsev IV, Belenyuk VD, Shapkina VA. [Types of immune response in advanced suppurative peritonitis]. Khirurgiia (Mosk) 2016:28-34. [PMID: 27723692 DOI: 10.17116/hirurgia2016928-34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM to assess types of immune response in patients with advanced suppurative peritonitis and course of disease. MATERIAL AND METHODS We examined 79 patients with acute surgical abdominal diseases and injuries complicated by advanced suppurative peritonitis. Blood immunological parameters were estimated using flowing cytometry and enzyme immunoassay. RESULTS It was concluded that functional parameters of immune system are very various in patients with advanced suppurative peritonitis. Cluster analysis defined 4 immune types which are determined by different state of congenital and acquired immunity. Immunodeficient and unreactive immune types are unfavorable. Immune types with activation of congenital and acquired immunity are the most favourable. This stratification personifies diagnosis and treatment of immune disorders in patients with advanced suppurative peritonitis.
Collapse
Affiliation(s)
- A G Borisov
- Research Institute of Medical Problems of the North, Krasnoyarsk
| | - A A Savchenko
- Research Institute of Medical Problems of the North, Krasnoyarsk; Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
| | - D V Cherdantsev
- Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk; Regional Clinical Hospital, Krasnoyarsk
| | - D E Zdzitovetsky
- Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
| | - O V Pervova
- Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
| | - I V Kudryavtsev
- Research Institute of Experimental Medicine, St. Petersburg; Far Eastern Federal University, Vladivostok, Russia
| | - V D Belenyuk
- Research Institute of Medical Problems of the North, Krasnoyarsk
| | - V A Shapkina
- Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
| |
Collapse
|
26
|
Luo XM, Liu XY, Tang JH, Yang W, Ni ZH, Chen QG, Wang X. Autoantibodies against CD80 in patients with COPD. Clin Transl Immunology 2016; 5:e103. [PMID: 27867516 PMCID: PMC5099427 DOI: 10.1038/cti.2016.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammation disorder and possibly an autoimmune disease. The components of the autoimmune response in the circulatory system are of considerable interest to clinicians. Because aberrations of costimulation status have been noted in COPD, the presence of autoantibodies to B7 costimulatory factor CD80 were investigated in a cohort of patients. Recombinant rs1CD80 (lacking the transmembrane domain of CD80) was used for Western blot analysis and ELISA to investigate the presence of autoantibodies in sera of patients with stable COPD and in controls without COPD. Cytokines IL-6 and IL-8 were detected using ELISA. Western blot revealed a specific band reacting to rs1CD80 by diluting sera pool of patients, which indicated the existence of autoantibodies to CD80. The serum level of anti-rs1CD80 was higher in patients with COPD than in controls(P=0.0185) and was positively correlated to the serum level of IL-6 (r=0.797, P<0.001) and IL-8 (r=0.608, P<0.001). There was a tendency that more higher level of anti-rs1CD80, more severe COPD stage. The existence of autoantibodies to costimulatory factor CD80 may suggest a pathogenic role of costimulatory factors in COPD.
Collapse
Affiliation(s)
- Xu Min Luo
- Department of Respiratory Medicine, Putuo Hospital Affilated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Yan Liu
- Department of Respiratory Medicine, Putuo Hospital Affilated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Hong Tang
- Department of Respiratory Medicine, Putuo Hospital Affilated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yang
- Department of Respiratory Medicine, Putuo Hospital Affilated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Hua Ni
- Department of Respiratory Medicine, Putuo Hospital Affilated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ge Chen
- Department of Respiratory Medicine, Putuo Hospital Affilated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital Affilated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Pan Z, Yu H, Liao JL. Probing Cellular and Molecular Mechanisms of Cigarette Smoke-Induced Immune Response in the Progression of Chronic Obstructive Pulmonary Disease Using Multiscale Network Modeling. PLoS One 2016; 11:e0163192. [PMID: 27669518 PMCID: PMC5036797 DOI: 10.1371/journal.pone.0163192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder characterized by progressive destruction of lung tissues and airway obstruction. COPD is currently the third leading cause of death worldwide and there is no curative treatment available so far. Cigarette smoke (CS) is the major risk factor for COPD. Yet, only a relatively small percentage of smokers develop the disease, showing that disease susceptibility varies significantly among smokers. As smoking cessation can prevent the disease in some smokers, quitting smoking cannot halt the progression of COPD in others. Despite extensive research efforts, cellular and molecular mechanisms of COPD remain elusive. In particular, the disease susceptibility and smoking cessation effects are poorly understood. To address these issues in this work, we develop a multiscale network model that consists of nodes, which represent molecular mediators, immune cells and lung tissues, and edges describing the interactions between the nodes. Our model study identifies several positive feedback loops and network elements playing a determinant role in the CS-induced immune response and COPD progression. The results are in agreement with clinic and laboratory measurements, offering novel insight into the cellular and molecular mechanisms of COPD. The study in this work also provides a rationale for targeted therapy and personalized medicine for the disease in future.
Collapse
Affiliation(s)
- Zhichao Pan
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China
| | - Haishan Yu
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China
| | - Jie-Lou Liao
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China
| |
Collapse
|
28
|
Liu YZ, Roy-Engel AM, Baddoo MC, Flemington EK, Wang G, Wang H. The impact of oil spill to lung health--Insights from an RNA-seq study of human airway epithelial cells. Gene 2015; 578:38-51. [PMID: 26692141 DOI: 10.1016/j.gene.2015.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
The Deepwater Horizon oil spill (BP oil spill) in the Gulf of Mexico was a unique disaster event, where a huge amount of oil spilled from the sea bed and a large volume of dispersants were applied to clean the spill. The operation lasted for almost 3 months and involved >50,000 workers. The potential health hazards to these workers may be significant as previous research suggested an association of persistent respiratory symptoms with exposure to oil and oil dispersants. To reveal the potential effects of oil and oil dispersants on the respiratory system at the molecular level, we evaluated the transcriptomic profile of human airway epithelial cells grown under treatment of crude oil, the dispersants Corexit 9500 and Corexit 9527, and oil-dispersant mixtures. We identified a very strong effect of Corexit 9500 treatment, with 84 genes (response genes) differentially expressed in treatment vs. control samples. We discovered an interactive effect of oil-dispersant mixtures; while no response gene was found for Corexit 9527 treatment alone, cells treated with Corexit 9527+oil mixture showed an increased number of response genes (46 response genes), suggesting a synergic effect of 9527 with oil on airway epithelial cells. Through GO (gene ontology) functional term and pathway-based analysis, we identified upregulation of gene sets involved in angiogenesis and immune responses and downregulation of gene sets involved in cell junctions and steroid synthesis as the prevailing transcriptomic signatures in the cells treated with Corexit 9500, oil, or Corexit 9500+oil mixture. Interestingly, these key molecular signatures coincide with important pathological features observed in common lung diseases, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Our study provides mechanistic insights into the detrimental effects of oil and oil dispersants to the respiratory system and suggests significant health impacts of the recent BP oil spill to those people involved in the cleaning operation.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Astrid M Roy-Engel
- Dept. of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Guangdi Wang
- Dept. of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - He Wang
- Dept. of Chronic Respiratory Diseases, School of Health Sciences, University of Newcastle, Callaghan, Australia.
| |
Collapse
|
29
|
Jia Z, Feng Z, Tian R, Wang Q, Wang L. Thymosinα1 plus routine treatment inhibit inflammatory reaction and improve the quality of life in AECOPD patients. Immunopharmacol Immunotoxicol 2015; 37:388-92. [DOI: 10.3109/08923973.2015.1069837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Borisov GA, Savchenko AA, Kudryavtsev IV. FEATURES OF THE IMMUNE RESPONSE DURING VIRAL INFECTION. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2015. [DOI: 10.15789/2220-7619-2015-2-148-156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Pan L, Jiang XG, Guo J, Tian Y, Liu CT. Effects of OM-85 BV in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. J Clin Pharmacol 2015; 55:1086-92. [PMID: 25903441 DOI: 10.1002/jcph.518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/15/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Lei Pan
- Nanlou Respiratory Diseases Department; Chinese PLA General Hospital; Beijing China
- Department of Respiratory and Critical Care Medicine; Affiliated Hospital of Binzhou Medical University; Binzhou China
| | - Xue-Ge Jiang
- Nanlou Respiratory Diseases Department; Chinese PLA General Hospital; Beijing China
| | - Jun Guo
- Nanlou Respiratory Diseases Department; Chinese PLA General Hospital; Beijing China
| | - Yuan Tian
- Nanlou Respiratory Diseases Department; Chinese PLA General Hospital; Beijing China
| | - Chang-Ting Liu
- Nanlou Respiratory Diseases Department; Chinese PLA General Hospital; Beijing China
| |
Collapse
|
32
|
Tregs and HLA-DR expression in sputum cells of COPD patients treated with tiotropium and formoterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 839:7-12. [PMID: 25315616 DOI: 10.1007/5584_2014_43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immune cells expressing the activation markers HLA-DR and regulatory T cells (Tregs) may be involved in the regulation of chronic inflammation in chronic obstructive pulmonary disease (COPD). In this study we analyzed native and activated cell profiles in sputum of 22 stable COPD patients receiving formoterol (F) or formoterol + tiotropium (F + T) for 3 months. Cells were isolated from induced sputum and were examined on Coulter flow cytometer using fluorescent antibodies specific for CD3, CD4, CD8, CD14, CD19, CD25, CD127, and HLA-DR antigens. Cell profiles and cell activation were assessed by analysis of HLA-DR, CD25, and CD127 co-expression in double-stained samples. Tregs were defined as CD4⁺CD25(high) CD127(low) cells. We found that the combined therapy significantly decreased the CD8⁺ cell number (p < 0.01). At baseline, HLA-DR was expressed in about 10 % of sputum T or B cells and a higher expression was found on monocytes. The HLA-DR expression on lymphocytes, but not monocytes, was significantly lower (p < 0.01) in patients treated with F + T. Fractions of activated [CD4⁺ CD25⁺] cells were also significantly lower in the combined therapy group, except for the subpopulation of CD4⁺CD25(high) CD127(low) cells which was not altered. We conclude that tiotropium in add-on therapy to formoterol affects Treg cell profiles and decreases HLA-DR expression in airway lymphocytes.
Collapse
|