1
|
Brochu HN, Smith E, Jeong S, Carlson M, Hansen SG, Tisoncik-Go J, Law L, Picker LJ, Gale M, Peng X. Pre-challenge gut microbial signature predicts RhCMV/SIV vaccine efficacy in rhesus macaques. Microbiol Spectr 2024; 12:e0128524. [PMID: 39345211 PMCID: PMC11537114 DOI: 10.1128/spectrum.01285-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Rhesus cytomegalovirus expressing simian immunodeficiency virus (RhCMV/SIV) vaccines protect ~59% of vaccinated rhesus macaques against repeated limiting-dose intra-rectal exposure with highly pathogenic SIVmac239M, but the exact mechanism responsible for the vaccine efficacy is unknown. It is becoming evident that complex interactions exist between gut microbiota and the host immune system. Here, we aimed to investigate if the rhesus gut microbiome impacts RhCMV/SIV vaccine-induced protection. Three groups of 15 rhesus macaques naturally pre-exposed to RhCMV were vaccinated with RhCMV/SIV vaccines. Rectal swabs were collected longitudinally both before SIV challenge (after vaccination) and post-challenge and were profiled using 16S rRNA based microbiome analysis. We identified ~2,400 16S rRNA amplicon sequence variants (ASVs), representing potential bacterial species/strains. Global gut microbial profiles were strongly associated with each of the three vaccination groups, and all animals tended to maintain consistent profiles throughout the pre-challenge phase. Despite vaccination group differences, by using newly developed compositional data analysis techniques, we identified a common gut microbial signature predictive of vaccine protection outcome across the three vaccination groups. Part of this microbial signature persisted even after SIV challenge. We also observed a strong correlation between this microbial signature and an early signature derived from whole blood transcriptomes in the same animals. Our findings indicate that changes in gut microbiomes are associated with RhCMV/SIV vaccine-induced protection and early host response to vaccination in rhesus macaques.IMPORTANCEThe human immunodeficiency virus (HIV) has infected millions of people worldwide. Unfortunately, still there is no vaccine that can prevent or treat HIV infection. A promising pre-clinical HIV vaccine based on rhesus cytomegalovirus (RhCMV) expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) provides sustained, durable protection against SIV challenge in ~59% of vaccinated rhesus macaques. There is an urgent need to understand the cause of this protection vs non-protection outcome. In this study, we profiled the gut microbiomes of 45 RhCMV/SIV vaccinated rhesus macaques and identified gut microbial signatures that were predictive of RhCMV/SIV vaccination groups and vaccine protection outcomes. These vaccine protection-associated microbial features were significantly correlated with early vaccine-induced host immune signatures in whole blood from the same animals. These findings show that the gut microbiome may be involved in RhCMV/SIV vaccine-induced protection, warranting further research into the impact of the gut microbiome in human vaccine trials.
Collapse
Affiliation(s)
- Hayden N. Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Elise Smith
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Sangmi Jeong
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Michelle Carlson
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Brochu HN, Smith E, Jeong S, Carlson M, Hansen SG, Tisoncik-Go J, Law L, Picker LJ, Gale M, Peng X. Pre-challenge gut microbial signature predicts RhCMV/SIV vaccine efficacy in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582186. [PMID: 38464179 PMCID: PMC10925241 DOI: 10.1101/2024.02.27.582186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background RhCMV/SIV vaccines protect ∼59% of vaccinated rhesus macaques against repeated limiting-dose intra-rectal exposure with highly pathogenic SIVmac239M, but the exact mechanism responsible for the vaccine efficacy is not known. It is becoming evident that complex interactions exist between gut microbiota and the host immune system. Here we aimed to investigate if the rhesus gut microbiome impacts RhCMV/SIV vaccine-induced protection. Methods Three groups of 15 rhesus macaques naturally pre-exposed to RhCMV were vaccinated with RhCMV/SIV vaccines. Rectal swabs were collected longitudinally both before SIV challenge (after vaccination) and post challenge and were profiled using 16S rRNA based microbiome analysis. Results We identified ∼2,400 16S rRNA amplicon sequence variants (ASVs), representing potential bacterial species/strains. Global gut microbial profiles were strongly associated with each of the three vaccination groups, and all animals tended to maintain consistent profiles throughout the pre-challenge phase. Despite vaccination group differences, using newly developed compositional data analysis techniques we identified a common gut microbial signature predictive of vaccine protection outcome across the three vaccination groups. Part of this microbial signature persisted even after SIV challenge. We also observed a strong correlation between this microbial signature and an early signature derived from whole blood transcriptomes in the same animals. Conclusions Our findings indicate that changes in gut microbiomes are associated with RhCMV/SIV vaccine-induced protection and early host response to vaccination in rhesus macaques.
Collapse
|
3
|
Cronin P, McCarthy S, Hurley C, Ghosh TS, Cooney JC, Tobin AM, Murphy M, O’Connor EM, Shanahan F, O’Toole PW. Comparative diet-gut microbiome analysis in Crohn's disease and Hidradenitis suppurativa. Front Microbiol 2023; 14:1289374. [PMID: 38029085 PMCID: PMC10667482 DOI: 10.3389/fmicb.2023.1289374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The chronic inflammatory skin disease Hidradenitis suppurativa (HS) is strongly associated with Crohn's Disease (CD). HS and CD share clinical similarities and similar inflammatory pathways are upregulated in both conditions. Increased prevalence of inflammatory disease in industrialised nations has been linked to the Western diet. However, gut microbiota composition and diet interaction have not been compared in HS and CD. Methods Here we compared the fecal microbiota (16S rRNA gene amplicon sequencing) and habitual diet of previously reported subjects with HS (n = 55), patients with CD (n = 102) and controls (n = 95). Results and discussion Patients with HS consumed a Western diet similar to patients with CD. Meanwhile, habitual diet in HS and CD was significantly different to controls. Previously, we detected differences in microbiota composition among patients with HS from that of controls. We now show that 40% of patients with HS had a microbiota configuration similar to that of CD, characterised by the enrichment of pathogenic genera (Enterococcus, Veillonella and Escherichia_Shigella) and the depletion of putatively beneficial genera (Faecalibacterium). The remaining 60% of patients with HS harboured a normal microbiota similar to that of controls. Antibiotics, which are commonly used to treat HS, were identified as a co-varying with differences in microbiota composition. We examined the levels of several inflammatory markers highlighting that growth-arrest specific 6 (Gas6), which has anti-inflammatory potential, were significantly lower in the 40% of patients with HS who had a CD microbiota configuration. Levels of the pro-inflammatory cytokine IL-12, which is a modulator of intestinal inflammation in CD, were negatively correlated with the abundance of health-associated genera in patients with HS. In conclusion, the fecal microbiota may help identify patients with HS who are at greater risk for development of CD.
Collapse
Affiliation(s)
- Peter Cronin
- Department of Biological Science, University of Limerick, Limerick, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Siobhan McCarthy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Dermatology, South Infirmary Victoria University Hospital, Cork, Ireland
| | - Cian Hurley
- School of Microbiology, University College Cork, Cork, Ireland
| | - Tarini Shankar Ghosh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Delhi, India
| | - Jakki C. Cooney
- Department of Biological Science, University of Limerick, Limerick, Ireland
| | - Ann-Marie Tobin
- Department of Dermatology, Tallaght University Hospital, Dublin, Ireland
| | - Michelle Murphy
- Department of Dermatology, South Infirmary Victoria University Hospital, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Eibhlís M. O’Connor
- Department of Biological Science, University of Limerick, Limerick, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Awosile B, Crasto C, Rahman MK, Daniel I, Boggan S, Steuer A, Fritzler J. Fecal Microbial Diversity of Coyotes and Wild Hogs in Texas Panhandle, USA. Microorganisms 2023; 11:1137. [PMID: 37317111 DOI: 10.3390/microorganisms11051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
The ecology of infectious diseases involves wildlife, yet the wildlife interface is often neglected and understudied. Pathogens related to infectious diseases are often maintained within wildlife populations and can spread to livestock and humans. In this study, we explored the fecal microbiome of coyotes and wild hogs in the Texas panhandle using polymerase chain reactions and 16S sequencing methods. The fecal microbiota of coyotes was dominated by members of the phyla Bacteroidetes, Firmicutes, and Proteobacteria. At the genus taxonomic level, Odoribacter, Allobaculum, Coprobacillus, and Alloprevotella were the dominant genera of the core fecal microbiota of coyotes. While for wild hogs, the fecal microbiota was dominated by bacterial members of the phyla Bacteroidetes, Spirochaetes, Firmicutes, and Proteobacteria. Five genera, Treponema, Prevotella, Alloprevotella, Vampirovibrio, and Sphaerochaeta, constitute the most abundant genera of the core microbiota of wild hogs in this study. Functional profile of the microbiota of coyotes and wild hogs identified 13 and 17 human-related diseases that were statistically associated with the fecal microbiota, respectively (p < 0.05). Our study is a unique investigation of the microbiota using free-living wildlife in the Texas Panhandle and contributes to awareness of the role played by gastrointestinal microbiota of wild canids and hogs in infectious disease reservoir and transmission risk. This report will contribute to the lacking information on coyote and wild hog microbial communities by providing insights into their composition and ecology which may likely be different from those of captive species or domesticated animals. This study will contribute to baseline knowledge for future studies on wildlife gut microbiomes.
Collapse
Affiliation(s)
- Babafela Awosile
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Md Kaisar Rahman
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ian Daniel
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - SaraBeth Boggan
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ashley Steuer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Jason Fritzler
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
5
|
Sharma S, Hegde P, Panda S, Orimoloye MO, Aldrich CC. Drugging the microbiome: targeting small microbiome molecules. Curr Opin Microbiol 2023; 71:102234. [PMID: 36399893 DOI: 10.1016/j.mib.2022.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
The human microbiome represents a large and diverse collection of microbes that plays an integral role in human physiology and pathophysiology through interactions with the host and within the microbial community. While early work exploring links between microbiome signatures and diseases states has been associative, emerging evidence demonstrates the metabolic products of the human microbiome have more proximal causal effects on disease phenotypes. The therapeutic implications of this shift are profound as manipulation of the microbiome by the administration of live biotherapeutics, ongoing, can now be pursued alongside research efforts toward describing inhibitors of key microbiome enzymes involved in the biosynthesis of metabolites implicated in various disease states and processing of host-derived metabolites. With growing interest in 'drugging the microbiome', we review few notable microbial metabolites for which traditional drug-development campaigns have yielded compounds with therapeutic promise.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Ryman S, Vakhtin AA, Richardson SP, Lin HC. Microbiome-gut-brain dysfunction in prodromal and symptomatic Lewy body diseases. J Neurol 2023; 270:746-758. [PMID: 36355185 PMCID: PMC9886597 DOI: 10.1007/s00415-022-11461-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Lewy body diseases, such as Parkinson's disease and dementia with Lewy bodies, vary in their clinical phenotype but exhibit the same defining pathological feature, α-synuclein aggregation. Microbiome-gut-brain dysfunction may play a role in the initiation or progression of disease processes, though there are multiple potential mechanisms. We discuss the need to evaluate gastrointestinal mechanisms of pathogenesis across Lewy body diseases, as disease mechanisms likely span across diagnostic categories and a 'body first' clinical syndrome may better account for the heterogeneity of clinical presentations across the disorders. We discuss two primary hypotheses that suggest that either α-synuclein aggregation occurs in the gut and spreads in a prion-like fashion to the brain or systemic inflammatory processes driven by gastrointestinal dysfunction contribute to the pathophysiology of Lewy body diseases. Both of these hypotheses posit that dysbiosis and intestinal permeability are key mechanisms and potential treatment targets. Ultimately, this work can identify early interventions targeting initial disease pathogenic processes before the development of overt motor and cognitive symptoms.
Collapse
Affiliation(s)
- Sephira Ryman
- The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Andrei A Vakhtin
- The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Henry C Lin
- Department of Medicine, The University of New Mexico, Albuquerque, NM, 87131, USA
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, 87108, USA
| |
Collapse
|
7
|
Crnčević N, Hukić M, Deumić S, Selimagić A, Dozić A, Gavrankapetanović I, Klepo D, Avdić M. Gastrointestinal Tract Microbiome Effect and Role in Disease Development. Diseases 2022; 10:diseases10030045. [PMID: 35892739 PMCID: PMC9326677 DOI: 10.3390/diseases10030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, it has been shown that gastrointestinal microflora has a substantial impact on the development of a large number of chronic diseases. The imbalance in the number or type of microbes in the gastrointestinal tract can lead to diseases and conditions, including autism spectrum disorder, celiac disease, Crohn’s disease, diabetes, and small bowel cancers. This can occur as a result of genetics, alcohol, tobacco, chemotherapeutics, cytostatics, as well as antibiotic overuse. Due to this, essential taxa can be lost, and the host’s metabolism can be severely affected. A less known condition called small intestine bacterial overgrowth (SIBO) can be seen in patients who suffer from hypochlorhydria and small intestine cancers. It is characterized as a state in which the bacterial population in the small intestine exceeds 105–106 organisms/mL. The latest examination methods such as double-balloon enteroscopy and wireless capsule endoscopy have the potential to increase the accuracy and precision of diagnosis and provide better patient care. This review paper aims to summarize the effect of the gastrointestinal environment on chronic disease severity and the development of cancers.
Collapse
Affiliation(s)
- Neira Crnčević
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidža, 71210 Sarajevo, Bosnia and Herzegovina; (S.D.); (D.K.); (M.A.)
- Correspondence: ; Tel.: +387-61-034-487
| | - Mirsada Hukić
- Academy of Sciences and Arts of Bosnia and Herzegovina, Center for Disease Control and Geohealth Studies, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina;
- Institute for Biomedical Diagnostics and Research Nalaz, Čekaluša 69, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sara Deumić
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidža, 71210 Sarajevo, Bosnia and Herzegovina; (S.D.); (D.K.); (M.A.)
| | - Amir Selimagić
- Department of Gastroenterohepatology, General Hospital “Prim. dr. Abdulah Nakas”, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ada Dozić
- Department of Internal Medicine, General Hospital “Prim. dr. Abdulah Nakas”, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ismet Gavrankapetanović
- University Clinical Center Sarajevo, Clinic of Orthopedics and Traumatology, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Dženana Klepo
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidža, 71210 Sarajevo, Bosnia and Herzegovina; (S.D.); (D.K.); (M.A.)
| | - Monia Avdić
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidža, 71210 Sarajevo, Bosnia and Herzegovina; (S.D.); (D.K.); (M.A.)
- Academy of Sciences and Arts of Bosnia and Herzegovina, Center for Disease Control and Geohealth Studies, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina;
| |
Collapse
|
8
|
Lee SY, Byun HJ, Choi H, Won JI, Han J, Park S, Kim D, Sung JH. Development of a Pumpless Microfluidic System to Study the Interaction between Gut Microbes and Intestinal Epithelial Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0268-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Oh VKS, Li RW. Large-Scale Meta-Longitudinal Microbiome Data with a Known Batch Factor. Genes (Basel) 2022; 13:392. [PMID: 35327945 PMCID: PMC8953633 DOI: 10.3390/genes13030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Data contamination in meta-approaches where multiple biological samples are combined considerably affects the results of subsequent downstream analyses, such as differential abundance tests comparing multiple groups at a fixed time point. Little has been thoroughly investigated regarding the impact of the lurking variable of various batch sources, such as different days or different laboratories, in more complicated time series experimental designs, for instance, repeatedly measured longitudinal data and metadata. We highlight that the influence of batch factors is significant on subsequent downstream analyses, including longitudinal differential abundance tests, by performing a case study of microbiome time course data with two treatment groups and a simulation study of mimic microbiome longitudinal counts.
Collapse
Affiliation(s)
- Vera-Khlara S. Oh
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
- Department of Data Science, College of Natural Sciences, Jeju National University, Jeju City 690-756, Korea
| | - Robert W. Li
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
10
|
Xu Z, Liu W, Zhang Y, Zhang D, Qiu B, Wang X, Liu J, Liu L. Therapeutic and Prebiotic Effects of Five Different Native Starches on Dextran Sulfate Sodium-Induced Mice Model of Colonic Colitis. Mol Nutr Food Res 2021; 65:e2000922. [PMID: 33629501 DOI: 10.1002/mnfr.202000922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/14/2021] [Indexed: 12/12/2022]
Abstract
SCOPE The availability of studies related to the effects of natural macronutrients on inflammatory bowel disease (IBD) remain relatively limited. This study investigates whether and to what extent the consumption of five different native starches alleviate the clinical symptoms and dysbiosis of gut microbiota associated with colitis. METHODS AND RESULTS Using dextran sodium sulfate (DSS)-induced mouse model of colitis, the potential effects of native potato starch (PS), pea starch (PEAS), corn starch (CS), Chinese yam starch (CYS), and red sorghum starch (RSS) on the clinical manifestations and dysbiosis of gut microbiota are studied. Compared to CS and RSS, the consumption of PEAS, PS, and CYS significantly diminishes clinical enteritis symptoms, including reduced disease activity index, and the alleviated degree of colonic histological damage. Furthermore, the analysis of gut microbiota reveals the significant prebiotic characteristics of PEAS, PS and CYS, as indicated by the maintenance of gut microbiota hemostasis and the inhibition of typically pathogenic bacteria, including Escherichia coli and Helicobacter hepaticus. CONCLUSION Starches from potato, pea, and Chinese yam alleviate colitis symptoms in a mouse model, and also show significant prebiotic characteristics. These findings suggest a cost-effective and convenient dietary strategy for the management of IBD.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Wei Liu
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Yuhan Zhang
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Di Zhang
- Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Bin Qiu
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Xianshu Wang
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| | - Jie Liu
- Beijing Technology and Business University (BTBU), Beijing, 10048, China
| | - Lina Liu
- Shandong Academy of Agricultural Sciences, Institute of Agro-Food Science and Technology, Jinan, 250100, China
| |
Collapse
|
11
|
Daniel S, Phillippi D, Schneider LJ, Nguyen KN, Mirpuri J, Lund AK. Exposure to diesel exhaust particles results in altered lung microbial profiles, associated with increased reactive oxygen species/reactive nitrogen species and inflammation, in C57Bl/6 wildtype mice on a high-fat diet. Part Fibre Toxicol 2021; 18:3. [PMID: 33419468 PMCID: PMC7796587 DOI: 10.1186/s12989-020-00393-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exposure to traffic-generated emissions is associated with the development and exacerbation of inflammatory lung disorders such as chronic obstructive pulmonary disorder (COPD) and idiopathic pulmonary fibrosis (IPF). Although many lung diseases show an expansion of Proteobacteria, the role of traffic-generated particulate matter pollutants on the lung microbiota has not been well-characterized. Thus, we investigated the hypothesis that exposure to diesel exhaust particles (DEP) can alter commensal lung microbiota, thereby promoting alterations in the lung's immune and inflammatory responses. We aimed to understand whether diet might also contribute to the alteration of the commensal lung microbiome, either alone or related to exposure. To do this, we used male C57Bl/6 mice (4-6-week-old) on either regular chow (LF) or high-fat (HF) diet (45% kcal fat), randomly assigned to be exposed via oropharyngeal aspiration to 35 μg DEP, suspended in 35 μl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. A separate group of study animals on the HF diet was concurrently treated with 0.3 g/day of Winclove Ecologic® Barrier probiotics in their drinking water throughout the study. RESULTS Our results show that DEP-exposure increases lung tumor necrosis factor (TNF)-α, interleukin (IL)-10, Toll-like receptor (TLR)-2, TLR-4, and the nuclear factor kappa B (NF-κB) histologically and by RT-qPCR, as well as Immunoglobulin A (IgA) and Immunoglobulin G (IgG) in the bronchoalveolar lavage fluid (BALF), as quantified by ELISA. We also observed an increase in macrophage infiltration and peroxynitrite, a marker of reactive oxygen species (ROS) + reactive nitrogen species (RNS), immunofluorescence staining in the lungs of DEP-exposed and HF-diet animals, which was further exacerbated by concurrent DEP-exposure and HF-diet consumption. Histological examinations revealed enhanced inflammation and collagen deposition in the lungs DEP-exposed mice, regardless of diet. We observed an expansion of Proteobacteria, by qPCR of bacterial 16S rRNA, in the BALF of DEP-exposed mice on the HF diet, which was diminished with probiotic-treatment. CONCLUSIONS Our findings suggest that exposure to DEP causes persistent and sustained inflammation and bacterial alterations in a ROS-RNS mediated fashion, which is exacerbated by concurrent consumption of an HF diet.
Collapse
Affiliation(s)
- Sarah Daniel
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Danielle Phillippi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Leah J Schneider
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Kayla N Nguyen
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Julie Mirpuri
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA.
| |
Collapse
|
12
|
Horton RH, Wileman T, Rushworth SA. Autophagy Driven Extracellular Vesicles in the Leukaemic Microenvironment. Curr Cancer Drug Targets 2020; 20:501-512. [PMID: 32342819 DOI: 10.2174/1568009620666200428111051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/27/2019] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
The leukaemias are a heterogeneous group of blood cancers, which together, caused 310,000 deaths in 2016. Despite significant research into their biology and therapeutics, leukaemia is predicted to account for an increased 470,000 deaths in 2040. Many subtypes remain without targeted therapy, and therefore the mainstay of treatment remains generic cytotoxic drugs with bone marrow transplant the sole definitive option. In this review, we will focus on cellular mechanisms which have the potential for therapeutic exploitation to specifically target and treat this devastating disease. We will bring together the disciplines of autophagy and extracellular vesicles, exploring how the dysregulation of these mechanisms can lead to changes in the leukaemic microenvironment and the subsequent propagation of disease. The dual effect of these mechanisms in the disease microenvironment is not limited to leukaemia; therefore, we briefly explore their role in autoimmunity, inflammation and degenerative disease.
Collapse
Affiliation(s)
- Rebecca H Horton
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Tom Wileman
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| |
Collapse
|
13
|
Ferguson LR. Inflammatory bowel disease: why this provides a useful example of the evolving science of nutrigenomics. J R Soc N Z 2020. [DOI: 10.1080/03036758.2020.1728345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lynnette R. Ferguson
- Auckland Cancer Society Research Centre and Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Crohn's Disease: Potential Drugs for Modulation of Autophagy. ACTA ACUST UNITED AC 2019; 55:medicina55060224. [PMID: 31146413 PMCID: PMC6630681 DOI: 10.3390/medicina55060224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular process whereby cytoplasmic constituents are degraded within lysosomes. Autophagy functions to eliminate unwanted or damaged materials such as proteins and organelles as their accumulation would be harmful to the cellular system. Autophagy also acts as a defense mechanism against invading pathogens and plays an important role in innate and adaptive immunity. In physiological processes, autophagy is involved in the regulation of tissue development, differentiation and remodeling, which are essential for maintaining cellular homeostasis. Recent studies have demonstrated that autophagy is linked to various diseases and involved in pathophysiological roles, such as adaptation during starvation, anti-aging, antigen presentation, tumor suppression and cell death. The modulation of autophagy has shown greatest promise in Crohn’s disease as most of autophagy drugs involved in these diseases are currently under clinical trials and some has been approved by Food and Drug Administration. This review article discusses autophagy and potential drugs that are currently available for its modulation in Crohn’s disease.
Collapse
|
15
|
Cougnoux A, Movassaghi M, Picache JA, Iben JR, Navid F, Salman A, Martin K, Farhat NY, Cluzeau C, Tseng WC, Burkert K, Sojka C, Wassif CA, Cawley NX, Bonnet R, Porter FD. Gastrointestinal Tract Pathology in a BALB/c Niemann-Pick Disease Type C1 Null Mouse Model. Dig Dis Sci 2018; 63:870-880. [PMID: 29357083 PMCID: PMC6292218 DOI: 10.1007/s10620-018-4914-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Niemann-Pick disease, type C (NPC) is a rare lysosomal storage disorder characterized by progressive neurodegeneration, splenomegaly, hepatomegaly, and early death. NPC is caused by mutations in either the NPC1 or NPC2 gene. Impaired NPC function leads to defective intracellular transport of unesterified cholesterol and its accumulation in late endosomes and lysosomes. A high frequency of Crohn disease has been reported in NPC1 patients, suggesting that gastrointestinal tract pathology may become a more prominent clinical issue if effective therapies are developed to slow the neurodegeneration. The Npc1 nih mouse model on a BALB/c background replicates the hepatic and neurological disease observed in NPC1 patients. Thus, we sought to characterize the gastrointestinal tract pathology in this model to determine whether it can serve as a model of Crohn disease in NPC1. METHODS We analyzed the gastrointestinal tract and isolated macrophages of BALB/cJ cNctr-Npc1m1N/J (Npc1-/-) mouse model to determine whether there was any Crohn-like pathology or inflammatory cell activation. We also evaluated temporal changes in the microbiota by 16S rRNA sequencing of fecal samples to determine whether there were changes consistent with Crohn disease. RESULTS Relative to controls, Npc1 mutant mice demonstrate increased inflammation and crypt abscesses in the gastrointestinal tract; however, the observed pathological changes are significantly less than those observed in other Crohn disease mouse models. Analysis of Npc1 mutant macrophages demonstrated an increased response to lipopolysaccharides and delayed bactericidal activity; both of which are pathological features of Crohn disease. Analysis of the bacterial microbiota does not mimic what is reported in Crohn disease in either human or mouse models. We did observe significant increases in cyanobacteria and epsilon-proteobacteria. The increase in epsilon-proteobacteria may be related to altered cholesterol homeostasis since cholesterol is known to promote growth of this bacterial subgroup. CONCLUSIONS Macrophage dysfunction in the BALB/c Npc1-/- mouse is similar to that observed in other Crohn disease models. However, neither the degree of pathology nor the microbiota changes are typical of Crohn disease. Thus, this mouse model is not a good model system for Crohn disease pathology reported in NPC1 patients.
Collapse
Affiliation(s)
- Antony Cougnoux
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Miyad Movassaghi
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jaqueline A Picache
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - James R Iben
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Fatemeh Navid
- Department of Health and Human Services, National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892, USA
| | - Alexander Salman
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Kyle Martin
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Nicole Y Farhat
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Celine Cluzeau
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Wei-Chia Tseng
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Kathryn Burkert
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Caitlin Sojka
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Christopher A Wassif
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Niamh X Cawley
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Richard Bonnet
- Microbes, Inflammation, Intestin et Susceptibilité de l'Hôte (M2iSH), Inserm U1071, INRA USC2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Center Hospitalier Universitaire, Clermont-Ferrand, France
| | - Forbes D Porter
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Abstract
Nephrolithiasis is a condition marked by the presence or formation of stones in kidneys. Several factors contribute to kidney stones development such as environmental conditions, type of dietary intake, gender and gastrointestinal flora. Most of the kidney stones are composed of calcium phosphate and calcium oxalate, which enter in to the body through diet. Both sources of oxalates become dangerous when normal flora of gastrointestinal tract is disturbed. Oxalobacter and Lactobacillus species exist symbiotically in the human gut and prevent stone formation by altering some biochemical pathways through production of specific enzymes which help in the degradation of oxalate salts. Both Oxalobacter and Lactobacillus have potential probiotic characteristics for the prevention of kidney stone formation and this avenue should be further explored.
Collapse
Affiliation(s)
- Humaira Sadaf
- Department of Biosciences, University of Wah, Wah City, Pakistan
| | - Syed Irfan Raza
- Department of Biosciences, University of Wah, Wah City, Pakistan
| | | |
Collapse
|
17
|
Prakash T, Veerappa A, B Ramachandra N. Complex interaction between HNRNPD mutations and risk polymorphisms is associated with discordant Crohn's disease in monozygotic twins. Autoimmunity 2017; 50:275-276. [PMID: 28300425 DOI: 10.1080/08916934.2017.1300883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) affecting the lining of digestive tracts of the colon and ileum. To investigate the reasons behind the presence of CD phenotype in one of the monozygotic (MZ) twins, we utilized the whole exome sequence (WES) datasets of CD tissue biopsy and CD blood of affected twin and the exome dataset of blood from healthy twin. We report the presence of discordant and rare damaging mutation in HNRNPD and other risk polymorphisms such as, rs12103, rs2241880, rs3810936, rs7076156, rs1042058 and rs1292053. HNRNPD was found carrying two novel heterozygous mutations - a stop gain mutation that truncated the protein at 249th and 268th amino acid position and a single base missense mutation replacing Aspartate with Valine at 300th amino acid. The identified risk polymorphisms were found conferring susceptibility to CD and IBD. Discordant deleterious and damaging mutation was detected in HNRNPD that have been implicated in inflammatory pathways. Integrating these variants led to the elucidation of pathophysiology of CD in the affected twin involving the causal processes of macrophage activation, tissue death, autophagy, immune response, cell-migration and T-cell activation.
Collapse
Affiliation(s)
- Tejaswini Prakash
- a Genetics and Genomics Lab, Department of Studies in Genetics and Genomics , University of Mysore , Mysuru , India
| | - Avinash Veerappa
- b Laboratory of Genomic Sciences, Department of Studies in Genetics and Genomics , University of Mysore , Mysuru , India
| | - Nallur B Ramachandra
- a Genetics and Genomics Lab, Department of Studies in Genetics and Genomics , University of Mysore , Mysuru , India
| |
Collapse
|
18
|
Iraporda C, Romanin DE, Bengoa AA, Errea AJ, Cayet D, Foligné B, Sirard JC, Garrote GL, Abraham AG, Rumbo M. Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model. Front Immunol 2016; 7:651. [PMID: 28082985 PMCID: PMC5187354 DOI: 10.3389/fimmu.2016.00651] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/29/2022] Open
Abstract
Lactate has long been considered as a metabolic by-product of cells. Recently, this view has been changed by the observation that lactate can act as a signaling molecule and regulates critical functions of the immune system. We previously identified lactate as the component responsible for the modulation of innate immune epithelial response of fermented milk supernatants in vitro. We have also shown that lactate downregulates proinflammatory responses of macrophages and dendritic cells. So far, in vivo effects of lactate on intestinal inflammation have not been reported. We evaluated the effect of intrarectal administration of lactate in a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The increase in lactate concentration in colon promoted protective effects against TNBS-induced colitis preventing histopathological damage, as well as bacterial translocation and rise of IL-6 levels in serum. Using intestinal epithelial reporter cells, we found that flagellin treatment induced reporter gene expression, which was abrogated by lactate treatment as well as by glycolysis inhibitors. Furthermore, lactate treatment modulated glucose uptake, indicating that high levels of extracellular lactate can impair metabolic reprograming induced by proinflammatory activation. These results suggest that lactate could be a potential beneficial microbiota metabolite and may constitute an overlooked effector with modulatory properties.
Collapse
Affiliation(s)
- Carolina Iraporda
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - David E Romanin
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| | - Ana A Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - Agustina J Errea
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| | - Delphine Cayet
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Benoit Foligné
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Jean-Claude Sirard
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA), La Plata, Argentina; Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| |
Collapse
|
19
|
Affiliation(s)
- Adam Wahida
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Klaus Ritter
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hans-Peter Horz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
20
|
Durchschein F, Petritsch W, Hammer HF. Diet therapy for inflammatory bowel diseases: The established and the new. World J Gastroenterol 2016; 22:2179-2194. [PMID: 26900283 PMCID: PMC4734995 DOI: 10.3748/wjg.v22.i7.2179] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/10/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Although patients with inflammatory bowel diseases (IBD) have a strong interest in dietary modifications as part of their therapeutic management, dietary advice plays only a minor part in published guidelines. The scientific literature shows that dietary factors might influence the risk of developing IBD, that dysbiosis induced by nutrition contributes to the pathogenesis of IBD, and that diet may serve as a symptomatic treatment for irritable bowel syndrome-like symptoms in IBD. The role of nutrition in IBD is underscored by the effect of various dietary therapies. In paediatric patients with Crohn’s disease (CD) enteral nutrition (EN) reaches remission rates similar to steroids. In adult patients, however, EN is inferior to corticosteroids. EN is not effective in ulcerative colitis (UC). Total parenteral nutrition in IBD is not superior to steroids or EN. The use of specific probiotics in patients with IBD can be recommended only in special clinical situations. There is no evidence for efficacy of probiotics in CD. By contrast, studies in UC have shown a beneficial effect in selected patients. For patients with pouchitis, antibiotic treatment followed by probiotics, like VSL#3 or Lactobacillus GG, is effective. When probiotics are used, the risk of bacterial translocation and subsequent bacteremia has to be considered. More understanding of the normal intestinal microflora, and better characterization of probiotic strains at the phenotypic and genomic levels is needed as well as clarification of the mechanisms of action in different clinical settings. A FODMAP reduced diet may improve symptoms in IBD.
Collapse
|
21
|
Gloux K, Anba-Mondoloni J. Unique β-Glucuronidase Locus in Gut Microbiomes of Crohn's Disease Patients and Unaffected First-Degree Relatives. PLoS One 2016; 11:e0148291. [PMID: 26824357 PMCID: PMC4732671 DOI: 10.1371/journal.pone.0148291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022] Open
Abstract
Crohn's disease, an incurable chronic inflammatory bowel disease, has been attributed to both genetic predisposition and environmental factors. A dysbiosis of the gut microbiota, observed in numerous patients but also in at least one hundred unaffected first-degree relatives, was proposed to have a causal role. Gut microbiota β-D-glucuronidases (EC 3.2.1.33) hydrolyse β-D-glucuronate from glucuronidated compounds. They include a GUS group, that is homologous to the Escherichia coli GusA, and a BG group, that is homologous to metagenomically identified H11G11 BG and has unidentified natural substrates. H11G11 BG is part of the functional core of the human gut microbiota whereas GusA, known to regenerate various toxic products, is variably found in human subjects. We investigated potential risk markers for Crohn's disease using DNA-sequence-based exploration of the β-D-glucuronidase loci (GUS or Firmicute H11G11-BG and the respective co-encoded glucuronide transporters). Crohn's disease-related microbiomes revealed a higher frequency of a C7D2 glucuronide transporter (12/13) compared to unrelated healthy subjects (8/32). This transporter was in synteny with the potential harmful GUS β-D-glucuronidase as only observed in a Eubacterium eligens plasmid. A conserved NH2-terminal sequence in the transporter (FGDFGND motif) was found in 83% of the disease-related subjects and only in 12% of controls. We propose a microbiota-pathology hypothesis in which the presence of this unique β-glucuronidase locus may contribute to an increase risk for Crohn's disease.
Collapse
Affiliation(s)
- Karine Gloux
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- * E-mail:
| | - Jamila Anba-Mondoloni
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
22
|
Frankenfeld CL, Sikaroodi M, Lamb E, Shoemaker S, Gillevet PM. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann Epidemiol 2015; 25:736-42.e4. [PMID: 26272781 DOI: 10.1016/j.annepidem.2015.06.083] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate gut microbiome in relation to recent high-intensity sweetener consumption in healthy adults. METHODS Thirty-one adults completed a four-day food record and provided a fecal sample on the fifth day. Bacterial community in the samples was analyzed using multitag pyrosequencing. Across consumers and nonconsumers of aspartame and acesulfame-K, bacterial abundance was compared using nonparametric statistics, and bacterial diversity was compared using UniFrac analysis. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to predict mean relative abundance of gene function. RESULTS There were seven aspartame consumers and seven acesulfame-K consumers. Three individuals overlapped groups, consuming both sweeteners. There were no differences in median bacterial abundance (class or order) across consumers and nonconsumers of either sweetener. Overall bacterial diversity was different across nonconsumers and consumers of aspartame (P < .01) and acesulfame-K (P = .03). Mean predicted gene abundance did not differ across consumers and nonconsumers of aspartame or acesulfame-K. CONCLUSIONS Bacterial abundance profiles and predicted gene function were not associated with recent dietary high-intensity sweetener consumption. However, bacterial diversity differed across consumers and nonconsumers. Given the increasing consumption of sweeteners and the role that the microbiome may have in chronic disease outcomes, work in further studies is warranted.
Collapse
Affiliation(s)
- Cara L Frankenfeld
- Department of Global and Community Health, George Mason University, Fairfax, VA; Microbiome Analysis Center, George Mason University, Manassas, VA.
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, VA; Department of Environmental Science and Policy, George Mason University, Fairfax, VA
| | - Evan Lamb
- Department of Global and Community Health, George Mason University, Fairfax, VA
| | - Sarah Shoemaker
- Department of Global and Community Health, George Mason University, Fairfax, VA
| | - Patrick M Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, VA; Department of Environmental Science and Policy, George Mason University, Fairfax, VA
| |
Collapse
|
23
|
Hrnčířová L, Krejsek J, Šplíchal I, Hrnčíř T. Crohn's disease: a role of gut microbiota and Nod2 gene polymorphisms in disease pathogenesis. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 57:89-96. [PMID: 25649363 DOI: 10.14712/18059694.2014.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Crohn's disease is a chronic immune-mediated intestinal inflammation targeted against a yet incompletely defined subset of commensal gut microbiota and occurs on the background of a genetic predisposition under the influence of environmental factors. Genome-wide association studies have identified about 70 genetic risk loci associated with Crohn's disease. The greatest risk for Crohn's disease represent polymorphisms affecting the CARD15 gene encoding nucleotide-binding oligomerization domain 2 (NOD2) which is an intracellular sensor for muramyl dipeptide, a peptidoglycan constituent of bacterial cell wall. The accumulated evidence suggests that gut microbiota represent an essential, perhaps a central factor in the induction and maintaining of Crohn's disease where dysregulation of normal co-evolved homeostatic relationships between intestinal microbiota and host mucosal immune system leads to intestinal inflammation. Taken together, these findings identify Crohn's disease as a syndrome of overlapping phenotypes that involves variable influences of genetic and environmental factors. A deeper understanding of different genetic abnormalities underlying Crohn's disease together with the identification of beneficial and harmful components of gut microbiota and their interactions are essential conditions for the categorization of Crohn's disease patients, which enable us to design more effective, preferably causative, individually tailored therapy.
Collapse
Affiliation(s)
- Lucia Hrnčířová
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Czech Republic
| | - Igor Šplíchal
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Doly 183, 549 22 Nový Hrádek, Czech Republic
| | - Tomáš Hrnčíř
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Doly 183, 549 22 Nový Hrádek, Czech Republic
| |
Collapse
|
24
|
Application of the ApcMin/+ mouse model for studying inflammation-associated intestinal tumor. Biomed Pharmacother 2015; 71:216-21. [DOI: 10.1016/j.biopha.2015.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/15/2015] [Indexed: 12/16/2022] Open
|
25
|
Goldberg ND, Vadlamudi A, Parrish N. Treatment of refractory Crohn's disease and pyoderma gangrenosum with a combination regimen of rifaximin, gentamicin and metronidazole. Case Rep Gastroenterol 2015; 9:25-8. [PMID: 25802494 PMCID: PMC4342856 DOI: 10.1159/000369965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The etiology of Crohn's disease (CD) remains controversial. It is hypothesized that CD is the result of an abnormal immune response to the gut flora in genetically susceptible hosts. However, an infectious etiology has not been completely ruled out. Antibiotics have been utilized with some success to modify the course of the disease. Here, we report a patient with CD and pyoderma gangrenosum refractory to standard therapy, including biologics, who achieved remission with a combination of rifaximin, gentamicin and metronidazole.
Collapse
Affiliation(s)
- Neil D Goldberg
- St. Joseph Medical Center, The University of Maryland, Towson, Md., USA
| | | | - Nicole Parrish
- The Johns Hopkins Medical Institutions, Baltimore, Md., USA
| |
Collapse
|
26
|
Cohen IR. Activation of benign autoimmunity as both tumor and autoimmune disease immunotherapy: A comprehensive review. J Autoimmun 2014; 54:112-7. [DOI: 10.1016/j.jaut.2014.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 12/25/2022]
|
27
|
Abstract
Inflammatory bowel disease includes ulcerative colitis and Crohn's disease, which are both inflammatory disorders of the gastrointestinal tract. Both types of inflammatory bowel disease have a complex etiology, resulting from a genetically determined susceptibility interacting with environmental factors, including the diet and gut microbiota. Genome Wide Association Studies have implicated more than 160 single-nucleotide polymorphisms in disease susceptibility. Consideration of the different pathways suggested to be involved implies that specific dietary interventions are likely to be appropriate, dependent upon the nature of the genes involved. Epigenetics and the gut microbiota are also responsive to dietary interventions. Nutrigenetics may lead to personalized nutrition for disease prevention and treatment, while nutrigenomics may help to understand the nature of the disease and individual response to nutrients.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand and Nutrigenomics New Zealand, Auckland, New Zealand.
| |
Collapse
|
28
|
Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, Galuppi M, Lamont RF, Chaemsaithong P, Miranda J, Chaiworapongsa T, Ravel J. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. MICROBIOME 2014; 2:4. [PMID: 24484853 PMCID: PMC3916806 DOI: 10.1186/2049-2618-2-4] [Citation(s) in RCA: 484] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/18/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND This study was undertaken to characterize the vaginal microbiota throughout normal human pregnancy using sequence-based techniques. We compared the vaginal microbial composition of non-pregnant patients with a group of pregnant women who delivered at term. RESULTS A retrospective case-control longitudinal study was designed and included non-pregnant women (n = 32) and pregnant women who delivered at term (38 to 42 weeks) without complications (n = 22). Serial samples of vaginal fluid were collected from both non-pregnant and pregnant patients. A 16S rRNA gene sequence-based survey was conducted using pyrosequencing to characterize the structure and stability of the vaginal microbiota. Linear mixed effects models and generalized estimating equations were used to identify the phylotypes whose relative abundance was different between the two study groups. The vaginal microbiota of normal pregnant women was different from that of non-pregnant women (higher abundance of Lactobacillus vaginalis, L. crispatus, L. gasseri and L. jensenii and lower abundance of 22 other phylotypes in pregnant women). Bacterial community state type (CST) IV-B or CST IV-A characterized by high relative abundance of species of genus Atopobium as well as the presence of Prevotella, Sneathia, Gardnerella, Ruminococcaceae, Parvimonas, Mobiluncus and other taxa previously shown to be associated with bacterial vaginosis were less frequent in normal pregnancy. The stability of the vaginal microbiota of pregnant women was higher than that of non-pregnant women; however, during normal pregnancy, bacterial communities shift almost exclusively from one CST dominated by Lactobacillus spp. to another CST dominated by Lactobacillus spp. CONCLUSION We report the first longitudinal study of the vaginal microbiota in normal pregnancy. Differences in the composition and stability of the microbial community between pregnant and non-pregnant women were observed. Lactobacillus spp. were the predominant members of the microbial community in normal pregnancy. These results can serve as the basis to study the relationship between the vaginal microbiome and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and, Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adi L Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and, Detroit, MI, USA
| | - Douglas W Fadrosh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lorraine Nikita
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and, Detroit, MI, USA
| | - Marisa Galuppi
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ronald F Lamont
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and, Detroit, MI, USA
- Department of Obstetrics and Gynaecology, University of Southern Denmark, Odense, Denmark
- Division of Surgery, University College, Northwick Park Institute for Medical Research Campus, London, UK
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and, Detroit, MI, USA
| | - Jezid Miranda
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens 2013; 2:636-52. [PMID: 25437337 PMCID: PMC4235702 DOI: 10.3390/pathogens2040636] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/18/2022] Open
Abstract
Oxalate-degrading bacteria comprise a functional group of microorganisms, commonly found in the gastrointestinal tract of mammals. Oxalate is a plant secondary compound (PSC) widely produced by all major taxa of plants and as a terminal metabolite by the mammalian liver. As a toxin, oxalate can have a significant impact on the health of mammals, including humans. Mammals do not have the enzymes required to metabolize oxalate and rely on their gut microbiota for this function. Thus, significant metabolic interactions between the mammalian host and a complex gut microbiota maintain the balance of oxalate in the body. Over a dozen species of gut bacteria are now known to degrade oxalate. This review focuses on the host-microbe and microbe-microbe interactions that regulate the degradation of oxalate by the gut microbiota. We discuss the pathways of oxalate throughout the body and the mammalian gut as a series of differentiated ecosystems that facilitate oxalate degradation. We also explore the mechanisms and functions of microbial oxalate degradation along with the implications for the ecological and evolutionary interactions within the microbiota and for mammalian hosts. Throughout, we consider questions that remain, as well as recent technological advances that can be employed to answer them.
Collapse
|
30
|
Harris KL, Banks LD, Mantey JA, Huderson AC, Ramesh A. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis. Expert Opin Drug Metab Toxicol 2013; 9:1465-80. [PMID: 23898780 PMCID: PMC4081012 DOI: 10.1517/17425255.2013.823157] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Bioaccessibility is a growing area of research in the field of risk assessment. As polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, they are the toxicants of focus to establish cancer risks in humans. Orally ingested PAHs also cause toxicity and even affect the pharmacokinetic behavior of some therapeutic agents. Toward this end, bioaccessibility is being used as a tool to assess the risk of PAHs via dietary exposures. AREAS COVERED This review covers some in vitro bioaccessibility models for PAHs that have been used for the past one-and-a-half decade. This review also considers the factors that influence bioaccessibility and debates the merits and limitations of using a bioaccessibility concept for estimating risk from ingestion of PAH-contaminated soil and food. Finally, the authors discuss the implications of bioaccessibility for PAH-induced toxicity and cancers in the context of risk assessment. EXPERT OPINION So far, much of the focus on PAH bioaccessibility is centered on soil as a preferential matrix. However, ingestion of PAHs through diet far exceeds the amount accidentally ingested through soil. Therefore, bioaccessibility could be exploited as a tool to assess the relative risk of various dietary ingredients tainted with PAHs. While bioaccessibility is a promising approach for assessing PAH risk arising from various types of contaminated soils, none of the models proposed appears to be valid. Bioaccessibility values, derived from in vitro studies, still require validation from in vivo studies.
Collapse
Affiliation(s)
- Kelly L Harris
- Meharry Medical College, Department of Biochemistry & Cancer Biology , 1005 D.B. Todd Blvd, Nashville, TN, 37208 , USA +1 615 327 6486 ; +1 615 327 6442 ;
| | | | | | | | | |
Collapse
|
31
|
Cui H, Zhang X. Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genomics 2013; 14:641. [PMID: 24053649 PMCID: PMC3849074 DOI: 10.1186/1471-2164-14-641] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Comparison and classification of metagenome samples is one of the major tasks in the study of microbial communities of natural environments or niches on human bodies. Bioinformatics methods play important roles on this task, including 16S rRNA gene analysis and some alignment-based or alignment-free methods on metagenomic data. Alignment-free methods have the advantage of not depending on known genome annotations and therefore have high potential in studying complicated microbiomes. However, the existing alignment-free methods are all based on unsupervised learning strategy (e.g., PCA or hierarchical clustering). These types of methods are powerful in revealing major similarities and grouping relations between microbiome samples, but cannot be applied for discriminating predefined classes of interest which might not be the dominating assortment in the data. Supervised classification is needed in the latter scenario, with the goal of classifying samples into predefined classes and finding the features that can discriminate the classes. The effectiveness of supervised classification with alignment-based features on metagenomic data have been shown in some recent studies. The application of alignment-free supervised classification methods on metagenome data has not been well explored yet. RESULTS We developed a method for this task using k-tuple frequencies as features counted directly from metagenome short reads and the R-SVM (Recursive SVM) for feature selection and classification. We tested our method on a simulation dataset, a real dataset composed of several known genomes, and a real metagenome NGS short reads dataset. Experiments on simulated data showed that the method can classify the classes almost perfectly and can recover major sequence signatures that distinguish the two classes. On the real human gut metagenome data, the method can discriminate samples of inflammatory bowel disease (IBD) patients from control samples with high accuracy, which cannot be separated when comparing the samples with unsupervised clustering approaches. CONCLUSIONS The proposed alignment-free supervised classification method can perform well in discriminating of metagenomic samples of predefined classes and in selecting characteristic sequence features for the discrimination. This study shows as an example on the feasibility of using metagenome sequence features of microbiomes on human bodies to study specific human health conditions using supervised machine learning methods.
Collapse
Affiliation(s)
- Hongfei Cui
- Department of Automation, Bioinformatics Division/Center for Synthetic & Systems Biology, TNLIST, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- Department of Automation, Bioinformatics Division/Center for Synthetic & Systems Biology, TNLIST, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Schildkraut V, Alex G, Cameron DJS, Hardikar W, Lipschitz B, Oliver MR, Simpson DM, Catto-Smith AG. Sixty-year study of incidence of childhood ulcerative colitis finds eleven-fold increase beginning in 1990s. Inflamm Bowel Dis 2013; 19:1-6. [PMID: 22532319 DOI: 10.1002/ibd.22997] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND We sought to define the point at which a recently noted marked increase in the incidence of ulcerative colitis (UC) had occurred in children in Victoria, Australia. METHODS A 60-year retrospective review (1950-2009) of children age 16 years or less diagnosed with UC in the state's major pediatric centers was performed. RESULTS In all, 342 children were diagnosed with UC (male to female ratio of 1.25:1.0, median age 10.9 years, interquartile range [IQR] 7.0, 13.2). The overall median annual incidence of UC was 0.36/10(5) children ≤ 16 years of age (IQR 0.18, 0.66). The number of reported cases increased by 11-fold during the study period (P < 0.001). This marked increase appeared to occur from the early 1990s and has yet to plateau. Children diagnosed during the last two decades were older at diagnosis (median 10 years vs. 11.6, P < 0.0001), and had higher weight- and height-for-age z scores than those diagnosed during the first 40 years (mean weight-for-age [standard deviation] 1950-1989: -0.80 [1.56] vs. 1990-2009: -0.11 [1.17], P < 0.001; mean height-for-age 1950-1989: -0.50 [1.15] vs. 1990-2009: -0.13 [1.12], P < 0.05). More recently diagnosed children also had more extensive disease (1950-1989: 52% vs. 1990-2009: 71%, P < 0.01). CONCLUSIONS The incidence of UC has increased markedly in Victorian children since 1990. Although some of this change may be attributable to earlier diagnosis, it is unlikely that this can provide a complete explanation for this still-increasing condition.
Collapse
Affiliation(s)
- Vered Schildkraut
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Malvern, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nickerson KP, McDonald C. Crohn's disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS One 2012; 7:e52132. [PMID: 23251695 PMCID: PMC3520894 DOI: 10.1371/journal.pone.0052132] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022] Open
Abstract
Crohn's disease (CD) is associated with intestinal dysbiosis evidenced by an altered microbiome forming thick biofilms on the epithelium. Additionally, adherent-invasive E. coli (AIEC) strains are frequently isolated from ileal lesions of CD patients indicating a potential role for these strains in disease pathogenesis. The composition and characteristics of the host microbiome are influenced by environmental factors, particularly diet. Polysaccharides added to food as emulsifiers, stabilizers or bulking agents have been linked to bacteria-associated intestinal disorders. The escalating consumption of polysaccharides in Western diets parallels an increased incidence of CD during the latter 20th century. In this study, the effect of a polysaccharide panel on adhesiveness of the CD-associated AIEC strain LF82 was analyzed to determine if these food additives promote disease-associated bacterial phenotypes. Maltodextrin (MDX), a polysaccharide derived from starch hydrolysis, markedly enhanced LF82 specific biofilm formation. Biofilm formation of multiple other E. coli strains was also promoted by MDX. MDX-induced E. coli biofilm formation was independent of polysaccharide chain length indicating a requirement for MDX metabolism. MDX exposure induced type I pili expression, which was required for MDX-enhanced biofilm formation. MDX also increased bacterial adhesion to human intestinal epithelial cell monolayers in a mechanism dependent on type 1 pili and independent of the cellular receptor CEACAM6, suggesting a novel mechanism of epithelial cell adhesion. Analysis of mucosa-associated bacteria from individuals with and without CD showed increased prevalence of malX, a gene essential for MDX metabolism, uniquely in the ileum of CD patients. These findings demonstrate that the ubiquitous dietary component MDX enhances E. coli adhesion and suggests a mechanism by which Western diets rich in specific polysaccharides may promote dysbiosis of gut microbes and contribute to disease susceptibility.
Collapse
Affiliation(s)
- Kourtney P. Nickerson
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
34
|
Srinivasan U, Ponnaluri S, Villareal L, Gillespie B, Wen A, Miles A, Bucholz B, Marrs CF, Iyer RK, Misra D, Foxman B. Gram stains: a resource for retrospective analysis of bacterial pathogens in clinical studies. PLoS One 2012; 7:e42898. [PMID: 23071487 PMCID: PMC3469605 DOI: 10.1371/journal.pone.0042898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/12/2012] [Indexed: 01/22/2023] Open
Abstract
We demonstrate the feasibility of using qPCR on DNA extracted from vaginal Gram stain slides to estimate the presence and relative abundance of specific bacterial pathogens. We first tested Gram stained slides spiked with a mix of 10(8) cfu/ml of Escherichia coli and 10(5) cfu/ml of Lactobacillus acidophilus. Primers were designed for amplification of total and species-specific bacterial DNA based on 16S ribosomal gene regions. Sample DNA was pre-amplified with nearly full length 16S rDNA ribosomal gene fragment, followed by quantitative PCR with genera and species-specific 16S rDNA primers. Pre-amplification PCR increased the bacterial amounts; relative proportions of Escherichia coli and Lactobacillus recovered from spiked slides remained unchanged. We applied this method to forty two archived Gram stained slides available from a clinical trial of cerclage in pregnant women at high risk of preterm birth. We found a high correlation between Nugent scores based on bacterial morphology of Lactobacillus, Gardenerella and Mobiluncus and amounts of quantitative PCR estimated genus specific DNA (rrn copies) from Gram stained slides. Testing of a convenience sample of eight paired vaginal swabs and Gram stains freshly collected from healthy women found similar qPCR generated estimates of Lactobacillus proportions from Gram stained slides and vaginal swabs. Archived Gram stained slides collected from large scale epidemiologic and clinical studies represent a valuable, untapped resource for research on the composition of bacterial communities that colonize human mucosal surfaces.
Collapse
Affiliation(s)
- Usha Srinivasan
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chiodini RJ, Chamberlin WM, Sarosiek J, McCallum RW. Crohn's disease and the mycobacterioses: a quarter century later. Causation or simple association? Crit Rev Microbiol 2012; 38:52-93. [PMID: 22242906 DOI: 10.3109/1040841x.2011.638273] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been more than 25 years since Mycobacterium paratuberculosis was first proposed as an etiologic agent in Crohn's disease based on the isolation of this organism from several patients. Since that time, a great deal of information has been accumulated that clearly establishes an association between M. paratuberculosis and Crohn's disease. However, data are conflicting and difficult to interpret and the field has become divided into committed advocates and confirmed skeptics. This review is an attempt to provide a thorough and objective summary of current knowledge from both basic and clinical research from the views and interpretations of both the antagonists and proponents. The reader is left to draw his or her own conclusions related to the validity of the issues and claims made by the opposing views and data interpretations. Whether M. paratuberculosis is a causative agent in some cases or simply represents an incidental association remains a controversial topic, but current evidence suggests that the notion should not be so readily dismissed. Remaining questions that need to be addressed in defining the role of M. paratuberculosis in Crohn's disease and future implications are discussed.
Collapse
Affiliation(s)
- Rodrick J Chiodini
- Divisions of Infectious Diseases, Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, USA.
| | | | | | | |
Collapse
|
36
|
Plantinga TS, Joosten LAB, van der Meer JWM, Netea MG. Modulation of inflammation by autophagy: consequences for Crohn's disease. Curr Opin Pharmacol 2012; 12:497-502. [PMID: 22342166 DOI: 10.1016/j.coph.2012.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/30/2012] [Indexed: 12/13/2022]
Abstract
Autophagy, the cellular machinery for targeting intracellular components for lysosomal degradation, is critically involved in the host defence to pathogenic microorganisms. Recent studies have unveiled several aspects of the immune response that are regulated by autophagy, including antigen presentation and production of proinflammatory cytokines. Polymorphisms in autophagy genes result in dysregulation of these processes and affect gut homeostasis. Genetic variants in autophagy genes are associated with Crohn's disease (CD), a disease in which an overwhelming cytokine production induces inflammation on the one hand, while a defective antigen presentation is also found on the other hand. This review summarizes the recent advances in understanding the complex interaction between innate immunity pathways and autophagy, with a focus on the modulatory effects of autophagy on inflammation.
Collapse
Affiliation(s)
- Theo S Plantinga
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
37
|
Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, Cucchiara S, Stronati L. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment Pharmacol Ther 2012; 35:327-34. [PMID: 22150569 DOI: 10.1111/j.1365-2036.2011.04939.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Intestinal microbiota manipulation, one of the pathogenetic components of inflammatory bowel disease (IBD), has become an attractive therapy for ulcerative colitis (UC). AIM To assess in children with active distal UC the effectiveness of Lactobacillus (L) reuteri ATCC 55730 enema on inflammation and cytokine expression of rectal mucosa. METHODS A total of 40 patients (median age: 7.2 years range 6-18) with mild to moderate UC were enrolled in a prospective, randomised, placebo-controlled study. They received an enema solution containing 10(10) CFU of L. reuteri ATCC 55730 or placebo for 8 weeks, in addition to oral mesalazine. Clinical endoscopic and histological scores as well as rectal mucosal expression levels of IL-10, IL-1β, TNFα and IL-8 were evaluated at the beginning and at the end of the trial. RESULTS Thirty-one patients accomplished the trial (17 males, median age 13 year, range 7-18). Mayo score (including clinical and endoscopic features) decreased significantly in the L. reuteri group (3.2 ± 1.3 vs. 8.6 ± 0.8, P < 0.01) compared with placebo (7.1 ± 1.1 vs. 8.7 ± 0.7, NS); furthermore, histological score significantly decrease only in the L. reuteri group (0.6 ± 0.5 vs. 4.5 ± 0.6, P < 0.01) (placebo: 2.9 ± 0.8 vs. 4.6 ± 0.6, NS). At the post-trial evaluation of cytokine mucosal expression levels, IL-10 significantly increased (P < 0.01) whereas IL-1β, TNFα and IL-8 significantly decreased (P < 0.01) only in the L. reuteri group. CONCLUSIONS In children with active distal ulcerative colitis, rectal infusion of L. reuteri is effective in improving mucosal inflammation and changing mucosal expression levels of some cytokines involved in the mechanisms of inflammatory bowel disease.
Collapse
Affiliation(s)
- S Oliva
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Galland L. Inflammatory Bowel Disease. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Abstract
The enteric nervous system (ENS) is composed of neurons and glia that modulate many aspects of intestinal function. The ability to use both forward and reverse genetic approaches and to visualize development in living embryos and larvae has made zebrafish an attractive model in which to study mechanisms underlying ENS development. In this chapter, we review the recent work describing the development and organization of the zebrafish ENS and how this relates to intestinal motility. We also discuss the cellular, molecular, and genetic mechanisms that have been revealed by these studies and how they are providing new insights into human ENS diseases.
Collapse
Affiliation(s)
- Iain Shepherd
- Department of Biology, Emory University Rollins Research Building, Atlanta, Georgia, USA
| | | |
Collapse
|
40
|
Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011; 9:279-90. [PMID: 21407244 DOI: 10.1038/nrmicro2540] [Citation(s) in RCA: 1015] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To what extent do host genetics control the composition of the gut microbiome? Studies comparing the gut microbiota in human twins and across inbred mouse lines have yielded inconsistent answers to this question. However, candidate gene approaches, in which one gene is deleted or added to a model host organism, show that a single host gene can have a tremendous effect on the diversity and population structure of the gut microbiota. Now, quantitative genetics is emerging as a highly promising approach that can be used to better understand the overall architecture of host genetic influence on the microbiota, and to discover additional host genes controlling microbial diversity in the gut. In this Review, we describe how host genetics and the environment shape the microbiota, and how these three factors may interact in the context of chronic disease.
Collapse
|
41
|
Ferguson LR, Hu R, Lam WJ, Munday K, Triggs CM. Tailoring foods to match people's genes in New Zealand: opportunities for collaboration. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 3:305-11. [PMID: 21474961 DOI: 10.1159/000324369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Carter JD. Bacterial agents in spondyloarthritis: a destiny from diversity? Best Pract Res Clin Rheumatol 2011; 24:701-14. [PMID: 21035090 DOI: 10.1016/j.berh.2010.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The spondyloarthritides (SpAs) are a group of diseases that share clinical, radiographic and laboratory features; these arthritides also display a tendency for family aggregation. Given the intimate relationship that these types of arthritis share, it suggests that the SpAs might share a common aetiology. Of all the SpAs, the role of bacteria is most clearly defined in reactive arthritis. Tremendous recent insights into the pathophysiology of reactive arthritis have been made, demonstrating that the causative bacteria play a much more complex role than previously thought. The bacteria that are proven to cause reactive arthritis, one of the five types of SpA, will be reviewed and their role in the pathophysiology of reactive arthritis will be examined. The speculative data suggesting links between various other bacteria and the other types of SpAs will be critically analysed. Although these data are not definitive, when viewed using the paradigm that the SpAs might actually represent a common end point from several diverse starting points, they are provocative, suggesting that bacteria might, indeed, be aetiological for the entire group of SpAs.
Collapse
Affiliation(s)
- John D Carter
- Department of Internal Medicine, University of South Florida, Division of Rheumatology, Tampa, FL 33612, USA.
| |
Collapse
|
43
|
Klapproth JMA, Sasaki M. Bacterial induction of proinflammatory cytokines in inflammatory bowel disease. Inflamm Bowel Dis 2010; 16:2173-9. [PMID: 20848533 DOI: 10.1002/ibd.21332] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become increasingly clear that inflammatory bowel disease (IBD) develops on the background of genetic defects in the host, conveying an increased susceptibility to an environmental antigen or antigens. The environmental factor implicated in the pathophysiology of gut inflammation, which is undergoing increased scrutiny, is the intestinal flora. The intestinal flora as a whole and specific bacteria and their products have been found to trigger cytokine expression in various cell types. Consistently, multiple bacterial strains were found to induce tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) in macrophage and epithelial cell systems, respectively, in particular in Crohn's disease. Interestingly, various cell types from patients with IBD display an increased susceptibility to specific bacterial products, including flagellin, pili, and lipopolysaccharides. It remains to be determined whether additional effector proteins regulate cytokine expression and the aberrant mucosal immune response in IBD.
Collapse
|
44
|
Ferguson LR. Dietary influences on mutagenesis--where is this field going? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:909-918. [PMID: 20740647 DOI: 10.1002/em.20594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Early studies on dietary mutagenesis were mostly observational, with large numbers of potential dietary mutagens being identified from every conceivable dietary source. These included known dietary carcinogens such as aflatoxin B1 and benzo[a]pyrene, and hitherto unrecognized dietary mutagens, such as the pyrolysis products formed during the heating of proteinaceous materials (heterocyclic amines). The 1993 evaluation of 2-amino-3-methyl-3H-imidazo(4,5-j)quinoline as a probable human carcinogen by the International Agency for Research on Cancer was a landmark, as this was done in the absence of specific human carcinogenicity data, and strongly influenced by mutagenicity test data. In the 21st century, the field has moved from the identification of more and more mutagens, to molecular epidemiologic approaches that not only show a mutagenic effect but also seek to link it to a dietary (or environmental) cause. Effects of diet in stimulating chronic inflammation may lead to reactive species and thereby mutation as a secondary consequence, while dietary deficiencies and nutrient imbalances may be strong sources of mutagenesis. Recognition of the roles of nutrients in cell signaling processes and control of microRNAs suggest major influences on gene expression, in the absence of permanent DNA changes. Genome-wide association studies have highlighted new pathways such as JAK/STAT signaling that profoundly influence genomic instability and responses to dietary mutagens. With improved methodologies for DNA sequencing and epigenetic changes, it is time to apply more sophisticated approaches to recognizing and proving the role of diet as a primary modulator of mutagenesis in humans.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition, Faculty of Medical & Health Science, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
45
|
Sherman MP. New concepts of microbial translocation in the neonatal intestine: mechanisms and prevention. Clin Perinatol 2010; 37:565-79. [PMID: 20813271 PMCID: PMC2933426 DOI: 10.1016/j.clp.2010.05.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial translocation from the gastrointestinal tract is an important pathway initiating late-onset sepsis and necrotizing enterocolitis in very low-birth-weight infants. The emerging intestinal microbiota, nascent intestinal epithelia, naive immunity, and suboptimal nutrition (lack of breast milk) have roles in facilitating bacterial translocation. Feeding lactoferrin, probiotics, or prebiotics has presented exciting possibilities to prevent bacterial translocation in preterm infants, and clinical trials will identify the most safe and efficacious prevention and treatment strategies.
Collapse
|
46
|
|
47
|
Suspected intestinal tuberculosis might be Crohn's disease. Case Rep Med 2010; 2010:695461. [PMID: 20490287 PMCID: PMC2873635 DOI: 10.1155/2010/695461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/23/2010] [Indexed: 12/03/2022] Open
Abstract
In this case report we provide evidence that supports a link between mycobacteria and Crohn's disease. The patient in question, KG, presented on three separate occasions over a ten years period with features suggestive of intestinal tuberculosis. He was treated successfully on each occasion with antimycobacterial drugs. When he presented a fourth time with the same symptoms, he was diagnosed with Crohn's disease based on findings from endoscopy, histology and CT. Subsequently he was treated with a course of steroids and made a full recovery. This case adds weight to the theory that mycobateria has an aetiological role in Crohn's disease.
Collapse
|
48
|
Ferguson LR. Chronic inflammation and mutagenesis. Mutat Res 2010; 690:3-11. [PMID: 20223251 DOI: 10.1016/j.mrfmmm.2010.03.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/20/2010] [Accepted: 03/02/2010] [Indexed: 02/08/2023]
Abstract
Inflammation is a necessary part of the immune response. However, when inflammation persists, the resultant state of chronic inflammation may have a number of secondary consequences associated with increased risk of chronic disease. Among these is an increased rate of mutation. There is evidence to suggest that the accumulation of reactive oxygen and nitrogen species may be a causal factor in chronic inflammation. These reactive species are also produced through the oxidative burst associated with the inflammatory process, and may interact with various cellular components including proteins, lipids and, most important for mutagenesis, nucleic acids. DNA strand breaks are commonly produced, leading to chromosomal mutation. Oxidized bases, abasic sites, DNA-DNA intrastrand adducts, and DNA-protein cross-links also occur. Not only do the nucleic acid products act directly as pro-mutagenic lesions, lipid peroxidation products may also lead to secondary DNA damage, including pro-mutagenic exocyclic DNA adducts. While frameshift and chromosomal mutations have been associated with chronic inflammation, much of the evidence reveals base pair substitution mutations associated with polymerase stalling near the lesions, and base pair mis-incorporation. There are also indirect effects of ROS/RNS through inhibition of DNA repair enzymes and/or effects on metabolic activation of known carcinogens. Certain disease states, including the Inflammatory bowel diseases, Crohn's disease and ulcerative colitis are associated with enhanced levels of chronic inflammation, and show evidence of enhanced levels of genetic damage in the colonic mucosa. Mutations may provide at least part of the cause of enhanced susceptibility to chronic diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition and ACSRC, FM&HS, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|