1
|
Kumar S, Hazlett K, Bai G. Mucosal immunity elicited by a human-Fcγ receptor-I targeted intranasal vaccine platform enhances resistance against nasopharyngeal colonization of Streptococcus pneumoniae and induces broadly protective immunity against respiratory pathogens. Vaccine 2025; 48:126729. [PMID: 39823848 DOI: 10.1016/j.vaccine.2025.126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
The development of safe and effective mucosal vaccines are hampered by safety concerns associated with adjuvants or live attenuated microbes. We previously demonstrated that targeting antigens to the human-Fc-gamma-receptor-I (hFcγRI) eliminates the need for adjuvants, thereby mitigating safety concerns associated with the mucosal delivery of adjuvant formulated vaccines. Here we evaluated the role of the route of immunization in the mucosal immunity elicited by the hFcγRI-targeted vaccine approach. To enable Ag targeting, PspA from Streptococcus pneumoniae (Sp) was genetically fused with the hFcγRI-targeting antibody (α-hFcγRI) to generate PspA-FP. Intranasal (IN) immunization with the PspA-FP induced significantly higher IgA, IgG, and memory T cell response in the lung mucosa compared to that of the intramuscular (IM) route, while both routes exhibited similar increase in the systemic IgG response. The IN immunization elicited better resistance against nasal colonization (NC) of Sp compared to the IM immunization. Additionally, the resistance to NC with the IN administered PspA-FP was higher than the PspA-Alum formulation administered by the IM route. While the protection form lethal pulmonary Sp infection correlated with the systemic Ab response, the resistance from NC (of Sp) correlated with the mucosal immune response. Similar to the pneumococcal pneumoniae model, the hFcγRI-targeted vaccine (based on HA as Ag) was equally protective against pulmonary Influenza virus infection via both routes. However, the IN route promoted better protection compared to the IM route against a lethal pulmonary infection with Francisella tularensis (Ft). The enhanced protection against Ft correlated with the superior mucosal immune response elicited by the IN route compared to the IM route. These observations showed a differential requirement for mucosal delivery for protection depending on the type of pathogen. Moreover, this study revealed that the hFcγRI-targeted vaccine platform is broadly-effective as an adjuvant-free mucosal vaccine platform against respiratory pathogens.
Collapse
Affiliation(s)
- Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Karsten Hazlett
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States
| |
Collapse
|
2
|
Karaba AH, Hage C, Sengsouk I, Balasubramanian P, Segev DL, Tobian AAAR, Werbel WA. Antibody Response to Respiratory Syncytial Virus Vaccination in Immunocompromised Persons. JAMA 2024:2828677. [PMID: 39786402 DOI: 10.1001/jama.2024.25395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This prospective study investigates antibody response following respiratory syncytial virus vaccination in immunocompromised individuals.
Collapse
Affiliation(s)
- Andrew H Karaba
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Camille Hage
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabella Sengsouk
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Dorry L Segev
- Department of Surgery, New York University Grossman School of Medicine, New York
- Department of Population Health, New York University Grossman School of Medicine, New York
| | - Aaron A A R Tobian
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William A Werbel
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Clarke M, Mathew SM, Giles LC, Barr IG, Richmond PC, Marshall HS. The Impact of Obesity on Influenza Vaccine Immunogenicity and Antibody Transfer to the Infant During Pregnancy. Vaccines (Basel) 2024; 12:1307. [PMID: 39771969 PMCID: PMC11680122 DOI: 10.3390/vaccines12121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Influenza vaccination is recommended for pregnant women, offering the dual benefit of protecting pregnant women and their newborn infants against influenza. This study aimed to investigate the impact of body mass index (BMI) on influenza vaccine responses in pregnant women and their newborns. METHODS Participants included pregnant women attending the Women's and Children's Hospital in South Australia between 2018 and 2021. Maternal blood samples were collected prior to and at 1 and 6 months post-influenza vaccination to measure antibody responses by hemagglutination inhibition (HI) assay. Cord blood samples were also collected. The percentages of participants achieving HI titre ≥40 were compared between obese and non-obese groups. RESULTS A total of 73 women were enrolled and received quadrivalent influenza vaccination at a mean age of 32 years (range 21-44 y) and median gestation of 24 weeks (range 11-37 weeks). BMI at vaccination was ≥30 kg/m2 for 21/73 women (29%). Most pregnant women demonstrated antibody titres ≥ 40 to all four influenza vaccine strains at 1 month post-vaccination regardless of BMI category (BMI ≥ 30 kg/m2: 19/20; 95% vs. BMI < 30 kg/m2: 47/49; 96%). At 6 months post-vaccination, 12/17 (71%) obese women compared to 36/43 (84%) non-obese women (p = 0.25) maintained HI titres ≥ 40. Cord blood serology showed HI titres ≥ 40 for 11/17 (65%) infants born to mothers with BMI ≥ 30 compared to 30/35 (86%) infants delivered by mothers with BMI < 30 kg/m2. CONCLUSIONS A high BMI did not impair influenza vaccine antibody responses in pregnant women at 1 month post-vaccination. However, at 6 months post-vaccination, and in the cord blood samples, the percentages maintaining HI titre ≥ 40 were lower for obese women than for non-obese pregnant women.
Collapse
Affiliation(s)
- Michelle Clarke
- Women’s and Children’s Health Network, North Adelaide, SA 5006, Australia; (M.C.); (S.M.M.)
- The Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Suja M. Mathew
- Women’s and Children’s Health Network, North Adelaide, SA 5006, Australia; (M.C.); (S.M.M.)
- The Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lynne C. Giles
- School of Public Health, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute, Melbourne, VIC 3000, Australia;
| | - Peter C. Richmond
- Discipline of Pediatrics, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Kids Research Institute of Australia, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Helen S. Marshall
- Women’s and Children’s Health Network, North Adelaide, SA 5006, Australia; (M.C.); (S.M.M.)
- The Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
4
|
Brigleb PH, Sharp B, Roubidoux EK, Meliopoulos V, Tan S, Livingston B, Morris D, Ripperger T, Lazure L, Balaraman V, Thompson AC, Kleinhenz K, Dimitrov K, Thomas PG, Schultz-Cherry S. Immune History Modifies Disease Severity to HPAI H5N1 Clade 2.3.4.4b Viral Challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619695. [PMID: 39484458 PMCID: PMC11526876 DOI: 10.1101/2024.10.23.619695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The most recent outbreak of highly pathogenic avian H5 influenza (HPAI) virus in cattle is now widespread across the U.S. with spillover events happening to other mammals, including humans. Several human cases have been reported with clinical signs ranging from conjunctivitis to respiratory illness. However, most of those infected report mild to moderate symptoms, while previously reported HPAI H5Nx infections in humans have had mortality rates upwards of 50%. We recently reported that mice with pre-existing immunity to A/Puerto Rico/08/1934 H1N1 virus were protected from lethal challenge from highly pathogenic clade 2.3.4.4b H5N1 influenza virus. Here, we demonstrate that mice infected with the 2009 pandemic H1N1 virus strain A/California/04/2009 (Cal09) or vaccinated with a live-attenuated influenza vaccine (LAIV) were moderately-to-highly protected against a lethal A/bovine/Ohio/B24OSU-439/2024 H5N1 virus challenge. We also observed that ferrets with mixed pre-existing immunity-either from LAIV vaccination and/or from Cal09 infection-showed protection against a HPAI H5N1 clade 2.3.4.4b virus isolated from a cat. Notably, this protection occurred independently of any detectable hemagglutination inhibition titers (HAIs) against the H5N1 virus. To explore factors that may contribute to protection, we conducted detailed T cell epitope mapping using previously published sequences from H1N1 strains. This analysis revealed a high conservation of amino acid sequences within the internal proteins of our bovine HPAI H5N1 virus strain. These data highlight the necessity to explore additional factors that contribute to protection against HPAI H5N1 viruses, such as memory T cell responses, in addition to HA-inhibition or neutralizing antibodies.
Collapse
|
5
|
Valiveti CK, Rajput M, Thakur N, Momin T, Bhowmik M, Tummala H. A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine. Vaccines (Basel) 2024; 12:1121. [PMID: 39460287 PMCID: PMC11511251 DOI: 10.3390/vaccines12101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza virus enters the host body through the mucosal surface of the respiratory tract. An efficient immune response at the mucosal site can interfere with virus entry and prevent infection. However, formulating oral vaccines and eliciting an effective mucosal immune response including at respiratory mucosa presents numerous challenges including the potential degradation of antigens by acidic gastric fluids and the risk of antigen dilution and dispersion over a large surface area of the gut, resulting in minimal antigen uptake by the immune cells. Additionally, oral mucosal vaccines have to overcome immune tolerance in the gut. To address the above challenges, in the current study, we evaluated inulin acetate (InAc) nanoparticles (NPs) as a vaccine adjuvant and antigen delivery system for oral influenza vaccines. InAc was developed as the first polysaccharide polymer-based TLR4 agonist; when tailored as a nanoparticulate vaccine delivery system, it enhanced antigen delivery to dendritic cells and induced a strong cellular and humoral immune response. This study compared the efficacy of InAc-NPs as a delivery system for oral vaccines with Poly (lactic-co-glycolic acid) (PLGA) NPs, utilizing influenza A nucleoprotein (Inf-A) as an antigen. InAc-NPs effectively protected the encapsulated antigen in both simulated gastric (pH 1.1) and intestinal fluids (pH 6.8). Moreover, InAc-NPs facilitated enhanced antigen delivery to macrophages, compared to PLGA-NPs. Oral vaccination studies in Balb/c mice revealed that InAc-Inf-A NPs significantly boosted the levels of Influenza virus-specific IgG and IgA in serum, as well as total and virus-specific IgA in the intestines and lungs. Furthermore, mice vaccinated with InAc-Inf-A-NPs exhibited notably higher hemagglutination inhibition (HI) titers at mucosal sites compared to those receiving the antigen alone. Overall, our study underscores the efficacy of InAc-NPs in safeguarding vaccine antigens post-oral administration, enhancing antigen delivery to antigen-presenting cells, and eliciting higher virus-neutralizing antibodies at mucosal sites following vaccination.
Collapse
Affiliation(s)
- Chaitanya K. Valiveti
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| | - Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Neelu Thakur
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Malabika Bhowmik
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| |
Collapse
|
6
|
Yang S, Aggarwal K, Jurczyszak J, Brown N, Sridhar S. Nanomedicine Therapies for Pediatric Diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1996. [PMID: 39420230 PMCID: PMC11493394 DOI: 10.1002/wnan.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
In 2020, the top 10 causes of death among children and adolescents between the ages of 1 and 19 years old included cancer, congenital anomalies, heart disease, and chronic respiratory disease; all these conditions are potentially treatable with medical intervention. However, children exhibit specific physiological and developmental characteristics that can significantly impact drug pharmacokinetics, pharmacodynamics, and safety profile. These factors illustrate the importance of a heightened focus on pediatric drug development. Traditional drugs lack proper circulation, permeability, targeting, accumulation, and release, and they often require dose adjustments or modifications, which can result in suboptimal therapeutic outcomes and increased risks of adverse effects in pediatric patients. Nanomedicines have emerged as efficient drug delivery systems because of their unique properties, which can improve the solubility and stability of drugs by encapsulating them in different forms of nanoparticles. This review discusses the challenges of pediatric therapy, and the current state of nanomedicines for pediatric diseases in terms of Food and Drug Administration-approved nanomedicines, the types of diseases treated or diagnosed, and preclinical studies that have the potential to be translated to the clinic. In summary, nanomedicine holds significant potential for addressing the unique and pressing challenges associated with diagnosing and treating pediatric diseases.
Collapse
Affiliation(s)
- Shicheng Yang
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Kushi Aggarwal
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Jillian Jurczyszak
- Cancer Nanomedicine Co-Ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, Massachusetts, USA
| | - Needa Brown
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Srinivas Sridhar
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Cowling BJ, Okoli GN. Influenza Vaccine Effectiveness and Progress Towards a Universal Influenza Vaccine. Drugs 2024; 84:1013-1023. [PMID: 39167316 PMCID: PMC11438668 DOI: 10.1007/s40265-024-02083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
At various times in recent decades, surges have occurred in optimism about the potential for universal influenza vaccines that provide strong, broad, and long-lasting protection and could substantially reduce the disease burden associated with seasonal influenza epidemics as well as the threat posed by pandemic influenza. Each year more than 500 million doses of seasonal influenza vaccine are administered around the world, with most doses being egg-grown inactivated subunit or split-virion vaccines. These vaccines tend to have moderate effectiveness against medically attended influenza for influenza A(H1N1) and influenza B, and somewhat lower for influenza A(H3N2) where differences between vaccine strains and circulating strains can occur more frequently due to antigenic drift and egg adaptations in the vaccine strains. Several enhanced influenza vaccine platforms have been developed including cell-grown antigen, the inclusion of adjuvants, or higher antigen doses, to improve immunogenicity and protection. During the COVID-19 pandemic there was unprecedented speed in development and roll-out of relatively new vaccine platforms, including mRNA vaccines and viral vector vaccines. These new platforms present opportunities to improve protection for influenza beyond existing products. Other approaches continue to be explored. Incremental improvements in influenza vaccine performance should be achievable in the short to medium term.
Collapse
Affiliation(s)
- Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, Hong Kong, China.
| | - George N Okoli
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
8
|
Honce R, Vazquez-Pagan A, Livingston B, Mandarano AH, Wilander BA, Cherry S, Hargest V, Sharp B, Brigleb PH, Kirkpatrick Roubidoux E, Van de Velde LA, Skinner RC, McGargill MA, Thomas PG, Schultz-Cherry S. Diet switch pre-vaccination improves immune response and metabolic status in formerly obese mice. Nat Microbiol 2024; 9:1593-1606. [PMID: 38637722 DOI: 10.1038/s41564-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Metabolic disease is epidemiologically linked to severe complications upon influenza virus infection, thus vaccination is a priority in this high-risk population. Yet, vaccine responses are less effective in these same hosts. Here we examined how the timing of diet switching from a high-fat diet to a control diet affected influenza vaccine efficacy in diet-induced obese mice. Our results demonstrate that the systemic meta-inflammation generated by high-fat diet exposure limited T cell maturation to the memory compartment at the time of vaccination, impacting the recall of effector memory T cells upon viral challenge. This was not improved with a diet switch post-vaccination. However, the metabolic dysfunction of T cells was reversed if weight loss occurred 4 weeks before vaccination, restoring a functional recall response. This corresponded with changes in the systemic obesity-related biomarkers leptin and adiponectin, highlighting the systemic and specific effects of diet on influenza vaccine immunogenicity.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
- Vermont Lung Center, Division of Pulmonology and Critical Care, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Ana Vazquez-Pagan
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Weill Cornell Medicine, New York City, NY, USA
- Noguchi Medical Research Institute (NMRI), Accra, Ghana
| | - Brandi Livingston
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Benjamin A Wilander
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sean Cherry
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Virginia Hargest
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bridgett Sharp
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela H Brigleb
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Lee-Ann Van de Velde
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - R Chris Skinner
- Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, AR, USA
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT, USA
| | - Maureen A McGargill
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
9
|
Nham E, Noh JY, Park O, Choi WS, Song JY, Cheong HJ, Kim WJ. COVID-19 Vaccination Strategies in the Endemic Period: Lessons from Influenza. Vaccines (Basel) 2024; 12:514. [PMID: 38793765 PMCID: PMC11125835 DOI: 10.3390/vaccines12050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious zoonotic respiratory disease with many similarities to influenza. Effective vaccines are available for both; however, rapid viral evolution and waning immunity make them virtually impossible to eradicate with vaccines. Thus, the practical goal of vaccination is to reduce the incidence of serious illnesses and death. Three years after the introduction of COVID-19 vaccines, the optimal vaccination strategy in the endemic period remains elusive, and health authorities worldwide have begun to adopt various approaches. Herein, we propose a COVID-19 vaccination strategy based on the data available until early 2024 and discuss aspects that require further clarification for better decision making. Drawing from comparisons between COVID-19 and influenza vaccination strategies, our proposed COVID-19 vaccination strategy prioritizes high-risk groups, emphasizes seasonal administration aligned with influenza vaccination campaigns, and advocates the co-administration with influenza vaccines to increase coverage.
Collapse
Affiliation(s)
- Eliel Nham
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Ok Park
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Lou J, Liang W, Cao L, Hu I, Zhao S, Chen Z, Chan RWY, Cheung PPH, Zheng H, Liu C, Li Q, Chong MKC, Zhang Y, Yeoh EK, Chan PKS, Zee BCY, Mok CKP, Wang MH. Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations. Nat Commun 2024; 15:2546. [PMID: 38514647 PMCID: PMC10958014 DOI: 10.1038/s41467-024-46918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Influenza virus continuously evolves to escape human adaptive immunity and generates seasonal epidemics. Therefore, influenza vaccine strains need to be updated annually for the upcoming flu season to ensure vaccine effectiveness. We develop a computational approach, beth-1, to forecast virus evolution and select representative virus for influenza vaccine. The method involves modelling site-wise mutation fitness. Informed by virus genome and population sero-positivity, we calibrate transition time of mutations and project the fitness landscape to future time, based on which beth-1 selects the optimal vaccine strain. In season-to-season prediction in historical data for the influenza A pH1N1 and H3N2 viruses, beth-1 demonstrates superior genetic matching compared to existing approaches. In prospective validations, the model shows superior or non-inferior genetic matching and neutralization against circulating virus in mice immunization experiments compared to the current vaccine. The method offers a promising and ready-to-use tool to facilitate vaccine strain selection for the influenza virus through capturing heterogeneous evolutionary dynamics over genome space-time and linking molecular variants to population immune response.
Collapse
Affiliation(s)
- Jingzhi Lou
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Beth Bioinformatics Co. Ltd, Hong Kong SAR, China
| | - Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lirong Cao
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Inchi Hu
- Department of Statistics, George Mason University, Fairfax, VA, USA
| | - Shi Zhao
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zigui Chen
- Department of Microbiology, CUHK, Hong Kong SAR, China
| | - Renee Wan Yi Chan
- Department of Paediatrics, CUHK, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, CUHK, Hong Kong SAR, China
| | | | - Hong Zheng
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Caiqi Liu
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Qi Li
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Marc Ka Chun Chong
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Yexian Zhang
- Beth Bioinformatics Co. Ltd, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Eng-Kiong Yeoh
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Centre for Health Systems and Policy Research, CUHK, Hong Kong SAR, China
| | - Paul Kay-Sheung Chan
- Department of Microbiology, CUHK, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, CUHK, Hong Kong SAR, China
| | - Benny Chung Ying Zee
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Chris Ka Pun Mok
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, CUHK, Hong Kong SAR, China.
| | - Maggie Haitian Wang
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
11
|
Lanave G, Camero M, Coppola C, Marchi S, Cascone G, Salina F, Coltraro M, Odigie AE, Montomoli E, Chiapponi C, Cicirelli V, Martella V, Trombetta CM. Serological Evidence for Circulation of Influenza D Virus in the Ovine Population in Italy. Pathogens 2024; 13:162. [PMID: 38392900 PMCID: PMC10892703 DOI: 10.3390/pathogens13020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza D virus (IDV) is a novel orthomyxovirus initially isolated from pigs exhibiting influenza-like disease in the USA. Since then, IDV has been detected worldwide in several host species, including livestock animals, whilst specific antibodies have been identified in humans, raising concerns about interspecies transmission and zoonotic risks. Few data regarding the seroprevalence of IDV in small ruminants have been available to date. In this study, we assessed the prevalence of antibodies against IDV in ovine serum samples in Sicily, Southern Italy. Six hundred serum samples, collected from dairy sheep herds located in Sicily in 2022, were tested by haemagglutination inhibition (HI) and virus neutralization (VN) assays using reference strains, D/660 and D/OK, representative of two distinct IDV lineages circulating in Italy. Out of 600 tested samples, 168 (28.0%) tested positive to either IDV strain D/660 or D/OK or to both by HI whilst 378 (63.0%) tested positive to either IDV strain D/660 or D/OK or to both by VN. Overall, our findings demonstrate that IDV circulates in ovine dairy herds in Sicily. Since IDV seems to have a broad host range and it has zoonotic potential, it is important to collect epidemiological information on susceptible species.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Michele Camero
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Chiara Coppola
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.C.); (S.M.); (E.M.); (C.M.T.)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.C.); (S.M.); (E.M.); (C.M.T.)
| | - Giuseppe Cascone
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (F.S.); (M.C.)
| | - Felice Salina
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (F.S.); (M.C.)
| | - Miriana Coltraro
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (F.S.); (M.C.)
| | - Amienwanlen E. Odigie
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.C.); (S.M.); (E.M.); (C.M.T.)
- VisMederi S.r.l., 53035 Monteriggioni, Italy
| | - Chiara Chiapponi
- OIE Reference Laboratory for Swine Influenza, Sede Territoriale di Parma, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, 25124 Brescia, Italy;
| | - Vincenzo Cicirelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (M.C.); (A.E.O.); (V.C.); (V.M.)
| | - Claudia M. Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.C.); (S.M.); (E.M.); (C.M.T.)
| |
Collapse
|
12
|
Kong HJ, Choi Y, Kim EA, Chang J. Vaccine Strategy That Enhances the Protective Efficacy of Systemic Immunization by Establishing Lung-Resident Memory CD8 T Cells Against Influenza Infection. Immune Netw 2023; 23:e32. [PMID: 37670808 PMCID: PMC10475829 DOI: 10.4110/in.2023.23.e32] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Most influenza vaccines currently in use target the highly variable hemagglutinin protein to induce neutralizing antibodies and therefore require yearly reformulation. T cell-based universal influenza vaccines focus on eliciting broadly cross-reactive T-cell responses, especially the tissue-resident memory T cell (TRM) population in the respiratory tract, providing superior protection to circulating memory T cells. This study demonstrated that intramuscular (i.m.) administration of the adenovirus-based vaccine expressing influenza virus nucleoprotein (rAd/NP) elicited weak CD8 TRM responses in the lungs and airways, and yielded poor protection against lethal influenza virus challenge. However, a novel "prime-and-deploy" strategy that combines i.m. vaccination of rAd/NP with subsequent intranasal administration of an empty adenovector induced strong NP-specific CD8+ TRM cells and provided complete protection against influenza virus challenge. Overall, our results demonstrate that this "prime-and-deploy" vaccination strategy is potentially applicable to the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hyun-Jung Kong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Youngwon Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Ah Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
13
|
Williams KV, Li ZN, Zhai B, Alcorn JF, Nowalk MP, Levine MZ, Kim SS, Flannery B, Moehling Geffel K, Merranko AJ, Collins M, Susick M, Clarke KS, Zimmerman RK, Martin JM. A Randomized Controlled Trial to Compare Immunogenicity to Cell-Based Versus Live-Attenuated Influenza Vaccines in Children. J Pediatric Infect Dis Soc 2023; 12:342-352. [PMID: 37232430 PMCID: PMC10312301 DOI: 10.1093/jpids/piad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Few studies have focused on the immune response to more recent influenza vaccine formulations such as cell-cultured inactivated influenza vaccine (ccIIV4) or live-attenuated influenza vaccine (LAIV4) in older children and young adults, or differences in immunoglobulin response using newer antibody landscape technology. METHODS Participants ages 4-21 were randomized to receive ccIIV4 (n = 112) or LAIV4 (n = 118). A novel high-throughput multiplex influenza antibody detection assay was used to provide detailed IgG, IgA, and IgM antibody isotypes, along with hemagglutination inhibition levels (HAI), measured pre- and 28 days post-vaccination. RESULTS The HAI and immunoglobulin isotype response to ccIIV4 was greater than LAIV4, with significant increases in IgG but not IgA or IgM. The youngest participants had the highest LAIV4 response. Prior LAIV4 vaccination was associated with a higher response to current season ccIIV4. Cross-reactive A/Delaware/55/2019(H1N1)pdm09 antibodies were present pre-vaccination and increased in response to ccIIV4, but not LAIV4. Immunoglobulin assays strongly correlated with and confirmed the findings of HAI titers to measure immune response. CONCLUSIONS Age and prior season vaccination may play a role in the immune response in children and young adults to ccIIV4 and LAIV4. While immunoglobulin isotypes provide high-level antigen-specific information, HAI titers alone can provide a meaningful representation of day 28 post-vaccination response. CLINICAL TRIALS NO NCT03982069.
Collapse
Affiliation(s)
- Katherine V Williams
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhu-Nan Li
- National Center Immunizations and Respiratory Disease, Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bo Zhai
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F Alcorn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Patricia Nowalk
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Min Z Levine
- National Center Immunizations and Respiratory Disease, Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sara S Kim
- National Center Immunizations and Respiratory Disease, Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brendan Flannery
- National Center Immunizations and Respiratory Disease, Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Amanda Jaber Merranko
- Falk Pharmacy, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Mark Collins
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Susick
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karen S Clarke
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard K Zimmerman
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Judith M Martin
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Martin DE, Cadar AN, Panier H, Torrance BL, Kuchel GA, Bartley JM. The effect of metformin on influenza vaccine responses in nondiabetic older adults: a pilot trial. Immun Ageing 2023; 20:18. [PMID: 37131271 PMCID: PMC10152024 DOI: 10.1186/s12979-023-00343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Aging is associated with progressive declines in immune responses leading to increased risk of severe infection and diminished vaccination responses. Influenza (flu) is a leading killer of older adults despite availability of seasonal vaccines. Geroscience-guided interventions targeting biological aging could offer transformational approaches to reverse broad declines in immune responses with aging. Here, we evaluated effects of metformin, an FDA approved diabetes drug and candidate anti-aging drug, on flu vaccination responses and markers of immunological resilience in a pilot and feasibility double-blinded placebo-controlled study. RESULTS Healthy older adults (non-diabetic/non-prediabetic, age: 74.4 ± 1.7 years) were randomized to metformin (n = 8, 1500 mg extended release/daily) or placebo (n = 7) treatment for 20 weeks and were vaccinated with high-dose flu vaccine after 10 weeks of treatment. Peripheral blood mononuclear cells (PBMCs), serum, and plasma were collected prior to treatment, immediately prior to vaccination, and 1, 5, and 10 weeks post vaccination. Increased serum antibody titers were observed post vaccination with no significant differences between groups. Metformin treatment led to trending increases in circulating T follicular helper cells post-vaccination. Furthermore, 20 weeks of metformin treatment reduced expression of exhaustion marker CD57 in circulating CD4 T cells. CONCLUSIONS Pre-vaccination metformin treatment improved some components of flu vaccine responses and reduced some markers of T cell exhaustion without serious adverse events in nondiabetic older adults. Thus, our findings highlight the potential utility of metformin to improve flu vaccine responses and reduce age-related immune exhaustion in older adults, providing improved immunological resilience in nondiabetic older adults.
Collapse
Affiliation(s)
- Dominique E Martin
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Andreia N Cadar
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Hunter Panier
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Medicine, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, 06030, USA
| | - Blake L Torrance
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - George A Kuchel
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA
| | - Jenna M Bartley
- UConn Center On Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA.
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, 860-679-8322, USA.
| |
Collapse
|
15
|
Hemagglutinin Antibodies in the Polish Population during the 2019/2020 Epidemic Season. Viruses 2023; 15:v15030760. [PMID: 36992469 PMCID: PMC10052160 DOI: 10.3390/v15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The aim of the study was to determine the level of antibodies against hemagglutinin of influenza viruses in the serum of subjects belonging to seven different age groups in the 2019/2020 epidemic season. The level of anti-hemagglutinin antibodies was tested using the hemagglutination inhibition (HAI) test. The tests included 700 sera from all over Poland. Their results confirmed the presence of antibodies against the following influenza virus antigens: A/Brisbane/02/2018 (H1N1)pdm09 (48% of samples), A/Kansas/14/2017/ (H3N2) (74% of samples), B/Colorado/06/ 2017 Victoria line (26% of samples), and B/Phuket/3073/2013 Yamagata line (63% of samples). The level of antibodies against hemagglutinin varied between the age groups. The highest average (geometric mean) antibody titer (68.0) and the highest response rate (62%) were found for the strain A/Kansas/14/2017/ (H3N2). During the epidemic season in Poland, only 4.4% of the population was vaccinated.
Collapse
|
16
|
Anderson GP, Irving LB, Jarnicki A, Kedzierska K, Koutsakos M, Kent S, Hurt AC, Wheatley AK, Nguyen THO, Snape N, Upham JW. Prime-boost, double-dose influenza vaccine immunity in COPD: a pilot observational study. ERJ Open Res 2023; 9:00641-2021. [PMID: 36891079 PMCID: PMC9986756 DOI: 10.1183/23120541.00641-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 08/01/2022] [Indexed: 11/05/2022] Open
Abstract
Background COPD patients are more susceptible to viral respiratory infections and their sequelae, and have intrinsically weaker immune responses to vaccinations against influenza and other pathogens. Prime-boost, double-dose immunisation has been suggested as a general strategy to overcome weak humoral response to vaccines, such as seasonal influenza vaccination, in susceptible populations with weak immunity. However, this strategy, which may also provide fundamental insights into the nature of weakened immunity, has not been formally studied in COPD. Methods We conducted an open-label study of seasonal influenza vaccination in 33 vaccine-experienced COPD patients recruited from established cohorts (mean age 70 (95% CI 66.9-73.2) years; mean forced expiratory volume in 1 s/forced vital capacity ratio 53.4% (95% CI 48.0-58.8%)). Patients received two sequential standard doses of the 2018 quadrivalent influenza vaccine (15 μg haemagglutinin per strain) in a prime-boost schedule 28 days apart. We measured strain-specific antibody titres, an accepted surrogate of likely efficacy, and induction of strain-specific B-cell responses following the prime and boost immunisations. Results Whereas priming immunisation induced the expected increase in strain-specific antibody titres, a second booster dose was strikingly ineffective at further increasing antibody titres. Similarly, priming immunisation induced strain-specific B-cells, but a second booster dose did not further enhance the B-cell response. Poor antibody responses were associated with male gender and cumulative cigarette exposure. Conclusions Prime-boost, double-dose immunisation does not further improve influenza vaccine immunogenicity in previously vaccinated COPD patients. These findings underscore the need to design more effective vaccine strategies for COPD patients for influenza.
Collapse
Affiliation(s)
- Gary P Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Australia
| | - Louis B Irving
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Australia
| | - Andrew Jarnicki
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Stephen Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity and ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Australia.,Melbourne Sexual Health Clinic and Infectious Diseases Department, Alfred Hospital, Monash University Central Clinical School, Carlton, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Natale Snape
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | - John W Upham
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute and Princess Alexandra Hospital, Woolloongabba, Australia
| |
Collapse
|
17
|
Büyüksünetçi YT, Anık Ü. Electro-Nano Diagnostic Platform Based on Antibody-Antigen Interaction: An Electrochemical Immunosensor for Influenza A Virus Detection. BIOSENSORS 2023; 13:176. [PMID: 36831942 PMCID: PMC9953406 DOI: 10.3390/bios13020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
H1N1 is a kind of influenza A virus that causes serious health issues throughout the world. Its symptoms are more serious than seasonal flu and can sometimes be lethal. For this reason, rapid, accurate, and effective diagnostic tests are needed. In this study, an electrochemical immunosensor for the sensitive, selective, and practical detection of the H1N1 virus was developed. The sensor platform included multi-walled carbon nanotube gold-platinum (MWCNT-Au-Pt) hybrid nanomaterial and anti-hemagglutinin (anti-H1) monoclonal antibody. For the construction of this biosensor, a gold screen-printed electrode (AuSPE) was used as a transducer. Firstly, AuSPE was modified with MWCNT-Au-Pt hybrid nanomaterial via drop casting. Anti-H1 antibody was immobilized onto the electrode surface after the modification process with cysteamine was applied. Then, the effect of the interaction time with cysteamine for surface modification was investigated. Following that, the experimental parameters, such as the amount of hybrid nanomaterial and the concentration of anti-H1 were optimized. Under the optimized conditions, the analytical characteristics of the developed electrochemical immunosensor were investigated for the H1N1 virus by using electrochemical impedance spectroscopy. As a result, a linear range was obtained between 2.5-25.0 µg/mL with a limit of the detection value of 3.54 µg/mL. The relative standard deviation value for 20 µg/mL of the H1N1 virus was also calculated and found as 0.45% (n = 3). In order to determine the selectivity of the developed anti-H1-based electrochemical influenza A immunosensor, the response of this system towards the H3N2 virus was investigated. The matrix effect was also investigated by using synthetic saliva supplemented with H1N1 virus.
Collapse
Affiliation(s)
- Yudum Tepeli Büyüksünetçi
- Sensors, Biosensors and Nano-Diagnostic Laboratory, Research Laboratory Center, Mugla Sitki Kocman University, Kotekli, 48000 Mugla, Turkey
| | - Ülkü Anık
- Sensors, Biosensors and Nano-Diagnostic Laboratory, Research Laboratory Center, Mugla Sitki Kocman University, Kotekli, 48000 Mugla, Turkey
- Chemistry Department, Faculty of Science, Mugla Sitki Kocman University, Kotekli, 48000 Mugla, Turkey
| |
Collapse
|
18
|
Detection Methods for H1N1 Virus. Methods Mol Biol 2022; 2610:109-127. [PMID: 36534286 DOI: 10.1007/978-1-0716-2895-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Influenza A virus H1N1, a respiratory virus transmitted via droplets and responsible for the global pandemic in 2009, belongs to the Orthomyxoviridae family, a single-negative-stranded RNA. It possesses glycoprotein spikes neuraminidase (NA), hemagglutinin (HA), and a matrix protein named M2. The Covid-19 pandemic affected the world population belongs to the respiratory virus category is currently mutating, this can also be observed in the case of H1N1 influenza A virus. Mutations in H1N1 can enhance the viral capacity which can lead to another pandemic. This virus affects children below 5 years, pregnant women, old age people, and immunocompromised individuals due to its high viral capacity. Its early detection is necessary for the patient's recovery time. In this book chapter, we mainly focus on the detection methods for H1N1, from traditional ones to the most advance including biosensors, RT-LAMP, multi-fluorescent PCR.
Collapse
|
19
|
Levine MZ, Holiday C, Bai Y, Zhong W, Liu F, Jefferson S, Gross FL, Tzeng WP, Fries L, Smith G, Boutet P, Friel D, Innis BL, Mallett CP, Davis CT, Wentworth DE, York IA, Stevens J, Katz JM, Tumpey T. Influenza A(H7N9) Pandemic Preparedness: Assessment of the Breadth of Heterologous Antibody Responses to Emerging Viruses from Multiple Pre-Pandemic Vaccines and Population Immunity. Vaccines (Basel) 2022; 10:1856. [PMID: 36366364 PMCID: PMC9694415 DOI: 10.3390/vaccines10111856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 05/07/2024] Open
Abstract
Influenza A(H7N9) viruses remain as a high pandemic threat. The continued evolution of the A(H7N9) viruses poses major challenges in pandemic preparedness strategies through vaccination. We assessed the breadth of the heterologous neutralizing antibody responses against the 3rd and 5th wave A(H7N9) viruses using the 1st wave vaccine sera from 4 vaccine groups: 1. inactivated vaccine with 2.8 μg hemagglutinin (HA)/dose + AS03A; 2. inactivated vaccine with 5.75 μg HA/dose + AS03A; 3. inactivated vaccine with 11.5 μg HA/dose + MF59; and 4. recombinant virus like particle (VLP) vaccine with 15 μg HA/dose + ISCOMATRIX™. Vaccine group 1 had the highest antibody responses to the vaccine virus and the 3rd/5th wave drifted viruses. Notably, the relative levels of cross-reactivity to the drifted viruses as measured by the antibody GMT ratios to the 5th wave viruses were similar across all 4 vaccine groups. The 1st wave vaccines induced robust responses to the 3rd and Pearl River Delta lineage 5th wave viruses but lower cross-reactivity to the highly pathogenic 5th wave A(H7N9) virus. The population in the United States was largely immunologically naive to the A(H7N9) HA. Seasonal vaccination induced cross-reactive neuraminidase inhibition and binding antibodies to N9, but minimal cross-reactive antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies to A(H7N9).
Collapse
Affiliation(s)
- Min Z. Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Crystal Holiday
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Yaohui Bai
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Weimin Zhong
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Stacie Jefferson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - F. Liaini Gross
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Wen-pin Tzeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - Gale Smith
- Novavax, Inc., Gaithersburg, MD 20878, USA
| | | | | | | | | | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - David E. Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ian A. York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Terrence Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
20
|
Guo W, Wu D, Li L, Ding S, Meydani SN. Obesity, rather than high fat diet, exacerbates the outcome of influenza virus infection in influenza-sensitized mice. Front Nutr 2022; 9:1018831. [PMID: 36337627 PMCID: PMC9631825 DOI: 10.3389/fnut.2022.1018831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Obesity is associated with impaired immune function and increased susceptibility to infection. High fat (HF) diet-induced obesity is a commonly used animal model. However, HF diet itself is known to affect immune function and infection. Thus, it is not discernable which one, HF diet or adiposity, is the major contributor to the observed impairment in immunity and susceptibility to infection in HF diet-induced obesity. We hypothesized that obesity is a major contributor to impaired immune function. Methods and results Weight-matched outbred female CD-1 mice (1-mo) were randomly assigned to either a HF (45%) or a low fat (LF, 10%) diet group. Ten week after feeding their respective diets, weight gain in the mice fed the HF diet varied greatly. Thus, based on the average body weight, mice in HF diet group were divided into two sub-groups: HF lean (HF-L) and HF obese (HF-O). After 25-week, mice were immunized with an influenza A/Puerto Rico/8/34 vaccine and boosted 3-week later. Five week after the booster, mice were infected with influenza A/Puerto Rico/8/34 virus, and body weight was recorded daily for 1 month. HF-O mice exhibited significant weight loss after influenza virus challenge compared to LF and HF-L mice while LF and HF-L mice largely maintained their weight to a similar extent. Conclusion Our findings suggest that obesity, rather than HF diet, per se, may impair the efficacy of influenza vaccination.
Collapse
Affiliation(s)
- Weimin Guo
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
- *Correspondence: Weimin Guo,
| | - Dayong Wu
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Lijun Li
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Samuel Ding
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| |
Collapse
|
21
|
Tepeli Büyüksünetçi Y, Anık Ü. Graphene‐Gold Hybrid Nanomaterial Based Impedimetric Immunosensor for H3N2 Influenza A Virus Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202202614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yudum Tepeli Büyüksünetçi
- Sensors, Biosensors and Nano-Diagnostic Laboratory Research Laboratory Center Mugla Sitki Kocman University Kotekli-Mugla/ Turkey
| | - Ülkü Anık
- Sensors, Biosensors and Nano-Diagnostic Laboratory Research Laboratory Center Mugla Sitki Kocman University Kotekli-Mugla/ Turkey
- Mugla Sitki Kocman University, Faculty of Science Chemistry Department Kotekli-Mugla/ Turkey
| |
Collapse
|
22
|
Oftung F, Næss LM, Laake I, Stoloff G, Pleguezuelos O. FLU-v, a Broad-Spectrum Influenza Vaccine, Induces Cross-Reactive Cellular Immune Responses in Humans Measured by Dual IFN-γ and Granzyme B ELISpot Assay. Vaccines (Basel) 2022; 10:1528. [PMID: 36146606 PMCID: PMC9505334 DOI: 10.3390/vaccines10091528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
Previous reports demonstrated that FLU-v, a peptide-based broad-spectrum influenza vaccine candidate, induced antibody and cellular immune responses in humans. Here, we evaluate cellular effector functions and cross-reactivity. PBMC sampled pre- (day 0) and post-vaccination (days 42 and 180) from vaccine (n = 58) and placebo (n = 27) recipients were tested in vitro for responses to FLU-v and inactivated influenza strains (A/H3N2, A/H1N1, A/H5N1, A/H7N9, B/Yamagata) using IFN-γ and granzyme B ELISpot. FLU-v induced a significant increase in the number of IFN-γ- and granzyme-B-secreting cells responding to the vaccine antigens from pre-vaccination (medians: 5 SFU/106 cells for both markers) to day 42 (125 and 40 SFU/106 cells, p < 0.0001 for both) and day 180 (75 and 20 SFU/106 cells, p < 0.0001 and p = 0.0047). The fold increase from pre-vaccination to day 42 for IFN-γ-, granzyme-B-, and double-positive-secreting cells responding to FLU-v was significantly elevated compared to placebo (medians: 16.3-fold vs. 1.0-fold, p < 0.0001; 3.5-fold vs. 1.0-fold, p < 0.0001; 3.0-fold vs. 1.0-fold, p = 0.0012, respectively). Stimulation of PBMC with inactivated influenza strains showed significantly higher fold increases from pre-vaccination to day 42 in the vaccine group compared to placebo for IFN-γ-secreting cells reacting to H1N1 (medians: 2.3-fold vs. 0.8-fold, p = 0.0083), H3N2 (1.7-fold vs. 0.8-fold, p = 0.0178), and H5N1 (1.7-fold vs. 1.0-fold, p = 0.0441); for granzyme B secreting cells reacting to H1N1 (3.5-fold vs. 1.0-fold, p = 0.0075); and for double positive cells reacting to H1N1 (2.9-fold vs. 1.0-fold, p = 0.0219), H3N2 (1.7-fold vs. 0.9-fold, p = 0.0136), and the B strain (2.0-fold vs. 0.8-fold, p = 0.0227). The correlation observed between number of cells secreting IFN-γ or granzyme B in response to FLU-v and to the influenza strains supported vaccine-induced cross-reactivity. In conclusion, adjuvanted FLU-v vaccination induced cross-reactive cellular responses with cytotoxic capacity, further supporting the development of FLU-v as a broad-spectrum influenza vaccine.
Collapse
Affiliation(s)
- Fredrik Oftung
- Department of Method Development and Analytics, Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| | - Lisbeth M. Næss
- Department of Infection Control and Vaccines, Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| | - Ida Laake
- Department of Method Development and Analytics, Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| | - Gregory Stoloff
- SEEK, London Bioscience Innovation Centre, 2 Royal College St, London NW1 0NH, UK
| | | |
Collapse
|
23
|
Noninvasive nasopharyngeal proteomics of COVID-19 patient identify abnormalities related to complement and coagulation cascade and mucosal immune system. PLoS One 2022; 17:e0274228. [PMID: 36094909 PMCID: PMC9467311 DOI: 10.1371/journal.pone.0274228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Serum or plasma have been the primary focus of proteomics studies for COVID-19 to identity biomarkers and potential drug targets. The nasal mucosal environment which consists of lipids, mucosal immune cells, and nasal proteome, has been largely neglected but later revealed to have critical role combating SARS-CoV-2 infection. We present a bottom-up proteomics investigation of the host response to SARS-CoV-2 infection in the nasopharyngeal environment, featuring a noninvasive approach using proteins in nasopharyngeal swabs collected from groups of 76 SARS-CoV-2 positive and 76 negative patients. Results showed that 31 significantly down-regulated and 6 up-regulated proteins were identified (p < 0.05, log2 FC > 1.3) in SARS-CoV-2 positive patient samples as compared to the negatives; these proteins carry potential value as markers for the early detection of COVID-19, disease monitoring, as well as be drug targets. The down-regulation of coagulation factor 5 indicates a thrombotic abnormality in COVID-19 patients and the decreased IgG4 suggests an abnormal immune response at the point of entry in human nasopharyngeal environment, which is in consistent with KEGG and GO pathway analysis. Our study also demonstrated that mass spectrometry proteomics analysis of nasopharyngeal swabs can be used as a powerful early approach to evaluate host response to SARS-CoV-2 viral infection.
Collapse
|
24
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
25
|
Whitlock F, Murcia PR, Newton JR. A Review on Equine Influenza from a Human Influenza Perspective. Viruses 2022; 14:v14061312. [PMID: 35746783 PMCID: PMC9229935 DOI: 10.3390/v14061312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAVs) have a main natural reservoir in wild birds. IAVs are highly contagious, continually evolve, and have a wide host range that includes various mammalian species including horses, pigs, and humans. Furthering our understanding of host-pathogen interactions and cross-species transmissions is therefore essential. This review focuses on what is known regarding equine influenza virus (EIV) virology, pathogenesis, immune responses, clinical aspects, epidemiology (including factors contributing to local, national, and international transmission), surveillance, and preventive measures such as vaccines. We compare EIV and human influenza viruses and discuss parallels that can be drawn between them. We highlight differences in evolutionary rates between EIV and human IAVs, their impact on antigenic drift, and vaccine strain updates. We also describe the approaches used for the control of equine influenza (EI), which originated from those used in the human field, including surveillance networks and virological analysis methods. Finally, as vaccination in both species remains the cornerstone of disease mitigation, vaccine technologies and vaccination strategies against influenza in horses and humans are compared and discussed.
Collapse
Affiliation(s)
- Fleur Whitlock
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Pablo R. Murcia
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
| | - J. Richard Newton
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- Correspondence:
| |
Collapse
|
26
|
Ravina, Gill PS, Narang J, Kumar A, Mohan H. Development of amperometric biosensor based on cloned hemagglutinin gene of H1N1 (swine flu) virus. 3 Biotech 2022; 12:141. [PMID: 35664651 PMCID: PMC9156826 DOI: 10.1007/s13205-022-03200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
The recent emergence of respiratory viruses especially COVID-19 and swine flu has underscored the need for robust and bedside detection methods. Swine flu virus is a very infectious virus of the respiratory system. Timely detection of this virus with high specificity and sensitivity is crucial for reducing morbidity as well as mortality. Cloning of gene segments into a non-infectious agent helps in the development of detection methods, vaccine development, and other studies. In this study, cloning was used to develop a biosensor for H1N1 pdm09 detection. A segment of the hemaglutinin gene was cloned in a vector and characterized with the help of colony touch PCR and blue–white screening. The recombinant plasmid was extracted, and the gene segment was confirmed with the help of HA-specific primers. A 5′ amine group-attached hemagglutinin (HA) gene-specific DNA probe was immobilized on the working gold electrode surface to make a quick, specific, reliable, and sensitive detection method for H1N1pdm09 virus in human nasal swab samples. The HA probe was immobilized on the cysteine applied gold electrode of the screen-printed electrode through 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Differential pulse voltammetry was performed with the help of methylene blue, which is a redox indicator for the detection of single-stranded cloned HA gene segment. The developed sensor depicted high sensitivity for the H1N1 influenza virus with a detection limit of 0.6 ng ssDNA/6 µl of the cloned HA sample. Specificity was also checked using H3N2 virus, N. meningitides, influenza A and positive H1N1pdm09 samples.
Collapse
|
27
|
Ravina, Gill PS, kumar A, Narang J, Prasad M, Mohan H. Molecular detection of H1N1 virus by conventional reverse transcription PCR coupled with nested PCR. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Shapiro JR, Li H, Morgan R, Chen Y, Kuo H, Ning X, Shea P, Wu C, Merport K, Saldanha R, Liu S, Abrams E, Chen Y, Kelly DC, Sheridan-Malone E, Wang L, Zeger SL, Klein SL, Leng SX. Sex-specific effects of aging on humoral immune responses to repeated influenza vaccination in older adults. NPJ Vaccines 2021; 6:147. [PMID: 34887436 PMCID: PMC8660902 DOI: 10.1038/s41541-021-00412-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023] Open
Abstract
Older adults (≥65 years of age) bear a significant burden of severe disease and mortality associated with influenza, despite relatively high annual vaccination coverage and substantial pre-existing immunity to influenza. To test the hypothesis that host factors, including age and sex, play a role in determining the effect of repeated vaccination and levels of pre-existing humoral immunity to influenza, we evaluated pre- and post-vaccination strain-specific hemagglutination inhibition (HAI) titers in adults over 75 years of age who received a high-dose influenza vaccine in at least four out of six influenza seasons. Pre-vaccination titers, rather than host factors and repeated vaccination were significantly associated with post-vaccination HAI titer outcomes, and displayed an age-by-sex interaction. Pre-vaccination titers to H1N1 remained constant with age. Titers to H3N2 and influenza B viruses decreased substantially with age in males, whereas titers in females remained constant with age. Our findings highlight the importance of pre-existing immunity in this highly vaccinated older adult population and suggest that older males are particularly vulnerable to reduced pre-existing humoral immunity to influenza.
Collapse
Affiliation(s)
- Janna R Shapiro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Huifen Li
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosemary Morgan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yiyin Chen
- Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Helen Kuo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Patrick Shea
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cunjin Wu
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, Hebei, China
| | - Katherine Merport
- Zanvyl Krieger School of Arts and Science, Johns Hopkins University, Baltimore, MD, USA
| | - Rayna Saldanha
- Zanvyl Krieger School of Arts and Science, Johns Hopkins University, Baltimore, MD, USA
| | - Suifeng Liu
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Engle Abrams
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Sichuan, China
| | - Denise C Kelly
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eileen Sheridan-Malone
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lan Wang
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Scott L Zeger
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
29
|
ISCOM-like Nanoparticles Formulated with Quillaja brasiliensis Saponins Are Promising Adjuvants for Seasonal Influenza Vaccines. Vaccines (Basel) 2021; 9:vaccines9111350. [PMID: 34835281 PMCID: PMC8621233 DOI: 10.3390/vaccines9111350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/28/2022] Open
Abstract
Vaccination is the most effective public health intervention to prevent influenza infections, which are responsible for an important burden of respiratory illnesses and deaths each year. Currently, licensed influenza vaccines are mostly split inactivated, although in order to achieve higher efficacy rates, some influenza vaccines contain adjuvants. Although split-inactivated vaccines induce mostly humoral responses, tailoring mucosal and cellular immune responses is crucial for preventing influenza infections. Quillaja brasiliensis saponin-based adjuvants, including ISCOM-like nanoparticles formulated with the QB-90 saponin fraction (IQB90), have been studied in preclinical models for more than a decade and have been demonstrated to induce strong humoral and cellular immune responses towards several viral antigens. Herein, we demonstrate that a split-inactivated IQB90 adjuvanted influenza vaccine triggered a protective immune response, stronger than that induced by a commercial unadjuvanted vaccine, when applied either by the subcutaneous or the intranasal route. Moreover, we reveal that this novel adjuvant confers up to a ten-fold dose-sparing effect, which could be crucial for pandemic preparedness. Last but not least, we assessed the role of caspase-1/11 in the generation of the immune response triggered by the IQB90 adjuvanted influenza vaccine in a mouse model and found that the cellular-mediated immune response triggered by the IQB90-Flu relies, at least in part, on a mechanism involving the casp-1/11 pathway but not the humoral response elicited by this formulation.
Collapse
|
30
|
Moore KA, Ostrowsky JT, Kraigsley AM, Mehr AJ, Bresee JS, Friede MH, Gellin BG, Golding JP, Hart PJ, Moen A, Weller CL, Osterholm MT. A Research and Development (R&D) roadmap for influenza vaccines: Looking toward the future. Vaccine 2021; 39:6573-6584. [PMID: 34602302 DOI: 10.1016/j.vaccine.2021.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Improved influenza vaccines are urgently needed to reduce the burden of seasonal influenza and to ensure a rapid and effective public-health response to future influenza pandemics. The Influenza Vaccines Research and Development (R&D) Roadmap (IVR) was created, through an extensive international stakeholder engagement process, to promote influenza vaccine R&D. The roadmap covers a 10-year timeframe and is organized into six sections: virology; immunology; vaccinology for seasonal influenza vaccines; vaccinology for universal influenza vaccines; animal and human influenza virus infection models; and policy, finance, and regulation. Each section identifies barriers, gaps, strategic goals, milestones, and additional R&D priorities germane to that area. The roadmap includes 113 specific R&D milestones, 37 of which have been designated high priority by the IVR expert taskforce. This report summarizes the major issues and priority areas of research outlined in the IVR. By identifying the key issues and steps to address them, the roadmap not only encourages research aimed at new solutions, but also provides guidance on the use of innovative tools to drive breakthroughs in influenza vaccine R&D.
Collapse
Affiliation(s)
- Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA; Center for Infectious Disease Research and Policy, C315 Mayo Memorial Building, MMC 263, 420 Delaware Street, SE, Minneapolis, MN 55455, USA.
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Alison M Kraigsley
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Joseph S Bresee
- The Global Funders Consortium for Universal Influenza Vaccine Development, The Task Force for Global Health, and the US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | - Ann Moen
- World Health Organization, Geneva, Switzerland
| | | | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Díez JM, Romero C, Cruz M, Vandeberg P, Merritt WK, Pradenas E, Trinité B, Blanco J, Clotet B, Willis T, Gajardo R. Anti-SARS-CoV-2 hyperimmune globulin demonstrates potent neutralization and antibody-dependent cellular cytotoxicity and phagocytosis through N and S proteins. J Infect Dis 2021; 225:938-946. [PMID: 34693968 PMCID: PMC8574314 DOI: 10.1093/infdis/jiab540] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background Although coronavirus disease 2019 (COVID-19) vaccinations have provided a significant reduction in infections, effective COVID-19 treatments remain an urgent need. Methods Functional characterization of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hyperimmune immunoglobulin (hIG) from human convalescent plasma was performed by different virus neutralization methodologies (plaque reduction, virus-induced cytotoxicity, median tissue culture infectious dose [TCID50] reduction, and immunofluorimetry) at different laboratories using geographically different SARS-CoV-2 isolates (USA [1], Italy [1], and Spain [2]; 2 containing the D614G mutation). Neutralization capacity against the original Wuhan SARS-CoV-2 strain and variants (D614G mutant, B.1.1.7, P.1, and B.1.351) was evaluated using a pseudovirus expressing the corresponding spike (S) protein. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) was also evaluated. Results All SARS-CoV-2 isolates were potently neutralized by hIG as shown by all 4 methodologies. Wild-type SARS-CoV-2 and variants were effectively neutralized using the pseudovirus. The hIG (IgG type) induced ADCC and ADCP against SARS-CoV-2 N and S proteins but not E protein. Very low concentrations (25–100 µg IgG/mL) were required. A potent effect was triggered by antibodies in hIG solutions against the SARS-CoV-2 S and N proteins. Conclusions Beyond neutralization, IgG Fc-dependent pathways may play a role in combatting SARS-CoV-2 infections using COVID-19 hIG. This could be especially relevant for the treatment of more neutralization-resistant SARS-CoV-2 variants.
Collapse
Affiliation(s)
- José María Díez
- Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Carolina Romero
- Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain
| | - María Cruz
- Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Peter Vandeberg
- Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain
| | - W Keither Merritt
- Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain
| | - Todd Willis
- Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Rodrigo Gajardo
- Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain
| |
Collapse
|
32
|
Weiss CD, Wang W, Lu Y, Billings M, Eick-Cost A, Couzens L, Sanchez JL, Hawksworth AW, Seguin P, Myers CA, Forshee R, Eichelberger MC, Cooper MJ. Neutralizing and Neuraminidase Antibodies Correlate With Protection Against Influenza During a Late Season A/H3N2 Outbreak Among Unvaccinated Military Recruits. Clin Infect Dis 2021; 71:3096-3102. [PMID: 31840159 PMCID: PMC7819518 DOI: 10.1093/cid/ciz1198] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
Background Antibodies that inhibit hemagglutination have long been considered a correlate of protection against influenza, but these antibodies are only a subset of potentially protective antibodies. Neutralizing and neuraminidase antibodies may also contribute to protection, but data on their associations with protection are limited. Methods We measured preoutbreak hemagglutinin pseudovirus neutralization (PVN) and neuraminidase inhibition (NAI) antibody titers in unvaccinated military recruits who experienced an H3N2 influenza outbreak during training. We conducted a case-control study to investigate the association between titers and protection against influenza illness or H3N2-associated pneumonia using logistic regression. Results With every 2-fold increase in PVN titer, the odds of medically attended polymerase chain reaction–confirmed H3N2 infection (H3N2+) decreased by 41% (odds ratio [OR], 0.59; 95% confidence interval [CI], .45 to .77; P < .001). Among those who were H3N2+, the odds for pneumonia decreased by 52% (OR, 0.48; CI, .25 to .91; P = .0249). With every 2-fold increase in NAI titer, the odds of medically attended H3N2 infection decreased by 32% (OR, 0.68; 95% CI, .53 to .87; P = .0028), but there was no association between NAI titers and H3N2-associated pneumonia. There was also no synergistic effect of PVN and NAI antibodies. Conclusions PVN and NAI titers were independently associated with reduced risk of influenza illness. NAI titers associated with protection had greater breadth of reactivity to drifted strains than PVN titers. These findings show that PVN and NAI titers are valuable biomarkers for assessing the odds of influenza infection.
Collapse
Affiliation(s)
- Carol D Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yun Lu
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Monisha Billings
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Angelia Eick-Cost
- Armed Forces Health Surveillance Branch, Defense Health Agency, Department of Defense, Silver Spring, Maryland, USA
| | - Laura Couzens
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jose L Sanchez
- Armed Forces Health Surveillance Branch, Defense Health Agency, Department of Defense, Silver Spring, Maryland, USA
| | - Anthony W Hawksworth
- Operational Infectious Diseases, Naval Health Research Center, San Diego, California, USA
| | | | - Christopher A Myers
- Armed Forces Health Surveillance Branch, Defense Health Agency, Department of Defense, Silver Spring, Maryland, USA
| | - Richard Forshee
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Maryna C Eichelberger
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J Cooper
- Armed Forces Health Surveillance Branch, Defense Health Agency, Department of Defense, Silver Spring, Maryland, USA
| |
Collapse
|
33
|
|
34
|
Lopez CE, Legge KL. Influenza A Virus Vaccination: Immunity, Protection, and Recent Advances Toward A Universal Vaccine. Vaccines (Basel) 2020; 8:E434. [PMID: 32756443 PMCID: PMC7565301 DOI: 10.3390/vaccines8030434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza virus infections represent a serious public health threat and account for significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. Despite being an important countermeasure to combat influenza virus and being highly efficacious when matched to circulating influenza viruses, current preventative strategies of vaccination against influenza virus often provide incomplete protection due the continuous antigenic drift/shift of circulating strains of influenza virus. Prevention and control of influenza virus infection with vaccines is dependent on the host immune response induced by vaccination and the various vaccine platforms induce different components of the local and systemic immune response. This review focuses on the immune basis of current (inactivated influenza vaccines (IIV) and live attenuated influenza vaccines (LAIV)) as well as novel vaccine platforms against influenza virus. Particular emphasis will be placed on how each platform induces cross-protection against heterologous influenza viruses, as well as how this immunity compares to and contrasts from the "gold standard" of immunity generated by natural influenza virus infection.
Collapse
Affiliation(s)
- Christopher E. Lopez
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin L. Legge
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
35
|
Wraith S, Nachbagauer R, Balmaseda A, Stadlbauer D, Ojeda S, Rajabhathor A, Lopez R, Guglia AF, Sanchez N, Amanat F, Gresh L, Kuan G, Krammer F, Gordon A. Antibody responses to influenza A(H1N1)pdm infection. Vaccine 2020; 38:4221-4225. [PMID: 32389495 PMCID: PMC7707244 DOI: 10.1016/j.vaccine.2020.04.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/28/2020] [Accepted: 04/26/2020] [Indexed: 11/20/2022]
Abstract
We investigated humoral immune response to influenza A(H1N1)pdm infection and found 32 (22%) of the infected individuals identified by PCR failed to produce a ≥ 4-fold hemagglutinin inhibition assay (HAI) response; a subset of 18 (56%) produced an alternate antibody response (against full-length HA, HA stalk, or neuraminidase). These individuals had lower pre-existing HAI antibody titers and showed a pattern of milder illness. An additional subset of 14 (44%) did not produce an alternate antibody response, had higher pre-existing antibody titers against full-length & stalk HA, and were less sick. These findings demonstrate that some individuals mount an alternate antibody response to influenza infection. In order to design more broadly protective influenza vaccines it may be useful to target these alternate sites. These findings support that there are influenza cases currently being missed by solely implementing HAI assays, resulting in an underestimation of the global burden of influenza infection.
Collapse
Affiliation(s)
- Steph Wraith
- Department of Epidemiology, School of Public Health, University of Michigan, USA
| | - Raffael Nachbagauer
- Centers of Excellence for Influenza Research and Surveillance (CEIRS), USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Research on Influenza Pathogenesis (CRIP), New York, NY, USA
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Daniel Stadlbauer
- Centers of Excellence for Influenza Research and Surveillance (CEIRS), USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Research on Influenza Pathogenesis (CRIP), New York, NY, USA
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua; Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Arvind Rajabhathor
- Centers of Excellence for Influenza Research and Surveillance (CEIRS), USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Research on Influenza Pathogenesis (CRIP), New York, NY, USA
| | - Roger Lopez
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Andrea F Guglia
- Centers of Excellence for Influenza Research and Surveillance (CEIRS), USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Research on Influenza Pathogenesis (CRIP), New York, NY, USA
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua; Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Fatima Amanat
- Centers of Excellence for Influenza Research and Surveillance (CEIRS), USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Research on Influenza Pathogenesis (CRIP), New York, NY, USA
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua; Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Florian Krammer
- Centers of Excellence for Influenza Research and Surveillance (CEIRS), USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Research on Influenza Pathogenesis (CRIP), New York, NY, USA.
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, USA; St. Jude Center of Excellence for Influenza Research and Surveillance, Memphis, TN, USA; Centers of Excellence for Influenza Research and Surveillance (CEIRS), USA.
| |
Collapse
|
36
|
Ravina, Dalal A, Mohan H, Prasad M, Pundir C. Detection methods for influenza A H1N1 virus with special reference to biosensors: a review. Biosci Rep 2020; 40:BSR20193852. [PMID: 32016385 PMCID: PMC7000365 DOI: 10.1042/bsr20193852] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
H1N1 (Swine flu) is caused by influenza A virus, which is a member of Orthomyxoviridae family. Transmission of H1N1 occurs from human to human through air or sometimes from pigs to humans. The influenza virus has different RNA segments, which can reassert to make new virus strain with the possibility to create an outbreak in unimmunized people. Gene reassortment is a process through which new strains are emerging in pigs, as it has specific receptors for both human influenza and avian influenza viruses. H1N1 binds specifically with an α-2,6 glycosidic bond, which is present in human respiratory tract cells as well as in pigs. Considering the fact of fast multiplication of viruses inside the living cells, rapid detection methods need an hour. Currently, WHO recommended methods for the detection of swine flu include real-time PCR in specific testing centres that take 3-4 h. More recently, a number of methods such as Antigen-Antibody or RT-LAMP and DNA biosensors have also been developed that are rapid and more sensitive. This review describes the various challenges in the diagnosis of H1N1, and merits and demerits of conventional vis-à-vis latest methods with special emphasis on biosensors.
Collapse
Affiliation(s)
- Ravina
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Anita Dalal
- DCR University of Science and Technology, Murthal, Sonepat, Haryana 131039, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India
| | - C.S. Pundir
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
37
|
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019; 38:2250-2257. [PMID: 31767462 DOI: 10.1016/j.vaccine.2019.10.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Correlates of protection (CoPs) are increasingly important in the development and licensure of vaccines. Although the study of CoPs was initially directed at identifying a single immune function that could explain vaccine efficacy, it has become increasingly clear that there are often multiple functions responsible for efficacy. This review is meant to supplement prior articles on the subject, illustrating both simple and complex CoPs.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| |
Collapse
|
38
|
Sisteré-Oró M, Martínez-Pulgarín S, Solanes D, Veljkovic V, López-Serrano S, Córdoba L, Cordón I, Escribano JM, Darji A. Conserved HA-peptides expressed along with flagellin in Trichoplusia ni larvae protects chicken against intranasal H7N1 HPAIV challenge. Vaccine 2019; 38:416-422. [PMID: 31735501 DOI: 10.1016/j.vaccine.2019.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
The immunization of poultry where H5 and H7 influenza viruses (IVs) are endemic is one of the strategies to prevent unexpected zoonoses. Our group has been focused on conserved HA-epitopes as potential vaccine candidates to obtain multivalent immune responses against distinct IV subtypes. In this study, two conserved epitopes (NG-34 and CS-17) fused to flagellin were produced in a Baculovirus platform based on Trichoplusia ni larvae as living biofactories. Soluble extracts obtained from larvae expressing "flagellin-NG34/CS17 antigen" were used to immunize chickens and the efficacy of the vaccine was evaluated against a heterologous H7N1 HPAIV challenge in chickens. The flagellin-NG34/CS17 vaccine protected the vaccinated chickens and blocked viral shedding orally and cloacally. Furthermore, no apparent clinical signs were monitored in 10/12 vaccinated individuals. The mechanism of protection conferred is under investigation.
Collapse
Affiliation(s)
- Marta Sisteré-Oró
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susana Martínez-Pulgarín
- Alternative Gene Expression S.L. ALGENEX, Centro empresarial - Parque Científico y Tecnológico Universidad Politécnica de Madrid Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain
| | - David Solanes
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | - Sergi López-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Lorena Córdoba
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Ivan Cordón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - José M Escribano
- Alternative Gene Expression S.L. ALGENEX, Centro empresarial - Parque Científico y Tecnológico Universidad Politécnica de Madrid Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain
| | - Ayub Darji
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
39
|
Quadrivalent Influenza Vaccine-Induced Antibody Response and Influencing Determinants in Patients ≥ 55 Years of Age in the 2018/2019 Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224489. [PMID: 31739554 PMCID: PMC6887788 DOI: 10.3390/ijerph16224489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
The effects of immunization with subunit inactivated quadrivalent influenza vaccine (QIV) are not generally well assessed in the elderly Polish population. Therefore, this study evaluated vaccine-induced antibody response and its determinants. Methods: Consecutive patients ≥ 55 years old, attending a Primary Care Clinic in Gryfino, Poland, received QIV (A/Michigan/ 45/2015(H1N1)pdm09, A/Singapore/INFIMH-16-0019/2016 (H3N2), B/Colorado/06/2017, B/Phuket/ 3073/2013) between October-December 2018. Hemagglutination inhibition assays measured antibody response to vaccine strains from pre/postvaccination serum samples. Geometric mean titer ratio (GMTR), protection rate (PR) and seroconversion rate (SR) were also calculated. Results: For 108 patients (54.6% males, mean age: 66.7 years) the highest GMTR (61.5-fold) was observed for A/H3N2/, then B/Colorado/06/2017 (10.3-fold), A/H1N1/pdm09 (8.4-fold) and B/Phuket/ 3073/2013 (3.0-fold). Most patients had post-vaccination protection for A/H3N2/ and B/Phuket/3073/ 2013 (64.8% and 70.4%, respectively); lower PRs were observed for A/H1N1/pdm09 (41.8%) and B/Colorado/06/ 2017 (57.4%). The SRs for A/H3N2/, A/H1N1/pdm09, B Victoria and B Yamagata were 64.8%, 38.0%, 46.8%, and 48.2%, respectively. Patients who received QIV vaccination in the previous season presented lower (p < 0.001 and p = 0.03, respectively) response to B Victoria and B Yamagata. Conclusions: QIV was immunogenic against the additional B lineage strain (B Victoria) without significantly compromising the immunogenicity of the other three vaccine strains, therefore, adding a second B lineage strain in QIV could broaden protection against influenza B infection in this age group. As the QIV immunogenicity differed regarding the four antigens, formulation adjustments to increase the antigen concentration of the serotypes that have lower immunogenicity could increase effectiveness. Prior season vaccination was associated with lower antibody response to a new vaccine, although not consistent through the vaccine strains.
Collapse
|
40
|
Knowlden ZAG, Richards KA, Moritzky SA, Sant AJ. Peptide Epitope Hot Spots of CD4 T Cell Recognition Within Influenza Hemagglutinin During the Primary Response to Infection. Pathogens 2019; 8:pathogens8040220. [PMID: 31694141 PMCID: PMC6963931 DOI: 10.3390/pathogens8040220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
Antibodies specific for the hemagglutinin (HA) protein of influenza virus are critical for protective immunity to infection. Our studies show that CD4 T cells specific for epitopes derived from HA are the most effective in providing help for the HA-specific B cell responses to infection and vaccination. In this study, we asked whether HA epitopes recognized by CD4 T cells in the primary response to infection are equally distributed across the HA protein or if certain segments are enriched in CD4 T cell epitopes. Mice that collectively expressed eight alternative MHC (Major Histocompatibility Complex) class II molecules, that would each have different peptide binding specificities, were infected with an H1N1 influenza virus. CD4 T cell peptide epitope specificities were identified by cytokine EliSpots. These studies revealed that the HA-specific CD4 T cell epitopes cluster in two distinct regions of HA and that some segments of HA are completely devoid of CD4 T cell epitopes. When located on the HA structure, it appears that the regions that most poorly recruit CD4 T cells are sequestered within the interior of the HA trimer, perhaps inaccessible to the proteolytic machinery inside the endosomal compartments of antigen presenting cells.
Collapse
|
41
|
Protein Vaccination Directs the CD4 + T Cell Response toward Shared Protective Epitopes That Can Be Recalled after Influenza Virus Infection. J Virol 2019; 93:JVI.00947-19. [PMID: 31341045 DOI: 10.1128/jvi.00947-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Vaccination is widely used to generate protective immunity against influenza virus. CD4+ T cells contribute in diverse ways to protective immunity, most notably, in the provision of help for the production of neutralizing antibodies. Several recent reports have suggested that influenza virus infection elicits CD4+ T cells whose specificity only partially overlaps that of T cells elicited by vaccination. This finding has raised serious concerns regarding the utility of currently licensed inactivated influenza virus vaccines and novel protein-based vaccines. Here, using controlled animal models that allowed a broad sampling of the CD4+ T cell repertoire, we evaluated protein vaccine- versus infection-generated CD4+ T cell epitopes. Our studies revealed that all the infection-elicited CD4+ T cell epitope specificities are also elicited by protein vaccination, although the immunodominance hierarchies can differ. Finally, using a reverse-engineered influenza virus and a heterologous protein vaccination and infection challenge strategy, we show that protein vaccine-elicited CD4+ memory T cells are recalled and boosted after infection and provide early help to accelerate hemagglutinin (HA)-specific antibody responses. The early CD4+ T cell response and HA-specific antibody production are associated with lowered viral titers during the infection challenge. Our data lend confidence to the ability of current protein-based vaccines to elicit influenza virus-specific CD4+ T cells that can potentiate protective immunity upon influenza virus infection.IMPORTANCE Most current and new influenza vaccine candidates consist of a single influenza virus protein or combinations of influenza virus proteins. For these vaccines to elicit CD4+ T cells that can be recalled after infection, the peptide epitopes should be shared between the two modes of confrontation. Recently, questions regarding the relatedness of epitope selection by influenza virus infection and protein vaccination have been raised. However, the studies reported here show that the specificity of CD4+ T cells elicited by protein-based vaccines overlaps that of T cells elicited by infection and that CD4+ T cells primed by protein vaccines are recalled and contribute to protection of the host from a future infection.
Collapse
|
42
|
Thompson MG, Levine MZ, Bino S, Hunt DR, Al-Sanouri TM, Simões EAF, Porter RM, Biggs HM, Gresh L, Simaku A, Khader IA, Tallo VL, Meece JK, McMorrow M, Mercado ES, Joshi S, DeGroote NP, Hatibi I, Sanchez F, Lucero MG, Faouri S, Jefferson SN, Maliqari N, Balmaseda A, Sanvictores D, Holiday C, Sciuto C, Owens Z, Azziz-Baumgartner E, Gordon A. Underdetection of laboratory-confirmed influenza-associated hospital admissions among infants: a multicentre, prospective study. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:781-794. [PMID: 31492594 DOI: 10.1016/s2352-4642(19)30246-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Since influenza often presents non-specifically in infancy, we aimed to assess the extent to which existing respiratory surveillance platforms might underestimate the frequency of severe influenza disease among infants. METHODS The Influenza and Respiratory Syncytial Virus in Infants (IRIS) study was a prospective observational study done at four hospitals in Albania, Jordan, Nicaragua, and the Philippines. We included acutely ill infants aged younger than 1 year admitted to hospital within 10 days or less of illness onset during two influenza seasons (2015-16 and 2016-17) in Albania, Jordan, and Nicaragua, and over a continuous 34 week period (2015-16) in the Philippines. We assessed the frequency of influenza virus infections by real-time RT-PCR (rRT-PCR) and serology. The main study outcome was seroconversion, defined as convalescent antibody titres more than or equal to four-fold higher than acute sera antibody titres, and convalescent antibody titres of 40 or higher. Seroconverison was confirmed by haemagglutination inhibition assay for influenza A viruses, and by hemagglutination inhibition assay and microneutralisation for influenza B viruses. FINDINGS Between June 27, 2015, and April 21, 2017, 3634 acutely ill infants were enrolled, of whom 1943 were enrolled during influenza seasons and had complete acute-convalescent pairs and thus were included in the final analytical sample. Of the 1943 infants, 94 (5%) were influenza-positive by both rRT-PCR and serology, 58 (3%) were positive by rRT-PCR-only, and 102 (5%) were positive by serology only. Seroconversion to at least one of the influenza A or B viruses was observed among 196 (77%) of 254 influenza-positive infants. Of the 254 infants with influenza virus, 84 (33%) only had non-respiratory clinical discharge diagnoses (eg, sepsis, febrile seizures, dehydration, or other non-respiratory viral illness). A focus on respiratory diagnoses and rRT-PCR-confirmed influenza underdetects influenza-associated hospital admissions among infants by a factor of 2·6 (95% CI 2·0-3·6). Findings were unchanged when syndromic severe acute respiratory infection criteria were applied instead of clinical diagnosis. INTERPRETATION If the true incidence of laboratory-confirmed influenza-associated hospital admissions among infants is at least twice that of previous estimates, this substantially increases the global burden of severe influenza and expands our estimates of the preventive value of maternal and infant influenza vaccination programmes. FUNDING US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Mark G Thompson
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Silvia Bino
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | | | - Tareq M Al-Sanouri
- The Eastern Mediterranean Public Health Network (EMPHNET), Amman, Jordan
| | - Eric A F Simões
- Center for Global Health, Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Rachael M Porter
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Holly M Biggs
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Artan Simaku
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Illham Abu Khader
- The Eastern Mediterranean Public Health Network (EMPHNET), Amman, Jordan
| | - Veronica L Tallo
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | | | - Meredith McMorrow
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Edelwisa S Mercado
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Sneha Joshi
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicholas P DeGroote
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Iris Hatibi
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Felix Sanchez
- Hospital Infantil Manuel de Jesus Rivera, Ministry of Health, Managua, Nicaragua
| | - Marilla G Lucero
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Samir Faouri
- Al Bashir Hospital, Ministry of Health, Amman, Jordan
| | - Stacie N Jefferson
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Numila Maliqari
- General Pediatrics Unit, University Hospital Center "Mother Teresa", Tirana, Albania
| | - Angel Balmaseda
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnostico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Diozele Sanvictores
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Philippines
| | - Crystal Holiday
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Zachary Owens
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eduardo Azziz-Baumgartner
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Hay JA, Laurie K, White M, Riley S. Characterising antibody kinetics from multiple influenza infection and vaccination events in ferrets. PLoS Comput Biol 2019; 15:e1007294. [PMID: 31425503 PMCID: PMC6715255 DOI: 10.1371/journal.pcbi.1007294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/29/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
The strength and breadth of an individual's antibody repertoire is an important predictor of their response to influenza infection or vaccination. Although progress has been made in understanding qualitatively how repeated exposures shape the antibody mediated immune response, quantitative understanding remains limited. We developed a set of mathematical models describing short-term antibody kinetics following influenza infection or vaccination and fit them to haemagglutination inhibition (HI) titres from 5 groups of ferrets which were exposed to different combinations of trivalent inactivated influenza vaccine (TIV with or without adjuvant), A/H3N2 priming inoculation and post-vaccination A/H1N1 inoculation. We fit models with various immunological mechanisms that have been empirically observed but have not previously been included in mathematical models of antibody landscapes, including: titre ceiling effects, antigenic seniority and exposure-type specific cross reactivity. Based on the parameter estimates of the best supported models, we describe a number of key immunological features. We found quantifiable differences in the degree of homologous and cross-reactive antibody boosting elicited by different exposure types. Infection and adjuvanted vaccination generally resulted in strong, broadly reactive responses whereas unadjuvanted vaccination resulted in a weak, narrow response. We found that the order of exposure mattered: priming with A/H3N2 improved subsequent vaccine response, and the second dose of adjuvanted vaccination resulted in substantially greater antibody boosting than the first. Either antigenic seniority or a titre ceiling effect were included in the two best fitting models, suggesting a role for a mechanism describing diminishing antibody boosting with repeated exposures. Although there was considerable uncertainty in our estimates of antibody waning parameters, our results suggest that both short and long term waning were present and would be identifiable with a larger set of experiments. These results highlight the potential use of repeat exposure animal models in revealing short-term, strain-specific immune dynamics of influenza.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Viral/blood
- Computational Biology
- Cross Reactions
- Disease Models, Animal
- Ferrets/immunology
- Humans
- Immunization, Secondary
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Kinetics
- Models, Immunological
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Vaccines, Inactivated/administration & dosage
Collapse
Affiliation(s)
- James A. Hay
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Karen Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Seqirus, 63 Poplar Road, Parkville, Victoria, Australia
| | - Michael White
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Hirzel C, Ferreira VH, L'Huillier AG, Hoschler K, Cordero E, Limaye AP, Englund JA, Reid G, Humar A, Kumar D. Humoral response to natural influenza infection in solid organ transplant recipients. Am J Transplant 2019; 19:2318-2328. [PMID: 30748090 DOI: 10.1111/ajt.15296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/20/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023]
Abstract
The humoral immune response of transplant recipients to influenza vaccination has been studied in detail. In contrast, the hemagglutinin inhibiting (HI) antibody response evoked by natural influenza infection and its impact on viral kinetics is unknown. In this prospective, multicenter, cohort study of natural influenza infection in transplant recipients, we measured HI antibody titers at presentation and 4 weeks later. Serial nasopharyngeal viral loads were determined using a quantitative influenza A polymerase chain reaction (PCR). We analyzed 196 transplant recipients with influenza infection. In the cohort of organ transplant patients with influenza A (n = 116), seropositivity rates for strain-specific antibodies were 44.0% (95% confidence interval [CI] 31.5-53.2%) at diagnosis and 64.7% (95% CI 55.4-72.9%) 4 weeks postinfection. Seroconversion was observed in 32.8% (95% CI 24.7-41.9%) of the cases. Lung transplant recipients were more likely to seroconvert (P = .002) and vaccine recipients were less likely to seroconvert (P = .024). A subset of patients (n = 30) who were unresponsive to prior vaccination were also unresponsive to natural infection. There was no correlation between viral kinetics and antibody response. This study provides novel data on the seroresponse to influenza infection in transplant patients and its relationship to a number of parameters including a prior vaccination status, virologic measures, and clinical variables.
Collapse
Affiliation(s)
- Cedric Hirzel
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Victor H Ferreira
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Arnaud G L'Huillier
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | - Elisa Cordero
- Hospital Universitario Virgen del Rocío and Biomedicine Research Institute, Seville, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Ajit P Limaye
- Division of Infectious Diseases, University of Washington, Seattle, Washington
| | - Janet A Englund
- Pediatric Infectious Diseases, Seattle Children's Hospital, Seattle, Washington
| | - Gail Reid
- Division of Infectious Diseases, Loyola University Medical Center, Chicago, Illinois
| | - Atul Humar
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Deepali Kumar
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
45
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
46
|
Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 2019; 4:29. [PMID: 31312529 PMCID: PMC6626024 DOI: 10.1038/s41541-019-0124-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Vaccine-induced immunity declines with age, which may differ between males and females. Using human sera collected before and 21 days after receipt of the monovalent A/Cal/09 H1N1 vaccine, we evaluated cytokine and antibody responses in adult (18-45 years) and aged (65+ years) individuals. After vaccination, adult females developed greater IL-6 and antibody responses than either adult males or aged females, with female antibody responses being positively associated with concentrations of estradiol. To test whether protection against influenza virus challenge was greater in females than males, we primed and boosted adult (8-10 weeks) and aged (68-70 weeks) male and female mice with an inactivated A/Cal/09 H1N1 vaccine or no vaccine and challenged with a drift variant A/Cal/09 virus. As compared with unvaccinated mice, vaccinated adult, but not aged, mice experienced less morbidity and better pulmonary viral clearance following challenge, regardless of sex. Vaccinated adult female mice developed antibody responses that were of greater quantity and quality and more protective than vaccinated adult males. Sex differences in vaccine efficacy diminished with age in mice. To determine the role of sex steroids in vaccine-induced immune responses, adult mice were gonadectomized and hormones (estradiol in females and testosterone in males) were replaced in subsets of animals before vaccination. Vaccine-induced antibody responses were increased in females by estradiol and decreased in males by testosterone. The benefit of elevated estradiol on antibody responses and protection against influenza in females is diminished with age in both mice and humans.
Collapse
|
47
|
Trucchi C, Paganino C, Amicizia D, Orsi A, Tisa V, Piazza MF, Icardi G, Ansaldi F. Universal influenza virus vaccines: what needs to happen next? Expert Opin Biol Ther 2019; 19:671-683. [PMID: 30957589 DOI: 10.1080/14712598.2019.1604671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Influenza occurs worldwide and causes significant disease burden in terms of morbidity, associated complications, hospitalizations, and deaths. Vaccination constitutes the primary approach for controlling influenza. Current influenza vaccines elicit a strain-specific response yet occasionally exhibit suboptimal effectiveness. This review describes the limits of available immunization tools and the future prospects and potentiality of universal influenza vaccines. AREAS COVERED New 'universal' vaccines, which are presently under development, are expected to overcome the problems related to the high variability of influenza viruses, such as the need for seasonal vaccine updates and re-vaccination. Here, we explore vaccines based on the highly conserved epitopes of the HA, NA, or extracellular domain of the influenza M2 protein, along with those based on the internal proteins such as NP and M1. EXPERT OPINION The development of a universal influenza vaccine that confers protection against homologous, drifted, and shifted influenza virus strains could obviate the need for annual reformulation and mitigate disease burden. The scientific community has long been awaiting the advent of universal influenza vaccines; these are currently under development in laboratories worldwide. If such vaccines are immunogenic, efficacious, and able to confer long-lasting immunity, they might be integrated with or supplant traditional influenza vaccines.
Collapse
Affiliation(s)
- Cecilia Trucchi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy
| | - Chiara Paganino
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy
| | - Daniela Amicizia
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Andrea Orsi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Valentino Tisa
- c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Maria Francesca Piazza
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Giancarlo Icardi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Filippo Ansaldi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| |
Collapse
|
48
|
Samson SI, Leventhal PS, Salamand C, Meng Y, Seet BT, Landolfi V, Greenberg D, Hollingsworth R. Immunogenicity of high-dose trivalent inactivated influenza vaccine: a systematic review and meta-analysis. Expert Rev Vaccines 2019; 18:295-308. [PMID: 30689467 DOI: 10.1080/14760584.2019.1575734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/25/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION High-dose trivalent, inactivated, split-virus influenza vaccine (IIV3-HD) has been available in the US since 2009 for adults aged ≥ 65 years. To better understand how IIV3-HD provides improved protection against influenza, we systematically reviewed clinical studies comparing immune responses to IIV3-HD and standard-dose trivalent vaccine (IIV3-SD). AREAS COVERED The primary objective was to determine the relative hemagglutination inhibition (HAI) antibody response of IIV3-HD vs. IIV3-SD in adults aged ≥ 65 years. Based on seven randomized studies including more than 18,500 adults aged ≥ 65 years, combined HAI geometric mean titer (GMT) ratios (95% confidence interval) approximately 1 month post-vaccination were 1.74 (1.65-1.83) for influenza A/H1N1, 1.84 (1.73-1.95) for influenza A/H3N2, and 1.47 (1.36-1.58) for influenza B. HAI GMT ratios in these studies were similar irrespective of sex, older age (≥ 75 years), frailty, and underlying conditions. Trends were similar for A/H3N2 neutralization and anti-neuraminidase antibody titers. In immunocompromised individuals, HAI GMT ratios were mostly > 1. EXPERT OPINION In agreement with its improved efficacy and effectiveness, IIV3-HD is consistently more immunogenic than IIV3-SD in adults aged ≥ 65 years. IIV3-HD also appears more immunogenic in immunocompromised individuals.
Collapse
Affiliation(s)
| | | | | | - Ya Meng
- a Sanofi Pasteur , Swiftwater , PA , USA
| | - Bruce T Seet
- a Sanofi Pasteur , Swiftwater , PA , USA
- d Department of Molecular Genetics , University of Toronto, Medical Science Building , Toronto , ON , Canada
| | | | - David Greenberg
- a Sanofi Pasteur , Swiftwater , PA , USA
- e Department of Pediatrics , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | | |
Collapse
|
49
|
Ravina, Mohan H, Gill PS, Kumar A. Hemagglutinin gene based biosensor for early detection of swine flu (H1N1) infection in human. Int J Biol Macromol 2019; 130:720-726. [PMID: 30822474 DOI: 10.1016/j.ijbiomac.2019.02.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/07/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Hemagglutinin (HA) is a glycoprotein found on the surface of influenza A subtype virus H1N1 which play a major role in infection to the human by binding the virus to cells with sialic acid on the membrane of upper respiratory tract or erythrocytes. Based on sequence of HA gene an impedimetric biosensor was developed by immobilizing amino labeled single stranded DNA probe onto cysteine modified gold surface of the screen printed electrode for early and rapid detection of H1N1 (Swine flu) in human. The electrochemical impedance was recorded after hybridization of probe with single stranded cDNA (ss-cDNA) of H1N1 patient samples in presence of redox couple. All available methods for detection of H1N1 including RT-PCR are either expensive or time consuming. However, impedimetric biosensor is not only highly specific for H1N1 virus but also can detect as low as 0.004 ng (limit of detection) ss-cDNA in 6 µL only in 30 min. The sensitivity of the sensor was 3750 Ω cm-2 ng-1 of DNA. The biosensor was well characterized using surface cyclic voltammetry, validated with patient samples and compared with existing methods. The sensor can be used in hospitals, diagnostic centres as well as in remote areas for early and rapid diagnosis.
Collapse
Affiliation(s)
- Ravina
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| | - Paramjeet Singh Gill
- Department of Microbiology, Pt. Bhagwat Dyal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana 124001, India
| | - Ashok Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| |
Collapse
|
50
|
Gianchecchi E, Torelli A, Montomoli E. The use of cell-mediated immunity for the evaluation of influenza vaccines: an upcoming necessity. Hum Vaccin Immunother 2019; 15:1021-1030. [PMID: 30614754 PMCID: PMC6605831 DOI: 10.1080/21645515.2019.1565269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza vaccines are a fundamental tool for preventing the disease and reducing its consequences, particularly in specific high-risk groups. In order to be licensed, influenza vaccines have to meet strict criteria established by European Medicines Agency. Although the licensure of influenza vaccines started 65 years ago, Hemagglutination Inhibition and Single Radial Hemolysis are the only serological assays that can ascertain correlates of protection. However, they present evident limitations. The present review focuses on the evaluation of cell-mediated immunity (CMI), which plays an important role in the host immune response in protecting against virus-related illness and in the establishment of long-term immunological memory. Although correlates of protection are not currently available for CMI, it would be advisable to investigate this kind of immunological response for the evaluation of next-generation vaccines.
Collapse
Affiliation(s)
| | - A Torelli
- a VisMederi srl , Siena , Italy.,b Department of Life Sciences , University of Siena , Siena , Italy
| | - E Montomoli
- a VisMederi srl , Siena , Italy.,c Department of Molecular and Developmental Medicine , University of Siena , Siena , Italy
| |
Collapse
|