1
|
Araújo LE, Petrilli J, Oliveira C, Horta T, Estevão P, Carvalho FR, Cardoso CAA, Cardoso TM, de Ângelis L, Montenegro L, Santos FLN, Arruda S, Queiroz A. Evaluation of nonpolar lipid extract antigen-based enzyme-linked immunosorbent assay for the serodiagnosis of tuberculosis. Diagn Microbiol Infect Dis 2024; 111:116560. [PMID: 39437652 DOI: 10.1016/j.diagmicrobio.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
This study assessed the diagnostic potential of nonpolar lipid extracts in enzyme-linked immunosorbent assays (ELISAs) for tuberculosis (TB) serodiagnosis. Nonpolar lipid extracts were harvested from Mycobacterium tuberculosis (Mtb) knockout in mce1 operon (∆mce1) and its parental wild type (WT) strains. IgM and IgG anti-nonpolar lipid serum levels were measured in TB patients (n=45), healthy individuals with positive (n=22) and negative (n=44) interferon-gamma release assay (IGRA) results, and symptomatic respiratory (SR) patients with negative TB tests (n=9). IgG anti-WT lipid distinguished TB patients from IGRA-positive individuals with 60% sensitivity and 77.3% specificity. Conversely, IgG anti-∆mce lipid levels didn't vary significantly across groups. Interestingly, most SR patients exhibited significantly higher IgM and IgG anti-WT lipid titers than the IGRA-positive and -nega groups. While the overall diagnostic potential of Mtb nonpolar lipids was limited, the impaired immunogenecity of Δmce1 lipid extract suggests that some missing lipid classes in this extract can potentially induce antibody production in TB patients.
Collapse
Affiliation(s)
- Luana E Araújo
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Jéssica Petrilli
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Carlos Oliveira
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Thainá Horta
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Paulo Estevão
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Fabiana Rabe Carvalho
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Claudete A Araújo Cardoso
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil; Departamento Materno-Infantil, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Thiago Marconi Cardoso
- Laboratório de Pesquisa Clínica, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Luanna de Ângelis
- Laboratório de Imunoepidemiologia, Instituto Aggeu Magalhães (IAM)/Fiocruz, Recife, Pernambuco, Brasil
| | - Lilian Montenegro
- Laboratório de Imunoepidemiologia, Instituto Aggeu Magalhães (IAM)/Fiocruz, Recife, Pernambuco, Brasil
| | - Fred Luciano Neves Santos
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Sérgio Arruda
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Adriano Queiroz
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil.
| |
Collapse
|
2
|
Lin YJ, Zou Y, Karlsson MO, Svensson EM. A pharmacometric multistate model for predicting long-term treatment outcomes of patients with pulmonary TB. J Antimicrob Chemother 2024; 79:2561-2569. [PMID: 39087258 PMCID: PMC11441995 DOI: 10.1093/jac/dkae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Studying long-term treatment outcomes of TB is time-consuming and impractical. Early and reliable biomarkers reflecting treatment response and capable of predicting long-term outcomes are urgently needed. OBJECTIVES To develop a pharmacometric multistate model to evaluate the link between potential predictors and long-term outcomes. METHODS Data were obtained from two Phase II clinical trials (TMC207-C208 and TMC207-C209) with bedaquiline on top of a multidrug background regimen. Patients were typically followed throughout a 24 week investigational treatment period plus a 96 week follow-up period. A five-state multistate model (active TB, converted, recurrent TB, dropout, and death) was developed to describe observed transitions. Evaluated predictors included patient characteristics, baseline TB disease severity and on-treatment biomarkers. RESULTS A fast bacterial clearance in the first 2 weeks and low TB bacterial burden at baseline increased probability to achieve conversion, whereas patients with XDR-TB were less likely to reach conversion. Higher estimated mycobacterial load at the end of 24 week treatment increased the probability of recurrence. At 120 weeks, the model predicted 55% (95% prediction interval, 50%-60%), 6.5% (4.2%-9.0%) and 7.5% (5.2%-10%) of patients in converted, recurrent TB and death states, respectively. Simulations predicted a substantial increase of recurrence after 24 weeks in patients with slow bacterial clearance regardless of baseline bacterial burden. CONCLUSIONS The developed multistate model successfully described TB treatment outcomes. The multistate modelling framework enables prediction of several outcomes simultaneously, and allows mechanistically sound investigation of novel promising predictors. This may help support future biomarker evaluation, clinical trial design and analysis.
Collapse
Affiliation(s)
- Yu-Jou Lin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Yuanxi Zou
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Fatima Z, Chugh M, Nigam G, Hameed S. Quantification of mycolic acids in different mycobacterial species by standard addition method through liquid chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124297. [PMID: 39299149 DOI: 10.1016/j.jchromb.2024.124297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Mycobacteria possess unique and robust lipid profile responsible for their pathogenesis and drug resistance. Mycolic acid (MA) represents an attractive diagnostic biomarker being absent in humans, inert and known to modulate host-pathogen interaction. Accurate measurement of MA is significant to design efficient therapeutics. Despite considerable advances in Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) based approaches, quantification of mycobacterial lipids including MA is still challenging mainly because of ion suppression effects due to complex matrix and non-availability of suitable internal standards for MA. The current study demonstrates the use of standard addition method (SAM) to circumvent this problem and provides a reliable and exhaustive analytical method to quantify mycobacterial MA based on reversed-phase ultra-high-performance liquid chromatography- mass spectrometry data acquisition. In this method, multiple reaction monitoring (MRM) has been applied, wherein 16 MRM channels or transitions have been chosen for quantification of alpha-, methoxy- and keto-MAs with C-24 and C-26 hydrocarbon chains that are actually best suited for TB diagnostics. We found that the overall methodological limit of detection and limit of quantification were in the range 0.05-0.71 ng/µl and 0.16-2.16 ng/µl. Taken together, SAM quantitative technique could serve as promising alternative for relative concentration determination of MA to aid medical research.
Collapse
Affiliation(s)
- Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar) 122413, India.
| | - Meenakshi Chugh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar) 122413, India; Amity Medical School, Amity University Haryana, Gurugram (Manesar) 122413, India
| | - Gaurav Nigam
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar) 122413, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar) 122413, India.
| |
Collapse
|
4
|
Wood PL. Metabolic and Lipid Biomarkers for Pathogenic Algae, Fungi, Cyanobacteria, Mycobacteria, Gram-Positive Bacteria, and Gram-Negative Bacteria. Metabolites 2024; 14:378. [PMID: 39057701 PMCID: PMC11278827 DOI: 10.3390/metabo14070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The utilization of metabolomics and lipidomics analytical platforms in the study of pathogenic microbes is slowly expanding. These research approaches will significantly contribute to the establishment of microbial metabolite and lipid databases of significant value to all researchers in microbiology. In this review, we present a high-level overview of some examples of biomarkers that can be used to detect the presence of microbes, monitor the expansion/decline of a microbe population, and add to our understanding of microbe biofilms and pathogenicity. In addition, increased knowledge of the metabolic functions of pathogenic microbes can contribute to our understanding of microbes that are utilized in diverse industrial applications. Our review focuses on lipids, secondary metabolites, and non-ribosomal peptides that can be monitored using electrospray ionization high-resolution mass spectrometry (ESI-HRMS).
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA
| |
Collapse
|
5
|
Guzmán L, Cambier CJ, Cheng TY, Naqvi KF, Shiloh MU, Moody DB, Bertozzi CR. Bioorthogonal Metabolic Labeling of the Virulence Factor Phenolic Glycolipid in Mycobacteria. ACS Chem Biol 2024; 19:707-717. [PMID: 38442242 PMCID: PMC10949201 DOI: 10.1021/acschembio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Surface lipids on pathogenic mycobacteria modulate infection outcomes by regulating host immune responses. Phenolic glycolipid (PGL) is a host-modulating surface lipid that varies among clinical Mycobacterium tuberculosis strains. PGL is also found in Mycobacterium marinum, where it promotes infection of zebrafish through effects on the innate immune system. Given the important role this lipid plays in the host-pathogen relationship, tools for profiling its abundance, spatial distribution, and dynamics are needed. Here, we report a strategy for imaging PGL in live mycobacteria using bioorthogonal metabolic labeling. We functionalized the PGL precursor p-hydroxybenzoic acid (pHB) with an azide group (3-azido pHB). When fed to mycobacteria, 3-azido pHB was incorporated into the cell surface, which could then be visualized via the bioorthogonal conjugation of a fluorescent probe. We confirmed that 3-azido pHB incorporates into PGL using mass spectrometry methods and demonstrated selectivity for PGL-producing M. marinum and M. tuberculosis strains. Finally, we applied this metabolic labeling strategy to study the dynamics of PGL within the mycobacterial membrane. This new tool enables visualization of PGL that may facilitate studies of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Lindsay
E. Guzmán
- Stanford
Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - C. J. Cambier
- Stanford
Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tan-Yun Cheng
- Brigham
and Women’s Hospital, Division of Rheumatology, Inflammation
and Immunity, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kubra F. Naqvi
- Department
of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, United States
- Department
of Microbiology, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Michael U. Shiloh
- Department
of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, United States
- Department
of Microbiology, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - D. Branch Moody
- Brigham
and Women’s Hospital, Division of Rheumatology, Inflammation
and Immunity, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Carolyn R. Bertozzi
- Stanford
Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Sarno A, Leite A, Augusto C, Muller I, de Ângelis L, Pimentel L, Queiroz A, Arruda S. Impaired macrophage and memory T-cell responses to Bacillus Calmette-Guerin nonpolar lipid extract. Front Immunol 2024; 14:1263352. [PMID: 38274831 PMCID: PMC10808680 DOI: 10.3389/fimmu.2023.1263352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The attenuation of BCG has led to the loss of not only immunogenic proteins but also lipid antigens. Methods Thus, we compared the macrophage and T-cell responses to nonpolar lipid extracts harvested from BCG and Mycobacterium tuberculosis (Mtb) to better understand the role of BCG lipids in the already known diminished responses of the vaccine strain. Results Relative to Mtb, nonpolar lipid extract from BCG presented a reduced capacity to trigger the expression of the genes encoding TNF, IL-1b, IL-6 and IL-10 in RAW 264.7 macrophages. Immunophenotyping of PBMCs isolated from healthy individuals revealed that lipids from both BCG and Mtb were able to induce an increased frequency of CD4+ and CD8+ T cells, but only the lipid extract from Mtb enhanced the frequency of CD4-CD8-double-negative, γσ+, CD4+HLA-DR+, and γσ+HLA-DR+ T cells relative to the nonstimulated control. Interestingly, only the Mtb lipid extract was able to increase the frequency of CD4+ memory (CD45RO+) T cells, whereas the BCG lipid extract induced a diminished frequency of CD4+ central memory (CD45RO+CCR7-) T cells after 48 h of culture compared to Mtb. Discussion These findings show that the nonpolar lipids of the BCG bacilli presented diminished ability to trigger both proinflammatory and memory responses and suggest a potential use of Mtb lipids as adjuvants to increase the BCG vaccine efficacy.
Collapse
Affiliation(s)
- Alice Sarno
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Avelina Leite
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Carlos Augusto
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Igor Muller
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Luanna de Ângelis
- Laboratory of Immunoepidemiology, Aggeu Magalhães Institute, Fiocruz, Recife, Brazil
| | - Lilian Pimentel
- Laboratory of Immunoepidemiology, Aggeu Magalhães Institute, Fiocruz, Recife, Brazil
| | - Adriano Queiroz
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Sergio Arruda
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
- Department of Life Sciences, State University of Bahia, Salvador, Brazil
| |
Collapse
|
7
|
Bull TJ, Munshi T, Lopez-Perez PM, Tran AC, Cosgrove C, Bartolf A, Menichini M, Rindi L, Parigger L, Malanovic N, Lohner K, Wang CJH, Fatima A, Martin LL, Esin S, Batoni G, Hilpert K. Specific Cationic Antimicrobial Peptides Enhance the Recovery of Low-Load Quiescent Mycobacterium tuberculosis in Routine Diagnostics. Int J Mol Sci 2023; 24:17555. [PMID: 38139385 PMCID: PMC10743970 DOI: 10.3390/ijms242417555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The culture confirmation of Mycobacterium tuberculosis (MTB) remains the gold standard for the diagnosis of Tuberculosis (TB) with culture conversion representing proof of cure. However, over 40% of TB samples fail to isolate MTB even though many patients remain infectious due to the presence of viable non-culturable forms. Previously, we have shown that two short cationic peptides, T14D and TB08L, induce a hormetic response at low concentrations, leading to a stimulation of growth in MTB and the related animal pathogen Mycobacterium bovis (bTB). Here, we examine these peptides showing they can influence the mycobacterial membrane integrity and function through membrane potential reduction. We also show this disruption is associated with an abnormal reduction in transcriptomic signalling from specific mycobacterial membrane sensors that normally monitor the immediate cellular environment and maintain the non-growing phenotype. We observe that exposing MTB or bTB to these peptides at optimal concentrations rapidly represses signalling mechanisms maintaining dormancy phenotypes, which leads to the promotion of aerobic metabolism and conversion into a replicative phenotype. We further show a practical application of these peptides as reagents able to enhance conventional routine culture methods by stimulating mycobacterial growth. We evaluated the ability of a peptide-supplemented sample preparation and culture protocol to isolate the MTB against a gold standard routine method tested in parallel on 255 samples from 155 patients with suspected TB. The peptide enhancement increased the sample positivity rate by 46% and decreased the average time to sample positivity of respiratory/faecal sampling by seven days. The most significant improvements in isolation rates were from sputum smear-negative low-load samples and faeces. The peptide enhancement increased sampling test sensitivity by 19%, recovery in samples from patients with a previously culture-confirmed TB by 20%, and those empirically treated for TB by 21%. We conclude that sample decontamination and culture enhancement with D-enantiomer peptides offer good potential for the much-needed improvement of the culture confirmation of TB.
Collapse
Affiliation(s)
- Tim J. Bull
- Institute of Infection and Immunity, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (K.H.)
| | - Tulika Munshi
- Institute of Infection and Immunity, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (K.H.)
| | | | - Andy C. Tran
- Institute of Infection and Immunity, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (K.H.)
| | - Catherine Cosgrove
- St. George’s Hospital NHS Trust, Cranmer Terrace, London SW17 0RE, UK; (C.C.)
| | - Angela Bartolf
- St. George’s Hospital NHS Trust, Cranmer Terrace, London SW17 0RE, UK; (C.C.)
| | - Melissa Menichini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy (L.R.); (S.E.); (G.B.)
| | - Laura Rindi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy (L.R.); (S.E.); (G.B.)
| | - Lena Parigger
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Humboldstrasse 50/III, 800 Graz, Austria; (L.P.); (K.L.)
| | - Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Humboldstrasse 50/III, 800 Graz, Austria; (L.P.); (K.L.)
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Humboldstrasse 50/III, 800 Graz, Austria; (L.P.); (K.L.)
| | - Carl J. H. Wang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia (A.F.); (L.L.M.)
| | - Anam Fatima
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia (A.F.); (L.L.M.)
| | - Lisandra L. Martin
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia (A.F.); (L.L.M.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy (L.R.); (S.E.); (G.B.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy (L.R.); (S.E.); (G.B.)
| | - Kai Hilpert
- Institute of Infection and Immunity, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK (K.H.)
| |
Collapse
|
8
|
Alebouyeh S, Cárdenas-Pestana JA, Vazquez L, Prados-Rosales R, Del Portillo P, Sanz J, Menéndez MC, García MJ. Iron deprivation enhances transcriptional responses to in vitro growth arrest of Mycobacterium tuberculosis. Front Microbiol 2022; 13:956602. [PMID: 36267176 PMCID: PMC9577196 DOI: 10.3389/fmicb.2022.956602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
The establishment of Mycobacterium tuberculosis (Mtb) long-term infection in vivo depends on several factors, one of which is the availability of key nutrients such as iron (Fe). The relation between Fe deprivation inside and outside the granuloma, and the capacity of Mtb to accumulate lipids and persist in the absence of growth is not well understood. In this context, current knowledge of how Mtb modifies its lipid composition in response to growth arrest, depending on iron availability, is scarce. To shed light on these matters, in this work we compare genome-wide transcriptomic and lipidomic profiles of Mtb at exponential and stationary growth phases using cultures with glycerol as a carbon source, in the presence or absence of iron. As a result, we found that transcriptomic responses to growth arrest, considered as the transition from exponential to stationary phase, are iron dependent for as many as 714 genes (iron-growth interaction contrast, FDR <0.05), and that, in a majority of these genes, iron deprivation enhances the magnitude of the transcriptional responses to growth arrest in either direction. On the one hand, genes whose upregulation upon growth arrest is enhanced by iron deprivation were enriched in functional terms related to homeostasis of ion metals, and responses to several stressful cues considered cardinal features of the intracellular environment. On the other hand, genes showing negative responses to growth arrest that are stronger in iron-poor medium were enriched in energy production processes (TCA cycle, NADH dehydrogenation and cellular respiration), and key controllers of ribosomal activity shut-down, such as the T/A system mazE6/F6. Despite of these findings, a main component of the cell envelope, lipid phthiocerol dimycocerosate (PDIM), was not detected in the stationary phase regardless of iron availability, suggesting that lipid changes during Mtb adaptation to non-dividing phenotypes appear to be iron-independent. Taken together, our results indicate that environmental iron levels act as a key modulator of the intensity of the transcriptional adaptations that take place in the bacterium upon its transition between dividing and dormant-like phenotypes in vitro.
Collapse
Affiliation(s)
- Sogol Alebouyeh
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Jorge A. Cárdenas-Pestana
- Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Lucia Vazquez
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Rafael Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | - Joaquín Sanz
- Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- *Correspondence: Maria J. García,
| | - Maria Carmen Menéndez
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Maria Carmen Menéndez,
| | - Maria J. García
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Joaquín Sanz,
| |
Collapse
|
9
|
Quantitative detection of mycobacterial mannophosphoinositides in tuberculosis patients by real-time immuno-PCR assay. METHODS IN MICROBIOLOGY 2022; 201:106563. [DOI: 10.1016/j.mimet.2022.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022]
|
10
|
Torres-Atencio I, Campble A, Goodridge A, Martin M. Uncovering the Mast Cell Response to Mycobacterium tuberculosis. Front Immunol 2022; 13:886044. [PMID: 35720353 PMCID: PMC9201906 DOI: 10.3389/fimmu.2022.886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The immunologic mechanisms that contribute to the response to Mycobacterium tuberculosis infection still represent a challenge in the clinical management and scientific understanding of tuberculosis disease. In this scenario, the role of the different cells involved in the host response, either in terms of innate or adaptive immunity, remains key for defeating this disease. Among this coordinated cell response, mast cells remain key for defeating tuberculosis infection and disease. Together with its effector’s molecules, membrane receptors as well as its anatomical locations, mast cells play a crucial role in the establishment and perpetuation of the inflammatory response that leads to the generation of the granuloma during tuberculosis. This review highlights the current evidences that support the notion of mast cells as key link to reinforce the advancements in tuberculosis diagnosis, disease progression, and novel therapeutic strategies. Special focus on mast cells capacity for the modulation of the inflammatory response among patients suffering multidrug resistant tuberculosis or in co-infections such as current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ivonne Torres-Atencio
- Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Panama, Panama.,Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Ariadne Campble
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Amador Goodridge
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Laboratory of Clinical and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
11
|
Zheng L, Wei F, Li G. The crosstalk between bacteria and host autophagy: host defense or bacteria offense. J Microbiol 2022; 60:451-460. [DOI: 10.1007/s12275-022-2009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
|
12
|
Lawal IO, Mokoala KMG, Mathebula M, Moagi I, Popoola GO, Moeketsi N, Nchabeleng M, Hikuam C, Ellner JJ, Hatherill M, Fourie BP, Sathekge MM. Correlation Between CT Features of Active Tuberculosis and Residual Metabolic Activity on End-of-Treatment FDG PET/CT in Patients Treated for Pulmonary Tuberculosis. Front Med (Lausanne) 2022; 9:791653. [PMID: 35295606 PMCID: PMC8920557 DOI: 10.3389/fmed.2022.791653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Abstract
Patients who complete a standard course of anti-tuberculous treatment (ATT) for pulmonary tuberculosis and are declared cured according to the current standard of care commonly have residual metabolic activity (RMA) in their lungs on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PER/CT) imaging. RMA seen in this setting has been shown to be associated with relapse of tuberculosis. The routine clinical use of FDG PET/CT imaging for treatment response assessment in tuberculosis is hindered by cost and availability. CT is a more readily available imaging modality. We sought to determine the association between CT features suggestive of active tuberculosis and RMA on FDG PET/CT obtained in patients who completed a standard course of ATT for pulmonary tuberculosis. We prospectively recruited patients who completed a standard course of ATT and declared cured based on negative sputum culture. All patients had FDG PET/CT within 2 weeks of completing ATT. We determined the presence of RMA on FDG PET images. Among the various lung changes seen on CT, we considered the presence of lung nodule, consolidation, micronodules in tree-in-bud pattern, FDG-avid chest nodes, and pleural effusion as suggestive of active tuberculosis. We determine the association between the presence of RMA on FDG PET and the CT features of active tuberculosis. We include 75 patients with a mean age of 36.09 ± 10.49 years. Forty-one patients (54.67%) had RMA on their FDG PET/CT while 34 patients (45.33%) achieved complete metabolic response to ATT. There was a significant association between four of the five CT features of active disease, p < 0.05 in all cases. Pleural effusion (seen in two patients) was the only CT feature of active disease without a significant association with the presence of RMA. This suggests that CT may be used in lieu of FDG PET/CT for treatment response assessment of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa.,Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa.,Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Matsontso Mathebula
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa
| | - Ingrid Moagi
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa
| | - Gbenga O Popoola
- Department of Epidemiology and Community Health, University of Ilorin, Ilorin, Nigeria
| | - Nontando Moeketsi
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa
| | - Maphoshane Nchabeleng
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa
| | - Chris Hikuam
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Jerrold J Ellner
- Department of Medicine, Centre for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Department of Pathology, Institute of Infectious Disease and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Bernard P Fourie
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa.,Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
13
|
Yimcharoen M, Saikaew S, Wattananandkul U, Phunpae P, Intorasoot S, Kasinrerk W, Tayapiwatana C, Butr-Indr B. The Regulation of ManLAM-Related Gene Expression in Mycobacterium tuberculosis with Different Drug Resistance Profiles Following Isoniazid Treatment. Infect Drug Resist 2022; 15:399-412. [PMID: 35153492 PMCID: PMC8828085 DOI: 10.2147/idr.s346869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) remains a global health concern because of the development of drug resistance. The adaptability of MTB in response to a variety of environmental stresses is a crucial strategy that supports their survival and evades host defense mechanisms. Stress regulates gene expression, particularly virulence genes, leading to the development of drug tolerance. Mannose-capped lipoarabinomannan (ManLAM) is a critical component of the cell wall, functions as a virulence factor and influences host defense mechanisms. Purpose This study focuses on the effect of isoniazid (INH) stress on the regulation of ManLAM-related genes, to improve our understanding of virulence and drug resistance development in MTB. Materials and Methods MTB with distinct drug resistance profiles were used for gene expression analysis. Multiplex-real time PCR assay was performed to monitor stress-related genes (hspX, tgs1, and sigE). The expression levels of ManLAM-related genes (pimB, mptA, mptC, dprE1, dprE2, and embC) were quantified by qRT-PCR. Sequence analysis of drug resistance-associated genes (inhA, katG, and rpoB) and ManLAM-related genes were performed to establish a correlation between genetic variation and gene expression. Results INH treatment activates the stress response mechanism in MTB, resulting in a distinct gene expression pattern between drug resistance and drug-sensitive TB. In response to INH, hspX was up-regulated in RIF-R and MDR. tgs1 was strongly up-regulated in MDR, whereas sigE was dramatically up-regulated in the drug-sensitive TB. Interestingly, ManLAM-related genes were most up-regulated in drug resistance, notably MDR (pimB, mptA, dprE1, and embC), implying a role for drug resistance and adaptability of MTB via ManLAM modulation. Conclusion This study establishes a relationship between the antibiotic stress response mechanism and the expression of ManLAM-related genes in MTB samples with diverse drug resistance profiles. The novel gene expression pattern in this work is valuable knowledge that can be applied for TB monitoring and treatment in the future.
Collapse
Affiliation(s)
- Manita Yimcharoen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sukanya Saikaew
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Usanee Wattananandkul
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sorasak Intorasoot
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at The Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at The Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Correspondence: Bordin Butr-Indr, Tel +66 53945086 ext. 15, Fax +66 53217143, Email ;
| |
Collapse
|
14
|
Mycobacterial MCE proteins as transporters that control lipid homeostasis of the cell wall. Tuberculosis (Edinb) 2021; 132:102162. [PMID: 34952299 DOI: 10.1016/j.tube.2021.102162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023]
Abstract
Mammalian cell entry (mce) genes are not only present in genomes of pathogenic mycobacteria, including Mycobacterium tuberculosis (the causative agent of tuberculosis), but also in saprophytic and opportunistic mycobacterial species. MCE are conserved cell-wall proteins encoded by mce operons, which maintain an identical structure in all mycobacteria: two yrbE genes (A and B) followed by six mce genes (A, B, C, D, E and F). Although these proteins are known to participate in the virulence of pathogenic mycobacteria, the presence of the operons in nonpathogenic mycobacteria and other bacteria indicates that they play another role apart from host cell invasion. In this respect, more recent studies suggest that they are functionally similar to ABC transporters and form part of lipid transporters in Actinobacteria. To date, most reviews on mce operons in the literature discuss their role in virulence. However, according to data from transcriptional studies, mce genes, particularly the mce1 and mce4 operons, modify their expression according to the carbon source and upon hypoxia, starvation, surface stress and oxidative stress; which suggests a role of MCE proteins in the response of Mycobacteria to external stressors. In addition to these data, this review also summarizes the studies demonstrating the role of MCE proteins as lipid transporters as well as the relevance of their transport function in the interaction of pathogenic Mycobacteria with the hosts. Altogether, the evidence to date would indicate that MCE proteins participate in the response to the stress conditions that mycobacteria encounter during infection, by participating in the cell wall remodelling and possibly contributing to lipid homeostasis.
Collapse
|
15
|
Keating T, Lethbridge S, Allnutt JC, Hendon-Dunn CL, Thomas SR, Alderwick LJ, Taylor SC, Bacon J. Mycobacterium tuberculosis modifies cell wall carbohydrates during biofilm growth with a concomitant reduction in complement activation. ACTA ACUST UNITED AC 2021; 7:100065. [PMID: 34778603 PMCID: PMC8577165 DOI: 10.1016/j.tcsw.2021.100065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The development of new vaccines for TB needs to be underpinned by an understanding of both the molecular and cellular mechanisms of host-pathogen interactions and how the immune response can be modulated to achieve protection from disease. Complement orchestrates many aspects of the innate and adaptive immune responses. However, little is known about the contribution of the complement pathways during TB disease, particularly with respect to mycobacterial phenotype. Extracellular communities (biofilms) of M. tuberculosis are found in the acellular rim of granulomas, during disease, and these are likely to be present in post-primary TB episodes, in necrotic lesions. Our study aimed to determine which mycobacterial cell wall components were altered during biofilm growth and how these cell wall alterations modified the complement response. We have shown that M. tuberculosis biofilms modified their cell wall carbohydrates and elicited reduced classical and lectin pathway activation. Consistent with this finding was the reduction of C3b/iC3b deposition on biofilm cell wall carbohydrate extracts. Here, we have highlighted the role of cell wall carbohydrate alterations during biofilm growth of M. tuberculosis and subsequent modulation of complement activation.
Collapse
Affiliation(s)
- Thomas Keating
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Samuel Lethbridge
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Jon C Allnutt
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Charlotte L Hendon-Dunn
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Stephen R Thomas
- Pathogen Immunology Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Luke J Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stephen C Taylor
- Pathogen Immunology Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Joanna Bacon
- TB Discovery Group, National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| |
Collapse
|
16
|
Sarno A, Bitencourt J, Queiroz A, Arruda S. In silico comparisons of lipid-related genes between Mycobacterium tuberculosis and BCG vaccine strains. Genet Mol Biol 2021; 44:e20210024. [PMID: 34699585 PMCID: PMC8547388 DOI: 10.1590/1678-4685-gmb-2021-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
Despite highly variable efficacy, BCG (Bacillus Calmette-Guérin) is the only vaccine available to prevent the tuberculosis (TB). Genomic heterogeneity between attenuated BCG strains and virulent Mycobacterium tuberculosis might help to explain this vaccine’s impaired capacity to induce long-term protection. Here, we investigate the lipid-related genes absent in attenuated BCG strains in order to correlate changes in both lipid metabolism and cell-wall lipid content to vaccine impairment. Whole genome sequences of M. tuberculosis H37Rv and the six most used BCG strains worldwide were aligned and the absent regions functionally categorized. Genomes of the BCG strains showed a total of 14 non-homologous lipid-related genes, including those belonging to mce3 operon, as well as the gene echaA1, which encodes an enoyl-CoA hydratase, and the genes encoding phospholipases PlcA, PlcB and PlcC. Taken together, the depletion of these M. tuberculosis H37Rv genomic regions were associated with marked alterations in lipid-related genes of BCG strains. Such alterations may indicate a dormant-like state and can be determining factors to the vaccine’s inability to induce long-term protection. These lipids can be further evaluated as an adjuvant to boost the current BCG-based vaccine.
Collapse
Affiliation(s)
- Alice Sarno
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Laboratório Avançado em Saúde Pública, Salvador, BA, Brazil.,Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Julia Bitencourt
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Laboratório Avançado em Saúde Pública, Salvador, BA, Brazil
| | - Adriano Queiroz
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Laboratório Avançado em Saúde Pública, Salvador, BA, Brazil
| | - Sergio Arruda
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Laboratório Avançado em Saúde Pública, Salvador, BA, Brazil.,Universidade do Estado da Bahia, Salvador, BA, Brazil
| |
Collapse
|
17
|
Campelo TA, Cardoso de Sousa PR, Nogueira LDL, Frota CC, Zuquim Antas PR. Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 2021; 3:000245. [PMID: 34595396 PMCID: PMC8479963 DOI: 10.1099/acmi.0.000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting Mycobacterium tuberculosis, which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50-60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of M. tuberculosis species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of M. tuberculosis infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | | | - Lucas de Lima Nogueira
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Cunha Frota
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Hessel M van Dijk J, van der Marel GA, Codée JDC. Developments in the Synthesis of Mycobacterial Phenolic Glycolipids. CHEM REC 2021; 21:3295-3312. [PMID: 34581501 DOI: 10.1002/tcr.202100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/11/2022]
Abstract
The highly lipophilic outer barrier of mycobacteria, such as M. tuberculosis and M. leprae, is key to their virulence and intrinsic antibiotic resistance. Various components of this mycomembrane interact with the host immune system but many of these interactions remain ill-understood. This review covers several chemical syntheses of one of these components, mycobacterial phenolic glycolipids (PGLs), and outlines the interaction of these PGLs with the human immune system, as established using these well-defined pure compounds.
Collapse
Affiliation(s)
- J Hessel M van Dijk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gijs A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
19
|
Patil V, Jain V. Understanding Metabolic Remodeling in Mycobacterium smegmatis to Overcome Energy Exigency and Reductive Stress Under Energy-Compromised State. Front Microbiol 2021; 12:722229. [PMID: 34539614 PMCID: PMC8440910 DOI: 10.3389/fmicb.2021.722229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
Mycobacteria such as Mycobacterium tuberculosis, the causative agent of tuberculosis that annually kills several million people worldwide, and Mycobacterium smegmatis, the non-pathogenic fast-growing mycobacteria, require oxidative phosphorylation to meet their energy requirements. We have previously shown that deletion of one of the two copies of atpD gene that codes for the ATP synthase β-subunit establishes an energy-compromised state in M. smegmatis. Here we report that upon such deletion, a major routing of electron flux occurs through the less energy-efficient complexes of its respiratory chain. ΔatpD bacterium also shows an increased reduced state which is further confirmed by the overexpression of WhiB3, a major redox sensor. We show a substantial modulation of the biosynthesis of cell wall associated lipids and triacylglycerol (TAG). An accumulation of TAG-containing lipid bodies is further confirmed by using 14C oleate incorporation. Interestingly, the mutant also shows an overexpression of TAG-degrading lipase genes, and the intracellular lipolytic enzymes mediate TAG hydrolysis for their utilization as energy source. We believe that our in vitro energy-depleted model will allow us to explore the critical link between energy metabolism, redox homeostasis, and lipid biosynthesis during ATP-depleted state, which will enhance our understanding of the bacterial adaptation, and will allow us to identify novel drug targets to counter mycobacterial infections.
Collapse
Affiliation(s)
- Varsha Patil
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
20
|
Asthana P, Singh D, Pedersen JS, Hynönen MJ, Sulu R, Murthy AV, Laitaoja M, Jänis J, Riley LW, Venkatesan R. Structural insights into the substrate-binding proteins Mce1A and Mce4A from Mycobacterium tuberculosis. IUCRJ 2021; 8:757-774. [PMID: 34584737 PMCID: PMC8420772 DOI: 10.1107/s2052252521006199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 05/28/2023]
Abstract
Mycobacterium tuberculosis (Mtb), which is responsible for more than a million deaths annually, uses lipids as the source of carbon and energy for its survival in the latent phase of infection. Mtb cannot synthesize all of the lipid molecules required for its growth and pathogenicity. Therefore, it relies on transporters such as the mammalian cell entry (Mce) complexes to import lipids from the host across the cell wall. Despite their importance for the survival and pathogenicity of Mtb, information on the structural properties of these proteins is not yet available. Each of the four Mce complexes in Mtb (Mce1-4) comprises six substrate-binding proteins (SBPs; MceA-F), each of which contains four conserved domains (N-terminal transmembrane, MCE, helical and C-terminal unstructured tail domains). Here, the properties of the various domains of Mtb Mce1A and Mce4A, which are involved in the import of mycolic/fatty acids and cholesterol, respectively, are reported. In the crystal structure of the MCE domain of Mce4A (MtMce4A39-140) a domain-swapped conformation is observed, whereas solution studies, including small-angle X-ray scattering (SAXS), indicate that all Mce1A and Mce4A domains are predominantly monomeric. Further, structural comparisons show interesting differences from the bacterial homologs MlaD, PqiB and LetB, which form homohexamers when assembled as functional transporter complexes. These data, and the fact that there are six SBPs in each Mtb mce operon, suggest that the MceA-F SBPs from Mce1-4 may form heterohexamers. Also, interestingly, the purification and SAXS analysis showed that the helical domains interact with the detergent micelle, suggesting that when assembled the helical domains of MceA-F may form a hydrophobic pore for lipid transport, as observed in EcPqiB. Overall, these data highlight the unique structural properties of the Mtb Mce SBPs.
Collapse
Affiliation(s)
- Pooja Asthana
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Dhirendra Singh
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Mikko J. Hynönen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ramita Sulu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Abhinandan V. Murthy
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Lee W. Riley
- School of Public Health, University of California, Berkeley, California, USA
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Holzheimer M, Buter J, Minnaard AJ. Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chem Rev 2021; 121:9554-9643. [PMID: 34190544 PMCID: PMC8361437 DOI: 10.1021/acs.chemrev.1c00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The pathogen Mycobacterium tuberculosis (Mtb), causing
tuberculosis disease, features an extraordinary
thick cell envelope, rich in Mtb-specific lipids,
glycolipids, and glycans. These cell wall components are often directly
involved in host–pathogen interaction and recognition, intracellular
survival, and virulence. For decades, these mycobacterial natural
products have been of great interest for immunology and synthetic
chemistry alike, due to their complex molecular structure and the
biological functions arising from it. The synthesis of many of these
constituents has been achieved and aided the elucidation of their
function by utilizing the synthetic material to study Mtb immunology. This review summarizes the synthetic efforts of a quarter
century of total synthesis and highlights how the synthesis layed
the foundation for immunological studies as well as drove the field
of organic synthesis and catalysis to efficiently access these complex
natural products.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
22
|
Robbe-Saule M, Foulon M, Poncin I, Esnault L, Varet H, Legendre R, Besnard A, Grzegorzewicz AE, Jackson M, Canaan S, Marsollier L, Marion E. Transcriptional adaptation of Mycobacterium ulcerans in an original mouse model: New insights into the regulation of mycolactone. Virulence 2021; 12:1438-1451. [PMID: 34107844 PMCID: PMC8204960 DOI: 10.1080/21505594.2021.1929749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Varet
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | | | - Anna E Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | | | | | | |
Collapse
|
23
|
Mallick I, Santucci P, Poncin I, Point V, Kremer L, Cavalier JF, Canaan S. Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis? FEMS Microbiol Rev 2021; 45:6283747. [PMID: 34036305 DOI: 10.1093/femsre/fuab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols under the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial lifecycle. However, despite of their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization, and current knowledge regarding the micro-environmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding to the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discuss.
Collapse
Affiliation(s)
- Ivy Mallick
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.,IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| |
Collapse
|
24
|
TREM2 is a receptor for non-glycosylated mycolic acids of mycobacteria that limits anti-mycobacterial macrophage activation. Nat Commun 2021; 12:2299. [PMID: 33863908 PMCID: PMC8052348 DOI: 10.1038/s41467-021-22620-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Mycobacterial cell-wall glycolipids elicit an anti-mycobacterial immune response via FcRγ-associated C-type lectin receptors, including Mincle, and caspase-recruitment domain family member 9 (CARD9). Additionally, mycobacteria harbor immuno-evasive cell-wall lipids associated with virulence and latency; however, a mechanism of action is unclear. Here, we show that the DAP12-associated triggering receptor expressed on myeloid cells 2 (TREM2) recognizes mycobacterial cell-wall mycolic acid (MA)-containing lipids and suggest a mechanism by which mycobacteria control host immunity via TREM2. Macrophages respond to glycosylated MA-containing lipids in a Mincle/FcRγ/CARD9-dependent manner to produce inflammatory cytokines and recruit inducible nitric oxide synthase (iNOS)-positive mycobactericidal macrophages. Conversely, macrophages respond to non-glycosylated MAs in a TREM2/DAP12-dependent but CARD9-independent manner to recruit iNOS-negative mycobacterium-permissive macrophages. Furthermore, TREM2 deletion enhances Mincle-induced macrophage activation in vitro and inflammation in vivo and accelerates the elimination of mycobacterial infection, suggesting that TREM2-DAP12 signaling counteracts Mincle-FcRγ-CARD9-mediated anti-mycobacterial immunity. Mycobacteria, therefore, harness TREM2 for immune evasion. Mycobacterial cell wall lipids can drive immunoevasion, but underlying mechanisms are incompletely understood. Here the authors show TREM2 is a pattern recognition receptor that binds non-glycosylated mycolic acid-containing lipids and inhibits Mincle-induced anti-mycobacterial macrophage responses.
Collapse
|
25
|
Abrahams KA, Besra GS. Synthesis and recycling of the mycobacterial cell envelope. Curr Opin Microbiol 2021; 60:58-65. [PMID: 33610125 PMCID: PMC8035080 DOI: 10.1016/j.mib.2021.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of the disease tuberculosis, is a recognised global health concern. The efficacy of the current treatment regime is under threat due to the emergence of antibiotic resistance, directing an urgent requirement for the discovery of new anti-tubercular agents and drug targets. The mycobacterial cell wall is a well-validated drug target for Mtb and is composed of three adaptive macromolecular structures, peptidoglycan, arabinogalactan and mycolic acids, an array of complex lipids and carbohydrates. The majority of the enzymes involved in cell wall synthesis have been established, whilst studies directed towards the mechanisms of remodelling and recycling have been neglected. This review briefly describes mycobacterial cell wall synthesis, and focuses on aspects of remodelling and recycling, thus highlighting opportunities for future research.
Collapse
Affiliation(s)
- Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
26
|
Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021; 11:635335. [PMID: 33796480 PMCID: PMC8007978 DOI: 10.3389/fcimb.2021.635335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in humans. Recently, novel strategies such as host-directed therapeutics and adjunctive therapies that enhance the effect of existing antibiotics have emerged to better control Mtb infection. Recent advances in understanding the metabolic interplay between host immune cells and pathogens have provided new insights into how their interactions ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we describe how metabolic cascades in immune environments and relevant metabolites produced from immune cells during Mtb infection play critical roles in the progression of diseases and induction of anti-Mtb protective immunity. In addition, we introduce how metabolic alterations in Mtb itself can lead to the development of persister cells that are resistant to host immunity and can eventually evade antibiotic attacks. Further understanding of the metabolic link between host cells and Mtb may contribute to not only the prevention of Mtb persister development but also the optimization of host anti-Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review highlights novel approaches to improve and develop host-mediated therapeutic strategies against Mtb infection by restoring and switching pathogen-favoring metabolic conditions with host-favoring conditions.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Rens C, Chao JD, Sexton DL, Tocheva EI, Av-Gay Y. Roles for phthiocerol dimycocerosate lipids in Mycobacterium tuberculosis pathogenesis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33629944 DOI: 10.1099/mic.0.001042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The success of Mycobacterium tuberculosis as a pathogen is well established: tuberculosis is the leading cause of death by a single infectious agent worldwide. The threat of multi- and extensively drug-resistant bacteria has renewed global concerns about this pathogen and understanding its virulence strategies will be essential in the fight against tuberculosis. The current review will focus on phthiocerol dimycocerosates (PDIMs), a long-known and well-studied group of complex lipids found in the M. tuberculosis cell envelope. Numerous studies show a role for PDIMs in several key steps of M. tuberculosis pathogenesis, with recent studies highlighting its involvement in bacterial virulence, in association with the ESX-1 secretion system. Yet, the mechanisms by which PDIMs help M. tuberculosis to control macrophage phagocytosis, inhibit phagosome acidification and modulate host innate immunity, remain to be fully elucidated.
Collapse
Affiliation(s)
- Céline Rens
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Joseph D Chao
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Danielle L Sexton
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada.,Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
28
|
García EA, Blanco FC, Klepp LI, Pazos A, McNeil MR, Jackson M, Bigi F. Role of PhoPR in the response to stress of Mycobacterium bovis. Comp Immunol Microbiol Infect Dis 2020; 74:101593. [PMID: 33285386 DOI: 10.1016/j.cimid.2020.101593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
PhoP is part of the two-component PhoPR system that regulates the expression of virulence genes of Mycobacteria. The goal of this work was to elucidate the role of PhoP in the mechanism that Mycobacterium bovis, the causative agent of bovine tuberculosis, displays upon stress. An analysis of gene expression and acidic growth curves indicated that M. bovis neutralized the external acidic environment by inducing and secreting ammonia. We found that PhoP is essential for ammonia production/secretion and its role in this process seems to be the induction of asparaginase and urease expression. We also demonstrated that the lack of PhoP negatively affected the synthesis of phthiocerol dimycocerosates. This finding is consistent with the role of the lipid anabolism in maintaining the redox environment upon stress in mycobacteria. Altogether the results of this study indicate that PhoP plays an important role in the response mechanisms to stress of M. bovis.
Collapse
Affiliation(s)
- Elizabeth A García
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria Institute of Biotechnology, National Institute of Agricultural Technology, Argentina.
| | - Federico C Blanco
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria Institute of Biotechnology, National Institute of Agricultural Technology, Argentina.
| | - Laura I Klepp
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria Institute of Biotechnology, National Institute of Agricultural Technology, Argentina.
| | - Adriana Pazos
- Instituto Tecnología de Alimentos (ITA), INTA, Food Technology Institute, Argentina.
| | - Michael R McNeil
- Colorado State University, Dept. of Microbiology, Immunology and Pathology, USA.
| | - Mary Jackson
- Colorado State University, Dept. of Microbiology, Immunology and Pathology, USA.
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria Institute of Biotechnology, National Institute of Agricultural Technology, Argentina.
| |
Collapse
|
29
|
Hamidieh F, Farnia P, Nowroozi J, Farnia P, Velayati AA. An Overview of Genetic Information of Latent Mycobacterium tuberculosis. Tuberc Respir Dis (Seoul) 2020; 84:1-12. [PMID: 33121230 PMCID: PMC7801807 DOI: 10.4046/trd.2020.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis has infected more than two billion individuals worldwide, of whom 5%–10% have clinically active disease and 90%–95% remain in the latent stage with a reservoir of viable bacteria in the macrophages for extended periods of time. The tubercle bacilli at this stage are usually called dormant, non-viable, and/or non-culturable microorganisms. The patients with latent bacilli will not have clinical pictures and are not infectious. The infections in about 2%–23% of the patients with latent status become reactivated for various reasons such as cancer, human immunodeficiency virus infection, diabetes, and/or aging. Many studies have examined the mechanisms involved in the latent state of Mycobacterium and showed that latency modified the expression of many genes. Therefore, several mechanisms will change in this bacterium. Hence, this study aimed to briefly examine the genes involved in the latent state as well as the changes that are caused by Mycobacterium tuberculosis. The study also evaluated the relationship between the functions of these genes.
Collapse
Affiliation(s)
- Faezeh Hamidieh
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamileh Nowroozi
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Poopak Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Augenstreich J, Briken V. Host Cell Targets of Released Lipid and Secreted Protein Effectors of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:595029. [PMID: 33194845 PMCID: PMC7644814 DOI: 10.3389/fcimb.2020.595029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a very successful pathogen, strictly adapted to humans and the cause of tuberculosis. Its success is associated with its ability to inhibit host cell intrinsic immune responses by using an arsenal of virulence factors of different nature. It has evolved to synthesize a series of complex lipids which form an outer membrane and may also be released to enter host cell membranes. In addition, secreted protein effectors of Mtb are entering the host cell cytosol to interact with host cell proteins. We briefly discuss the current model, involving the ESX-1 type seven secretion system and the Mtb lipid phthiocerol dimycoserosate (PDIM), of how Mtb creates pores in the phagosomal membrane to allow Mtb proteins to access to the host cell cytosol. We provide an exhaustive list of Mtb secreted proteins that have effector functions. They modify (mostly inhibit but sometimes activate) host cell pathways such as: phagosome maturation, cell death, cytokine response, xenophagy, reactive oxygen species (ROS) response via NADPH oxidase 2 (NOX2), nitric oxide (NO) response via NO Synthase 2 (NOS2) and antigen presentation via MHC class I and class II molecules. We discuss the host cell targets for each lipid and protein effector and the importance of the Mtb effector for virulence of the bacterium.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
31
|
Kim JK, Silwal P, Jo EK. Host-Pathogen Dialogues in Autophagy, Apoptosis, and Necrosis during Mycobacterial Infection. Immune Netw 2020; 20:e37. [PMID: 33163245 PMCID: PMC7609165 DOI: 10.4110/in.2020.20.e37] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an etiologic pathogen of human tuberculosis (TB), a serious infectious disease with high morbidity and mortality. In addition, the threat of drug resistance in anti-TB therapy is of global concern. Despite this, it remains urgent to research for understanding the molecular nature of dynamic interactions between host and pathogens during TB infection. While Mtb evasion from phagolysosomal acidification is a well-known virulence mechanism, the molecular events to promote intracellular parasitism remains elusive. To combat intracellular Mtb infection, several defensive processes, including autophagy and apoptosis, are activated. In addition, Mtb-ingested phagocytes trigger inflammation, and undergo necrotic cell death, potentially harmful responses in case of uncontrolled pathological condition. In this review, we focus on Mtb evasion from phagosomal acidification, and Mtb interaction with host autophagy, apoptosis, and necrosis. Elucidation of the molecular dialogue will shed light on Mtb pathogenesis, host defense, and development of new paradigms of therapeutics.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
32
|
Liu F, Liang J, Zhang B, Gao Y, Yang X, Hu T, Yang H, Xu W, Guddat LW, Rao Z. Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. SCIENCE ADVANCES 2020; 6:6/44/eabb9833. [PMID: 33127676 PMCID: PMC7608808 DOI: 10.1126/sciadv.abb9833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
In bacteria, adenosine 5'-triphosphate (ATP)-binding cassette (ABC) importers are essential for the uptake of nutrients including the nonreducing disaccharide trehalose, a metabolite that is crucial for the survival and virulence of several human pathogens including Mycobacterium tuberculosis SugABC is an ABC transporter that translocates trehalose from the periplasmic lipoprotein LpqY into the cytoplasm of mycobacteria. Here, we report four high-resolution cryo-electron microscopy structures of the mycobacterial LpqY-SugABC complex to reveal how it binds and passes trehalose through the membrane to the cytoplasm. A unique feature observed in this system is the initial mode of capture of the trehalose at the LpqY interface. Uptake is achieved by a pivotal rotation of LpqY relative to SugABC, moving from an open and accessible conformation to a clamped conformation upon trehalose binding. These findings enrich our understanding as to how ABC transporters facilitate substrate transport across the membrane in Gram-positive bacteria.
Collapse
Affiliation(s)
- Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Petrilli JD, Müller I, Araújo LE, Cardoso TM, Carvalho LP, Barros BC, Teixeira M, Arruda S, Riley LW, Queiroz A. Differential Host Pro-Inflammatory Response to Mycobacterial Cell Wall Lipids Regulated by the Mce1 Operon. Front Immunol 2020; 11:1848. [PMID: 32973761 PMCID: PMC7461851 DOI: 10.3389/fimmu.2020.01848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
The cell wall of wild-type (WT) Mycobacterium tuberculosis (Mtb), an etiologic agent of tuberculosis (TB) and a Mtb strain disrupted in a 13-gene operon mce1 (Δmce1) varies by more than 400 lipid species. Here, we examined Mtb lipid-induced response in murine macrophage, as well as in human T-cell subpopulations in order to gain an insight into how changes in cell wall lipid composition may modulate host immune response. Relative to WT Mtb cell wall lipids, the non-polar lipid extracts from Δmce1 enhanced the mRNA expression of lipid-sense nuclear receptors TR4 and PPAR-γ and dampened the macrophage expression of genes encoding TNF-α, IL-6, and IL-1β. Relative to untreated control, WT lipid-pre-stimulated macrophages from healthy individuals induced a higher level of CD4−CD8− double negative T-cells (DN T-cells) producing TNF-α. Conversely, compared to WT, stimulation with Δmce1 lipids induced higher mean fluorescence intensity (MFI) in IL-10-producing DN T cells. Mononuclear cells from TB patients stimulated with WT Mtb lipids induced an increased production of TNF-α by CD8+ lymphocytes. Taken together, these observations suggest that changes in mce1 operon expression during a course of infection may serve as a strategy by Mtb to evade the host pro-inflammatory responses.
Collapse
Affiliation(s)
- Jéssica D Petrilli
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Igor Müller
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Luana E Araújo
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Thiago M Cardoso
- Laboratório de Pesquisa Clínica, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Lucas P Carvalho
- Laboratório de Pesquisa Clínica, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Bruna C Barros
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Maurício Teixeira
- Laboratório de Pesquisa Clínica, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Sérgio Arruda
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Adriano Queiroz
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| |
Collapse
|
34
|
Sachdeva K, Goel M, Sudhakar M, Mehta M, Raju R, Raman K, Singh A, Sundaramurthy V. Mycobacterium tuberculosis ( Mtb) lipid mediated lysosomal rewiring in infected macrophages modulates intracellular Mtb trafficking and survival. J Biol Chem 2020; 295:9192-9210. [PMID: 32424041 PMCID: PMC7335774 DOI: 10.1074/jbc.ra120.012809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Intracellular pathogens commonly manipulate the host lysosomal system for their survival. However, whether this pathogen-induced alteration affects the organization and functioning of the lysosomal system itself is not known. Here, using in vitro and in vivo infections and quantitative image analysis, we show that the lysosomal content and activity are globally elevated in Mycobacterium tuberculosis (Mtb)-infected macrophages. We observed that this enhanced lysosomal state is sustained over time and defines an adaptive homeostasis in the infected macrophage. Lysosomal alterations are caused by mycobacterial surface components, notably the cell wall-associated lipid sulfolipid-1 (SL-1), which functions through the mTOR complex 1 (mTORC1)-transcription factor EB (TFEB) axis in the host cells. An Mtb mutant lacking SL-1, MtbΔpks2, shows attenuated lysosomal rewiring compared with the WT Mtb in both in vitro and in vivo infections. Exposing macrophages to purified SL-1 enhanced the trafficking of phagocytic cargo to lysosomes. Correspondingly, MtbΔpks2 exhibited a further reduction in lysosomal delivery compared with the WT. Reduced trafficking of this mutant Mtb strain to lysosomes correlated with enhanced intracellular bacterial survival. Our results reveal that global alteration of the host lysosomal system is a defining feature of Mtb-infected macrophages and suggest that this altered lysosomal state protects host cell integrity and contributes to the containment of the pathogen.
Collapse
Affiliation(s)
- Kuldeep Sachdeva
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Manisha Goel
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Malvika Sudhakar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India; Initiative for Biological Systems Engineering, Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Mansi Mehta
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Rajmani Raju
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Karthik Raman
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India; Initiative for Biological Systems Engineering, Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Amit Singh
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
35
|
Mavi PS, Singh S, Kumar A. Reductive Stress: New Insights in Physiology and Drug Tolerance of Mycobacterium. Antioxid Redox Signal 2020; 32:1348-1366. [PMID: 31621379 DOI: 10.1089/ars.2019.7867] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance:Mycobacterium tuberculosis (Mtb) encounters reductive stress during its infection cycle. Notably, host-generated protective responses, such as acidic pH inside phagosomes and lysosomes, exposure to glutathione in alveolar hypophase (i.e., a thin liquid lining consisting of surfactant and proteins in the alveolus), and hypoxic environments inside granulomas are associated with the accumulation of reduced cofactors, such as nicotinamide adenine dinucleotide (reduced form), nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide (reduced form), and nonprotein thiols (e.g., mycothiol), leading to reductive stress in Mtb cells. Dissipation of this reductive stress is important for survival of the bacterium. If reductive stress is not dissipated, it leads to generation of reactive oxygen species, which may be fatal for the cells. Recent Advances: This review focuses on mechanisms utilized by mycobacteria to sense and respond to reductive stress. Importantly, exposure of Mtb cells to reductive stress leads to growth inhibition, altered metabolism, modulation of virulence, and drug tolerance. Mtb is equipped with thiol buffering systems of mycothiol and ergothioneine to protect itself from various redox stresses. These systems are complemented by thioredoxin and thioredoxin reductase (TR) systems for maintaining cellular redox homeostasis. A diverse array of sensors is used by Mycobacterium for monitoring its intracellular redox status. Upon sensing reductive stress, Mtb uses a flexible and robust metabolic system for its dissipation. Branched electron transport chain allows Mycobacterium to function with different terminal electron acceptors and modulate proton motive force to fulfill energy requirements under diverse scenarios. Interestingly, Mtb utilizes variations in the tricarboxylic cycle and a number of dehydrogenases to dissipate reductive stress. Upon prolonged exposure to reductive stress, Mtb utilizes biosynthesis of storage and virulence lipids as a dissipative mechanism. Critical Issues: The mechanisms utilized by Mycobacterium for sensing and tackling reductive stress are not well characterized. Future Directions: The precise role of thiol buffering and TR systems in neutralizing reductive stress is not well defined. Genetic systems that respond to metabolic reductive stress and thiol reductive stress need to be mapped. Genetic screens could aid in identification of such systems. Given that management of reductive stress is critical for both actively replicating and persister mycobacteria, an improved understanding of the mechanisms used by mycobacteria for dissipation of reductive stress may lead to identification of vulnerable choke points that could be targeted for killing Mtb in vivo.
Collapse
Affiliation(s)
- Parminder Singh Mavi
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Shweta Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ashwani Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
36
|
Unterweger H, Lyer S, Janko C, Friedrich RP, Cicha I, Tietze R, Alexiou C. Nanomedicine for infectious diseases. Nanomedicine (Lond) 2020; 15:1263-1267. [PMID: 32394791 DOI: 10.2217/nnm-2020-0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Harald Unterweger
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, 91054, Erlangen, Germany
| |
Collapse
|
37
|
Moopanar K, Mvubu NE. Lineage-specific differences in lipid metabolism and its impact on clinical strains of Mycobacterium tuberculosis. Microb Pathog 2020; 146:104250. [PMID: 32407863 DOI: 10.1016/j.micpath.2020.104250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
Mycobacterium tuberculosis (M. tb) is the causative agent of TB and its incidences has been on the rise since 1993. Lipid metabolism is an imperative metabolic process, which grants M. tb the ability to utilize host-derived lipids as a secondary source of nutrition during infection. In addition to degrading host lipids, M. tb is proficient at using lipids, such as cholesterol, to facilitate its entry into macrophages. Mycolic acids, constituents of the mycobacterial cell wall, offer protection and aid in persistence of the bacterium. These are effectively synthesized using a complex fatty acid synthase system. Many pathogenesis studies have reported differences in lipid-metabolism of clinical strains of M. tb that belongs to diverse lineages of the Mycobacterium tuberculosis complex (MTBC). East-Asian and Euro-American lineages possess "unique" cell wall-associated lipids compared to the less transmissible Ethiopian lineage, which may offer these lineages a competitive advantage. Therefore, it is crucial to comprehend the complexities among the MTBC lineages with lipid metabolism and their impact on virulence, transmissibility and pathogenesis. Thus, this review provides an insight into lipid metabolism in various lineages of the MTBC and their impact on virulence and persistence during infection, as this may provide critical insight into developing novel therapeutics to combat TB.
Collapse
Affiliation(s)
- K Moopanar
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| | - N E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
38
|
Bah A, Sanicas M, Nigou J, Guilhot C, Astarie-Dequeker C, Vergne I. The Lipid Virulence Factors of Mycobacterium tuberculosis Exert Multilayered Control over Autophagy-Related Pathways in Infected Human Macrophages. Cells 2020; 9:cells9030666. [PMID: 32182946 PMCID: PMC7140614 DOI: 10.3390/cells9030666] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is an important innate immune defense mechanism that controls Mycobacterium tuberculosis (Mtb) growth inside macrophages. Autophagy machinery targets Mtb-containing phagosomes via xenophagy after damage to the phagosomal membrane due to the Type VII secretion system Esx-1 or via LC3-associated phagocytosis without phagosomal damage. Conversely, Mtb restricts autophagy-related pathways via the production of various bacterial protein factors. Although bacterial lipids are known to play strategic functions in Mtb pathogenesis, their role in autophagy manipulation remains largely unexplored. Here, we report that the lipid virulence factors sulfoglycolipids (SLs) and phthiocerol dimycocerosates (DIMs) control autophagy-related pathways through distinct mechanisms in human macrophages. Using knock-out and knock-in mutants of Mtb and Mycobacterium bovis BCG (Bacille Calmette Guerin) and purified lipids, we found that (i) Mtb mutants with DIM and SL deficiencies promoted functional autophagy via an MyD88-dependent and phagosomal damage-independent pathway in human macrophages; (ii) SLs limited this pathway by acting as TLR2 antagonists; (iii) DIMs prevented phagosomal damage-independent autophagy while promoting Esx-1-dependent xenophagy; (iv) and DIMs, but not SLs, limited the acidification of LC3-positive Mtb compartments. In total, our study reveals an unexpected and intricate role for Mtb lipid virulence factors in controlling autophagy-related pathways in human macrophages, thus providing further insight into the autophagy manipulation tactics deployed by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Aïcha Bah
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
| | - Merlin Sanicas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
- Correspondence: (C.A.-D.); (I.V.)
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
- Correspondence: (C.A.-D.); (I.V.)
| |
Collapse
|
39
|
Yang D, Klebl DP, Zeng S, Sobott F, Prévost M, Soumillion P, Vandenbussche G, Fontaine V. Interplays between copper and Mycobacterium tuberculosis GroEL1. Metallomics 2020; 12:1267-1277. [DOI: 10.1039/d0mt00101e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The chaperone GroEL1 enhances copper tolerance during Mycobacterium bovis BCG biofilm formation. The binding of copper ions to the GroEL1 histidine-rich region protects the chaperone from destabilization and increases its ATPase activity.
Collapse
Affiliation(s)
- Dong Yang
- Microbiology, Bioorganic and Macromolecular Chemistry Unit
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| | - David P. Klebl
- The Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Biomedical Sciences
| | - Sheng Zeng
- Microbiology, Bioorganic and Macromolecular Chemistry Unit
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| | - Frank Sobott
- The Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Molecular and Cellular Biology
| | - Martine Prévost
- Laboratory for the Structure and Function of Biological Membranes
- Faculty of Sciences
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| | - Patrice Soumillion
- Biochemistry and Genetics of Microorganisms
- Louvain Institute of Biomolecular Science and Technology
- Université Catholique de Louvain (UCL)
- Louvain-la-Neuve
- Belgium
| | - Guy Vandenbussche
- Laboratory for the Structure and Function of Biological Membranes
- Faculty of Sciences
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| |
Collapse
|
40
|
Miao J, Liu H, Qu Y, Fu W, Qi K, Zang S, He J, Zhao S, Chen S, Jiang T. Effect of peptidoglycan amidase MSMEG_6281 on fatty acid metabolism in Mycobacterium smegmatis. Microb Pathog 2019; 140:103939. [PMID: 31870758 DOI: 10.1016/j.micpath.2019.103939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
Mycobacterium smegmatis MSMEG_6281, a peptidoglycan (PG) amidase, is essential in maintaining cell wall integrity. To address the potential roles during the MSMEG_6281-mediated biological process, we compared proteomes from wild-type M.smegmatis and MSMEG_6281 gene knockout strain (M.sm-ΔM_6281) using LC-MS/MS analysis. Peptide analysis revealed that 851 proteins were differentially produced with at least 1.2-fold changes, including some proteins involved in fatty acid metabolism such as acyl-CoA synthase, acyl-CoA dehydrogenase, MCE-family proteins, ATP-binding cassette (ABC) transporters, and MmpL4. Some proteins related to fatty acid degradation were enriched through protein-protein interaction analysis. Therefore, proteomic data showed that a lack of MSMEG_6281 affected fatty acid metabolism. Mycobacteria can produce diverse lipid molecules ranging from single fatty acids to highly complex mycolic acids, and mycobacterial surface-exposed lipids may impact biofilm formation. In this study, we also assessed the effects of MSMEG_6281 on biofilm phenotype using semi-quantitative and morphology analysis methods. These results found that M.sm-ΔM_6281 exhibited a delayed biofilm phenotype compared to that of the wild-type M.smegmatis, and the changes were recovered when PG amidase was rescued in a ΔM_6281::Rv3717 strain. Our results demonstrated that MSMEG_6281 impacts fatty acid metabolism and further interferes with biofilm formation. These results provide a clue to study the effects of PG amidase on mycobacterial pathogenicity.
Collapse
Affiliation(s)
- Jiatong Miao
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Hanrui Liu
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Yushan Qu
- Business School, Rutgers, The State University of New Jersey, Piscataway, 08854, NJ, USA
| | - Weizhe Fu
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Kangwei Qi
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Shizhu Zang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Jiajia He
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Shijia Zhao
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Shixing Chen
- Key Laboratory of Science and Technology on Microsystem, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China
| | - Tao Jiang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
41
|
Garcia-Vilanova A, Chan J, Torrelles JB. Underestimated Manipulative Roles of Mycobacterium tuberculosis Cell Envelope Glycolipids During Infection. Front Immunol 2019; 10:2909. [PMID: 31921168 PMCID: PMC6930167 DOI: 10.3389/fimmu.2019.02909] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis cell envelope has been evolving over time to make the bacterium transmissible and adaptable to the human host. In this context, the M. tuberculosis cell envelope contains a peripheral barrier full of lipids, some of them unique, which confer M. tuberculosis with a unique shield against the different host environments that the bacterium will encounter at the different stages of infection. This lipid barrier is mainly composed of glycolipids that can be characterized by three different subsets: trehalose-containing, mannose-containing, and 6-deoxy-pyranose-containing glycolipids. In this review, we explore the roles of these cell envelope glycolipids in M. tuberculosis virulence and pathogenesis, drug resistance, and further, how these glycolipids may dictate the M. tuberculosis cell envelope evolution from ancient to modern strains. Finally, we address how these M. tuberculosis cell envelope glycolipids are impacted by the host lung alveolar environment, their role in vaccination and masking host immunity, and subsequently the impact of these glycolipids in shaping how M. tuberculosis interacts with host cells, manipulating their immune response to favor the establishment of an infection.
Collapse
Affiliation(s)
- Andreu Garcia-Vilanova
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John Chan
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States.,Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
| | - Jordi B Torrelles
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
42
|
Torres-Atencio I, Rosero S, Ordoñez C, Ruiz M, Goodridge A. Mycobacterial Lipids Induce Calcium Mobilization and Degranulation of Mast Cells. Am J Respir Crit Care Med 2019; 198:813-816. [PMID: 29897782 DOI: 10.1164/rccm.201803-0436le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ivonne Torres-Atencio
- 1 Universidad de Panamá Panamá, Panama and.,2 Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Ciudad del Saber, Panama
| | - Sara Rosero
- 2 Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Ciudad del Saber, Panama
| | - Ciara Ordoñez
- 2 Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Ciudad del Saber, Panama
| | - Michelle Ruiz
- 1 Universidad de Panamá Panamá, Panama and.,2 Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Ciudad del Saber, Panama
| | - Amador Goodridge
- 2 Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Ciudad del Saber, Panama
| |
Collapse
|
43
|
Lawal IO, Fourie BP, Mathebula M, Moagi I, Lengana T, Moeketsi N, Nchabeleng M, Hatherill M, Sathekge MM. 18F-FDG PET/CT as a Noninvasive Biomarker for Assessing Adequacy of Treatment and Predicting Relapse in Patients Treated for Pulmonary Tuberculosis. J Nucl Med 2019; 61:412-417. [PMID: 31451489 DOI: 10.2967/jnumed.119.233783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Microbial culture is the gold standard for determining the effectiveness of tuberculosis treatment. End-of-treatment (EOT) 18F-FDG PET/CT findings are variable among patients with negative microbial culture results after completing a standard regimen of antituberculous treatment (ATT), with some patients having a complete metabolic response to treatment whereas others have residual metabolic activity (RMA). We herein determine the impact of findings on EOT 18F-FDG PET/CT on tuberculosis relapse in patients treated with a standard regimen of ATT for drug-sensitive pulmonary tuberculosis (DS-PTB). Methods: Patients who completed a standard regimen of ATT for DS-PTB and were declared cured based on a negative clinical and bacteriologic examination were prospectively recruited to undergo EOT 18F-FDG PET/CT. Images were assessed for the presence of RMA. Patients were subsequently followed up for 6 mo looking for symptoms of tuberculosis relapse. When new symptoms developed, relapse was confirmed with bacteriologic testing. Repeat 18F-FDG PET/CT was done in patients who relapsed. Results: Fifty-three patients were included (mean age, 37.81 ± 11.29 y), with 62% being male and 75% HIV-infected. RMA was demonstrated in 33 patients (RMA group), whereas 20 patients had a complete metabolic response to ATT (non-RMA group). There was a higher prevalence of lung cavitation in the RMA group (P = 0.035). The groups did not significantly differ in age, sex, presence of HIV infection, body mass index, or hemoglobin level (P > 0.05). On follow-up, no patients in the non-RMA group developed tuberculosis relapse. Three patients in the RMA group developed relapse. All patients who developed tuberculosis relapse had bilateral disease with lung cavitation. Conclusion: A negative EOT 18F-FDG PET/CT result is protective against tuberculosis relapse. Nine percent of patients with RMA after ATT may experience tuberculosis relapse within 6 mo of completing ATT. Bilateral disease with lung cavitation is prevalent among patients with tuberculosis relapse.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Bernard P Fourie
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Matsontso Mathebula
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa; and
| | - Ingrid Moagi
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa; and
| | - Thabo Lengana
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Nontando Moeketsi
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa; and
| | - Maphoshane Nchabeleng
- Department of Medical Microbiology and MeCRU, Sefako Makgatho University of Medical Science, Pretoria, South Africa; and
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
44
|
Characterization of Arabinosyl Transfer Reactions in the Biosynthesis of Mycobacterial Cell Envelope (Lipo)Polysaccharides. Methods Mol Biol 2019. [PMID: 30864132 DOI: 10.1007/978-1-4939-9154-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
D-Arabinofuranose is a major glycosyl constituent of mycobacteria found in two essential cell envelope heteropolysaccharides, arabinogalactan and lipoarabinomannan. Seven different arabinosyltransferases at least are required to synthesize the arabinan domain of these two major glycans. Because of their interest from the perspective of drug development, these enzymes have been the object of intense investigations. In this chapter, we describe the protocols used to perform nonradioactive arabinosyltransferase assays with synthetic acceptor and donor substrates and characterize the enzymatic products of the reactions by mass spectrometry.
Collapse
|
45
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
46
|
López-Hernández Y, Lara-Ramírez EE, Salgado-Bustamante M, López JA, Oropeza-Valdez JJ, Jaime-Sánchez E, Castañeda-Delgado JE, Magaña-Aquino M, Murgu M, Enciso-Moreno JA. Glycerophospholipid Metabolism Alterations in Patients with Type 2 Diabetes Mellitus and Tuberculosis Comorbidity. Arch Med Res 2019; 50:71-78. [PMID: 31349956 DOI: 10.1016/j.arcmed.2019.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022]
Abstract
Type-2 Diabetes (T2D) is a predisposing cause for developing tuberculosis (TB) in low- and middle-income countries. TB-T2D comorbidity worsens clinical control and prognosis of the affected individuals. The underlying metabolic alterations for this infectious-metabolic disease are still largely unknown. Possible mediators of the increased susceptibility to TB in diabetic patients are lipids levels, which are altered in individuals with T2D. To evaluate the modulation of glycerophospholipids in patients with TB-T2D, an untargeted lipidomic approach was developed by means of ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization/quadrupole time-of-flight mass spectrometry (ESI-QToF). In addition, tandem mass spectrometry was performed to determine the identity of the differentially expressed metabolites. We found that TB infected individuals with or without T2D share a common glycerophospholipid profile characterized by a decrease in phosphatidylcholines. A total of 14 glycerophospholipids were differentially deregulated in TB and TB-T2D patients and could potentially be considered biomarkers. It is necessary to further validate these identified lipids as biomarkers, focusing on the anticipate diagnosis for TB development in T2D predisposed individuals.
Collapse
Affiliation(s)
- Yamile López-Hernández
- Laboratorio de Metabolómica y Proteómica, CONACyT-Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Edgar E Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano de Seguro Social, Zacatecas, Mexico
| | - Mariana Salgado-Bustamante
- Biochemistry Department, Medicine Faculty, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Jesús Adrián López
- MicroRNAs Laboratory, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Juan J Oropeza-Valdez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano de Seguro Social, Zacatecas, Mexico
| | - Elena Jaime-Sánchez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano de Seguro Social, Zacatecas, Mexico
| | - Julio E Castañeda-Delgado
- Cátedras-CONACyT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano de Seguro Social, Zacatecas, Mexico
| | | | | | - José A Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano de Seguro Social, Zacatecas, Mexico.
| |
Collapse
|
47
|
Natoli G, Ostuni R. Adaptation and memory in immune responses. Nat Immunol 2019; 20:783-792. [PMID: 31213714 DOI: 10.1038/s41590-019-0399-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Adaptation is the ability of cells, tissues and organisms to rapidly and reversibly modify their properties to maximize fitness in a changing environment. The activity of immune-system components unfolds in the remarkably heterogeneous milieus to which they are exposed in different tissues, during homeostasis or during various acute or chronic pathological states. Therefore, adaptation is essential for immune cells to tune their responses to a large variety of contexts and conditions. The adaptation of immune cells reflects the integration of multiple inputs acting simultaneously or in a temporal sequence, which eventually leads to transcriptional reprogramming and to various functional consequences, some of which extend beyond the duration of the stimulus. A range of adaptive responses have been observed in both adaptive immune cells and innate immune cells; these are referred to with terms such as 'plasticity', 'priming', 'training', 'exhaustion' and 'tolerance', among others, all of which can be useful for defining a certain immunological process or outcome but whose underlying molecular frameworks are often incompletely understood. Here we review and analyze mechanisms of adaptation and memory in immunity with the aim of providing basic concepts that rationalize the properties and molecular bases of these essential processes.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Humanitas University, Pieve Emanuele, Milan, Italy. .,IRCCS Humanitas, Rozzano, Milan, Italy.
| | - Renato Ostuni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
48
|
Iron Supplementation Therapy, A Friend and Foe of Mycobacterial Infections? Pharmaceuticals (Basel) 2019; 12:ph12020075. [PMID: 31108902 PMCID: PMC6630247 DOI: 10.3390/ph12020075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential element that is required for oxygen transfer, redox, and metabolic activities in mammals and bacteria. Mycobacteria, some of the most prevalent infectious agents in the world, require iron as growth factor. Mycobacterial-infected hosts set up a series of defense mechanisms, including systemic iron restriction and cellular iron distribution, whereas mycobacteria have developed sophisticated strategies to acquire iron from their hosts and to protect themselves from iron’s harmful effects. Therefore, it is assumed that host iron and iron-binding proteins, and natural or synthetic chelators would be keys targets to inhibit mycobacterial proliferation and may have a therapeutic potential. Beyond this hypothesis, recent evidence indicates a host protective effect of iron against mycobacterial infections likely through promoting remodeled immune response. In this review, we discuss experimental procedures and clinical observations that highlight the role of the immune response against mycobacteria under various iron availability conditions. In addition, we discuss the clinical relevance of our knowledge regarding host susceptibility to mycobacteria in the context of iron availability and suggest future directions for research on the relationship between host iron and the immune response and the use of iron as a therapeutic agent.
Collapse
|
49
|
Raghunandanan S, Jose L, Gopinath V, Kumar RA. Comparative label-free lipidomic analysis of Mycobacterium tuberculosis during dormancy and reactivation. Sci Rep 2019; 9:3660. [PMID: 30842473 PMCID: PMC6403389 DOI: 10.1038/s41598-019-40051-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis employs several strategies to combat and adapt to adverse conditions encountered inside the host. The non-replicative dormant state of the bacterium is linked to drug resistance and slower response to anti-tubercular therapy. It is known that alterations in lipid content allow dormant bacteria to acclimatize to cellular stress. Employing comparative lipidomic analysis we profiled the changes in lipid metabolism in M. tuberculosis using a modified Wayne’s model of hypoxia-induced dormancy. Further we subjected the dormant bacteria to resuscitation, and analyzed their lipidomes until the lipid profile was similar to that of normoxially grown bacteria. An enhanced degradation of cell wall-associated and cytoplasmic lipids during dormancy, and their gradual restoration during reactivation, were clearly evident. This study throws light on distinct lipid metabolic patterns that M. tuberculosis undergoes to maintain its cellular energetics during dormancy and reactivation.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram, 695014, India
| | - Leny Jose
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram, 695014, India
| | - Vipin Gopinath
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram, 695014, India
| | - Ramakrishnan Ajay Kumar
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram, 695014, India.
| |
Collapse
|
50
|
Elucidation of marine fungi derived anthraquinones as mycobacterial mycolic acid synthesis inhibitors: an in silico approach. Mol Biol Rep 2019; 46:1715-1725. [DOI: 10.1007/s11033-019-04621-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/18/2019] [Indexed: 02/03/2023]
|