1
|
Han X, Ashraf M, Shi H, Nkembo AT, Tipparaju SM, Xuan W. Combined Endurance and Resistance Exercise Mitigates Age-Associated Cardiac Dysfunction. Adv Biol (Weinh) 2024:e2400137. [PMID: 38773896 DOI: 10.1002/adbi.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Aging is associated with a decline in cardiac function. Exercise has been shown to effectively reduce the risks of cardiovascular diseases. Here whether a combination of endurance and resistance exercises can improve cardiac function in aged mice during late life is investigated. Through transcriptome analysis, several signaling pathways activated in the hearts of 22-month-old mice after combined exercise, including cardiac muscle contraction, mitophagy, and longevity regulation are identified. Combined exercise training mitigated age-associated pathological cardiac hypertrophy, reduced oxidative stress, cardiac senescence, and enhanced cardiac function. Upstream stimulatory factor 2 (Usf2) is upregulated in the aged mouse hearts with combined exercise compared to sedentary mice. In the human cardiomyocytes senescent model, overexpression of Usf2 led to anti-senescence effects, while knockdown of Usf2 exacerbated cellular senescence. The results suggest that a combination of endurance and resistance exercises, such as swimming and resistance running, can mitigate age-related pathological cardiac remodeling and cardiac dysfunction in late life. These cardioprotective effects are likely due to the activation of Usf2 and its anti-senescence effect. Therefore, Usf2 can potentially be a novel therapeutic target for mitigating age-related cardiac dysfunction.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Muhammad Ashraf
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Hong Shi
- Division of Rheumatology, Department of Internal Medicine, Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Augustine T Nkembo
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Wang X, Wei Z, Wang P, Zhou J, Feng M, Li M, Liu M, Wang J, Zhang X, Gao F, Xing C, Li J. Echocardiographic evaluation of cardiac reserve to detect subtle cardiac dysfunction in mice. Life Sci 2023; 331:122079. [PMID: 37696487 DOI: 10.1016/j.lfs.2023.122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
AIMS Cardiac reserve is a sensitive tool for early detection of cardiac dysfunction. However, cardiac reserve assessment by catecholamine stress echocardiography in mice varied in the doses of β-adrenergic agonists and the time point for measurements, which may lead to inaccurate readouts. This study aims to establish a standardized protocol for assessing cardiac reserve in mice. MAIN METHODS C57BL/6J mice under isoflurane anesthesia were intraperitoneally injected with varying doses of isoproterenol (Iso), and subjected to echocardiographic measurements. KEY FINDINGS Heart rate (HR), ejection fraction (EF), fractional shortening (FS), global longitudinal strain (GLS) and strain rate all reached peak values within 1-3 min after Iso injection at doses higher than 0.2 mg/kg. Compared with 0.1 mg/kg Iso, 0.2 mg/kg Iso resulted in higher HR, EF, FS and GLS, whereas doses higher than 0.2 mg/kg did not yield further increase. Cardiac response of female mice recapitulated main characteristics of those of male mice except that female mice displayed higher maximum HR and were more sensitive to higher doses of Iso. Furthermore, the advantages of present stress protocol over conventional baseline echocardiographic measurements were verified in comparisons of exercised vs. sedentary and aged vs. young mice for cardiac function evaluation. SIGNIFICANCE We developed a reproducible and sensitive approach to evaluate cardiac reserve by continuously monitoring cardiac function every minute for 3 min after 0.2 mg/kg Iso injection. This approach will enable detection of subtle cardiac dysfunction and accelerate innovative research in cardiac pathophysiology.
Collapse
Affiliation(s)
- Xinpei Wang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Zihan Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Panpan Wang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiaheng Zhou
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Mengya Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Meijie Liu
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Changyang Xing
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jia Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Misquitta NS, Ravel-Chapuis A, Jasmin BJ. Combinatorial treatment with exercise and AICAR potentiates the rescue of myotonic dystrophy type 1 mouse muscles in a sex-specific manner. Hum Mol Genet 2023; 32:551-566. [PMID: 36048859 DOI: 10.1093/hmg/ddac222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
Targeting AMP-activated protein kinase (AMPK) is emerging as a promising strategy for treating myotonic dystrophy type 1 (DM1), the most prevalent form of adult-onset muscular dystrophy. We previously demonstrated that 5-aminomidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and exercise, two potent AMPK activators, improve disease features in DM1 mouse skeletal muscles. Here, we employed a combinatorial approach with these AMPK activators and examined their joint impact on disease severity in male and female DM1 mice. Our data reveal that swimming exercise additively enhances the effect of AICAR in mitigating the nuclear accumulation of toxic CUGexp RNA foci. In addition, our findings show a trend towards an enhanced reversal of MBNL1 sequestration and correction in pathogenic alternative splicing events. Our results further demonstrate that the combinatorial impact of exercise and AICAR promotes muscle fiber hypertrophy in DM1 skeletal muscle. Importantly, these improvements occur in a sex-specific manner with greater benefits observed in female DM1 mice. Our findings demonstrate that combining AMPK-activating interventions may prove optimal for rescuing the DM1 muscle phenotype and uncover important sex differences in the response to AMPK-based therapeutic strategies in DM1 mice.
Collapse
Affiliation(s)
- Naomi S Misquitta
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Pires RA, Correia TML, Almeida AA, Coqueiro RDS, Machado M, Teles MF, Peixoto ÁS, Queiroz RF, Pereira R. Time-Course of Redox Status, Redox-Related, and Mitochondrial-Dynamics-Related Gene Expression after an Acute Bout of Different Physical Exercise Protocols. Life (Basel) 2022; 12:life12122113. [PMID: 36556478 PMCID: PMC9781780 DOI: 10.3390/life12122113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
We investigated the magnitude of exercise-induced changes in muscular bioenergetics, redox balance, mitochondrial function, and gene expression within 24 h after the exercise bouts performed with different intensities, durations, and execution modes (continuous or with intervals). Sixty-five male Swiss mice were divided into four groups: one control (n = 5) and three experimental groups (20 animals/group), submitted to a forced swimming bout with an additional load (% of animal weight): low-intensity continuous (LIC), high-intensity continuous (HIC), and high-intensity interval (HII). Five animals from each group were euthanized at 0 h, 6 h, 12 h, and 24 h postexercise. Gastrocnemius muscle was removed to analyze the expression of genes involved in mitochondrial biogenesis (Ppargc1a), fusion (Mfn2), fission (Dnm1L), and mitophagy (Park2), as well as inflammation (Nos2) and antioxidant defense (Nfe2l2, GPx1). Lipid peroxidation (TBARS), total peroxidase, glutathione peroxidase (GPx), and citrate synthase (CS) activity were also measured. Lactacidemia was measured from a blood sample obtained immediately postexercise. Lactacidemia was higher the higher the exercise intensity (LIC < HIC < HII), while the inverse was observed for TBARS levels. The CS activity was higher in the HII group than the other groups. The antioxidant activity was higher 24 h postexercise in all groups compared to the control and greater in the HII group than the LIC and HIC groups. The gene expression profile exhibited a particular profile for each exercise protocol, but with some similarities between the LIC and HII groups. Taken together, these results suggest that the intervals applied to high-intensity exercise seem to minimize the signs of oxidative damage and drive the mitochondrial dynamics to maintain the mitochondrial network, similar to low-intensity continuous exercise.
Collapse
Affiliation(s)
- Ramon Alves Pires
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Biochemistry and Molecular (Brazilian Society for Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Jequie 45210-506, Brazil
| | - Thiago Macedo Lopes Correia
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Jequie 45210-506, Brazil
| | - Amanda Alves Almeida
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Jequie 45210-506, Brazil
| | - Raildo da Silva Coqueiro
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
| | - Marco Machado
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Fundação Universitária de Itaperuna (FUNITA), Itaperuna 28300-000, Brazil
- Laboratory of Physiology and Biokinetic, Faculty of Biological Sciences and Health, Universidade Iguaçu Campus V, Itaperuna 28300-000, Brazil
| | - Mauro Fernandes Teles
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
| | - Álbert Souza Peixoto
- Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
| | - Raphael Ferreira Queiroz
- Multicentric Postgraduate Program in Biochemistry and Molecular (Brazilian Society for Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Jequie 45210-506, Brazil
- Postgraduate Program in Biosciences, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista 40110-100, Brazil
| | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Biochemistry and Molecular (Brazilian Society for Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Jequie 45210-506, Brazil
- Correspondence:
| |
Collapse
|
5
|
Li M, Zhang L, Liu X, Wang G, Lu J, Guo J, Wang H, Xu J, Zhang Y, Li N, Zhou Y. Inhibition of Rho/ROCK signaling pathway participates in the cardiac protection of exercise training in spontaneously hypertensive rats. Sci Rep 2022; 12:17903. [PMID: 36284153 PMCID: PMC9596711 DOI: 10.1038/s41598-022-22191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/11/2022] [Indexed: 01/20/2023] Open
Abstract
Exercise training (ExT) is capable of improving the heart function of spontaneously hypertensive rats (SHRs), but the underlying molecular mechanisms remain elusive. This study was aimed to investigate whether inhibition of RhoA/ROCK signaling pathway contributes to the cardiac protection by low-intensity ExT in SHRs. The results demonstrated that, compared with Wistar-Kyoto (WKY) rats, SHRs obviously exhibited higher blood pressure, increased heart weight index and thickness of left ventricular wall, decreased left ventricular function, damaged myocardial construction, and increased collagen fiber of left ventricle (P < 0.05 or P < 0.01). Meanwhile, the mRNA and protein expression levels of RhoA and ROCK in the heart of SHRs were significantly increased, compared with those of WKY rats (P < 0.05 or P < 0.01). Interestingly, the pathological changes of heart aforementioned were all improved in SHR-ExT rats compared with SHR-Sed rats (P < 0.05 or P < 0.01), indicating the cardiac protection of exercise training. In addition, the cardiac protective effect of exercise training could be blocked by LPA, an activator of Rho/ROCK signaling, and the protective effect in SHR rats could be mimicked by Fasudil, an inhibitor of Rho/ROCK signaling. The results strongly suggest that low-intensity ExT can protect heart against structure and function through inhibiting Rho/ROCK signaling pathway in hypertensive rats.
Collapse
Affiliation(s)
- Mengwei Li
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China
| | - Limei Zhang
- grid.256885.40000 0004 1791 4722Clinical School of Medicine, Hebei University, Baoding, 071000 People’s Republic of China ,Hengshui People’s Hospital, Hengshui, 053000 People’s Republic of China
| | - Xinyan Liu
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China
| | - Guoqiang Wang
- grid.256885.40000 0004 1791 4722Clinical School of Medicine, Hebei University, Baoding, 071000 People’s Republic of China
| | - Jian Lu
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China
| | - Jifeng Guo
- grid.256885.40000 0004 1791 4722Clinical School of Medicine, Hebei University, Baoding, 071000 People’s Republic of China
| | - Hongjie Wang
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China ,Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Baoding, 071000 People’s Republic of China
| | - Jinpeng Xu
- grid.256885.40000 0004 1791 4722Clinical School of Medicine, Hebei University, Baoding, 071000 People’s Republic of China
| | - Yi Zhang
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China ,grid.256883.20000 0004 1760 8442Department of Physiology, School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, 05000 People’s Republic of China
| | - Na Li
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China ,Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Baoding, 071000 People’s Republic of China
| | - You Zhou
- grid.256885.40000 0004 1791 4722Department of Physiology, School of Basic Medical Sciences, Hebei University, 342 Yu Hu Dong Rd., Baoding, 071000 People’s Republic of China
| |
Collapse
|
6
|
Almeida A, Correia T, Pires R, da Silva D, Coqueiro R, Machado M, de Magalhães A, Queiroz R, Soares T, Pereira R. Nephroprotective effect of exercise training in cisplatin-induced renal damage in mice: influence of training protocol. Braz J Med Biol Res 2022; 55:e12116. [PMID: 35976270 PMCID: PMC9377535 DOI: 10.1590/1414-431x2022e12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Cisplatin is an effective antineoplastic agent, but its use is limited by its nephrotoxicity caused by the oxidative stress in tubular epithelium of nephrons. On the other hand, regular exercise provides beneficial adaptations in different tissues and organs. As with many drugs, dosing is extremely important to get the beneficial effects of exercise. Thus, we aimed to investigate the influence of exercise intensity and frequency on cisplatin-induced (20 mg/kg) renal damage in mice. Forty male Swiss mice were divided into five experimental groups (n=8 per group): 1) sedentary; 2) low-intensity forced swimming, three times per week; 3) high-intensity forced swimming, three times per week; 4) low-intensity forced swimming, five times per week; and 5) high-intensity forced swimming, five times per week. Body composition, renal structure, functional indicators (plasma urea), lipid peroxidation, antioxidant enzyme activity, expression of genes related to antioxidant defense, and inflammatory and apoptotic pathways were evaluated. Comparisons considered exercise intensity and frequency. High lipid peroxidation was observed in the sedentary group compared with trained mice, regardless of exercise intensity and frequency. Groups that trained three times per week showed more benefits, as reduced tubular necrosis, plasma urea, expression of CASP3 and Rela (NFkB subunit-p65) genes, and increased total glutathione peroxidase activity. No significant difference in Nfe2l2 (Nrf2) gene expression was observed between groups. Eight weeks of regular exercise training promoted nephroprotection against cisplatin-mediated oxidative injury. Exercise frequency was critical for nephroprotection.
Collapse
Affiliation(s)
- A.A. Almeida
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - T.M.L. Correia
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - R.A. Pires
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Bioquímica e Biologia
Molecular (Sociedade Brasileira de Bioquímica e Biologia Molecular),
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA,
Brasil
| | - D.A. da Silva
- Programa de Pós-Graduação em Biociências, Universidade Federal
da Bahia, Campus Anísio Teixeira, Vitória da Conquista, BA, Brasil
| | - R.S. Coqueiro
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil
| | - M. Machado
- Fundação Universitária de Itaperuna, Itaperuna, RJ, Brasil,Laboratório de Fisiologia e Biocinética, Faculdade de Ciências
Biológicas e da Saúde, Universidade Iguaçu Campus V, Itaperuna, RJ, Brasil
| | - A.C.M. de Magalhães
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - R.F. Queiroz
- Programa de Pós-Graduação Multicêntrico em Bioquímica e Biologia
Molecular (Sociedade Brasileira de Bioquímica e Biologia Molecular),
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA,
Brasil
| | - T.J. Soares
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - R. Pereira
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil,Programa de Pós-Graduação Multicêntrico em Bioquímica e Biologia
Molecular (Sociedade Brasileira de Bioquímica e Biologia Molecular),
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA,
Brasil,Programa de Pós-Graduação em Enfermagem e Saúde, Universidade
Estadual do Sudoeste da Bahia, Jequié, BA, Brasil
| |
Collapse
|
7
|
Hastings MH, Herrera JJ, Guseh JS, Atlason B, Houstis NE, Abdul Kadir A, Li H, Sheffield C, Singh AP, Roh JD, Day SM, Rosenzweig A. Animal Models of Exercise From Rodents to Pythons. Circ Res 2022; 130:1994-2014. [PMID: 35679366 PMCID: PMC9202075 DOI: 10.1161/circresaha.122.320247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute and chronic animal models of exercise are commonly used in research. Acute exercise testing is used, often in combination with genetic, pharmacological, or other manipulations, to study the impact of these manipulations on the cardiovascular response to exercise and to detect impairments or improvements in cardiovascular function that may not be evident at rest. Chronic exercise conditioning models are used to study the cardiac phenotypic response to regular exercise training and as a platform for discovery of novel pathways mediating cardiovascular benefits conferred by exercise conditioning that could be exploited therapeutically. The cardiovascular benefits of exercise are well established, and, frequently, molecular manipulations that mimic the pathway changes induced by exercise recapitulate at least some of its benefits. This review discusses approaches for assessing cardiovascular function during an acute exercise challenge in rodents, as well as practical and conceptual considerations in the use of common rodent exercise conditioning models. The case for studying feeding in the Burmese python as a model for exercise-like physiological adaptation is also explored.
Collapse
Affiliation(s)
- Margaret H Hastings
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jonathan J Herrera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor (J.J.H.)
| | - J Sawalla Guseh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Bjarni Atlason
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Nicholas E Houstis
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Azrul Abdul Kadir
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Haobo Li
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Cedric Sheffield
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Anand P Singh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jason D Roh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Sharlene M Day
- Cardiovascular Medicine, Perelman School of Medicine' University of Pennsylvania, Philadelphia (S.M.D.)
| | - Anthony Rosenzweig
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| |
Collapse
|
8
|
Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. BIOLOGY 2022; 11:biology11060880. [PMID: 35741401 PMCID: PMC9220194 DOI: 10.3390/biology11060880] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Death from injury to the heart from a variety of causes remains a major cause of mortality worldwide. The cardiomyocyte, the major contracting cell of the heart, is responsible for pumping blood to the rest of the body. During fetal development, these immature cardiomyocytes are small and rapidly divide to complete development of the heart by birth when they develop structural and functional characteristics of mature cells which prevent further division. All further growth of the heart after birth is due to an increase in the size of cardiomyocytes, hypertrophy. Following the loss of functional cardiomyocytes due to coronary artery occlusion or other causes, the heart is unable to replace the lost cells. One of the significant research goals has been to induce adult cardiomyocytes to reactivate the cell cycle and repair cardiac injury. This review explores the developmental, structural, and functional changes of the growing cardiomyocyte, and particularly the sarcomere, responsible for force generation, from the early fetal period of reproductive cell growth through the neonatal period and on to adulthood, as well as during pathological response to different forms of myocardial diseases or injury. Multiple issues relative to cardiomyocyte cell-cycle regulation in normal or diseased conditions are discussed. Abstract The cardiomyocyte undergoes dramatic changes in structure, metabolism, and function from the early fetal stage of hyperplastic cell growth, through birth and the conversion to hypertrophic cell growth, continuing to the adult stage and responding to various forms of stress on the myocardium, often leading to myocardial failure. The fetal cell with incompletely formed sarcomeres and other cellular and extracellular components is actively undergoing mitosis, organelle dispersion, and formation of daughter cells. In the first few days of neonatal life, the heart is able to repair fully from injury, but not after conversion to hypertrophic growth. Structural and metabolic changes occur following conversion to hypertrophic growth which forms a barrier to further cardiomyocyte division, though interstitial components continue dividing to keep pace with cardiac growth. Both intra- and extracellular structural changes occur in the stressed myocardium which together with hemodynamic alterations lead to metabolic and functional alterations of myocardial failure. This review probes some of the questions regarding conditions that regulate normal and pathologic growth of the heart.
Collapse
|
9
|
Correia TML, Almeida AA, da Silva DA, Coqueiro RDS, Pires RA, de Magalhães ACM, Queiroz RF, Brito LL, Marques LM, Machado M, Pereira R. Interaction between cigarette smoke exposure and physical training on inflammatory and oxidative profile in mice muscle. Chem Biol Interact 2022; 358:109913. [PMID: 35339431 DOI: 10.1016/j.cbi.2022.109913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
Regular physical training and cigarette smoke exposure (CSE) have opposite effects on physical performance, antioxidant, and inflammatory profile. However, the interaction between these events is not well studied. We aimed to investigate how regular physical training and CSE interact, and in what is the outcome of this interaction on the physical performance, skeletal muscle antioxidant defense and molecular profile response of pro and anti-inflammatory cytokines. Male C57BL/6 mice were randomly divided into 4 groups (n = 8/group): 1) Sedentary group (SED); 2) 4 weeks of control, followed by 4 weeks of CSE (SED + CSEG); 3) Physically active (PA) along 8 weeks (forced swim training, 5 times a week); 4) Physically active and exposed to the cigarette smoke (PA + CSEG), group submitted to forced swim training for 4 weeks, followed by 4 weeks of concomitant training and CSE. Physical performance was evaluated before and after the experimental period (8 weeks), total peroxidase and glutathione peroxidase (GPx) activities, expression of genes encoding TNF-α, MCP-1, IL1β, IL-6, IL-10, TGF-β, HO-1 and the TNF-α/IL-10 ratio were determined from gastrocnemius muscle at the end of experimental period. The CSE attenuated the aerobic capacity adaptation (time to exhaustion in swimming forced test) promoted by physical training and inhibit the improvement in local muscle resistance (inverted screen test). The regular physical training enhanced the antioxidant defense, but the CSE abrogated this benefit. The CSE induced a harmful pro-inflammatory profile in skeletal muscle from sedentary animals whereas the regular physical training induced an opposite adaptation. Likewise, the CSE abolished the protective effect of physical training. Together, these results suggest a negative effect of CSE including, at least in part, the inhibition/attenuation of beneficial adaptations from regular physical training.
Collapse
Affiliation(s)
- Thiago Macêdo Lopes Correia
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil; Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Amanda Alves Almeida
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil; Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Danielba Almeida da Silva
- Postgraduate Program in Biosciences, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Brazil
| | - Raildo da Silva Coqueiro
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil
| | - Ramon Alves Pires
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil; Multicentric Postgraduate Program in Biochemistry and Molecular Biology (Brazilian Society of Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Bahia, Brazil
| | - Amelia Cristina Mendes de Magalhães
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Raphael Ferreira Queiroz
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology (Brazilian Society of Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Bahia, Brazil; Postgraduate Program in Biosciences, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Brazil
| | - Lorena Lôbo Brito
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Lucas Miranda Marques
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Marco Machado
- Universitary Foundation of Itaperuna (FUNITA), Itaperuna, RJ, Brazil; Laboratory of Physiology and Biokinetic, Faculty of Biological Sciences and Health, Iguaçu University, Campus V, Itaperuna, RJ, Brazil
| | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil; Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil; Multicentric Postgraduate Program in Biochemistry and Molecular Biology (Brazilian Society of Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Bahia, Brazil; Postgraduate Program in Nursing and Health, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil.
| |
Collapse
|
10
|
Multiple Applications of Different Exercise Modalities with Rodents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3898710. [PMID: 34868454 PMCID: PMC8639251 DOI: 10.1155/2021/3898710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
A large proportion of chronic diseases can be derived from a sedentary lifestyle. Raising physical activity awareness is indispensable, as lack of exercise is the fourth most common cause of death worldwide. Animal models in different research fields serve as important tools in the study of acute or chronic noncommunicable disorders. With the help of animal-based exercise research, exercise-mediated complex antioxidant and inflammatory pathways can be explored, which knowledge can be transferred to human studies. Whereas sustained physical activity has an enormous number of beneficial effects on many organ systems, these animal models are easily applicable in several research areas. This review is aimed at providing an overall picture of scientific research studies using animal models with a focus on different training modalities. Without wishing to be exhaustive, the most commonly used forms of exercise are presented.
Collapse
|
11
|
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:660-674. [PMID: 34454088 PMCID: PMC8724626 DOI: 10.1016/j.jshs.2021.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However, the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated. Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection. However, standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective, high-quality animal studies using exercise to prevent and treat cardiovascular diseases. In our review, we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training, emphasizing the appropriate measurements and analysis in these chronic exercise models. We also provide recommendations for optimal design of animal exercise studies in cardiovascular research, including the choice of exercise models, control of exercise protocols, exercise at different stages of disease, and other considerations, such as age, sex, and genetic background. We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongjing Ding
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qi Liang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shenghui Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Guifu Wu
- Department of Cardiology, Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-Sen University, Shenzhen 518033, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Yang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Guolin Zhang
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lan Guo
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Are exercise-induced changes of fatty acids associated with cardiac hypertrophy in athletes? A pilot study. BIOMEDICAL HUMAN KINETICS 2021. [DOI: 10.2478/bhk-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Study aim: In this study, we evaluated the effects of acute and chronic exercise on the plasma FAs and their association with cardiac hypertrophy indices.
Material and methods: In this pilot study, 15 sedentary and 15 athlete women underwent acute and long-term water aerobic exercise and their plasma FA levels and a number of electrocardiographic parameters, such as left ventricular end-diastolic diameter index (LVEDDI), left ventricular ejection fraction (LVEF), left ventricular mass index (LVMI), and wall thickness were evaluated before and after the exercise program.
Results: The acute exercise significantly increased palmitic and oleic acid levels in non-athletes and stearic acid in both groups. However, the same type of exercise decreased linoleic acid only in non-athlete women (p < 0.05). The water aerobics training caused a significant decrease in the levels of palmitic, stearic, and arachidonic acid, SFA/UFA, and ω3/ ω6 ratios and also an increase in α-Linolenic acid and MUFA in non-athletes. We found positive and negative correlations between LVEF with ω3 and SFA/UFA ratio in both groups, respectively. In the non-athlete group, the ω3/ω6 ratio showed negative correlations with LVMI and LVEDDI.
Conclusions: The study indicated that the 12-week exercise by sedentary women could make their plasma FAs composition similar to athlete women. Moreover, the plasma FA levels were associated with cardiac hypertrophy indices, showing the importance of FAs in physiological hypertrophy.
Collapse
|
13
|
Zhang Y, Zheng Y, Wang M, Guo X. Prediction of exercise sudden death in rabbit exhaustive swimming using deep neural network. Biomed Eng Online 2021; 20:87. [PMID: 34461905 PMCID: PMC8404258 DOI: 10.1186/s12938-021-00925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background and objective Moderate exercise contributes to good health. However, excessive exercise may lead to cardiac fatigue, myocardial damage and even exercise sudden death. Monitoring the heart health has important implication to prevent exercise sudden death. Diagnosis methods such as electrocardiogram, echocardiogram, blood pressure and histological analysis have shown that arrhythmia and left ventricular fibrosis are early warning symptoms of exercise sudden death. Heart sounds (HS) can reflect the changes of cardiac valve, cardiac blood flow and myocardial function. Deep learning has drawn wide attention because of its ability to recognize disease. Therefore, a deep learning method combined with HS was proposed to predict exercise sudden death in New Zealand rabbits. The objective is to develop a method to predict exercise sudden death in New Zealand rabbits. Methods This paper proposed a method to predict exercise sudden death in New Zealand rabbits based on convolutional neural network (CNN) and gated recurrent unit (GRU). The weight-bearing exhaustive swimming experiment was conducted to obtain the HS of exercise sudden death and surviving New Zealand rabbits (n = 11/10) at four different time points. Then, the improved Viola integral method and double threshold method were employed to segment HS signals. The segmented HS frames at different time points were taken as the input of a combined CNN and GRU called CNN–GRU network to complete the prediction of exercise sudden death. Results In order to evaluate the performance of proposed network, CNN and GRU were used for comparison. When the fourth time point segmented HS frames were taken as input, the result shows that the proposed network has better performance with an accuracy of 89.57%, a sensitivity of 89.38% and a specificity of 92.20%. In addition, the segmented HS frames at different time points were input into CNN–GRU network, and the result shows that with the progress of the experiment, the prediction accuracy of exercise sudden death in New Zealand rabbits increased from 50.98 to 89.57%. Conclusion The proposed network shows good performance in classifying HS, which proves the feasibility of deep learning in exploring exercise sudden death. Further, it may have important implications in helping humans explore exercise sudden death.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Menglu Wang
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xingming Guo
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
14
|
Santos GR, Cunha MR, Caldeira EJ, Galdeano EA, Prudente RCS, Pinto CAL. Effect of antioxidant treatment with n-acetylcysteine and swimming on lipid expression of sebaceous glands in diabetic mice. Sci Rep 2021; 11:11924. [PMID: 34099835 PMCID: PMC8184763 DOI: 10.1038/s41598-021-91459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/04/2021] [Indexed: 11/18/2022] Open
Abstract
The sebaceous gland (SG) is involved in different inflammatory, infectious and neoplastic processes of the skin and can be related to specific diseases, e.g., diabetes mellitus. Sometimes, the histological diagnosis requires complementary tests due to the ability of diseases to mimic other tumors. We evaluated the sebaceous gland density in Non-obese diabetic mice to analyze the N-acetylcystein effects and swimming exercise treatment in sebaceous glands healing, using specific staining in histochemistry and immunohistochemistry reactions in the identification of the lipid expression in the sebaceous gland. We investigated the intracytoplasmic lipid expression and analysis of gland density from SG in dorsal skin samples from the Non-obese diabetic (NOD mice) and diabetic animals submitted to antioxidant treatment and physical exercise. For histological analysis of the sebaceous glands, specific staining in histochemistry with sudan black and immunohistochemistry reaction with adipophilin were used in the evaluation. Statistical analysis showed significant proximity between the values of the control group and the diabetic group submitted to the swimming exercise (DS group) and similar values between the untreated diabetic group (UD group) and diabetic group treated with the antioxidant N-acetylcysteine (DNa group), which did not prevent possible differences where p < 0.01. Adipophilin (ADPH) immunohistochemistry permitted more intense lipid staining in SGs, the preservation of the SG in the control group, and a morphological deformed appearance in the UD and DNa groups. However, weak morphological recovery of the SG was observed in the DS-Na group, being more expressive in the DS group. In conclusion, the groups submitted to physical exercises showed better results in the recovery of the analyzed tissue, even being in the physiological conditions caused by spontaneous diabetes.
Collapse
Affiliation(s)
- Geovane Ribeiro Santos
- Morphology and Basic Pathology Department, Jundiaí Medical School (JMS) Jundiaí, Francisco Telles, 250 - Vila Arens II, 1109, Jundiaí, SP, 13202-550, Brazil
- Pathology and Cytology Laboratory, Jundiaí Medical School (JMS) Jundiaí, Jundiaí, São Paulo, Brazil
- Institute of Health Sciences, ICS, of the Paulista University, UNIP (Campus Jundiaí), Jundiaí, São Paulo, Brazil
| | - Marcelo Rodrigues Cunha
- Morphology and Basic Pathology Department, Jundiaí Medical School (JMS) Jundiaí, Francisco Telles, 250 - Vila Arens II, 1109, Jundiaí, SP, 13202-550, Brazil
| | - Eduardo José Caldeira
- Morphology and Basic Pathology Department, Jundiaí Medical School (JMS) Jundiaí, Francisco Telles, 250 - Vila Arens II, 1109, Jundiaí, SP, 13202-550, Brazil
| | - Ewerton Alexandre Galdeano
- Morphology and Basic Pathology Department, Jundiaí Medical School (JMS) Jundiaí, Francisco Telles, 250 - Vila Arens II, 1109, Jundiaí, SP, 13202-550, Brazil
| | | | - Clóvis Antonio Lopes Pinto
- Morphology and Basic Pathology Department, Jundiaí Medical School (JMS) Jundiaí, Francisco Telles, 250 - Vila Arens II, 1109, Jundiaí, SP, 13202-550, Brazil.
- Pathology and Cytology Laboratory, Jundiaí Medical School (JMS) Jundiaí, Jundiaí, São Paulo, Brazil.
- Pathological Anatomy Service of Hospital A.C. Camargo, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
16
|
Balatskyi VV, Palchevska OL, Bortnichuk L, Gan AM, Myronova A, Macewicz LL, Navrulin VO, Tumanovska LV, Olichwier A, Dobrzyn P, Piven OO. β-Catenin Regulates Cardiac Energy Metabolism in Sedentary and Trained Mice. Life (Basel) 2020; 10:life10120357. [PMID: 33348907 PMCID: PMC7766208 DOI: 10.3390/life10120357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
The role of canonical Wnt signaling in metabolic regulation and development of physiological cardiac hypertrophy remains largely unknown. To explore the function of β-catenin in the regulation of cardiac metabolism and physiological cardiac hypertrophy development, we used mice heterozygous for cardiac-specific β-catenin knockout that were subjected to a swimming training model. β-Catenin haploinsufficient mice subjected to endurance training displayed a decreased β-catenin transcriptional activity, attenuated cardiomyocytes hypertrophic growth, and enhanced activation of AMP-activated protein kinase (AMPK), phosphoinositide-3-kinase-Akt (Pi3K-Akt), and mitogen-activated protein kinase/extracellular signal-regulated kinases 1/2 (MAPK/Erk1/2) signaling pathways compared to trained wild type mice. We further observed an increased level of proteins involved in glucose aerobic metabolism and β-oxidation along with perturbed activity of mitochondrial oxidative phosphorylation complexes (OXPHOS) in trained β-catenin haploinsufficient mice. Taken together, Wnt/β-catenin signaling appears to govern metabolic regulatory programs, sustaining metabolic plasticity in adult hearts during the adaptation to endurance training.
Collapse
Affiliation(s)
- Volodymyr V. Balatskyi
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Oksana L. Palchevska
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 46-580 Warsaw, Poland
| | - Lina Bortnichuk
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Ana-Maria Gan
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Anna Myronova
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Larysa L. Macewicz
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Viktor O. Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Lesya V. Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024 Kyiv, Ukraine;
| | - Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
- Correspondence: (P.D.); (O.O.P.); Tel.: +48-022-589-24-59 (P.D.); +38-044-526-07-39 (O.O.P.); Fax: +48-022-822-53-42 (P.D.); +38-044-526-07-59 (O.O.P.)
| | - Oksana O. Piven
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Correspondence: (P.D.); (O.O.P.); Tel.: +48-022-589-24-59 (P.D.); +38-044-526-07-39 (O.O.P.); Fax: +48-022-822-53-42 (P.D.); +38-044-526-07-59 (O.O.P.)
| |
Collapse
|
17
|
Boileau E, Doroudgar S, Riechert E, Jürgensen L, Ho TC, Katus HA, Völkers M, Dieterich C. A Multi-Network Comparative Analysis of Transcriptome and Translatome Identifies Novel Hub Genes in Cardiac Remodeling. Front Genet 2020; 11:583124. [PMID: 33304386 PMCID: PMC7701244 DOI: 10.3389/fgene.2020.583124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
Our understanding of the transition from physiological to pathological cardiac hypertrophy remains elusive and largely based on reductionist hypotheses. Here, we profiled the translatomes of 15 mouse hearts to provide a molecular blueprint of altered gene networks in early cardiac remodeling. Using co-expression analysis, we showed how sub-networks are orchestrated into functional modules associated with pathological phenotypes. We discovered unappreciated hub genes, many undocumented for their role in cardiac hypertrophy, and genes in the transcriptional network that were rewired in the translational network, and associated with semantically different subsets of enriched functional terms, such as Fam210a, a novel musculoskeletal modulator, or Psmd12, implicated in protein quality control. Using their correlation structure, we found that transcriptome networks are only partially reproducible at the translatome level, providing further evidence of post-transcriptional control at the level of translation. Our results provide novel insights into the complexity of the organization of in vivo cardiac regulatory networks.
Collapse
Affiliation(s)
- Etienne Boileau
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany.,Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Shirin Doroudgar
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Eva Riechert
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Lonny Jürgensen
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Thanh Cao Ho
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Mirko Völkers
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany.,Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| |
Collapse
|
18
|
Batista RO, Budu A, Alves-Silva T, Arakaki AM, Gregnani MFS, Rodrigues Húngaro TG, Burgos-Silva M, Wasinski F, Lanzoni VP, Camara NOS, Oyama LM, Bader M, Araújo RC. Paternal exercise protects against liver steatosis in the male offspring of mice submitted to high fat diet. Life Sci 2020; 263:118583. [PMID: 33045212 DOI: 10.1016/j.lfs.2020.118583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Parental lifestyle has been related to alterations in the phenotype of their offspring. Obese sires can induce offspring insulin resistance as well as increase susceptibility to obesity. On the other hand, obese sires submitted to voluntary exercise ameliorate the deleterious metabolic effects on their offspring. However, there are no studies reporting the effect of programmed exercise training of lean sires on offspring metabolism. AIMS This study aimed to investigate the role of swimming training of sires for 6 weeks on the offspring metabolic phenotype. MAIN METHODS Male C57BL/6 mice fed a control diet were divided into sedentary and swimming groups. After the exercise, they were mated with sedentary females, and body weight and molecular parameters of the offspring were subsequently monitored. KEY FINDINGS Swimming decreased the gene expression of Fasn and Acaca in the testes and increased the AMPK protein content in the testes and epididymis of the sires. The progeny presented a low weight at P1, which reached a normal level at P60 and at P90 the animals were challenged with HFD for 16 weeks. The male offspring of trained sires presented less body weight gain than the control group. The level of steatosis decreased in the male offspring from trained sires. The gene expression of Prkaa2, Ppar-1α and Cpt-1 was also increased in the liver of male offspring from trained sires. SIGNIFICANCE Taken together, these findings suggest that paternal exercise training can improve the metabolic profile in the liver of the progeny, thereby ameliorating the effects of obesity.
Collapse
Affiliation(s)
- Rogério Oliveira Batista
- Departament of Biophysics, Federal University of São Paulo, Brazil; Departament of Medicine, Nephrology, Federal University of São Paulo, Brazil
| | - Alexandre Budu
- Departament of Biophysics, Federal University of São Paulo, Brazil
| | | | - Aline Midori Arakaki
- Departament of Biophysics, Federal University of São Paulo, Brazil; Departament of Medicine, Nephrology, Federal University of São Paulo, Brazil
| | | | - Talita G Rodrigues Húngaro
- Departament of Biophysics, Federal University of São Paulo, Brazil; Departament of Medicine, Nephrology, Federal University of São Paulo, Brazil
| | | | - Frederick Wasinski
- Departament of Biophysics, Federal University of São Paulo, Brazil; Departament of Medicine, Nephrology, Federal University of São Paulo, Brazil
| | | | | | | | - Michael Bader
- Max-Delbruck Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Charité - University Medicine, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Ronaldo Carvalho Araújo
- Departament of Biophysics, Federal University of São Paulo, Brazil; Departament of Medicine, Nephrology, Federal University of São Paulo, Brazil.
| |
Collapse
|
19
|
Shi X, Luo X, Xu X. Dimethylarginine dimethylaminohydrolase-1 contributes to exercise-induced cardiac angiogenesis in mice. Biosci Trends 2020; 14:115-122. [DOI: 10.5582/bst.2019.01351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaowei Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xueting Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xin Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Exercise Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
20
|
Poole DC, Copp SW, Colburn TD, Craig JC, Allen DL, Sturek M, O'Leary DS, Zucker IH, Musch TI. Guidelines for animal exercise and training protocols for cardiovascular studies. Am J Physiol Heart Circ Physiol 2020; 318:H1100-H1138. [PMID: 32196357 DOI: 10.1152/ajpheart.00697.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whole body exercise tolerance is the consummate example of integrative physiological function among the metabolic, neuromuscular, cardiovascular, and respiratory systems. Depending on the animal selected, the energetic demands and flux through the oxygen transport system can increase two orders of magnitude from rest to maximal exercise. Thus, animal models in health and disease present the scientist with flexible, powerful, and, in some instances, purpose-built tools to explore the mechanistic bases for physiological function and help unveil the causes for pathological or age-related exercise intolerance. Elegant experimental designs and analyses of kinetic parameters and steady-state responses permit acute and chronic exercise paradigms to identify therapeutic targets for drug development in disease and also present the opportunity to test the efficacy of pharmacological and behavioral countermeasures during aging, for example. However, for this promise to be fully realized, the correct or optimal animal model must be selected in conjunction with reproducible tests of physiological function (e.g., exercise capacity and maximal oxygen uptake) that can be compared equitably across laboratories, clinics, and other proving grounds. Rigorously controlled animal exercise and training studies constitute the foundation of translational research. This review presents the most commonly selected animal models with guidelines for their use and obtaining reproducible results and, crucially, translates state-of-the-art techniques and procedures developed on humans to those animal models.
Collapse
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - David L Allen
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Michael Sturek
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
21
|
Veiga ECDA, de Melo BL, Vieira SDS, Simões RS, Valenti VE, Campos MF, do Vale JETMR, Rica RL, Soares-Júnior JM, Baracat EC, Serra AJ, Baker JS, Bocalini DS. Prior exercise training and experimental myocardial infarction: A systematic review and meta-analysis. Clinics (Sao Paulo) 2020; 75:e1293. [PMID: 31967282 PMCID: PMC6963162 DOI: 10.6061/clinics/2020/e1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022] Open
Abstract
Exercising prior to experimental infarction may have beneficial effects on the heart. The objective of this study was to analyze studies on animals that had exercised prior to myocardial infarction and to examine any benefits through a systematic review and meta-analysis. The databases MEDLINE, Google Scholar, and Cochrane were consulted. We analyzed articles published between January 1978 and November 2018. From a total of 858 articles, 13 manuscripts were selected in this review. When animals exercised before experimental infarction, there was a reduction in mortality, a reduction in infarct size, improvements in cardiac function, and a better molecular balance between genes and proteins that exhibit cardiac protective effects. Analyzing heart weight/body weight, we observed the following results - Mean difference 95% CI - -0.02 [-0.61,0.57]. Meta-analysis of the infarct size (% of the left ventricle) revealed a statistically significant decrease in the size of the infarction in animals that exercised before myocardial infarction, in comparison with the sedentary animals -5.05 [-7.68, -2.40]. Analysis of the ejection fraction, measured by echo (%), revealed that animals that exercised before myocardial infarction exhibited higher and statistically significant measures, compared with sedentary animals 8.77 [3.87,13.66]. We conclude that exercise performed prior to experimental myocardial infarction confers cardiac benefits to animals.
Collapse
Affiliation(s)
- Eduardo Carvalho de Arruda Veiga
- Disciplina de Ginecologia, Departamento de Ginecologia e Obstetricia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Brunno Lemes de Melo
- Divisao de Cardiologia, Departamento de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
| | - Stella de Souza Vieira
- Divisao de Cardiologia, Departamento de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
| | - Ricardo S. Simões
- Disciplina de Ginecologia, Departamento de Ginecologia e Obstetricia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Vitor E. Valenti
- Programa de Pos-Graduacao em Fisioterapia, Universidade Estadual de Sao Paulo (UNESP), Presidente Prudente, SP, BR
| | - Marcelo Ferraz Campos
- Disciplina de Delineamento de Estudos e Escrita Cientifica, Centro Universitario Saude ABC, Santo Andre, SP, BR
- Secretaria de Estado da Saude do Acre, Acre, AC, BR
| | | | | | - José Maria Soares-Júnior
- Disciplina de Ginecologia, Departamento de Ginecologia e Obstetricia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Edmund Chada Baracat
- Disciplina de Ginecologia, Departamento de Ginecologia e Obstetricia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Andrey Jorge Serra
- Divisao de Cardiologia, Departamento de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
| | - Julien S. Baker
- Institute for Clinical Exercise and Health Sciences, School of Health and Life Sciences, the University of the West of Scotland, Lanarkshire, Scotland
- Department of Sport and Physical Education, Faculty of Social Sciences, Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Danilo Sales Bocalini
- Laboratorio de Fisiologia e Bioquimica Experimental, Centro de Educacao Fisica e Deportos, Universidade Federal do Espirito Santo, Vitoria, ES, BR
| |
Collapse
|
22
|
CARVALHO ANGELAAM, MOURA FRANCYELLEBRDE, NOGUEIRA PEDROAUGUSTOS, GONÇALVES ALINEMARIAN, ARAÚJO FERNANDAA, ZANON RENATAG, TOMIOSSO TATIANACARLA. Swimming exercise changed the collagen synthesis and calcification in calcaneal tendons of mice. ACTA ACUST UNITED AC 2020; 92:e20181127. [DOI: 10.1590/0001-3765202020181127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
|
23
|
Nogueira PAS, Pereira MP, Soares JJG, de Assis Silva Gomes J, Ribeiro DL, Razolli DS, Velloso LA, Neto MB, Zanon RG. Swimming reduces fatty acids-associated hypothalamic damage in mice. J Chem Neuroanat 2019; 103:101713. [PMID: 31726089 DOI: 10.1016/j.jchemneu.2019.101713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/20/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022]
Abstract
The arcuate and the paraventricular and lateral hypothalamic nuclei, related to hunger and satiety control, are generally compromised by excess fatty acids. In this situation, fatty acids cause inflammation via TLR4 (toll like receptor 4) and the nuclei become less responsive to the hormones leptin and insulin, contributing to the development of obesity. In this work, these nuclei were analyzed in animals fed with high-fat diet and submitted to swimming without and with load for two months. For this, frontal sections of the hypothalamus were immunolabelled with GFAP (glial fibrillary acidic protein), synaptophysin, IL-6 (interleukin 6) and TLR4. Also, proteins extracted from the hypothalamus were analyzed using Western blotting (GFAP and synaptophysin), fluorometric analysis for caspases 3 and 7, and CBA (cytometric bead array) for Th1, Th2, and Th17 profiles. The high-fat diet significantly caused overweight and, in the hypothalamus, decreased synapses and increased astrocytic reactivity. The swimming with load, especially 80 % of the maximum load, reduced those consequences. The high-fat diet increased TLR4 in the arcuate nucleus and the swimming exercise with 80 % of the maximum load showed a tendency of reducing this expression. Swimming did not significantly influence the inflammatory or anti-inflammatory cytokines in the hypothalamus or in plasma. The high-fat diet in sedentary animals increased the expression of caspases 3 and 7 and swimming practice reduced this increment to levels compatible with animals fed on a normal diet. The set of results conclude that the impact of swimming on the damage caused in the hypothalamus by a high-fat diet is positive. The different aspects analyzed in here point to better cellular viability and conservation of the synapses in the hypothalamic nuclei of overweight animals that practiced swimming with a load.
Collapse
Affiliation(s)
- Pedro Augusto Silva Nogueira
- Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil; Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Miriam Pimenta Pereira
- Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | | - Juliana de Assis Silva Gomes
- Laboratory of Cellular Interactions Biology, Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele Lisboa Ribeiro
- Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Daniela Soares Razolli
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil; Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Licio Augusto Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Morun Bernardino Neto
- Department of Basic and Environmental Sciences, University of São Paulo, Lorena, São Paulo, Brazil
| | - Renata Graciele Zanon
- Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Chatterjee E, Chaudhuri RD, Sarkar S. Cardiomyocyte targeted overexpression of IGF1 during detraining restores compromised cardiac condition via mTORC2 mediated switching of PKCδ to PKCα. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2736-2752. [DOI: 10.1016/j.bbadis.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/22/2019] [Accepted: 07/06/2019] [Indexed: 02/05/2023]
|
25
|
Yang DF, Shen YL, Wu C, Huang YS, Lee PY, Er NX, Huang WC, Tung YT. Sleep deprivation reduces the recovery of muscle injury induced by high-intensity exercise in a mouse model. Life Sci 2019; 235:116835. [PMID: 31493480 DOI: 10.1016/j.lfs.2019.116835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
Sleep is crucial to improve athlete performance and their circadian rhythm, but sleep patterns may be disturbed because athletes participate in several competitions. In addition, intensive training programs can cause muscle pain and psychological stress in athletes, resulting in a lack of sleep. Sleep also plays a critical role in the recovery of muscle injury induced by exercise. The current study evaluated the effect of sleep deprivation on the recovery of muscle injury induced by high-intensity exercise in a mouse model. In this study, 28 mice were randomly assigned to four groups (N = 7): control (Control), exercise (EX), sleep deprivation (SD), and sleep deprivation with exercise (EX+SD). The mice from the EX and EX+SD groups were subjected to high-intensity swimming. The results showed that 72-h sleep deprivation increased food intake and reduced body weight. However, the manipulation of 8-week exercise and/or 72-h sleep deprivation did not have any effect in the elevated plus maze task and tail suspension test. Interestingly, the EX+SD group exhibited improved memory performance in the Morris water maze and impaired motor activity in the open field test. According to the TNF-α level and aspartate aminotransferase (AST), and creatine phosphokinase (CK) activities, only the EX+SD group exhibited muscle impairment. Overall, high-intensity exercise may cause muscle injury, and adequate sleep can recover muscle damage. However, sleep deprivation reduces protein synthesis, which decreases the ability to restore muscle damage and aggravates the harmful effect of high-intensity exercise.
Collapse
Affiliation(s)
- Deng-Fa Yang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei City 11031, Taiwan.
| | - Ying-Ling Shen
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei City 11031, Taiwan.
| | - Changwei Wu
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei City 11031, Taiwan.
| | - Yu-Sheng Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei City 11031, Taiwan.
| | - Po-Ying Lee
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei 280, Taiwan
| | - Ng Xin Er
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei City 11031, Taiwan
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei City 11031, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei City 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University.
| |
Collapse
|
26
|
Prokic V, Plecevic S, Bradic J, Petkovic A, Srejovic I, Bolevich S, Jeremic J, Bolevich S, Jakovljevic V, Zivkovic V. The impact of nine weeks swimming exercise on heart function in hypertensive and normotensive rats: role of cardiac oxidative stress. J Sports Med Phys Fitness 2019; 59:2075-2083. [PMID: 31240902 DOI: 10.23736/s0022-4707.19.09798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The purpose of this study was to estimate the effects of 9-week swimming training on cardiodynamic parameters and coronary flow in a rat model of high salt-induced hypertension with a special focus on the role of oxidative stress. METHODS Rats involved in the research were divided randomly into four groups: healthy sedentary (SA), healthy trained (TA), sedentary hypertensive (SHA) and trained hypertensive animals (THA). Trained rats were exposed to 9-week swimming training (5 days/week, 60 min/day). Additionally, in order to induce hypertension animals from SHA and THA groups were on high sodium (8% NaCl solution) diet during 4 weeks. Afterwards all rats were sacrificed and hearts were isolated and retrogradely perfused according to Langendorff technique. The following parameters of cardiac function were continuously recorded: maximum and minimum rate of pressure development in left ventricle, systolic and diastolic left ventricular pressure and heart rate. Coronary flow was measured flowmetrically. Oxidative stress markers were determined in coronary venous effluent. RESULTS Our findings demonstrated that 9 weeks of swimming training led to improvement of cardiac contractility, relaxation and systolic capacity of normotensive rats, while this training protocol induced enhanced diastolic function in hypertensive conditions. More pronounced effects of exercise in alleviating oxidative stress were observed in hypertensive rats. CONCLUSIONS Obvious beneficial exercise-induced cardiac adaptations provide scientific basis for further researches which would thoroughly clarify the mechanisms through which swimming training alters myocardial function both in healthy conditions and in the presence of chronic diseases.
Collapse
Affiliation(s)
- Veljko Prokic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sasa Plecevic
- Sports Medicine Association of Serbia, Belgrade, Serbia
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Anica Petkovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Stefani Bolevich
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia -
| |
Collapse
|
27
|
Soares DDS, Pinto GH, Lopes A, Caetano DSL, Nascimento TG, Andrades ME, Clausell N, Rohde LEP, Leitão SAT, Biolo A. Cardiac hypertrophy in mice submitted to a swimming protocol: influence of training volume and intensity on myocardial renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2019; 316:R776-R782. [DOI: 10.1152/ajpregu.00205.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exercise promotes physiological cardiac hypertrophy and activates the renin-angiotensin system (RAS), which plays an important role in cardiac physiology, both through the classical axis [angiotensin II type 1 receptor (AT1R) activated by angiotensin II (ANG II)] and the alternative axis [proto-oncogene Mas receptor (MASR) activated by angiotensin-(1–7)]. However, very intense exercise could have deleterious effects on the cardiovascular system. We aimed to analyze the cardiac hypertrophy phenotype and the classical and alternative RAS axes in the myocardium of mice submitted to swimming exercises of varying volume and intensity for the development of cardiac hypertrophy. Male Balb/c mice were divided into three groups, sedentary, swimming twice a day without overload (T2), and swimming three times a day with a 2% body weight overload (T3), totaling 6 wk of training. Both training groups developed similar cardiac hypertrophy, but only T3 mice improved their oxidative capacity. We observed that T2 had increased levels of MASR, which was followed by the activation of its main downstream protein AKT; meanwhile, AT1R and its main downstream protein ERK remained unchanged. Furthermore, no change was observed regarding the levels of angiotensin peptides, in either group. In addition, we observed no change in the ratio of expression of the myosin heavy chain β-isoform to that of the α-isoform. Fibrosis was not observed in any of the groups. In conclusion, our results suggest that increasing exercise volume and intensity did not induce a pathological hypertrophy phenotype, but instead improved the oxidative capacity, and this process might have the participation of the RAS alternative axis.
Collapse
Affiliation(s)
- Douglas dos Santos Soares
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Graziela Hünning Pinto
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Lopes
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Daniel Sturza Lucas Caetano
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Thaiane Gomes Nascimento
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Michael E. Andrades
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nadine Clausell
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis E. Paim Rohde
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Santiago Alonso Tobar Leitão
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Andreia Biolo
- Experimental and Molecular Cardiovascular Laboratory and Heart Failure and Cardiac Transplant Unit, Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Shimojo G, Joseph B, Shah R, Consolim-Colombo FM, De Angelis K, Ulloa L. Exercise activates vagal induction of dopamine and attenuates systemic inflammation. Brain Behav Immun 2019; 75:181-191. [PMID: 30394312 PMCID: PMC6334665 DOI: 10.1016/j.bbi.2018.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Physical exercise is one of the most important factors improving quality of life, but it is not feasible for patients with morbidity or limited mobility. Most previous studies focused on high-intensity or long-term exercise that causes metabolic stress or physiological adaption, respectively. Here, we studied how moderate-intensity swimming affects systemic inflammation in 6-8 week old C57BL/6J male mice during endotoxemia. One-hour swimming prevented hypokalemia, hypocalcemia, attenuated serum levels of inflammatory cytokines, increased anti-inflammatory cytokines but affected neither IL6 nor glycemia before or after the endotoxic challenge. Exercise attenuated serum TNF levels by inhibiting its production in the spleen through a mechanism mediated by the subdiaphragmatic vagus nerve but independent of the splenic nerve. Exercise increased serum levels of dopamine, and adrenalectomy prevented the potential of exercise to induce dopamine and to attenuate serum TNF levels. Dopaminergic agonist type-1, fenoldopam, inhibited TNF production in splenocytes. Conversely, dopaminergic antagonist type-1, butaclamol, attenuated exercise control of serum TNF levels. These results suggest that vagal induction of dopamine may contribute to the anti-inflammatory potential of physical exercise.
Collapse
Affiliation(s)
- Guilherme Shimojo
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; Nove de Julho University (UNINOVE), Sao Paulo, Brazil
| | - Biju Joseph
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Roshan Shah
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Fernanda M Consolim-Colombo
- Nove de Julho University (UNINOVE), Sao Paulo, Brazil; Hypertension Unit, Heart Institute (INCOR) School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kátia De Angelis
- Nove de Julho University (UNINOVE), Sao Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Luis Ulloa
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ 07103, USA.
| |
Collapse
|
29
|
Zhang Z, Wang B, Fei A. BDNF contributes to the skeletal muscle anti-atrophic effect of exercise training through AMPK-PGC1α signaling in heart failure mice. Arch Med Sci 2019; 15:214-222. [PMID: 30697273 PMCID: PMC6348347 DOI: 10.5114/aoms.2018.81037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Exercise training is a coadjuvant therapy in preventive cardiology, and it delays cardiac dysfunction and exercise intolerance in heart failure (HF). However, the mechanisms underlying muscle function improvement and cardioprotection are poorly understood. In this study, we tested whether exercise training would counteract skeletal muscle atrophy via activation of the BDNF pathway in myocardial infarction (MI)-induced HF mice. MATERIAL AND METHODS A cohort of male Sham-operated and MI mice were assigned into 8-week moderate exercise training, and untrained counterparters were used as control. Exercise capacity, plasma norepinephrine (NE) level, heart rate (HR), fractional shortening (FS) and ejection fraction (EF) were measured. The protein expression of BDNF, p-TrkB, p-AMPK and PGC1α were analyzed by Western blot. RESULTS Compared with the Sham-operated mice, MI mice displayed reduced total distance run and elevated plasma NE level (both p < 0.05). Exercise training significantly improved distance run and plasma NE levels in HF mice (both p < 0.05). Significantly increased HR, decreased FS and EF were observed in the MI group as compared to the Sham-operated group, and exercise training prevent the hemodynamic status and systolic dysfunction in MI mice (all p < 0.05). The expression of BDNF, p-TrkB, p-AMPK and PGC1α were significantly decreased in the skeletal muscle from MI compared to Sham-operated mice, which were significantly increased by exercise training (all p < 0.05). In addition, BDNF siRNA markedly decreased the protein level of p-AMPK and PGC1α in C2C12 myoblasts. CONCLUSIONS Taken together, our data provide evidence for exercise training may counteract HF-induced muscle atrophy through induced activation of BDNF pathway.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Emergency, Xin Hua Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Beili Wang
- Department of Oncology, Xin Hua Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aihua Fei
- Department of Emergency, Xin Hua Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Kay JC, Claghorn GC, Thompson Z, Hampton TG, Garland T. Electrocardiograms of mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training and the mini-muscle phenotype. Physiol Behav 2018; 199:322-332. [PMID: 30508549 DOI: 10.1016/j.physbeh.2018.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
Changes in cardiac function that occur with exercise training have been studied in detail, but those accompanying evolved increases in the duration or intensity of physical activity are poorly understood. To address this gap, we studied electrocardiograms (ECGs) of mice from an artificial selection experiment in which four replicate lines are bred for high voluntary wheel running (HR) while four non-selected lines are maintained as controls (C). ECGs were recorded using an ECGenie (Mouse Specifics, Inc.) both before and after six days of wheel access (as used in the standard protocol to select breeders). We hypothesized that HR mice would show innate differences in ECG characteristics and that the response to training would be greater in HR mice relative to C mice because the former run more. After wheel access, in statistical analyses controlling for variation in body mass, all mice had lower heart rates, and mice from HR lines had longer PR intervals than C lines. Also after wheel access, male mice had increased heart rate variability, whereas females had decreased heart rate variability. With body mass as a covariate, six days of wheel access significantly increased ventricle mass in both HR and C males. Within the HR lines, a subset of mice known as mini-muscle individuals have a 50% reduction in hindlimb muscle mass and generally larger internal organs, including the heart ventricles. As compared with normal-muscled individuals, mini-muscle individuals had a longer QRS complex, both before and after wheel access. Some studies in other species of mammals have shown correlations between athletic performance and QRS duration. Correlations between wheel running and either heart rate or QRS duration (before wheel running) among the eight individual lines of the HR selection experiment or among 17 inbred mouse strains taken from the literature were not statistically significant. However, total revolutions and average speed were negatively correlated with PR duration among lines of the HR selection experiment for males, and duration of running was negatively correlated with PR duration among 17 inbred strains for females. We conclude that HR mice have enhanced trainability of cardiac function as compared with C mice (as indicated by their longer PR duration after wheel access), and that the mini-muscle phenotype causes cardiac changes that have been associated with increased athletic performance in previous studies of mammals.
Collapse
Affiliation(s)
- Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35406, USA
| | - Gerald C Claghorn
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA; Department of Molecular & Integrative Physiology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
31
|
Oláh A, Kovács A, Lux Á, Tokodi M, Braun S, Lakatos BK, Mátyás C, Kellermayer D, Ruppert M, Sayour AA, Barta BA, Merkely B, Radovits T. Characterization of the dynamic changes in left ventricular morphology and function induced by exercise training and detraining. Int J Cardiol 2018; 277:178-185. [PMID: 30442376 DOI: 10.1016/j.ijcard.2018.10.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/06/2018] [Accepted: 10/26/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although exercise-induced cardiac hypertrophy has been intensively investigated, its development and regression dynamics have not been comprehensively described. In the current study, we aimed to characterize the effects of regular exercise training and detraining on left ventricular (LV) morphology and function. METHODS Rats were divided into exercised (n = 12) and control (n = 12) groups. Exercised rats swam 200 min/day for 12 weeks. After completion of the training protocol, rats remained sedentary for 8 weeks (detraining period). Echocardiographic follow-up was performed regularly to obtain LV long- and short-axis recordings for speckle-tracking echocardiography analysis. Global longitudinal and circumferential strain and systolic strain rate were measured. LV pressure-volume analysis was performed using additional groups of rats to obtain haemodynamic data. RESULTS Echocardiographic examinations showed the development of LV hypertrophy in the exercised group. These differences disappeared during the detraining period. Strain and strain rate values were all increased after the training period, whereas supernormal values rapidly reversed to the control level after training cessation. Load-independent haemodynamic indices, e.g., preload recruitable stroke work, confirmed the exercise-induced systolic improvement and complete regression after detraining. CONCLUSIONS AND TRANSLATIONAL ASPECT Our results provide the first comprehensive data to describe the development and regression dynamics of morphological and functional aspects of physiological hypertrophy in detail. Speckle-tracking echocardiography has been proven to be feasible to follow-up changes induced by exercise training and detraining and might provide an early possibility to differentiate between physiological and pathological conditions.
Collapse
Affiliation(s)
- Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Árpád Lux
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Tokodi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | | | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Association of circular Klotho and insulin-like growth factor 1 with cardiac hypertrophy indexes in athlete and non-athlete women following acute and chronic exercise. Biochem Biophys Res Commun 2018; 505:448-452. [PMID: 30269819 DOI: 10.1016/j.bbrc.2018.09.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022]
Abstract
Owing to the role of insulin-like growth factor 1 (IGF-I) in cardiac hypertrophy and the ability of Klotho in inhibiting the IGF-I action, we investigated effects of exercise on plasma Klotho and IGF-I and their association with cardiac hypertrophy. In this study, 10 non-athlete and 10 athlete women underwent a Bruce test (acute exercise) and 12-weeks water aerobics training (chronic exercise). Electrocardiographic parameters, plasma IGF-I and Klotho levels were measured in different time courses. The exercise training could significantly increase left ventricular end-diastolic diameter index (LVEDDI) in the non-athletes. Plasma levels of IGF-I significantly increased following acute and chronic exercises. The Klotho levels at the baseline were higher in athletes than non-athletes and its levels significantly increased immediately after acute exercise in both groups. The Klotho levels significantly decreased in non-athletes 24 h after chronic exercise, but its level was still higher than the baseline in the athletes. We found positive and negative correlations between cardiac hypertrophy indexes (LVEDDI and left ventricular mass index) with respectively IGF-I and Klotho. In conclusion, we found a stimulatory effect of acute and chronic exercises on plasma IGF-I and Klotho and association of IGF-I with exercise-induced cardiac hypertrophy. Moreover, Klotho could act as a negative regulator for exercise-induced cardiac hypertrophy.
Collapse
|
33
|
Sundberg JP, Schofield PN. Living inside the box: environmental effects on mouse models of human disease. Dis Model Mech 2018; 11:dmm.035360. [PMID: 30194139 PMCID: PMC6215423 DOI: 10.1242/dmm.035360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The impact of the laboratory environment on animal models of human disease, particularly the mouse, has recently come under intense scrutiny regarding both the reproducibility of such environments and their ability to accurately recapitulate elements of human environmental conditions. One common objection to the use of mice in highly controlled facilities is that humans live in much more diverse and stressful environments, which affects the expression and characteristics of disease phenotypes. In this Special Article, we review some of the known effects of the laboratory environment on mouse phenotypes and compare them with environmental effects on humans that modify phenotypes or, in some cases, have driven genetic adaptation. We conclude that the 'boxes' inhabited by mice and humans have much in common, but that, when attempting to tease out the effects of environment on phenotype, a controlled and, importantly, well-characterized environment is essential.
Collapse
Affiliation(s)
| | - Paul N Schofield
- The Jackson Laboratory, Bar Harbor, ME 04609-1500, USA.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
34
|
Lakin R, Guzman C, Izaddoustdar F, Polidovitch N, Goodman JM, Backx PH. Changes in Heart Rate and Its Regulation by the Autonomic Nervous System Do Not Differ Between Forced and Voluntary Exercise in Mice. Front Physiol 2018; 9:841. [PMID: 30061838 PMCID: PMC6055008 DOI: 10.3389/fphys.2018.00841] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022] Open
Abstract
Most exercise studies in mice have relied on forced training which can introduce psychological stress. Consequently, the utility of mouse models for understanding exercise-mediated effects in humans, particularly autonomic nervous system (ANS) remodeling, have been challenged. We compared the effects of voluntary free-wheel running vs. non-voluntary swimming on heart function in mice with a focus on the regulation of heart rate (HR) by the ANS. Under conditions where the total excess O2 consumption associated with exercise was comparable, the two exercise models led to similar improvements in ventricular function as well as comparable reductions in HR and its control by parasympathetic nervous activity (PNA) and sympathetic nervous activity (SNA), compared to sedentary mice. Both exercise models also increased HR variability (HRV) by similar amounts, independent of HR reductions. In all mice, HRV depended primarily on PNA, with SNA weakly affecting HRV at low frequencies. The differences in both HR and HRV between exercised vs. sedentary mice were eliminated by autonomic blockade, consistent with the similar intrinsic beating rates observed in atria isolated from exercised vs. sedentary mice. In conclusion, both forced and voluntary exercise induce comparable ventricular physiological remodeling as well as HR reductions and HR-independent enhancements of HRV which were both primarily dependent on increased PNA. New and noteworthy -No previous mouse studies have compared the effects of forced and voluntary exercise on the heart function and its modulation by the autonomic nervous system (ANS).-Both voluntary free-wheel running and forced swimming induced similar improvements in ventricular contractile function, reductions in heart rate (HR) and enhancements of HR variability (HRV).-HR regulation in exercised mice was linked to increased parasympathetic nerve activity and reduced sympathetic nerve activity.- HRV was independent of HR and depended primarily on PNA in both exercised and sedentary mice.- Complete cardiac autonomic blockade eliminated differences in both HR and HRV between exercised and sedentary mice.
Collapse
Affiliation(s)
- Robert Lakin
- Department of Exercise Sciences, University of Toronto, Toronto, ON, Canada.,Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada
| | - Camilo Guzman
- Department of Biology, York University, Toronto, ON, Canada
| | - Farzad Izaddoustdar
- Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada
| | - Nazari Polidovitch
- Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Jack M Goodman
- Department of Exercise Sciences, University of Toronto, Toronto, ON, Canada.,Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada
| | - Peter H Backx
- Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada.,Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
35
|
Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, Neri LM. Cardiovascular disease-related miRNAs expression: potential role as biomarkers and effects of training exercise. Oncotarget 2018; 9:17238-17254. [PMID: 29682219 PMCID: PMC5908320 DOI: 10.18632/oncotarget.24428] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/20/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the most important causes of mortality worldwide, therefore the need of effective preventive strategies is imperative. Aging is associated with significant changes in both cardiovascular structure and function that lower the threshold for clinical signs and symptoms, making older people more susceptible to CVDs morbidity and mortality. microRNAs (miRNAs) modulate gene expression at post-transcriptional level and increasing evidence has shown that miRNAs are involved in cardiovascular physiology and in the pathogenesis of CVDs. Physical activity is recommended by the medical community and the cardiovascular benefits of exercise are multifactorial and include important systemic effects on skeletal muscle, the peripheral vasculature, metabolism, and neuroendocrine systems, as well as beneficial modifications within the myocardium itself. In this review we describe the role of miRNAs and their dysregulation in several types of CVDs. We provide an overview of miRNAs in CVDs and of the effects of physical activity on miRNA regulation involved in both cardiovascular pathologies and age-related cardiovascular changes and diseases. Circulating miRNAs in response to acute and chronic sport exercise appear to be modulated following training exercise, and may furthermore serve as potential biomarkers for CVDs and different age-related CVDs.
Collapse
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero, Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
36
|
Chronic exercise induces pathological left ventricular hypertrophy in adrenaline-deficient mice. Int J Cardiol 2018; 253:113-119. [DOI: 10.1016/j.ijcard.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022]
|
37
|
Chronic Exercise Reduces CETP and Mesterolone Treatment Counteracts Exercise Benefits on Plasma Lipoproteins Profile: Studies in Transgenic Mice. Lipids 2017; 52:981-990. [DOI: 10.1007/s11745-017-4299-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/15/2017] [Indexed: 01/16/2023]
|
38
|
Boyett MR, Wang Y, Nakao S, Ariyaratnam J, Hart G, Monfredi O, D'Souza A. Rebuttal from Boyett et al. J Appl Physiol (1985) 2017; 123:689. [PMID: 28684595 DOI: 10.1152/japplphysiol.00606.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mark R Boyett
- Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Yanwen Wang
- Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Shu Nakao
- Cardiovascular Sciences, University of Manchester, United Kingdom
| | | | - George Hart
- Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Oliver Monfredi
- Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Alicia D'Souza
- Cardiovascular Sciences, University of Manchester, United Kingdom
| |
Collapse
|
39
|
Nogueira PAS, Pereira MP, Soares JJG, Filho AFN, Tanimoto IMF, Fonseca IAT, Avelar HO, Botelho FV, Roever L, Vieira AA, Zanon RG. Physiological adaptations induced by swimming in mice fed a high fat diet. J Exerc Rehabil 2017; 13:284-291. [PMID: 28702439 PMCID: PMC5498084 DOI: 10.12965/jer.1734944.472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
This study examined physiological variables of animals fed with a high-fat diet (HFD) or with a normal diet (ND) subjected to swimming at low and moderate level. Over 16 weeks, a group of animals was fed with HFD or ND, and at the 8 weeks, they started swimming with 50% or 80% of the maximum load achieved in the progressive work test. Weekly, body weight and the amount of ingested food were registered. The glycemic level was measured at the beginning, middle and at the end of the experiment. Adipose tissue, gastrocnemius muscles and hearts were collected for morphometry. The results showed that the animals fed an HFD had a minor caloric intake; however, the HFD increased body weight and adiposity, likely causing cardiac hypertrophy and an increase in the glycemic level. In this context, swimming with an 80% load contributed positively to weight control, adiposity, glycemic level, to control cardiac hypertrophy and induce hypertrophy in the gastrocnemius muscle. All parameters assessed showed better results for the ND animals. Therefore, the importance of fat consumption was emphasized in relation to obesity onset. The practice of swimming with an 80% load produced greater benefits than swimming with a 50% load for overweight treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Homero Oliveira Avelar
- Institute of Genetic and Biochemistry, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | - Leonardo Roever
- Department of Clinical Research University, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | - Renata Graciele Zanon
- Institute of Biomedical Science, Federal University of Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
40
|
Barbosa de Queiroz K, Honorato-Sampaio K, Rossoni Júnior JV, Andrade Leal D, Pinto ABG, Kappes-Becker L, Evangelista EA, Guerra-Sá R. Physical activity prevents alterations in mitochondrial ultrastructure and glucometabolic parameters in a high-sugar diet model. PLoS One 2017; 12:e0172103. [PMID: 28199417 PMCID: PMC5310863 DOI: 10.1371/journal.pone.0172103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/31/2017] [Indexed: 11/19/2022] Open
Abstract
Endurance exercise is a remarkable intervention for the treatment of many diseases. Mitochondrial changes on skeletal muscle are likely important for many of the benefits provided by exercise. In this study, we aimed to evaluate the effects that a regular physical activity (swimming without workload) has on mitochondrial morphological alterations and glucometabolic parameters induced by a high-sugar diet (HSD). Weaned male Wistar rats fed with a standard diet or a HSD (68% carbohydrate) were subjected to 60 minutes of regular physical activity by swimming (without workload) for four- (20 sessions) or eight-week (40 sessions) periods. After training, animals were euthanized and the sera, adipose tissues, and skeletal muscles were collected for further analysis. The HSD increased body weight after an 8-week period; it also increased the fat pads and the adipose index, resulting in glucose intolerance and insulin resistance (IR). Transmission electron microscopy showed an increase in alterations of mitochondrial ultrastructure in the gastrocnemius muscle, as well as a decrease in superoxide dismutase (SOD) activity, and an increase in protein carbonylation. Regular physical activity partially reverted these alterations in rats fed a HSD, preventing mitochondrial morphological alterations and IR. Moreover, we observed a decrease in Pgc1α expression (qPCR analysis) in STD-EXE group and a less pronounced reduction in HSD-EXE group after an 8-week period. Thus, regular physical activity (swimming without workload) in rats fed a HSD can prevent mitochondrial dysfunction and IR, highlighting the crucial role for physical activity on metabolic homeostasis.
Collapse
Affiliation(s)
- Karina Barbosa de Queiroz
- Laboratório de Bioquímica e Biologia Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- * E-mail:
| | - Kinulpe Honorato-Sampaio
- Faculdade de Medicina, Campus JK, Universidade Federal dos Vales Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brasil
| | - Joamyr Victor Rossoni Júnior
- Laboratório de Bioquímica Metabólica, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Diego Andrade Leal
- Laboratório de Bioquímica e Biologia Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | | | - Lenice Kappes-Becker
- Centro de Esportes, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Elisio Alberto Evangelista
- Laboratório de Bioquímica e Biologia Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Renata Guerra-Sá
- Laboratório de Bioquímica e Biologia Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| |
Collapse
|
41
|
Abstract
Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.
Collapse
|
42
|
Wasinski F, Estrela GR, Arakaki AM, Bader M, Alenina N, Klempin F, Araújo RC. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring. Front Neurosci 2016; 10:402. [PMID: 27621701 PMCID: PMC5002407 DOI: 10.3389/fnins.2016.00402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/16/2016] [Indexed: 11/13/2022] Open
Abstract
Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring.
Collapse
Affiliation(s)
- Frederick Wasinski
- Max Delbrueck Center for Molecular Medicine, Molecular Biology of Hormones in the Cardiovascular SystemBerlin, Germany; Department of Biophysics, Federal University of São PauloSão Paulo, Brazil
| | - Gabriel R Estrela
- Department of Biophysics, Federal University of São Paulo São Paulo, Brazil
| | - Aline M Arakaki
- Department of Biophysics, Federal University of São Paulo São Paulo, Brazil
| | - Michael Bader
- Max Delbrueck Center for Molecular Medicine, Molecular Biology of Hormones in the Cardiovascular SystemBerlin, Germany; Charité - University Medicine BerlinBerlin, Germany
| | - Natalia Alenina
- Max Delbrueck Center for Molecular Medicine, Molecular Biology of Hormones in the Cardiovascular System Berlin, Germany
| | - Friederike Klempin
- Max Delbrueck Center for Molecular Medicine, Molecular Biology of Hormones in the Cardiovascular System Berlin, Germany
| | - Ronaldo C Araújo
- Department of Biophysics, Federal University of São Paulo São Paulo, Brazil
| |
Collapse
|
43
|
Akt/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice. Int J Cardiol 2016; 214:137-47. [PMID: 27060274 DOI: 10.1016/j.ijcard.2016.03.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 03/05/2016] [Accepted: 03/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exercise intolerance is one of the main clinical symptoms of heart failure (HF) and is associated with skeletal muscle wasting due to an imbalance between proteolysis and protein synthesis. In this study, we tested whether aerobic exercise training (AET) would counteract skeletal muscle atrophy by activating IGF-I/Akt/mTOR pathway in HF mice. METHODS Sympathetic hyperactivity induced HF mice were assigned into 8-week moderate intensity AET. Untrained wild type and HF mice were used as control. Soleus cross sectional area was evaluated by histochemistry and motor performance by rotarod. 26S proteasome activity was assessed by fluorimetric assay, and components of IGF-I/Akt/mTOR pathway or myostatin pathway by qRT-PCR or immunoblotting. A different subset of mice was used to evaluate the relative contribution of mTOR inhibition (rapamycin) or activation (leucine) on AET-induced changes in muscle mass regulation. RESULTS AET prevented exercise intolerance and impaired motor performance in HF mice. These effects were associated with attenuation of soleus atrophy. Rapamycin treatment precluded AET effects on soleus mass in HF mice suggesting the involvement of IGF signaling pathway in this response. In fact, AET increased IGF-I Ea and IGF-I Pan mRNA levels, while it reduced myostatin and Smad2 mRNA levels in HF mice. At protein levels, AET prevented reduced expression levels of IGF-I, pAkt (at basal state), as well as, p4E-BP1 and pP70(S6K) (leucine-stimulated state) in HF mice. Additionally, AET prevented 26S proteasome hyperactivity in HF mice. CONCLUSIONS Taken together, our data provide evidence for AET-induced activation of IGF-I/Akt/mTOR signaling pathway counteracting HF-induced muscle wasting.
Collapse
|
44
|
Barbin ICC, Pereira JA, Bersan Rovere M, de Oliveira Moreira D, Marques MJ, Santo Neto H. Diaphragm degeneration and cardiac structure in mdx mouse: potential clinical implications for Duchenne muscular dystrophy. J Anat 2016; 228:784-91. [PMID: 26822140 DOI: 10.1111/joa.12443] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 02/03/2023] Open
Abstract
We examined the effects of exercise on diaphragm degeneration and cardiomyopathy in dystrophin-deficient mdx mice. Mdx mice (11 months of age) were exercised (swimming) for 2 months to worsen diaphragm degeneration. Control mdx mice were kept sedentary. Morphological evaluation demonstrated increased fibrosis in the diaphragm of exercised mdx mice (33.3 ± 6.0% area of fibrosis) compared with control mdx mice (20.9 ± 1.7% area of fibrosis). Increased (26%) activity of MMP-2, a marker of fibrosis, was detected in the diaphragms from exercised mdx mice. Morphological evaluation of the heart demonstrated a 45% increase in fibrosis in the right ventricle (8.3 ± 0.6% in sedentary vs. 12.0 ± 0.6% of fibrosis in exercised) and in the left ventricle (35% increase) in the exercised mdx mice. The density of inflammatory cells-degenerating cardiomyocytes increased 95% in the right ventricle (2.3 ± 0.6 in sedentary vs. 4.5 ± 0.8 in exercised) and 71% in the left ventricle (1.4 ± 0.6 sedentary vs. 2.4 ± 0.5 exercised). The levels of both active MMP-2 and the pro-fibrotic factor transforming growth factor beta were elevated in the hearts of exercised compared with sedentary mdx mice. The wall thickness to lumen diameter ratio of the pulmonary trunk was significantly increased in the exercised mdx mice (0.11 ± 0.04 in sedentary vs. 0.28 ± 0.12 in exercised), as was the thickness of the right ventricle wall, which suggests the occurrence of pulmonary hypertension in those animals. It is suggested that diaphragm degeneration is a main contributor to right ventricle dystrophic pathology. These findings may be relevant for future interventional studies for Duchenne muscular dystrophy-associated cardiomyopathy.
Collapse
Affiliation(s)
- Isabel Cristina Chagas Barbin
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliano Alves Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Matheus Bersan Rovere
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Drielen de Oliveira Moreira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maria Julia Marques
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Humberto Santo Neto
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
45
|
Silva DB, Miranda AP, Silva DB, D'Angelo LRB, Rosa BB, Soares EA, Ramalho JGDC, Boriollo MFG, Garcia JAD. Propolis and swimming in the prevention of atherogenesis and left ventricular hypertrophy in hypercholesterolemic mice. BRAZ J BIOL 2016; 75:414-22. [PMID: 26132026 DOI: 10.1590/1519-6984.15313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/02/2014] [Indexed: 11/22/2022] Open
Abstract
AIMS The present study verified the effect of propolis alone and its association with swimming in dyslipidemia, left ventricular hypertrophy and atherogenesis of hypercholesterolemic mice. METHODS AND RESULTS The experiments were performed in LDLr-/- mice, fed with high fat diet for 75 days, and were divided into four experimental groups (n=10): HL, sedentary, subjected to aquatic stress (5 min per day, 5 times per week); NAT submitted to a swimming protocol (1 hour per day, 5 times per week) from the 16th day of the experiment; PRO, sedentary, submitted to aquatic stress and which received oral propolis extract (70 uL/animal/day) from the 16th day of the experiment; HL+NAT+PRO, submitted to swimming and which received propolis as described above. After 75 days, blood was collected for analysis of serum lipids. The ratio between the ventricular weight (mg) and the animal weight (g) was calculated. Histological sections of the heart and aorta were processed immunohistochemically with anti-CD40L antibodies to evaluate the inflammatory process; stained with hematoxylin/eosin and picrosirius red to assess morphological and morphometric alterations. The HL animals showed severe dyslipidemia, atherogenesis and left ventricular hypertrophy, associated with a decrease in serum HDLc levels and subsequent development of cardiovascular inflammatory process, characterized by increased expression of CD40L in the left ventricle and aorta. Swimming and propolis alone and\or associated prevented the LVH, atherogenesis and arterial and ventricular inflammation, decreasing the CD40L expression and increasing the HDLc plasmatic levels. CONCLUSION Propolis alone or associated with a regular physical activity is beneficial in cardiovascular protection through anti-inflammatory action.
Collapse
Affiliation(s)
- D B Silva
- Programa de mestrado em Ciência Animal, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - A P Miranda
- Programa de mestrado em Ciência Animal, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - D B Silva
- Programa de mestrado em Ciência Animal, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - L R B D'Angelo
- Programa de mestrado em Ciência Animal, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - B B Rosa
- Programa de mestrado em Ciência Animal, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - E A Soares
- Faculdade de Medicina e Medicina Veterinária, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - J G D C Ramalho
- Programa de mestrado em Ciência Animal, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - M F G Boriollo
- Instituto Federal Sul de Minas Gerais, Muzambinho, MG, Brazil
| | - J A D Garcia
- Instituto Federal Sul de Minas Gerais, Machado, MG, Brazil
| |
Collapse
|
46
|
Wasinski F, Bacurau RFP, Estrela GR, Klempin F, Arakaki AM, Batista RO, Mafra FFP, do Nascimento LFR, Hiyane MI, Velloso LA, Câmara NOS, Araujo RC. Exercise during pregnancy protects adult mouse offspring from diet-induced obesity. Nutr Metab (Lond) 2015; 12:56. [PMID: 26690877 PMCID: PMC4683957 DOI: 10.1186/s12986-015-0052-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Physical exercise induces positive alterations in gene expression involved in the metabolism of obesity. Maternal exercise provokes adaptations soon after birth in the offspring. Here, we investigated whether adult mouse offspring of swim-trained mothers is protected against the development of the deleterious effects of high fat diet (HFD). METHODS Our study comprises two parts. First, female C57BL/6 mice were divided into one sedentary and one swim-trained group (before and during pregnancy, n = 18). In the second part, adult offspring (n = 12) of trained and sedentary mothers was challenged to HFD for 16 weeks. Notably, most of the analysis was done in male offspring. RESULTS Our results demonstrate that maternal exercise has several beneficial effects on the mouse offspring and protects them from the deleterious effects of HFD in the adult. Specifically, swimming during pregnancy leads to lower birth weight in offspring through 2 months of age. When subjected to HFD for 4 month in the adulthood, our study presents novel data on the male offspring's metabolism of trained mothers. The offspring gained less weight, which was accompanied by less body fat, and they used more calories during daytime compared with offspring of sedentary mothers. Furthermore, we observed increased adiponectin expression in skeletal muscle, which was accompanied by decreased leptin levels and increased insulin sensitivity. Decreased interleukin-6 expression and increased peptide PYY levels were observed in sera of adult offspring of mothers that swam during pregnancy. CONCLUSIONS Our results point to the conclusion that maternal exercise is beneficial to protect the offspring from developing obesity, which could be important for succeeding generations as well.
Collapse
Affiliation(s)
- Frederick Wasinski
- />Department of Biophysics, Federal University of São Paulo, Rua Pedro de Toledo, 669 9 andar, 04039-032 São Paulo, SP Brazil
- />Department of Medicine, Division of Nephrology, Federal University of São Paulo, 04023-900 São Paulo, SP Brazil
| | | | - Gabriel Rufino Estrela
- />Department of Biophysics, Federal University of São Paulo, Rua Pedro de Toledo, 669 9 andar, 04039-032 São Paulo, SP Brazil
- />Department of Medicine, Division of Nephrology, Federal University of São Paulo, 04023-900 São Paulo, SP Brazil
| | | | - Aline Midori Arakaki
- />Department of Biophysics, Federal University of São Paulo, Rua Pedro de Toledo, 669 9 andar, 04039-032 São Paulo, SP Brazil
- />Department of Medicine, Division of Nephrology, Federal University of São Paulo, 04023-900 São Paulo, SP Brazil
| | - Rogerio Oliveira Batista
- />Department of Biophysics, Federal University of São Paulo, Rua Pedro de Toledo, 669 9 andar, 04039-032 São Paulo, SP Brazil
- />Department of Medicine, Division of Nephrology, Federal University of São Paulo, 04023-900 São Paulo, SP Brazil
| | | | | | - Meire Ioshie Hiyane
- />Department of Immunology, Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP Brazil
| | - Lício Augusto Velloso
- />Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, SP Brazil
| | - Niels Olsen Saraiva Câmara
- />Department of Immunology, Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP Brazil
| | - Ronaldo Carvalho Araujo
- />Department of Biophysics, Federal University of São Paulo, Rua Pedro de Toledo, 669 9 andar, 04039-032 São Paulo, SP Brazil
| |
Collapse
|
47
|
Bernardes D, Brambilla R, Bracchi-Ricard V, Karmally S, Dellarole A, Carvalho-Tavares J, Bethea JR. Prior regular exercise improves clinical outcome and reduces demyelination and axonal injury in experimental autoimmune encephalomyelitis. J Neurochem 2015; 136 Suppl 1:63-73. [PMID: 26364732 DOI: 10.1111/jnc.13354] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022]
Abstract
Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long-term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4(+) T cells, and CD8(+) T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. In this study, we show that a program of 6 weeks of preconditioning exercise promoted a significant reduction of cells infiltrating into the spinal cord, a significant reduction in myelin damage and a significant reduction in axonal damage in experimental autoimmune encephalomyelitis (EAE) mice at 42 dpi. Collectively, our study demonstrates for the first time that a preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease.
Collapse
Affiliation(s)
- Danielle Bernardes
- Departamento de Fisiologia e Biofísica, Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil.,The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Roberta Brambilla
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Valerie Bracchi-Ricard
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Department of Biology, Drexel University, Philadelphia, Philadelphia, USA
| | - Shaffiat Karmally
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Anna Dellarole
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Juliana Carvalho-Tavares
- Departamento de Fisiologia e Biofísica, Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, Philadelphia, USA
| |
Collapse
|
48
|
Soustek MS, Baligand C, Falk DJ, Walter GA, Lewin AS, Byrne BJ. Endurance training ameliorates complex 3 deficiency in a mouse model of Barth syndrome. J Inherit Metab Dis 2015; 38:915-22. [PMID: 25860817 DOI: 10.1007/s10545-015-9834-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 02/06/2023]
Abstract
Barth syndrome (BTHS) is an X-linked metabolic disorder that causes cardiomyopathy in infancy and is linked to mutations within the Tafazzin (TAZ) gene. The first mouse model, a TAZ knockdown model (TAZKD), has been generated to further understand the bioenergetics leading to cardiomyopathy. However, the TAZKD model does not show early signs of cardiomyopathy, and cardiac pathophysiology has not been documented until 7-8 months of age. Here we sought to determine the impact of endurance training on the cardiac and skeletal muscle phenotype in young TAZKD mice. TAZKD exercise trained (TAZKD-ET) and control exercise trained (CON-ET) mice underwent a 35-day swimming protocol. Non-trained aged matched TAZKD and CON mice were used as controls. At the end of the protocol, cardiac MRI was used to assess cardiac parameters. Cardiac MRI showed that training resulted in cardiac hypertrophy within both groups and did not result in a decline of ejection fraction. TAZKD mice exhibited a decrease in respiratory complex I, III, and IV enzymatic activity in cardiac tissue compared to control mice; however, training led to an increase in complex III activity in TAZKD-ET mice resulting in similar levels to those of CON-ET mice. (31)P magnetic resonance spectroscopy of the gastrocnemius showed a significantly lowered pH in TAZKD-ET mice post electrical-stimulation compared to CON-ET mice. Endurance training does not accelerate cardiac dysfunction in young TAZKD mice, but results in beneficial physiological effects. Furthermore, our results suggest that a significant drop in intracellular pH levels may contribute to oxidative phosphorylation defects during exercise.
Collapse
Affiliation(s)
- Meghan S Soustek
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
49
|
Leite CF, Lopes CS, Alves AC, Fuzaro CSC, Silva MV, Oliveira LFD, Garcia LP, Farnesi TS, Cuba MBD, Rocha LB, Rodrigues V, Oliveira CJFD, Dias da Silva VJ. Endogenous resident c-Kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart. Stem Cell Res 2015; 15:151-64. [PMID: 26070113 DOI: 10.1016/j.scr.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/13/2015] [Accepted: 05/20/2015] [Indexed: 02/08/2023] Open
Abstract
Physical activity evokes well-known adaptations in the cardiovascular system. Although exercise training induces cardiac remodeling, whether multipotent stem cells play a functional role in the hypertrophic process remains unknown. To evaluate this possibility, C57BL/6 mice were subjected to swimming training aimed at achieving cardiac hypertrophy, which was morphologically and electrocardiographically characterized. Subsequently, c-Kit(+)Lin(-) and Sca-1(+)Lin(-) cardiac stem cells (CSCs) were quantified using flow cytometry while cardiac muscle-derived stromal cells (CMSCs, also known as cardiac-derived mesenchymal stem cells) were assessed using in vitro colony-forming unit fibroblast assay (CFU-F). Only the number of c-Kit(+)Lin(-) cells increased in the hypertrophied heart. To investigate a possible extracardiac origin of these cells, a parabiotic eGFP transgenic/wild-type mouse model was used. The parabiotic pairs were subjected to swimming, and the wild-type heart in particular was tested for eGFP(+) stem cells. The results revealed a negligible number of extracardiac stem cells in the heart, allowing us to infer a cardiac origin for the increased amount of detected c-Kit(+) cells. In conclusion, the number of resident Sca-1(+)Lin(-) cells and CMSCs was not changed, whereas the number of c-Kit(+)Lin(-) cells was increased during physiological cardiac hypertrophy. These c-Kit(+)Lin(-) CSCs may contribute to the physiological cardiac remodeling that result from exercise training.
Collapse
Affiliation(s)
- Camila Ferreira Leite
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Carolina Salomão Lopes
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Angélica Cristina Alves
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Caroline Santos Capitelli Fuzaro
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Marcos Vinícius Silva
- Department of Microbiology, Immunology and Parasitology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Lucas Felipe de Oliveira
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Lidiane Pereira Garcia
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Thaís Soares Farnesi
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Marília Beatriz de Cuba
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Lenaldo Branco Rocha
- Department of Morphology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Virmondes Rodrigues
- Department of Microbiology, Immunology and Parasitology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil
| | - Valdo José Dias da Silva
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Praça Manoel Terra, 330, Centro, 38025-015 Uberaba, MG, Brazil.
| |
Collapse
|
50
|
Moore SM, Zhang H, Maeda N, Doerschuk CM, Faber JE. Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury. Angiogenesis 2015; 18:265-81. [PMID: 25862671 DOI: 10.1007/s10456-015-9465-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
RATIONALE Collaterals lessen tissue injury in occlusive disease. However, aging causes progressive decline in their number and smaller diameters in those that remain (collateral rarefaction), beginning at 16 months of age in mice (i.e., middle age), and worse ischemic injury-effects that are accelerated in even 3-month-old eNOS(-/-) mice. These findings have found indirect support in recent human studies. OBJECTIVE We sought to determine whether other cardiovascular risk factors (CVRFs) associated with endothelial dysfunction cause collateral rarefaction, investigate possible mechanisms, and test strategies for prevention. METHODS AND RESULTS Mice with nine different models of CVRFs of 4-12 months of age were assessed for number and diameter of native collaterals in skeletal muscle and brain and for collateral-dependent perfusion and ischemic injury after arterial occlusion. Hypertension caused collateral rarefaction whose severity increased with duration and level of hypertension, accompanied by greater hindlimb ischemia and cerebral infarct volume. Chronic treatment of wild-type mice with L-N (G)-nitro-arginine methylester caused similar rarefaction and worse ischemic injury which were not prevented by lowering arterial pressure with hydralazine. Metabolic syndrome, hypercholesterolemia, diabetes mellitus, and obesity also caused collateral rarefaction. Neither chronic statin treatment nor exercise training lessened hypertension-induced rarefaction. CONCLUSION Chronic CVRF presence caused collateral rarefaction and worse ischemic injury, even at relatively young ages. Rarefaction was associated with increased proliferation rate of collateral endothelial cells, effects that may promote accelerated endothelial cell senescence.
Collapse
Affiliation(s)
- Scott M Moore
- Department of Cell Biology and Physiology, 6309 MBRB, University of North Carolina, Chapel Hill, NC, 27599-7545, USA
| | | | | | | | | |
Collapse
|