1
|
Wang T, Wang K, Wang N, Cui D, Li S, Lu Q, Zuo Y. From intercropping to monocropping: The effects of Pseudomonas strain to facilitate nutrient efficiency in peanut and soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109378. [PMID: 39647229 DOI: 10.1016/j.plaphy.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
As an oilseed crop, the yield and quality of peanuts are severely constrained by nutrient deficiencies, particularly in calcareous soils in northern China. Maize-peanut intercropping is an effective strategy to enhance mineral nutrient efficiency in peanuts via plant-microbe interaction, but the underlying mechanisms remain elusive. Here, we conducted experiments using a Pseudomonas strain (Pse.IP6) with diverse beneficial characteristics, which was isolated from the rhizosphere of intercropped peanuts. Additionally, Pse.IP6 exhibits high phylogenetic similarity with the Amplicon Sequence Variants 48 (ASV48) which belongs to Pseudomonas and is positively correlated with Fe in plants and soil in intercropping. To confirm the plant growth-promoting potential of Pse.IP6 and its role in intercropping advantage, we constructed pot experiments. Results revealed that Pse.IP6 promoted shoot growth and root development, as well significantly enhanced SPAD value, net photosynthetic rate, stomatal conductance, and transpiration rate of peanut leaves. Moreover, the application of Pse.IP6 resulted in a notable accumulation of nitrogen (N), phosphorus (P), and potassium (K) in shoot and active iron (Fe) in leaves, accompanied by an increased K-N ratio. The primary reason for the nutrient promotion is the enhancement of the bioavailability of nitrate, ammonium, P, K, and Fe in the rhizosphere. Collectively, our findings demonstrate that Pse.IP6, enriched in intercropping peanut, is a plant growth-promoting bacteria, represented by transferring the intercropping advantage on nutrients activation to monocropping peanuts. Our results offer insights into plant-rhizobacteria interaction mechanisms and therefore provide a rhizobacteria-based pathway to improve nutrient efficiency and productivity of crops.
Collapse
Affiliation(s)
- Tianqi Wang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China; Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Kunguang Wang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Nanqi Wang
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Dongming Cui
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Shiqin Li
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Qiaofang Lu
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China
| | - Yuanmei Zuo
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
2
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 PMCID: PMC11518954 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
3
|
Goulart JTDSS, Quintanilha-Peixoto G, Esteves BDS, de Souza SA, Lopes PS, da Silva ND, Soares JR, Barroso LM, Suzuki MS, Intorne AC. Isolation and Characterization of Plant-Growth-Promoting Bacteria Associated with Salvinia auriculata Aublet. Microorganisms 2024; 12:1842. [PMID: 39338516 PMCID: PMC11434440 DOI: 10.3390/microorganisms12091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 09/30/2024] Open
Abstract
Salvinia auriculata Aublet is a floating aquatic plant, capable of absorbing the excess of nutrients and water contaminants and can be used in effluent treatment plants. The ability to survive in degraded areas may be related to the association with beneficial bacteria capable of promoting plant growth. However, little is known about the microbiota associated with this aquatic plant and its potential application to the aquatic environment. In this sense, this work aims to identify bacteria associated with S. auriculata that could be able to promote plant growth. Eighteen bacterial strains were identified by sequencing of the 16S rRNA gene, belonging to the genera Agrobacterium, Bacillus, Curtobacterium, Enterobacter, Pseudomonas, Siccibacter, and Stenotrophomonas. All isolates produced indole compounds, 12 fixed N2, and 16 solubilized phosphate. A new strain of Enterobacter (sp 3.1.3.0.X.18) was selected for inoculation into S. auriculata. For this purpose, 500 mL of nutrient solution and 1 g of the plant were used in the control and inoculated conditions. Enterobacter inoculation promoted a significant increase (p ≤ 0.05) in fresh plant biomass (17%) after 4 days of cultivation. In summary, the present study characterized 18 plant-growth-promoting bacteria isolated from S. auriculata with potential for biotechnological application, such as the production of bioinoculants or biomass resources, to protect or improve plant growth under conditions of stress.
Collapse
Affiliation(s)
- Jussara Tamires de Souza Silva Goulart
- Laboratory of Physiology and Biochemistry of Microorganisms, State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Gabriel Quintanilha-Peixoto
- Laboratory of Function and Chemistry of Proteins and Peptides, State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Bruno Dos Santos Esteves
- Laboratory of Environmental Sciences (LCA), State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Suzane Ariadina de Souza
- Laboratory of Biotechnology, State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Pollyanna Santiago Lopes
- Laboratory of Cell and Tissue Biology, State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Nathália Duarte da Silva
- Laboratory of Cell and Tissue Biology, State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Julia Ribeiro Soares
- Laboratory of Physiology and Biochemistry of Microorganisms, State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Laura Mathias Barroso
- Laboratory of Physiology and Biochemistry of Microorganisms, State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Marina Satika Suzuki
- Laboratory of Environmental Sciences (LCA), State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Aline Chaves Intorne
- Laboratory of Physiology and Biochemistry of Microorganisms, State University of Northern Rio de Janeiro-UENF, Campos dos Goytacazes 28013-602, RJ, Brazil
- Laboratory of Chemistry and Biology, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Volta Redonda 27213-100, RJ, Brazil
| |
Collapse
|
4
|
Mahmoud AM, Reyad AM, Khalaf MH, Sheteiwy MS, Dawood MFA, El-Sawah AM, Shaban Ahmed E, Malik A, Al-Qahtani WH, Abdel-Maksoud MA, Mousa NHS, Alyafei M, AbdElgawad H. Investigating the Endophyte Actinomycetota sp. JW0824 Strain as a Potential Bioinoculant to Enhance the Yield, Nutritive Value, and Chemical Composition of Different Cultivars of Anise ( Pimpinella anisum L.) Seeds. BIOLOGY 2024; 13:553. [PMID: 39194491 DOI: 10.3390/biology13080553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
Anise (Pimpinella anisum L.) seeds have various nutritional and therapeutic benefits and are thus considered a valuable addition to animal and human health. Hence, in this study, we aimed to induce the nutritive and biological value of anise seeds. To this end, the potential biofortification effect of the endophytic Actinomycetota sp. JW0824 strain, isolated during the fall of 2023 from the medicinal plant Achyranthes aspera, exhibiting natural distribution in the Jazan region of Saudi Arabia, was investigated in four varieties of anise seeds from Egypt, Tunisia, Syria, and Morocco. Results revealed significant increments (p < 0.05) in the seed dry weight percentage (DW%) and oil yields. In line with increased biomass accumulation, the metabolism of the primary and secondary metabolites was increased. There were differential increases in proteins, sugars, flavonoids, alkaloids, phenols, vitamins (e.g., β-carotene, ascorbic acid), and essential oil components (e.g., phenylpropanoids and monoterpenes), along with their precursor phenylalanine. Consistently, the activity of L-phenylalanine aminolyase (PAL) was increased in the Egyptian and Tunisian varieties at 83.88% and 77.19%, respectively, while 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) activity increased in all varieties, with a significant 179.31% rise in the Egyptian variety. These findings highlight the beneficial effects of Actinomycetota sp. JW0824 as a bioinoculant for anise seeds, suggesting its potential application in agricultural practices to improve seed yield and quality. Further field trials are recommended to assess the commercial viability of this endophyte for enhancing anise seed production and potentially benefiting other plant species.
Collapse
Affiliation(s)
- Ahmed M Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed M Reyad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Maha H Khalaf
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ahmed M El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Enas Shaban Ahmed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia
| | - Nermien H S Mousa
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohammed Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
5
|
Shurigin V, Li L, Alaylar B, Egamberdieva D, Liu YH, Li WJ. Plant beneficial traits of endophytic bacteria associated with fennel ( Foeniculum vulgare Mill.). AIMS Microbiol 2024; 10:449-467. [PMID: 38919721 PMCID: PMC11194617 DOI: 10.3934/microbiol.2024022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we used 16S rRNA gene sequence analysis to describe the diversity of cultivable endophytic bacteria associated with fennel (Foeniculum vulgare Mill.) and determined their plant-beneficial traits. The bacterial isolates from the roots of fennel belonged to four phyla: Firmicutes (BRN1 and BRN3), Proteobacteria (BRN5, BRN6, and BRN7), Gammaproteobacteria (BRN2), and Actinobacteria (BRN4). The bacterial isolates from the shoot of fennel represented the phyla Proteobacteria (BSN1, BSN2, BSN3, BSN5, BSN6, BSN7, and BSN8), Firmicutes (BSN4, BRN1, and BRN3), and Actinobacteria (BRN4). The bacterial species Bacillus megaterium, Bacillus aryabhattai, and Brevibacterium frigoritolerans were found both in the roots and shoots of fennel. The bacterial isolates were found to produce siderophores, HCN, and indole-3-acetic acid (IAA), as well as hydrolytic enzymes such as chitinase, protease, glucanase, and lipase. Seven bacterial isolates showed antagonistic activity against Fusarium culmorum, Fusarium solani, and Rhizoctonia. solani. Our findings show that medicinal plants with antibacterial activity may serve as a source for the selection of microorganisms that exhibit antagonistic activity against plant fungal infections and may be considered as a viable option for the management of fungal diseases. They can also serve as an active part of biopreparation, improving plant growth.
Collapse
Affiliation(s)
- Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Burak Alaylar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Agri Ibrahim Cecen University, Agri 04100, Turkey
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
6
|
Ali MA, Ahmed T, Ibrahim E, Rizwan M, Chong KP, Yong JWH. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon 2024; 10:e31573. [PMID: 38841467 PMCID: PMC11152693 DOI: 10.1016/j.heliyon.2024.e31573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Ezzeldin Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khim Phin Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
7
|
Sharma M, Sood G, Chauhan A. Assessment of Plant Growth Promotion Potential of Endophytic Bacterium B. subtilis KU21 Isolated from Rosmarinus officinalis. Curr Microbiol 2024; 81:207. [PMID: 38831110 DOI: 10.1007/s00284-024-03734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.
Collapse
Affiliation(s)
- Minakshi Sharma
- Division of Soil Science and Agricultural Chemistry, Indian Agricultural Research Institute, New Delhi, India.
| | - Gaurav Sood
- Department of Soil Science and Water Management, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Anjali Chauhan
- Department of Soil Science and Water Management, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| |
Collapse
|
8
|
Yadav A, Yadav R, Khare P. Impact of cultivating different Ocimum species on bioaerosol bacterial communities and functional genome at an agricultural site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124289. [PMID: 38825219 DOI: 10.1016/j.envpol.2024.124289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The effects of the surrounding environment on the bacterial composition of bioaerosol were well documented for polluted and contaminated sites. However, there is limited data on the impact of plant species, especially those that produce aromas, on bioaerosol composition at agricultural sites. Hence, the aim of this study is to evaluate the variability in bacterial communities present in bioaerosol samples collected from agricultural sites with aroma-producing crops. For this, PM2.5, PM10, and bioaerosol samples were collected from agricultural fields growing Ocimum [two varieties of O. sanctum (CIM-Aayu and CIM-Angana)] and O. kilimandscharicum (Kapoor), nearby traffic junctions and suburban areas. PM2.5 and PM10 concentrations at the agricultural site were in between the other two polluted sites. However, bioaerosol concentration was lower at agricultural sites than at other sites. The culturable bacteria Bacillus subtilis, Bacillus tequilensis, and Staphylococcus saprophyticus were more prevalent in agricultural sites than in other areas. However, the composition of non-culturable bacteria varied between sites and differed in three fields where Ocimum was cultivated. The CIM-Aayu cultivated area showed a high bacterial richness, lower Simpson and Shannon indices, and a distinctive metabolic profile. The sites CIM-Angana and CIM-Kapoor had a higher abundance of Aeromonas, while Pantoea and Pseudomonas were present at CIM-Aayu. Acinetobacter, Staphylococcus, and Bacillus were the dominant genera at the other two sites. Metabolic profiling showed that the CIM-Aayu site had a higher prevalence of pathways related to amino acid and carbohydrate metabolism and environmental information processing compared to other sites. The composition of bioaerosol among the three different Ocimum sites could be due to variations in the plant volatile and cross-feeding nature of bacterial isolates, which further needs to be explored.
Collapse
Affiliation(s)
- Anisha Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Sun YY, Hu B, Yu HB, Zhou J, Meng XC, Ning Z, Ding JF, Cui MH, Liu XY. Genomics- and Transcriptomics-Guided Discovery of Clavatols from Arctic Fungi Penicillium sp. MYA5. Mar Drugs 2024; 22:236. [PMID: 38921547 PMCID: PMC11205228 DOI: 10.3390/md22060236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Clavatols exhibit a wide range of biological activities due to their diverse structures. A genome mining strategy identified an A5cla cluster from Penicillium sp. MYA5, derived from the Arctic plant Dryas octopetala, is responsible for clavatol biosynthesis. Seven clavatols, including one new clavatol derivate named penicophenone F (1) and six known clavatols (2-7), were isolated from Penicillium sp. MYA5 using a transcriptome mining strategy. These structures were elucidated by comprehensive spectroscopic analysis. Antibacterial, aldose reductase inhibition, and siderophore-producing ability assays were conducted on compounds 1-7. Compounds 1 and 2 demonstrated inhibitory effects on the ALR2 enzyme with inhibition rates of 75.3% and 71.6% at a concentration of 10 μM, respectively. Compound 6 exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 4.0 μg/mL and 4.0 μg/mL, respectively. Additionally, compounds 1, 5, and 6 also showed potential iron-binding ability.
Collapse
Affiliation(s)
- Yuan-Yuan Sun
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China; (Y.-Y.S.); (B.H.); (H.-B.Y.); (X.-C.M.); (Z.N.); (J.-F.D.); (M.-H.C.)
| | - Bo Hu
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China; (Y.-Y.S.); (B.H.); (H.-B.Y.); (X.-C.M.); (Z.N.); (J.-F.D.); (M.-H.C.)
| | - Hao-Bing Yu
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China; (Y.-Y.S.); (B.H.); (H.-B.Y.); (X.-C.M.); (Z.N.); (J.-F.D.); (M.-H.C.)
| | - Jing Zhou
- Institute of Quality Inspection and Technical Research, Shanghai 200031, China;
| | - Xian-Chao Meng
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China; (Y.-Y.S.); (B.H.); (H.-B.Y.); (X.-C.M.); (Z.N.); (J.-F.D.); (M.-H.C.)
| | - Zhe Ning
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China; (Y.-Y.S.); (B.H.); (H.-B.Y.); (X.-C.M.); (Z.N.); (J.-F.D.); (M.-H.C.)
| | - Jin-Feng Ding
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China; (Y.-Y.S.); (B.H.); (H.-B.Y.); (X.-C.M.); (Z.N.); (J.-F.D.); (M.-H.C.)
| | - Ming-Hui Cui
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China; (Y.-Y.S.); (B.H.); (H.-B.Y.); (X.-C.M.); (Z.N.); (J.-F.D.); (M.-H.C.)
| | - Xiao-Yu Liu
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China; (Y.-Y.S.); (B.H.); (H.-B.Y.); (X.-C.M.); (Z.N.); (J.-F.D.); (M.-H.C.)
| |
Collapse
|
10
|
Dang S, Geng J, Wang R, Feng Y, Han Y, Gao R. Isolation of endophytes from Dioscorea nipponica Makino for stimulating diosgenin production and plant growth. PLANT CELL REPORTS 2024; 43:95. [PMID: 38472393 DOI: 10.1007/s00299-024-03164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
KEY MESSAGE Both bacterial and fungal endophytes exhibited one or more plant growth-promoting (PGP) traits. Among these strains, the Paenibacillus peoriae SYbr421 strain demonstrated the greatest activity in the direct biotransformation of tuber powder from D. nipponica into diosgenin. Endophytes play crucial roles in shaping active metabolites within plants, significantly influencing both the quality and yield of host plants. Dioscorea nipponica Makino accumulates abundant steroidal saponins, which can be hydrolyzed to produce diosgenin. However, our understanding of the associated endophytes and their contributions to plant growth and diosgenin production is limited. The present study aimed to assess the PGP ability and potential of diosgenin biotransformation by endophytes isolates associated with D. nipponica for the efficient improvement of plant growth and development of a clean and effective approach for producing the valuable drug diosgenin. Eighteen bacterial endophytes were classified into six genera through sequencing and phylogenetic analysis of the 16S rDNA gene. Similarly, 12 fungal endophytes were categorized into 5 genera based on sequencing and phylogenetic analysis of the ITS rDNA gene. Pure culture experiments revealed that 30 isolated endophytic strains exhibited one or more PGP traits, such as nitrogen fixation, phosphate solubilization, siderophore synthesis, and IAA production. One strain of endophytic bacteria, P. peoriae SYbr421, effectively directly biotransformed the saponin components in D. nipponica. Moreover, a high yield of diosgenin (3.50%) was obtained at an inoculum size of 4% after 6 days of fermentation. Thus, SYbr421 could be used for a cleaner and more eco-friendly diosgenin production process. In addition, based on the assessment of growth-promoting isolates and seed germination results, the strains SYbr421, SYfr1321, and SYfl221 were selected for greenhouse experiments. The results revealed that the inoculation of these promising isolates significantly increased the plant height and fresh weight of the leaves and roots compared to the control plants. These findings underscore the importance of preparing PGP bioinoculants from selected isolates as an additional option for sustainable diosgenin production.
Collapse
Affiliation(s)
- Shangni Dang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jiang Geng
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ran Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yumei Feng
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China.
| | - Runmei Gao
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China.
| |
Collapse
|
11
|
Negi R, Sharma B, Kumar S, Chaubey KK, Kaur T, Devi R, Yadav A, Kour D, Yadav AN. Plant endophytes: unveiling hidden applications toward agro-environment sustainability. Folia Microbiol (Praha) 2024; 69:181-206. [PMID: 37747637 DOI: 10.1007/s12223-023-01092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, β-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.
Collapse
Affiliation(s)
- Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Tanvir Kaur
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Rubee Devi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ashok Yadav
- Department of Botany, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
12
|
Tamariz-Angeles C, Olivera-Gonzales P, Santillán-Torres M, Briceño-Luna V, Silva-Villafana A, Villena GK. Diverse biological activities and secondary metabolites profile of Penicillium brevicompactum HE19ct isolated from the high-Andean medicinal plant Perezia coerulescens. Fungal Biol 2023; 127:1439-1450. [PMID: 38097318 DOI: 10.1016/j.funbio.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
Endophytic fungi produced attractive primary and secondary metabolites for industries, pharmacology, and biotechnology. The bioactive potential of HE19ct, identified as Penicillium brevicompactum according to ITS-BenA-caM, was addressed. Antimicrobial and antioxidant activities and secondary metabolite contents using four culture media in Agar-plate (ApF) and Submerged (SmF) fermentation were evaluated. Some plant growth-promoting (PGP) traits and their related genes were tested. HE19ct exhibited antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, Candida albicans, C. tropicalis, Fusarium sp., Geotrichum candidum, and Alternaria sp. All cultures showed DPPH scavenging activity and phenolic compounds, where ethyl acetate extract of SmF with malt extract showed higher activity and SmF/ApF with potato-dextrose exhibited higher yield, respectively. HE19ct solubilized tricalcium-phosphate and produced siderophore, endoglucanase, proteinase, and amylase. It enhanced the alfalfa's germination at 15 °C, root development, and phenols production at 15 and 24 °C. Phenols, tannins, anthraquinones, triterpenoids/steroids, and alkaloids production were detected depending on culture media. Polyketide synthase type I gene (PksI), subtilisin-like protease prb 1 (Pbr), and siderophore D (sidD) were PCR-amplified. Finally, HE19CT could be a promising source of interesting bioactive compounds for pharmacology and agriculture mainly in extreme conditions, then metabolomic and functional genetic research must be performed to support their appropriate application.
Collapse
Affiliation(s)
- Carmen Tamariz-Angeles
- Centro de Investigación de La Biodiversidad y Recursos Genéticos, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Peru.
| | - Percy Olivera-Gonzales
- Centro de Investigación de La Biodiversidad y Recursos Genéticos, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Peru
| | - Miguelina Santillán-Torres
- Centro de Investigación de La Biodiversidad y Recursos Genéticos, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Peru
| | - Verónica Briceño-Luna
- Laboratorio de Química, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Peru
| | - Alex Silva-Villafana
- Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, Independencia, 02002, Huaraz, Ancash, Peru
| | - Gretty K Villena
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina S/n, Lima 12, Peru
| |
Collapse
|
13
|
Mishra RK, Pandey S, Rathore US, Mishra M, Kumar K, Kumar S, Manjunatha L. Characterization of plant growth-promoting, antifungal, and enzymatic properties of beneficial bacterial strains associated with pulses rhizosphere from Bundelkhand region of India. Braz J Microbiol 2023; 54:2349-2360. [PMID: 37584890 PMCID: PMC10485202 DOI: 10.1007/s42770-023-01051-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/26/2023] [Indexed: 08/17/2023] Open
Abstract
The present study was conducted to characterize the native plant growth-promoting rhizobacteria (PGPRs) from the pulse rhizosphere of the Bundelkhand region of India. Twenty-four bacterial isolates belonging to nineteen species (B. amyloliquefaciens, B. subtilis, B. tequilensis, B. safensis, B. haynesii, E. soli, E. cloacae, A. calcoaceticus, B. valezensis, S. macrescens, P. aeruginosa, P. fluorescens, P. guariconensis, B. megaterium, C. lapagei, P. putida, K. aerogenes, B. cereus, and B. altitudinis) were categorized and evaluated for their plant growth-promoting potential, antifungal properties, and enzymatic activities to identify the most potential strain for commercialization and wider application in pulse crops. Phylogenetic identification was done on the basis of 16 s rRNA analysis. Among the 24 isolates, 12 bacterial strains were gram positive, and 12 were gram negative. Among the tested 24 isolates, IIPRAJCP-6 (Bacillus amyloliquefaciens), IIPRDSCP-1 (Bacillus subtilis), IIPRDSCP-10 (Bacillus tequilensis), IIPRRLUCP-5 (Bacillus safensis), IIPRCDCP-2 (Bacillus subtilis), IIPRAMCP-1 (Bacillus safensis), IIPRMKCP-10 (Bacillus haynesii), IIPRANPP-3 (Bacillus amyloliquefaciens), IIPRKAPP-5 (Enterobacter soli), IIPRAJCP-2 (Enterobacter cloacae), IIPRDSCP-11 (Acinetobacter calcoaceticus), IIPRDSCP-9 (Bacillus valezensis), IIPRMKCP-3 (Seratia macrescens), IIPRMKCP-1 (Pseudomonas aeruginosa), IIPRCKPP-3 (Pseudomonas fluorescens), IIPRMKCP-9 (Pseudomonas guariconensis), IIPRMKCP-8 (Bacillus megatirium), IIPRMWCP-9 (Cedecea lapagei), IIPRKUCP-10 (Pseudomonas putida), IIPRAMCP-4 (Klebsiella aerogenes), IIPRCKPP-7 (Enterobacter cloacae), IIPRAMCP-5 (Bacillus cereus), IIPRSHEP-6 (Bacillus subtilis), IIPRRSBa89 (Bacillus altitudinis) bacterial isolates, IIPRMKCP-9, IIPRAJCP-6, IIPRMKCP-10, IIPRAMCP-5, IIPRSHEP-6, and IIPRMKCP-3 showed the maximum antagonistic activity against Fusarium oxysporum f. sp. ciceris (FOC), Fusarium oxysporum f. sp. lentis (FOL), and Fusarium udum (FU) causing wilt disease of chickpea, lentil, and pigeonpea, respectively, and maximum plant growth-promoting enzyme (phosphatase), plant growth hormone (IAA), and siderophore production show promising results under greenhouse conditions. This study is the first report of bacterial diversity in the pulse-growing region of India.
Collapse
Affiliation(s)
- Raj K Mishra
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Sonika Pandey
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | - U S Rathore
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | - Monika Mishra
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | - Krishna Kumar
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | - Sandeep Kumar
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | - L Manjunatha
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| |
Collapse
|
14
|
Kaur G, Patel A, Dwibedi V, Rath SK. Harnessing the action mechanisms of microbial endophytes for enhancing plant performance and stress tolerance: current understanding and future perspectives. Arch Microbiol 2023; 205:303. [PMID: 37561224 DOI: 10.1007/s00203-023-03643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Microbial endophytes are microorganisms that reside within plant tissues without causing any harm to their hosts. These microorganisms have been found to confer a range of benefits to plants, including increased growth and stress tolerance. In this review, we summarize the recent advances in our understanding of the mechanisms by which microbial endophytes confer abiotic and biotic stress tolerance to their host plants. Specifically, we focus on the roles of endophytes in enhancing nutrient uptake, modulating plant hormones, producing secondary metabolites, and activating plant defence responses. We also discuss the challenges associated with developing microbial endophyte-based products for commercial use, including product refinement, toxicology analysis, and prototype formulation. Despite these challenges, there is growing interest in the potential applications of microbial endophytes in agriculture and environmental remediation. With further research and development, microbial endophyte-based products have the potential to play a significant role in sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Gursharan Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India
| | - Arvind Patel
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India.
- Institute of Soil, Water and Environmental Sciences, Volcani Resaerch Center, Agricultural Research Organization, 7528809, Rishon Lezion, Israel.
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, 248009, Uttarakhand, India.
| |
Collapse
|
15
|
Prodhan MY, Rahman MB, Rahman A, Akbor MA, Ghosh S, Nahar MNEN, Simo, Shamsuzzoha M, Cho KM, Haque MA. Characterization of Growth-Promoting Activities of Consortia of Chlorpyrifos Mineralizing Endophytic Bacteria Naturally Harboring in Rice Plants-A Potential Bio-Stimulant to Develop a Safe and Sustainable Agriculture. Microorganisms 2023; 11:1821. [PMID: 37512993 PMCID: PMC10385066 DOI: 10.3390/microorganisms11071821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Eighteen pesticide-degrading endophytic bacteria were isolated from the roots, stems, and leaves of healthy rice plants and identified through 16S rRNA gene sequencing. Furthermore, biochemical properties, including enzyme production, dye degradation, anti-bacterial activities, plant-growth-promoting traits, including N-fixation, P-solubilization, auxin production, and ACC-deaminase activities of these naturally occurring endophytic bacteria along with their four consortia, were characterized. Enterobacter cloacae HSTU-ABk39 and Enterobacter sp. HSTU-ABk36 displayed inhibition zones of 41.5 ± 1.5 mm, and 29 ± 09 mm against multidrug-resistant human pathogenic bacteria Staphylococcus aureus and Staphylococcus epidermidis, respectively. FT-IR analysis revealed that all eighteen isolates were able to degrade chlorpyrifos pesticide. Our study confirms that pesticide-degrading endophytic bacteria from rice plants play a key role in enhancing plant growth. Notably, rice plants grown in pots containing reduced urea (30%) mixed with either endophytic bacterial consortium-1, consortium-2, consortium-3, or consortia-4 demonstrated an increase of 17.3%, 38.6%, 18.2%, and 39.1% yields, respectively, compared to the control plants grown in pots containing 100% fertilizer. GC-MS/MS analysis confirmed that consortia treatment caused the degradation of chlorpyrifos into different non-toxic metabolites, including 2-Hydroxy-3,5,6 trichloropyridine, Diethyl methane phosphonate, Phorate sulfoxide, and Carbonochloridic. Thus, these isolates could be deployed as bio-stimulants to improve crop production by creating a sustainable biological system.
Collapse
Affiliation(s)
- Md Yeasin Prodhan
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Bokhtiar Rahman
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Mst Nur-E-Nazmun Nahar
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Simo
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Shamsuzzoha
- Department of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kye Man Cho
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
16
|
Abdelsattar AM, Elsayed A, El-Esawi MA, Heikal YM. Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107673. [PMID: 37030249 DOI: 10.1016/j.plaphy.2023.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Stevia rebaudiana is an important medicinal plant which represents the most important sugar substitute in many countries. Poor seed germination of this plant is a critical problem that affects the final yield and the availability of the products in the market. Continuous cropping without supplying soil nutrients is also a serious issue as it results in declining soil fertility. This review highlights the important use of beneficial bacteria for the enhancement of Stevia rebaudiana growth and its dynamic interactions in the phyllosphere, rhizosphere, and endosphere. Fertilizers can increase crop yield and preserve and improve soil fertility. There is a rising concern that prolonged usage of chemical fertilizers may have negative impacts on the ecosystem of the soil. On the other hand, soil health and fertility are improved by plant growth-promoting bacteria which could eventually increase plant growth and productivity. Accordingly, a biocompatible strategy involving beneficial microorganisms inoculation is applied to boost plant growth and reduce the negative effects of chemical fertilizers. Plants benefit extensively from endophytic bacteria, which promote growth and induce resistance to pathogens and stresses. Additionally, several plant growth-promoting bacteria are able to produce amino acids, polyamines, and hormones that can be used as alternatives to chemicals. Therefore, understanding the dynamic interactions between bacteria and Stevia can help make the favorable bacterial bio-formulations, use them more effectively, and apply them to Stevia to improve yield and quality.
Collapse
Affiliation(s)
- Amal M Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt.
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt; Photobiology Research Group, Sorbonne Université CNRS, 75005, Paris, France
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
17
|
Kang K, Niu Z, Zhang W, Wei S, Lv Y, Hu Y. Antagonistic Strain Bacillus halotolerans Jk-25 Mediates the Biocontrol of Wheat Common Root Rot Caused by Bipolaris sorokiniana. PLANTS (BASEL, SWITZERLAND) 2023; 12:828. [PMID: 36840176 PMCID: PMC9965128 DOI: 10.3390/plants12040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Common root rot caused by Bipolaris sorokiniana infestation in wheat is one of the main reasons for yield reduction in wheat crops worldwide. The bacterium strain JK-25 used in the current investigation was isolated from wheat rhizosphere soil and was later identified as Bacillus halotolerans based on its morphological, physiological, biochemical, and molecular properties. The strain showed significant antagonism to B. sorokiniana, Fusarium oxysporum, Fusarium graminearum, and Rhizoctonia zeae. Inhibition of B. sorokiniana mycelial dry weight and spore germination rate by JK-25 fermentation supernatant reached 60% and 88%, respectively. The crude extract of JK-25 was found, by Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), to contain the surfactin that exerted an inhibitory effect on B. sorokiniana. The disruption of mycelial cell membranes was observed under laser scanning confocal microscope (LSCM) after treatment of B. sorokiniana mycelium with the crude extract. The antioxidant enzyme activity of B. sorokiniana was significantly reduced and the oxidation product malondialdehyde (MDA) content increased after treatment with the crude extract. The incidence of root rot was significantly reduced in pot experiments with the addition of JK-25 culture fermentation supernatant, which had a significant biological control effect of 72.06%. Its ability to produce siderophores may help to promote wheat growth and the production of proteases and pectinases may also be part of the strain's role in suppressing pathogens. These results demonstrate the excellent antagonistic effect of JK-25 against B. sorokiniana and suggest that this strain has great potential as a resource for biological control of wheat root rot strains.
Collapse
|
18
|
Ogbe AA, Gupta S, Stirk WA, Finnie JF, Van Staden J. Growth-Promoting Characteristics of Fungal and Bacterial Endophytes Isolated from a Drought-Tolerant Mint Species Endostemon obtusifolius (E. Mey. ex Benth.) N. E. Br. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030638. [PMID: 36771720 PMCID: PMC9921005 DOI: 10.3390/plants12030638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 05/02/2023]
Abstract
Endophytes are primarily endosymbiotic bacteria and fungi that colonize the interior tissues of their host plant. They enhance the host plant's growth and attenuate adverse effects of biological stress. Endophytic species of many indigenous plants are an untapped resource of plant growth-promoting microorganisms that can mitigate abiotic stress effects. Thus, this study aimed to isolate endophytes from the roots and leaves of the medicinal plant Endostemon obtusifolius to evaluate their in vitro growth-promoting capacities and drought tolerance and to characterize the most promising species. Twenty-six endophytes (fourteen bacteria and twelve fungi) were isolated and cultured from the roots and leaves of E. obtusifolius. All 26 endophytes produced flavonoids, and 14 strains produced phenolic compounds. Of the 11 strains that displayed good free radical scavenging capability (low IC50) in the 1-1-diphenyl-1-picryhydrazyl radical scavenging assay, only three strains could not survive the highest drought stress treatment (40% polyethylene glycol). These 11 strains were all positive for ammonia and siderophore production and only one strain failed to produce hydrogen cyanide and solubilize phosphate. Seven isolates showed aminocyclopropane-1-carboxylate deaminase activity and differentially synthesized indole-3-acetic acid. Using molecular tools, two promising symbiotic, drought stress tolerant, and plant growth-enhancing endophytic species (EORB-2 and EOLF-5) were identified as Paenibacillus polymyxa and Fusarium oxysporum. The results of this study demonstrate that P. polymyxa and F. oxysporum should be further investigated for their drought stress mitigation and plant growth enhancement effects as they have the potential to be developed for use in sustainable agricultural practices.
Collapse
Affiliation(s)
- Abdulazeez A. Ogbe
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
- Department of Botany, Lagos State University, Km 15, Badagry Expressway, Lasu Post Office, Ojo, P.O. Box 0001, Lagos 102101, Nigeria
| | - Shubhpriya Gupta
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Wendy A. Stirk
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Jeffrey F. Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
- Correspondence:
| |
Collapse
|
19
|
FERNANDEZ-GÜIMAC SLJ, PEREZ J, MENDOZA JE, BUSTAMANTE DE, CALDERON MS. Exploring the diversity of microorganisms and potential pectinase activity isolated from wet fermentation of coffee in northeastern Peru. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.81922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Jhordy PEREZ
- Universidad Nacional Toribio Rodríguez de Mendoza, Peru
| | | | - Danilo Edson BUSTAMANTE
- Universidad Nacional Toribio Rodríguez de Mendoza, Peru; Universidad Nacional Toribio Rodríguez de Mendoza, Peru
| | - Martha Steffany CALDERON
- Universidad Nacional Toribio Rodríguez de Mendoza, Peru; Universidad Nacional Toribio Rodríguez de Mendoza, Peru
| |
Collapse
|
20
|
In Vitro and In Planta Antagonistic Effect of Endophytic Bacteria on Blight Causing Xanthomonas axonopodis pv. punicae: A Destructive Pathogen of Pomegranate. Microorganisms 2022; 11:microorganisms11010005. [PMID: 36677297 PMCID: PMC9860609 DOI: 10.3390/microorganisms11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Pomegranate bacterial blight caused by Xanthomonas axonopodis pv. punicae (Xap) is a highly destructive disease. In the absence of host resistance to the disease, we aimed to evaluate the biocontrol potential of endophytic bacteria against Xap. Thus, in this study, we isolated endophytes from pomegranate plants, identified them on the basis of 16S rDNA sequencing, tested them against Xap, and estimated the endophyte-mediated host defense response. The population of isolated endophytes ranged from 3 × 106 to 8 × 107 CFU/g tissue. Furthermore, 26 isolates were evaluated for their biocontrol activity against Xap, and all the tested isolates significantly reduced the in vitro growth of Xap (15.65% ± 1.25% to 56.35% ± 2.66%) as compared to control. These isolates could reduce fuscan, an uncharacterized factor of Xap involved in its aggressiveness. Lower blight incidence (11.6%) and severity (6.1%) were recorded in plants sprayed with endophytes 8 days ahead of Xap spray (Set-III) as compared to control plants which were not exposed to endophytes (77.33 and 50%, respectively%) during in vivo evaluation. Moreover, significantly high phenolic and chlorophyll contents were estimated in endophyte-treated plants as compared to control. The promising isolates mostly belonged to the genera Bacillus, Burkholderia, and Lysinibacillus, and they were deposited to the National Agriculturally Important Microbial Culture Collection, India.
Collapse
|
21
|
Mageshwaran V, Gupta R, Singh S, Sahu PK, Singh UB, Chakdar H, Bagul SY, Paul S, Singh HV. Endophytic Bacillus subtilis antagonize soil-borne fungal pathogens and suppress wilt complex disease in chickpea plants (Cicer arietinum L.). Front Microbiol 2022; 13:994847. [PMID: 36406422 PMCID: PMC9667066 DOI: 10.3389/fmicb.2022.994847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
The present study aimed to identify potential endophytic bacteria antagonistic against three soil-borne fungal pathogens, Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum f.sp. ciceri causing root rot, collar rot, and fungal wilt diseases in chickpea plants, respectively. A total of 255 bacterial endophytes were isolated from the leaves, stems, and roots of seven different crop plants (chickpea, tomato, wheat, berseem, mustard, potato, and green pea). The dual culture-based screening for antifungal properties indicated that three endophytic isolates had strong inhibition (>50%) against all three pathogens tested. Based on morphological, biochemical, and molecular characterization, the selected isolates (TRO4, CLO5, and PLO3) were identified as different strains of Bacillus subtilis. The bacterial endophytes (TRO4 and CLO5) were positive for plant growth promoting (PGP) traits viz., ammonia, siderophore, and indole-3-acetic acid (IAA) production. The bio-efficacy of the endophytes (TRO4, CLO5, and PLO3) was tested by an in planta trial in chickpea pre-challenged with R. solani, S. rolfsii, and F. oxysporum f.sp. ciceri. The B. subtilis strains TRO4 and CLO5 were found to be effective in reducing percent disease incidence (p ≤ 0.05) and enhancing plant growth parameters. The different root parameters viz. root length (mm), surface area (cm2), root diameter (mm), and root volume (cm3) were significantly (p ≤ 0.05) increased in TRO4 and CLO5 inoculated chickpea plants. Confocal Scanning Laser Microscopy showed heavy colonization of bacteria in the roots of endophyte-inoculated chickpea plants. The inoculation of endophytic Bacillus subtilis strains TRO4 and CLO5 in chickpea plants through seed biopriming reduced the accumulation of superoxide, enhanced the plant defense enzymes, and induced the expression of Pathogenesis-Related (PR) genes. Semi-quantitative analysis of defense-related genes showed differential activation of PR genes (60srp and IFR) by endophyte inoculation. The results of the present study reveal the antagonistic potential of B. subtilis strains TRO4 and CLO5 against three major soil-borne fungal pathogens and their ability to suppress wilt complex disease in chickpea plants. This is the first report on the simultaneous suppression of three major soil-borne fungal pathogens causing wilt complex in chickpea plants by endophytic B. subtilis strains.
Collapse
Affiliation(s)
- Vellaichamy Mageshwaran
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
- *Correspondence: Vellaichamy Mageshwaran, ;
| | - Rishabh Gupta
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Pramod K. Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
- Udai B. Singh,
| | - Hillol Chakdar
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Samadhan Y. Bagul
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand, Gujarat, India
| | - Surinder Paul
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
22
|
Khan T, Alzahrani OM, Sohail M, Hasan KA, Gulzar S, Rehman AU, Mahmoud SF, Alswat AS, Abdel-Gawad SA. Enzyme Profiling and Identification of Endophytic and Rhizospheric Bacteria Isolated from Arthrocnemum macrostachyum. Microorganisms 2022; 10:microorganisms10112112. [PMID: 36363704 PMCID: PMC9698051 DOI: 10.3390/microorganisms10112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Endophytic and rhizospheric bacteria isolated from halophytic plants support their host to survive in hyper-saline soil. These bacteria are also known to produce various enzymes with potential industrial applications. In this study, the endophytic and rhizospheric bacteria were isolated from Arthrocnemum macrostachyum collected from Karachi, Pakistan, and their ability to produce various extracellular enzymes was assessed using commercial and natural substrates. In total, 11 bacterial strains were isolated (four endophytic; seven rhizospheric). Bacillus was found to be the most abundant genus (73%), followed by Glutamicibacter (27%). The isolates including Glutamicibacter endophyticus and Bacillus licheniformis are reported for the first time from A. macrostachyum. All of the isolates were capable of producing at least two of the five industrially important hydrolytic enzymes tested, i.e., xylanase, cellulase, amylase, pectinase, and lipase. Lipase production was found to be highest among the isolates, i.e., up to 18 IU mL−1. Although most of the isolates could grow at a wide range of temperatures (4–55 °C), pH (1–11), and salt concentrations (2–12%), under extreme conditions, very little growth was observed and the optimal growth was recorded between 2% and 6% NaCl, 25 and 45 °C, and 7 and 9 pH. Our results suggest that these isolates could be potential producers of enzymes with several biotechnological applications.
Collapse
Affiliation(s)
- Tooba Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
- Correspondence:
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Salman Gulzar
- Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Ammad Ur Rehman
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal S. Alswat
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shebl Abdallah Abdel-Gawad
- Agriculture Microbiology Department Soil, Water and Environment Institute Agriculture Research Center, Giza 12112, Egypt
| |
Collapse
|
23
|
Soliman SA, Khaleil MM, Metwally RA. Evaluation of the Antifungal Activity of Bacillusamyloliquefaciens and B. velezensis and Characterization of the Bioactive Secondary Metabolites Produced against Plant Pathogenic Fungi. BIOLOGY 2022; 11:biology11101390. [PMID: 36290294 PMCID: PMC9599029 DOI: 10.3390/biology11101390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 04/21/2023]
Abstract
Endophytic bacteria are plant-beneficial bacteria with a broad host range. They provide numerous benefits to their hosts, helping them tolerate several biotic and abiotic stresses. An interest has recently been developed in endophytic bacteria which are producing bioactive compounds that contribute to the biological control of various phytopathogens. This research paper aimed to investigate the potentiality of new local strains of endophytic bacteria such as Bacillus amyloliquefaciens and B. velezensis and the production of several antimicrobial metabolites associated with the biocontrol of Alternaria sp., which cause serious diseases and affect important vegetable crops in Egypt. Twenty-five endophytic bacteria isolates were obtained from different plants cultivated in El-Sharkia Governorate, Egypt. Dual culture technique was used to evaluate the bacterial isolates' antagonistic potentiality against Alternaria sp. and Helminthosporium sp. The most active bacterial isolates obtained were selected for further screening. The antifungal activity of the most active endophytic bacterial isolate was assessed in vivo on pepper seedlings as a biocontrol agent against Alternaria sp. A significant antifungal activity was recorded with isolates C1 and T5 against Alternaria sp. and Helminthosporium sp. The bacterial endophyte discs of C1 and T5 showed the highest inhibitory effect against Alternaria sp. at 4.7 and 3.1 cm, respectively, and Helminthosporium sp. at 3.9 and 4.0 cm, respectively. The most active endophytic isolates C1 and T5 were identified and the 16S rRNA sequence was submitted to the NCBI GenBank database with accession numbers: MZ945930 and MZ945929 for Bacillus amyloliquefaciens and Bacillus velezensis, respectively. The deformity of pathogenic fungal mycelia of Alternaria sp. and Helminthosporium sp. was studied under the biotic stress of bacteria. The culture filtrates of B. amyloliquefaciens and B. velezensis were extracted with different solvents, and the results indicated that hexane was the most efficient. Gas Chromatography-Mass Spectrometry revealed that Bis (2-ethylhexyl) phthalate, Bis (2-ethylhexyl) ester, and N,N-Dimethyldodecylamine were major constituents of the endophytic crude extracts obtained from B. amyloliquefaciens and B. velezensis. The in vivo results showed that Alternaria sp. infection caused the highest disease incidence, leading to a high reduction in plant height and in the fresh and dry weights of pepper plants. With B. amyloliquefaciens application, DI significantly diminished compared to Alternaria sp. infected pepper plants, resulting in an increase in their morphological parameters. Our findings allow for a reduction of chemical pesticide use and the control of some important plant diseases.
Collapse
Affiliation(s)
- Shereen A. Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mona M. Khaleil
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46429, Saudi Arabia
| | - Rabab A. Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +20-101-625-9372; Fax: +20-055-320-8213
| |
Collapse
|
24
|
Mahdi I, Allaoui A, Fahsi N, Biskri L. Bacillus velezensis QA2 Potentially Induced Salt Stress Tolerance and Enhanced Phosphate Uptake in Quinoa Plants. Microorganisms 2022; 10:microorganisms10091836. [PMID: 36144437 PMCID: PMC9505587 DOI: 10.3390/microorganisms10091836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plant Growth-Promoting Rhizobacteria (PGPR) have attracted much attention in agriculture biotechnology as biological inputs to sustain crop production. The present study describes a halotolerant phosphate solubilizing bacterium associated with quinoa plant roots. Based on a metabolic screening, one bacterial isolate, named QA2, was selected and screened for PGPR traits. This isolate solubilized both inorganic phosphate and zinc, produced indole-3-acetic acid, ammonia, hydrogen cyanide, cellulase, and (to be deleted) protease, and induced biofilm formation. We demonstrated that QA2 exhibited both antimicrobial and ion metabolism activities and tolerated high salt concentration at up to 11% NaCl. Genotyping analyses, using 16S rRNA and chaperonin cpn60 genes, revealed that QA2 belongs to the species of Bacillus velezensis. Using the quinoa model cultivated under a saline condition, we demonstrated that QA2 promoted plant growth and mitigated the saline irrigation effects. Analysis of harvested plants revealed that QA2 induced a significant increase of both leaf chlorophyll index by 120.86% (p < 0.05) and P uptake by 41.17% (p < 0.05), while the content of Na+ was drastically decreased. Lastly, a bibliometric data analysis highlighted the panoramic view of studies carried out so far on B. velezensis strains. Our investigation presents a holistic view of the potential application of B. velezensis as a biological inoculant to promote plant growth, control pathogen attacks, and mitigate the salinity effect of quinoa plants. Further investigations are still needed to demonstrate these effects in field conditions.
Collapse
Affiliation(s)
- Ismail Mahdi
- Microbiology Laboratory, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdelmounaaim Allaoui
- Microbiology Laboratory, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Nidal Fahsi
- Microbiology Laboratory, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Latefa Biskri
- Microbiology Laboratory, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- African Genome Center (AGC), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- Correspondence: ; Tel.: +212-52502926
| |
Collapse
|
25
|
Singh RR, Wesemael WML. Endophytic Paenibacillus polymyxa LMG27872 inhibits Meloidogyne incognita parasitism, promoting tomato growth through a dose-dependent effect. FRONTIERS IN PLANT SCIENCE 2022; 13:961085. [PMID: 36186028 PMCID: PMC9516289 DOI: 10.3389/fpls.2022.961085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The root-knot nematode, Meloidogyne incognita, is a major pest in tomato production. Paenibacillus polymyxa, which is primarily found in soil and colonizing roots, is considered a successful biocontrol organism against many pathogens. To evaluate the biocontrol capacity of P. polymyxa LMG27872 against M. incognita in tomato, experiments were conducted both in vitro and in vivo. A dose-response effect [30, 50, and 100% (108 CFU/mL)] of bacterial suspensions (BSs) on growth and tomato susceptibility to M. incognita with soil drenching as a mode of application was first evaluated. The results show that the biological efficacy of P. polymyxa LMG27872 against M. incognita parasitism in tomato was dose-dependent. A significantly reduced number of galls, egg-laying females (ELF), and second-stage juveniles (J2) were observed in BS-treated plants, in a dose-dependent manner. The effect of P. polymyxa on tomato growth was also dose-dependent. A high dose of BSs had a negative effect on growth; however, this negative effect was not observed when the BS-treated plants were challenged with M. incognita, indicating tolerance or a defense priming mechanism. In subsequent in vivo experiments, the direct effect of BSs was evaluated on J2 mortality and egg hatching of M. incognita. The effect of BS on J2 mortality was observed from 12 to 24 h, whereby M. incognita J2 was significantly inhibited by the BS treatment. The effect of P. polymyxa on M. incognita egg hatching was also dependent on the BS dose. The results show a potential of P. polymyxa LMG27872 to protect plants from nematode parasitism and its implementation in integrated nematode management suitable for organic productions.
Collapse
Affiliation(s)
- Richard Raj Singh
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wim M. L. Wesemael
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Plant Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
26
|
Mohamad OAA, Liu YH, Huang Y, Li L, Ma JB, Egamberdieva D, Gao L, Fang BZ, Hatab S, Jiang HC, Li WJ. The Metabolic Potential of Endophytic Actinobacteria Associated with Medicinal Plant Thymus roseus as a Plant-Growth Stimulator. Microorganisms 2022; 10:microorganisms10091802. [PMID: 36144404 PMCID: PMC9505248 DOI: 10.3390/microorganisms10091802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Bio-fertilizer practice considers not only economical but also environmentally friendly, sustainable agriculture. Endophytes can play important beneficiary roles in plant development, directly, indirectly, or synergistically. In this study, the majority of our endophytic actinobacteria were able to possess direct plant growth-promoting (PGP) traits, including auxin (88%), ammonia (96%), siderophore production (94%), and phosphate solubilization (24%), along with cell-wall degrading enzymes such as protease (75%), cellulase (81%), lipase (81%), and chitinase (18%). About 45% of tested strains have an inhibitory effect on the phytopathogen Fusarium oxysporum, followed by 26% for Verticillium dahlia. Overall, our results showed that strains XIEG63 and XIEG55 were the potent strains with various PGP traits that caused a higher significant increase (p ≤ 0.05) in length and biomass in the aerial part and roots of tomato and cotton, compared to the uninoculated plants. Our data showed that the greatest inhibition percentages of two phytopathogens were achieved due to treatment with strains XIEG05, XIEG07, XIEG45, and XIEG51. The GC-MS analysis showed that most of the compounds were mainly alkanes, fatty acid esters, phenols, alkenes, and aromatic chemicals and have been reported to have antifungal activity. Our investigation emphasizes that endophytic actinobacteria associated with medicinal plants might help reduce the use of chemical fertilization and potentially lead to increased agricultural productivity and sustainability.
Collapse
Affiliation(s)
- Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Department of Biological, Marine Sciences and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Al-Arish 45511, Egypt
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
- Correspondence: (O.A.A.M.); (L.L.); (W.-J.L.)
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Correspondence: (O.A.A.M.); (L.L.); (W.-J.L.)
| | - Jin-Biao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dilfuza Egamberdieva
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University (TIIAME), Tashkent 100000, Uzbekistan
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Shaimaa Hatab
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
- Faculty of Organic Agriculture, Heliopolis University, Cairo 2834, Egypt
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (O.A.A.M.); (L.L.); (W.-J.L.)
| |
Collapse
|
27
|
Perspective of ACC-deaminase producing bacteria in stress agriculture. J Biotechnol 2022; 352:36-46. [PMID: 35597331 DOI: 10.1016/j.jbiotec.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
The 1-aminocyclopropane-1-carboxylate deaminase (ACCD) enzyme plays an important role in stress alleviation of both biotic and abiotic stressors in plants and thereby enhances their growth under harsh environmental conditions. In-depth analysis of AcdS gene encoding for ACC deaminase reveals its presence in diverse microorganisms including bacteria and fungi. Particularly, plant growth-promoting bacteria (PGPB) containing ACCD supports plant growth by modulating the level of 'stress ethylene' and cleaving its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) into α-ketobutyrate and ammonia, enabling PGPB to utilize ACC as a carbon and nitrogen source. The reduced synthesis of ethylene in plants further relieves the ethylene inhibition of plant growth and development, and improves plant resistance to various stressors. Therefore, the dual role of microbial ACCD makes it a cost-effective and eco-friendly biocatalyst for sustainable agricultural productions. The inducible ACCD encoding gene AcdS is differentially regulated by varying environmental conditions. Successful generation of transgenic plants with microbial AcdS gene enhanced biotic and abiotic stress tolerance in plants. In the present review, we discuss the importance of ACCD-producing PGPB for their ability to reduce ethylene production and the promotion of plant growth under stress conditions. We also highlighted the development of transgenic plants by overexpressing bacterial AcdS gene to improve their performance under stress conditions.
Collapse
|
28
|
Szymańska S, Lis MI, Piernik A, Hrynkiewicz K. Pseudomonas stutzeri and Kushneria marisflavi Alleviate Salinity Stress-Associated Damages in Barley, Lettuce, and Sunflower. Front Microbiol 2022; 13:788893. [PMID: 35350624 PMCID: PMC8957930 DOI: 10.3389/fmicb.2022.788893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Soil salinity is one of the most important abiotic factors limiting plant productivity. The aim of this study was to determine the effect of selected halotolerant plant growth-promoting endophytes (PGPEs, Pseudomonas stutzeri ISE12 and Kushneria marisflavi CSE9) on the growth parameters of barley (Hordeum vulgare), lettuce (Lactuca sativa), and sunflower (Helianthus annuus) cultivated under salt stress conditions. A negative effect of two higher tested salinities (150 and 300 mM NaCl) was observed on the growth parameters of all investigated plants, including germination percentage and index (decreasing compared to the non-saline control variant in the ranges 5.3-91.7 and 13.6-90.9%, respectively), number of leaves (2.2-39.2%), fresh weight (24.2-81.6%); however, differences in salt stress tolerance among the investigated crops were observed (H. annuus > H. vulgare > L. sativa). Our data showed that the most crucial traits affected by endophyte inoculation under salt stress were chlorophyll concentration, leaf development, water storage, root development, and biomass accumulation. Thus, the influence of endophytes was species specific. K. marisflavi CSE9 promoted the growth of all tested plant species and could be considered a universal PGPEs for many plant genotypes cultivated under saline conditions (e.g., increasing of fresh weight compared to the non-inoculated control variant of barley, lettuce, and sunflower in the ranges 11.4-246.8, 118.9-201.2, and 16.4-77.7%, respectively). P. stutzeri ISE12 stimulated growth and mitigated salinity stress only in the case of barley. Bioaugmentation of crops with halotolerant bacterial strains can alleviate salt stress and promote plant growth; however, the selection of compatible strains and the verification of universal plant stress indicators are the key factors.
Collapse
Affiliation(s)
- Sonia Szymańska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Marta Izabela Lis
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Agnieszka Piernik
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
29
|
Yarte ME, Gismondi MI, Llorente BE, Larraburu EE. Isolation of endophytic bacteria from the medicinal, forestal and ornamental tree Handroanthus impetiginosus. ENVIRONMENTAL TECHNOLOGY 2022; 43:1129-1139. [PMID: 32875965 DOI: 10.1080/09593330.2020.1818833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/27/2020] [Indexed: 05/20/2023]
Abstract
Plant interactions with endophytic bacteria produce mutual benefits and contribute to environmental sustainability. Handroanthus impetiginosus (Mart. ex DC.) Mattos 'pink lapacho' (syn. Tabebuia impetiginosa, Bignoniaceae) is a medicinal, ornamental and forestal native tree from South and Mesoamerica. Plant growth promoting bacteria (PGPB) isolated from pink lapacho are scarcely described. The aim of this work was to isolate and characterize native endophytic bacteria from pink lapacho. Ten bacterial strains were isolated from leaves and six from roots of naturally growing trees in Luján (Central-Eastern region of Argentina). Endophytes were identified as Bacillus, Paenibacillus, Pseudomonas, Rhizobium, Rummeliibacillus and Methylobacterium genera, according to 16S rRNA gene sequencing and phylogenetic analysis. In the present study, a strain of the Rummelibacillus genus (L14) has been first ever reported as endophyte. This strain was capable of growing in Nfb medium and exhibited zinc solubilization ability. A high percentage of strains showed PGPB traits; namely 88% fixed nitrogen, 63% solubilized zinc, 69% solubilized phosphate and 63% produced indole compounds such as IAA. Most strains were salt tolerant that confer them a potential competitive advantage to survive in saline conditions. To the best of our knowledge, this is the first study reporting an approach to assess the diversity of cultivable endophytic bacteria of H. impetiginosus tree and its plant growth promoting capacity. The knowledge about this kind of associations could contribute to environmental sustainability by developing effective biofertilizers that minimize the use of chemical fertilizers and pesticides.
Collapse
Affiliation(s)
- Mauro Enrique Yarte
- Laboratorio de Cultivo de tejidos Vegetales, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Inés Gismondi
- Laboratorio de Cultivo de tejidos Vegetales, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Berta Elizabet Llorente
- Laboratorio de Cultivo de tejidos Vegetales, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Ezequiel Enrique Larraburu
- Laboratorio de Cultivo de tejidos Vegetales, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
30
|
Wu W, Wang S, Wu J, He B, Zhu B, Qin L. Influence of tissue and geographic locality on culturable endophytic bacteria of Atractylodes macrocephala. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34825886 DOI: 10.1099/mic.0.001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The endophytic bacterial community and their diversity are closely related to the host's growth and development. This paper explores the culturable endophytic bacteria in the stems, leaves, roots and rhizomes of Atractylodes macrocephala (AM) of four localities (Yuqian, Wenxian, Pan'an and Pingjiang) and the potential correlation between the bacteria and plant bioactive compounds. A total of 118 endophytic bacteria belonging to 3 phyla, 5 classes, 11 orders, 26 families and 48 genera were isolated and identified from the four AM tissues. Among them, Bacillus was the dominant genus. In AM, the tissue type and locality influenced the endophytic bacterial community. Approximately 29.7 and 28.8% of the endophytic bacteria exhibited tissue specificity and geographic specificity, respectively. Furthermore, high-performance liquid chromatography revealed that the sesquiterpenoid (atractylenolide I, atractylenolide Ⅱ and atractylon) content was more in the rhizomes of Wenxian than in those of Pingjiang, Yuqian and Pan'an. The multiple linear regression was used to screen the bacterial strains related to the bioactive compounds of AM. The relative frequency of Microbacterium positively correlated with atractylenolide I and atractylon content in AM but negatively correlated with atractylenolide Ⅱ content. The study also provides a theoretical framework for future research on endophytic bacteria as alternative sources of secondary plant metabolites.
Collapse
Affiliation(s)
- Wei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Shiyu Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Bingqian He
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| |
Collapse
|
31
|
Ahlawat OP, Yadav D, Kashyap PL, Khippal A, Singh G. Wheat endophytes and their potential role in managing abiotic stress under changing climate. J Appl Microbiol 2021; 132:2501-2520. [PMID: 34800309 DOI: 10.1111/jam.15375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
Wheat (Triticum aestivum L.) cultivation differs considerably in respect of soil type, temperature, pH, organic matter, moisture regime, etc. Among these, rising atmospheric temperature due to global warming is most important as it affects grain yield drastically. Studies have shown that for every 1°C rise in temperature above wheat's optimal growing temperature range of 20-25°C, there is a decrease in 2.8 days and 1.5 mg in the grain filling period and kernel weight, respectively, resulting in wheat yield reduction by 4-6 quintal per hectare. Growing demand for food and multidimensional issues of global warming may further push wheat crop to heat stress environments that can substantially affect heading duration, percent grain setting, maturity duration, grain growth rate and ultimately total grain yield. Considerable genetic variation exists in wheat gene pool with respect to various attributes associated with high temperature and stress tolerance; however, only about 15% of the genetic variability could be incorporated into cultivated wheat so far. Thus, alternative strategies have to be explored and implemented for sustainable, more productive and environment friendly agriculture. One of the feasible and environment friendly option is to look at micro-organisms that reside inside the plant without adversely affecting its growth, known as 'endophytes', and these colonize virtually all plant organs such as roots, stems, leaves, flowers and grains. The relationship between plant and endophytes is vital to the plant health, productivity and overall survival under abiotic stress conditions. Thus, it becomes imperative to enlist the endophytes (bacterial and fungal) isolated till date from wheat cultivars, their mechanism of ingression and establishment inside plant organs, genes involved in ingression, the survival advantages they confer to the plant under abiotic stress conditions and the potential benefits of their use in sustainable wheat cultivation.
Collapse
Affiliation(s)
| | - Dhinu Yadav
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Khippal
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
32
|
Patel JK, Gohel K, Patel H, Solanki T. Wheat Growth Dependent Succession of Culturable Endophytic Bacteria and Their Plant Growth Promoting Traits. Curr Microbiol 2021; 78:4103-4114. [PMID: 34622308 DOI: 10.1007/s00284-021-02668-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
Endophytic bacteria present ubiquitously in all plant parts. Their community structure may vary depending on plant tissue and growth condition. This work mainly focused on exploring the diversity of culturable nitrogen-fixing endophytic bacteria in above-ground plant parts of wheat by harvesting it during various growth points (Seed stage, 1st, 2nd, and 3rd month old plants, respectively). Distinct endophytic bacterial colonies were selected on Jensen's agar plate. Based on the 16S rRNA sequencing, 43 putative nitrogen-fixing endophytic bacteria were identified. Most of the isolates were found unique to the plant growth phase except for Pseudomonas sp., Bacillus sp., Paenibacillus sp., Microbacterium sp., Exiguobacterium sp. Further, endophytic bacteria were scrutinized for their plant growth promoting traits. They were found positive for IAA production (100%), P-solubilization (21%), Zn-solubilization (63%), ammonia production (93%), and nifH gene (33%). Extracellular enzyme production was found positive for cellulase (98%), pectinase (98%), and protease (100%). Their endophytic colonization ability was assessed using reactive oxygen species (ROS) induction assay, upon their entry inside the host plant.
Collapse
Affiliation(s)
- Janki K Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India.
| | - Krupa Gohel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Hiral Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Tanvi Solanki
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| |
Collapse
|
33
|
Escobar Diaz PA, Gil OJA, Barbosa CH, Desoignies N, Rigobelo EC. Aspergillus spp. and Bacillus spp. as Growth Promoters in Cotton Plants Under Greenhouse Conditions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.709267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to verify the potential of three Aspergillus and Bacillus species as growth promoters in cotton plants under greenhouse conditions. The experiment was conducted with a completely randomized design with seven treatments (six microorganisms plus one control) and five replicates until the flowering stage at 70 days after emergence. The inoculation of cotton plants with Bacillus velezensis (Bv188) and Bacillus subtilis (Bs248 and Bs290) had a positive effect on total nitrogen extraction (899.31, 962.18, and 755.41 mg N/kg dry matter, respectively) compared to the control (459.31 mg N/kg dry weight), total phosphorus extraction (121.94, 124.31, and 99.27 mg P/kg dry matter, respectively) compared to the control (65.10 mg P/kg dry matter), and total dry matter (41.08, 43.59, and 49.86 g/plant, respectively) compared to the control (26.70 g/plant), as well as biomass carbon (72.26, 35.18, and 14.7 mg/kg soil, respectively). Cotton plants inoculated with Aspergillus brasiliensis (F111), Aspergillus sydowii (F112), and Aspergillus sp. (versicolor section) (F113) had higher total nitrogen extraction (953.33, 812.59, and 891.62 mg N/kg dry matter, respectively) compared to the control (459.31 mg N/kg dry matter), a higher total phosphorus (122.30, 104.86, and 118.45 mg P/kg dry matter, respectively) compared to the control (65.10 mg P/kg dry matter), a higher total dry matter (37.52, 37.41, and 53.02 g/plant) compared to the control (26.70 g/plant), and greater respiratory activity (14.98, 10.43, and 7.11 mg CO2/100 g soil, respectively) compared to the control (3.5 mg CO2/100 g soil). The fungi A. brasiliensis (F111) and A. sydowii (F112) promoted higher phosphorus absorption by cotton plants, which was reflected by the lower amount of nutrients in the soil (7.10 and 16.96 g P/dm3 soil) than in the control (26.91 g P/dm3 soil). The results suggest that B. subtilis 248 promoted an increase in phosphorus extracted from the roots and total and phosphorous compounds from the root dry matter and increased the value of soil respiratory activity, and this bacterium could be used as an inoculant in cotton crops.
Collapse
|
34
|
Bioprospecting beneficial endophytic bacterial communities associated with Rosmarinus officinalis for sustaining plant health and productivity. World J Microbiol Biotechnol 2021; 37:135. [PMID: 34263378 DOI: 10.1007/s11274-021-03101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/27/2021] [Indexed: 10/20/2022]
Abstract
The present study aimed to isolate and identify root endophytic bacteria with multifunctional plant growth promoting (PGP) traits from medicinal plant Rosmarinus officinalis grown in the North-Western Himalayas. A total of 42 strains were isolated, exhibiting variable degrees of PGP traits, including phosphate solubilization (10-375 µg/mL), indole-3-acetic acid (6-66 µg/mL), siderophore (32.37%-301.48% SU) production and antifungal activity in terms of percent growth inhibition (% GI) against Fusarium oxysporum (44.44%-77.77% GI), Fusarium graminearum (48.88%-71.42% GI) and Rhizoctonia solani (44.44%-77.7% GI). The 16S rDNA sequencing results showed lineage of these strains to 15 genera viz., Aneurinibacillus, Bacillus, Beijerinckia, Cedecea, Ensifer, Enterobacter, Kosakonia, Lactobacillus, Lysobacter, Oxynema, Pseudomonas, Pantoea, Paenibacillus, Pseudoxanthomonas and Serratia. Out of 42 strains, 11 potential strains were selected for in vivo growth studies of R. officinalis. The results showed that the inoculation of Bacillus subtilis KU21, Pseudomonas aeruginosa SI12, and Cedecea lapagei KU14 significantly increased the physical growth parameters of plant over uninoculated control viz., number of lateral of branches (43.95%-46.39%), stem height (29.04%-38.57%), root length (32.31%-37.14%), shoot (34.76%-40.91%) and root biomass (62.89%-70.70%). Physiological characteristics such as total chlorophyll (30.41%-30.96%), phenol (14.43%-24.55%) and carotenoids (34.26%-39.87%) content, also showed a relative increase as compared to uninoculated control; furthermore, the macronutrients (NPK) contents of the plant as well as soil also showed an increase. The developed module may be recommended for sustainable production of R. officinalis in the North-Western Himalayan region without hampering the soil health and fertility.
Collapse
|
35
|
Fahsi N, Mahdi I, Mesfioui A, Biskri L, Allaoui A. Phosphate solubilizing rhizobacteria isolated from jujube ziziphus lotus plant stimulate wheat germination rate and seedlings growth. PeerJ 2021; 9:e11583. [PMID: 34249493 PMCID: PMC8256818 DOI: 10.7717/peerj.11583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Jujube plant (Ziziphus lotus (L.) Desf.) can survive in arid climates and tolerates both biotic and abiotic stresses. Here, we isolated, for the first time in Morocco, nine phosphate solubilizing bacteria strains from jujube rhizosphere, designated J10 to J13, J15, & J153 to J156. Genotypic identification based on 16S rDNA sequencing, revealed six strains that belong to Pseudomonas (J10, J12, J13, J15, J153 and J154), two to Bacillus (J11 and J156), and one to Paenibacillus J155. Siderophores were produced by all strains. Proteases activity was missing in Pseudomonas sp. J153 & J154, whereas cellulase was restricted only to Pseudomonas sp. J10, Paenibacillus xylanexedens J155 and Bacillus cereus J156. Indole-3- acetic acid and ammonia were also produced by all strains, with a maxima of 204.28 µg mL−1 in Bacillus megaterium J11 and 0.33 µmol mL−1 in Pseudomonas sp. J153, respectively. Pseudomonas sp. J10 and B. cereus J156 grew on plates containing 1,500 µg mL−1 of nickel nitrate, while Pseudomonas sp. J153 withstood 1,500 µg mL−1 of either copper sulfate or cadmium sulfate. Phenotypic analysis of the potential of the isolates to promote early plant growth showed that wheat seeds inoculated with either P. moraviensis J12 or B. cereus J156 remarkably increased germination rate and seedlings growth. Lastly, antibiotic resistance profiling revealed that except for Pseudomonas sp. J11 and B. cereus J156, remaining strains displayed resistance at least to one of tested antibiotics. Collectively, Pseudomonas sp. J10, P. moraviensis J12, Pseudomonas sp. J153 and B. cereus J156, represent potential biofertilizers suitable for soils that are poor in P, and/or heavy metals contaminated.
Collapse
Affiliation(s)
- Nidal Fahsi
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Laboratory of Biologie & Sante, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Ismail Mahdi
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Laboratory of Microbial Biotechnologies, Agrobiosciences and Environement (BioMAgE), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakesh, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biologie & Sante, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Latefa Biskri
- Molecular Microbiology laboratory, Coalition Center of Innovation and Prevention of Epidemies in Morocco (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco.,African Genome Center (AGC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Abdelmounaaim Allaoui
- Molecular Microbiology laboratory, Coalition Center of Innovation and Prevention of Epidemies in Morocco (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
36
|
Bacterial Endophytes: The Hidden Actor in Plant Immune Responses against Biotic Stress. PLANTS 2021; 10:plants10051012. [PMID: 34069509 PMCID: PMC8161118 DOI: 10.3390/plants10051012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Bacterial endophytes constitute an essential part of the plant microbiome and are described to promote plant health by different mechanisms. The close interaction with the host leads to important changes in the physiology of the plant. Although beneficial bacteria use the same entrance strategies as bacterial pathogens to colonize and enter the inner plant tissues, the host develops strategies to select and allow the entrance to specific genera of bacteria. In addition, endophytes may modify their own genome to adapt or avoid the defense machinery of the host. The present review gives an overview about bacterial endophytes inhabiting the phytosphere, their diversity, and the interaction with the host. Direct and indirect defenses promoted by the plant-endophyte symbiont exert an important role in controlling plant defenses against different stresses, and here, more specifically, is discussed the role against biotic stress. Defenses that should be considered are the emission of volatiles or antibiotic compounds, but also the induction of basal defenses and boosting plant immunity by priming defenses. The primed defenses may encompass pathogenesis-related protein genes (PR family), antioxidant enzymes, or changes in the secondary metabolism.
Collapse
|
37
|
Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, Zhu B. Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:646146. [PMID: 33968103 PMCID: PMC8100581 DOI: 10.3389/fpls.2021.646146] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Plants benefit extensively from endophytic bacteria, which live in host plant tissues exerting no harmful effects. Bacterial endophytes promote the growth of host plants and enhance their resistance toward various pathogens and environmental stresses. They can also regulate the synthesis of secondary metabolites with significant medicinal properties and produce various biological effects. This review summarizes recent studies on the relationships between bacterial endophytes and medicinal plants. Endophytic bacteria have numerous applications in agriculture, medicine, and other industries: improving plant growth, promoting resistance toward both biotic and abiotic stresses, and producing metabolites with medicinal potential. Their distribution and population structure are affected by their host plant's genetic characteristics and health and by the ecology of the surrounding environment. Understanding bacterial endophytes can help us use them more effectively and apply them to medicinal plants to improve yield and quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
38
|
Borah M, Das S, Bora SS, Boro RC, Barooah M. Comparative assessment of multi-trait plant growth-promoting endophytes associated with cultivated and wild Oryza germplasm of Assam, India. Arch Microbiol 2021; 203:2007-2028. [PMID: 33554275 DOI: 10.1007/s00203-020-02153-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
This paper presents a comparative study of endophytic bacteria from cultivated (Oryza sativa) and wild rice (Oryza rufipogon) plants and their functional traits related to plant growth promotion. A total of 70 bacterial isolates were characterized by both biochemical and molecular identification methods. Taxonomic classification showed dominance of three major phyla, viz, Firmicutes (57.1%), Actinobacteria (20.0%) and Proteobacteria (22.8%). Screening for in vitro plant growth-promoting activities revealed a hitherto unreported endophytic bacterium from wild rice germplasm, Microbacterium laevaniformans RS0111 with highest indole acetic acid (28.39 ± 1.39 µg/ml) and gibberellic acid (67.23 ± 1.83 µg/ml) producing efficiency. Few other endophytic isolates from cultivated rice germplasm such as Bacillus tequilensis RHS01 showed highest phosphate solubilizing activity (81.70 ± 1.98 µg/ml), while Microbacterium testaceum MKLS01 and Microbacterium enclense MI03 L05 showed highest potassium (53.42 ± 0.75 µg/ml) and zinc solubilizing activity (157.50%). Fictibacillus aquaticus LP20 05 produced highest siderophore (64.8%). In vivo evaluation of plant growth-promoting efficiencies of the isolates showed that Microbacterium laevaniformans RS0111, Microbacterium testaceum MKLS01 and Bacillus tequilensis RHS 01 could increase rice grain yield by 3.4-fold when compared to the control group. This study indicates the potentiality of rice endophytes isolates as an effective bioinoculants.
Collapse
Affiliation(s)
- Madhusmita Borah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Saurav Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Sudipta Sankar Bora
- DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat, Assam, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India. .,DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat, Assam, India.
| |
Collapse
|
39
|
Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, Gobouri AA, Hassan SED. Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions. PLANTS (BASEL, SWITZERLAND) 2021; 10:E76. [PMID: 33401438 PMCID: PMC7824221 DOI: 10.3390/plants10010076] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
In this study, 15 bacterial endophytes linked with the leaves of the native medicinal plant Pulicaria incisa were isolated and identified as Agrobacterium fabrum, Acinetobacter radioresistant, Brevibacillus brevis, Bacillus cereus, Bacillus subtilis, Paenibacillus barengoltzii, and Burkholderia cepacia. These isolates exhibited variant tolerances to salt stress and showed high efficacy in indole-3-acetic acid (IAA) production in the absence/presence of tryptophan. The maximum productivity of IAA was recorded for B. cereus BI-8 and B. subtilis BI-10 with values of 117 ± 6 and 108 ± 4.6 μg mL-1, respectively, in the presence of 5 mg mL-1 tryptophan after 10 days. These two isolates had a high potential in phosphate solubilization and ammonia production, and they showed enzymatic activities for amylase, protease, xylanase, cellulase, chitinase, and catalase. In vitro antagonistic investigation showed their high efficacy against the three phytopathogens Fusarium oxysporum, Alternaria alternata, and Pythium ultimum, with inhibition percentages ranging from 20% ± 0.2% to 52.6% ± 0.2% (p ≤ 0.05). Therefore, these two endophytic bacteria were used as bio-inoculants for maize seeds, and the results showed that bacterial inoculations significantly increased the root length as well as the fresh and dry weights of the roots compared to the control plants. The Zea mays plant inoculated with the two endophytic strains BI-8 and BI-10 significantly improved (p ≤ 0.05) the growth performance as well as the nutrient uptake compared with an un-inoculated plant.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Albaraa Elsaied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Ehab F. El-Belely
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Mohammed G. Barghoth
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Sharkia, Egypt
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| |
Collapse
|
40
|
Isolation and Characterisation of Endophytic Bacteria from Holostemma ada-kodien Schult. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plants with medical properties are often enriched with endophytes that have the potential to produce important bioactive compounds. Endophytes after entering the plant tissue may either colonize a particular tissue or may spread throughout the host plant without causing damage. The possession of pharmaceutical and biological properties has made the Holostemma ada-kodien Schult as one of the widely used plants of medicinal importance in India. Following the direct cut method three endophytic bacterial strains (UC H1, UC H4 and UC H7) were isolated, identified and characterized from the healthy looking rhizome of H. ada-kodien. Among these isolates, UC H1 and UC H4 were found to have many properties like antibacterial compounds, hydrolytic enzymes and plant growth promoting traits. The isolate UC H4 have ability for Indole-3-Acetic Acid (IAA) production of 513.54 U/ml and very good protease and pectinase activities of 20.65 U/ml and 16.09 U/ml respectively. So far no reports are available on the endophytic microflora of H. ada-kodien.
Collapse
|
41
|
Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek 2020; 113:1075-1107. [PMID: 32488494 DOI: 10.1007/s10482-020-01429-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Endophytic microbes are known to live asymptomatically inside their host throughout different stages of their life cycle and play crucial roles in the growth, development, fitness, and diversification of plants. The plant-endophyte association ranges from mutualism to pathogenicity. These microbes help the host to combat a diverse array of biotic and abiotic stressful conditions. Endophytic microbes play a major role in the growth promotion of their host by solubilizing of macronutrients such as phosphorous, potassium, and zinc; fixing of atmospheric nitrogen, synthesizing of phytohormones, siderophores, hydrogen cyanide, ammonia, and act as a biocontrol agent against wide array of phytopathogens. Endophytic microbes are beneficial to plants by directly promoting their growth or indirectly by inhibiting the growth of phytopathogens. Over a long period of co-evolution, endophytic microbes have attained the mechanism of synthesis of various hydrolytic enzymes such as pectinase, xylanases, cellulase, and proteinase which help in the penetration of endophytic microbes into tissues of plants. The effective usage of endophytic microbes in the form of bioinoculants reduce the usage of chemical fertilizers. Endophytic microbes belong to different phyla such as Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus-thermus, Firmicutes, Proteobacteria, and Verrucomicrobia. The most predominant and studied endophytic bacteria belonged to Proteobacteria followed by Firmicutes and then by Actinobacteria. The most dominant among reported genera in most of the leguminous and non-leguminous plants are Bacillus, Pseudomonas, Fusarium, Burkholderia, Rhizobium, and Klebsiella. In future, endophytic microbes have a wide range of potential for maintaining health of plant as well as environmental conditions for agricultural sustainability. The present review is focused on endophytic microbes, their diversity in leguminous as well as non-leguminous crops, biotechnological applications, and ability to promote the growth of plant for agro-environmental sustainability.
Collapse
|
43
|
Zadeh Hosseingholi E, Neghabi N, Molavi G, Gheibi Hayat SM, Shahriarpour H. In silico identification and characterization of antineoplastic asparaginase enzyme from endophytic bacteria. IUBMB Life 2020; 72:991-1000. [DOI: 10.1002/iub.2237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Affiliation(s)
| | - Neda Neghabi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani University Tabriz Iran
| | - Ghader Molavi
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Molecular Medicine, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | | | - Hamed Shahriarpour
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
44
|
Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds. Int J Microbiol 2020; 2020:9483670. [PMID: 32184829 PMCID: PMC7060864 DOI: 10.1155/2020/9483670] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022] Open
Abstract
This study reports on the isolation and identification of Methylobacterium radiotolerans MAMP 4754 from the seeds of the medicinal plant, Combretum erythrophyllum, for the purposes of investigating antimicrobial and antioxidant activities from this endophyte. The strain identity was confirmed by 16S rRNA-based phylogeny and Scanning Electron Microscopy (SEM). Ethyl acetate and chloroform (1 : 1 v/v) extracts from the endophyte were tested for antimicrobial and antioxidant activity on a total of 7 bacterial species (3 Gram-positive and 4 Gram-negative) using the standard Minimum Inhibitory Concentration (MIC) protocol and Quantitative Radical Scavenging activity using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay, respectively. The MICs were recorded at 250 μg/mL for B. subtilis ATCC 19659, B. cereus ATCC 1076, E. coli ATCC1053, and 62.5 μg/mL for K. oxytoca ATCC 13182 and M. smegmatis ATCC 21293, while an IC50 of 5.65 μg/mL was recorded with the DPPH assay. Qualitative phytochemical analysis was positive for alkaloids, flavonoids, and steroids. Gas chromatography/mass spectrometry (GC/MS) analysis revealed the presence of 9-octadecene, 2,4-dinitrophenyl acetate, and 2(5H)-furanone, which have been previously reported for the targeted activities. M. radiotolerans MAMP 4754 tested positive for antimicrobial and antioxidant activity and this is linked to the production of plant-derived secondary metabolites by this strain.
Collapse
|
45
|
Orozco-Mosqueda MDC, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res 2020; 235:126439. [PMID: 32097862 DOI: 10.1016/j.micres.2020.126439] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 11/27/2022]
Abstract
Salinity in agricultural soil is a major problem around the world, with negative consequences for the growth and production of a wide range of crops. To counteract these harmful effects, plants sometimes have bacterial partners that contain the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which acts by degrading ACC (the precursor of ethylene in all higher plants). The enzymatic activity of ACC deaminase results in the production of α-ketobutyrate and ammonia, which, by lowering ACC levels, prevents excessive increases in the synthesis of ethylene under various stress conditions and is one of the most efficient mechanisms to induce plant tolerance to salt stress. In the present review, recent works on the role of ACC deaminase are discussed alongside its importance in promoting plant growth under conditions of salt stress in endophytic and rhizospheric bacteria, with some emphasis on Bacillus species. In addition, the toxic effects of soil salinity on plants and microbial biodiversity are analysed. Recent findings on the synergetic functioning of ACC deaminase and other bacterial mechanisms of salt stress tolerance, such as trehalose accumulation, are also summarized. Finally, we discuss the various advantages of ACC deaminase-producing bacilli as bioinoculants to address the problem of salinity in agricultural soils.
Collapse
Affiliation(s)
- Ma Del Carmen Orozco-Mosqueda
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Paseo Lázaro Cárdenas s/n Esq, Berlín, Col. Viveros, 60190, Uruapan, Michoacán, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
46
|
Ulloa-Muñoz R, Olivera-Gonzales P, Castañeda-Barreto A, Villena GK, Tamariz-Angeles C. Diversity of endophytic plant-growth microorganisms from Gentianella weberbaueri and Valeriana pycnantha, highland Peruvian medicinal plants. Microbiol Res 2020; 233:126413. [PMID: 31981904 DOI: 10.1016/j.micres.2020.126413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
Microbial diversity in Peruvian mountain areas is poorly know, specially endophytic microorganisms of medicinal native plants from the Cordillera Blanca. So, nine bacterial and six fungal species were isolated from Gentianella weberbaueri and Valeriana pycnantha. According to 16S rDNA analysis, bacterial strains belong to genera Rahnella, Pseudomonas, Serratia, Rouxiella, and Bacillus; while ITS analysis showed that fungi belong to Pyrenochaeta, Scleroconidioma, Cryptococcus, and Plenodomus genera. Rahnella sp. GT24B and P. trivialis VT20B solubilized tricalcium phosphate and produced siderophores at 10 and 24 °C. Five bacteria strains produced indol-3-acetic acid (IAA) at 10 and 24 °C, where Rahnella sp. VT19B showed more production at 10 °C than 24 °C. Rahnella sp. GT24B, Serratia sp. VT28B, and Rahnella sp. GT25B inhibited Fusarium oxysporum growth up to 100, 78 and 74 %, respectively. R. inusitata VT25B and B. licheniformis GT10B showed high cellulolytic and proteolytic activities. On the other hand, only a few fungi moderately inhibited growth of F. oxysporum, and produced siderophores and cellulases. Most of bacteria inoculated on Medicago sativa "alfalfa" and Triticum aestivum "wheat" seeds got better root development, especially Rahnella sp. GT24B, Rouxiella sp.VT24B, Serratia sp. VT28B, and Rahnella sp. VT34B. Finally, this study is the first report of endophytic microorganisms associated to wild medicinal high-mountain Peruvian plants and it show a valuable microbial diversity and its possible role in promoting growth of crops and wild medicinal plants.
Collapse
Affiliation(s)
- Rocío Ulloa-Muñoz
- Facultad de Ciencias Agrarias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Ancash Huaraz, Peru
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Ancash, Huaraz, Peru
| | - Alberto Castañeda-Barreto
- Centro de Investigación de la Biodiversidad y Recursos Genéticos, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Ancash, Huaraz, Peru
| | - Gretty K Villena
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 12, Peru
| | - Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002 Independencia, Ancash, Huaraz, Peru.
| |
Collapse
|
47
|
Forwood DL, Hooker K, Caro E, Huo Y, Holman DB, Meale SJ, Chaves AV. Crop Sorghum Ensiled With Unsalable Vegetables Increases Silage Microbial Diversity. Front Microbiol 2019; 10:2599. [PMID: 31803152 PMCID: PMC6872954 DOI: 10.3389/fmicb.2019.02599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
Ensiling vegetables with forage crops is a suggested method of waste diversion and can be directly utilized as a livestock feed. Carrot or pumpkin, ensiled at 0, 20, or 40% dry matter (DM) with crop sorghum, and with or without a second-generation silage inoculant were assessed for nutritive composition, organic acid profiles, aerobic stability and in vitro rumen fermentation characteristics. The study was a completely randomized design, with the fixed effects consisting of vegetable type (carrot vs. pumpkin), level (i.e., the level of vegetables), inoculant (inoculant or non-inoculant) and the interactions, and mini-silos within treatment as the random effect. The experimental unit for sorghum treatments represented by each mini-silo (5 kg capacity). Silage was sampled after 70-days ensiling for nutrient composition, 14-day aerobic stability, organic acid profiles and microbial diversity. After 24 h in vitro incubation, rumen fermentation parameters were assessed, measuring gas and methane (CH4) production, in vitro digestibility and volatile fatty acid concentrations. Sorghum ensiled with carrot or pumpkin at 20% or 40% DM increased crude fat (P ≤ 0.01) and decreased (P ≤ 0.01) silage surface temperature upon aerobic exposure compared to the control. Bacterial communities analyzed through 16S rRNA gene sequencing linearly increased (P ≤ 0.01) in diversity across both vegetables when the vegetable proportion was increased in the silage; dominated by Lactobacillus species. ITS analysis of the fungal microbiota upon silage opening and after 14 days (aerobic stability) identified increased (P ≤ 0.03) fungal diversity with increasing vegetable proportions, predominantly populated by Fusarium denticulatum, Issatchenkia orientalis, Kazachstania humilis, and Monascus purpureus. Upon assessment in vitro, there was an increase (P ≤ 0.04) in in vitro digestibility and some CH4 parameters (% CH4, and mg CH4/g DM), with no effect (P ≥ 0.17) on remaining CH4 parameters (mL CH4/g DM, mg CH4/g digested DM), gas production or pH. However, increasing vegetable amount decreased percentage of acetic acid and increased percentage of propionic acid of the total VFA, decreasing A:P ratio and total VFA concentration as a result (P ≤ 0.01). The results from this study indicate including carrot or pumpkin at 20 or 40% DM in a sorghum silage can produce a highly digestible, microbially diverse and energy-rich livestock feed.
Collapse
Affiliation(s)
- Daniel L. Forwood
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, Gatton, QLD, Australia
| | - Kristian Hooker
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Eleonora Caro
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- Department of Agricultural, Forestry and Food Science, University of Turin, Turin, Italy
| | - Yuxin Huo
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Sarah J. Meale
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, Gatton, QLD, Australia
| | - Alex V. Chaves
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
48
|
Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol 2019; 51:229-241. [PMID: 31642002 DOI: 10.1007/s42770-019-00172-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial endophytes are well known inhabitants of living plant system and perform important assignments in maintaining plant growth and health. Currently, limited reports are available on the endophytes of pearl millet (Pennisetum glaucum) reflecting antagonistic and plant growth promoting (PGP) attributes. Therefore, the major objectives of current investigation were to identify antagonistic strains of endophytic Bacillus from pearl millet and further illustrate their PGP capabilities. In this study, 19 endophytic Bacillus strains (EPP5, EPP21, EPP30, EPP32, EPP35, EPP42, EPP49, EPP55, EPP62, EPP65, EPP70, EPP71, EPP74, EPP78, EPP83, EPP86, EPP93, EPP100, and EPP102) displaying antagonistic activity towards Rhizoctonia solani (RS), Sclerotium rolfsii (SR), and Fusarium solani (FS) were isolated from different sections (root, leaf, stem, and root) of pearl millet. Phenotypic (shape, colony, gram staining reaction, endospore formation, and motility) and biochemical features (catalase, oxidase, citrate, gelatinase, urease, Voges Proskauer's, methyl red, indole, and nitrate reduction), along with the similarly comparison of 16S rRNA gene sequence with type strains identified eight antagonistic endophyhtes as B. amyloliquefaciens (EPP35, EPP 42, EPP62, and EPP 102), Bacillus subtilis subsp. subtilis (EPP65), and Bacillus cereus (EPP5, EPP71, and EPP74). The production of indole acetic acid and siderophores was varied among the isolated endophytes. Besides displaying enzymatic activities, these isolates varied in solubilizing capabilities of phosphate, potassium, and zinc. The presence of three antimicrobial peptide genes (ituD, bmyC, and srfA) also confirmed their antifungal nature. Further, single treatment of three promising strains (EPP5, EPP62, and EPP65) offered protection ranging from 35.68 to 45.74% under greenhouse conditions. However, microbial consortium (EPP5+ EPP62 + EPP65) provided the highest protection (71.96%) against root rot and wilt infection with significant increase in plant biomass. Overall, the current study indicated that pearl millet plant harbors various species of endophytic Bacillus that possess excellent biocontrol and growth promotion activities.
Collapse
Affiliation(s)
- Prity Kushwaha
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, 275103, India
- AMITY Institute of Biotechnology, AMITY University Lucknow Campus, Lucknow, Uttar Pradesh, 226028, India
| | - Prem Lal Kashyap
- ICAR- Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, India.
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, 275103, India
| | - Rajesh Kumar Tiwari
- AMITY Institute of Biotechnology, AMITY University Lucknow Campus, Lucknow, Uttar Pradesh, 226028, India
| |
Collapse
|
49
|
Zhang L, Li W, Tao Y, Zhao S, Yao L, Cai Y, Niu Q. Overexpression of the Key Virulence Factor 1,3-1,4-β-d-Glucanase in the Endophytic Bacterium Bacillus halotolerans Y6 To Improve Verticillium Resistance in Cotton. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6828-6836. [PMID: 31136163 DOI: 10.1021/acs.jafc.9b00728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae, results in a dramatic loss of cotton yields in China. There is great potential for biocontrol to manage this destructive crop disease. In this study, we obtained the endophytic bacterium Bacillus halotolerans Y6 from Verticillium wilt-resistant cotton Gossypium barbadense Xinhai15; this bacterium possesses strong antagonistic abilities that inhibit V. dahliae spore germination and mycelial growth. The results of the enzyme activity assay, heterologous expression, and gene knockdown showed that the key virulence factor of Y6 for antagonizing V. dahliae was β -glucanase Bgy6. To facilitate field tests of biological control, we constructed the homologous Bgy6-overexpression strain OY6. Compared with the wild-type Y6 strain, the β-glucanase activity of OY6 was increased by 91.79%, and the inhibition rate of OY6 against V. dahliae V991 exceeded 96.7%. Moreover, the spores of V. dahliae V991 treated with OY6 showed more mucus and larger holes on the surface, as observed by scanning electron microscopy. Potting test results illustrated that both OY6 and Y6 could improve the resistance of upland cotton to Verticillium wilt. With the inoculation of V. dahliae V991 for 45 days, the disease index of G. hirsutum TM-1 treated with OY6 was only 8.33, which was significantly lower than that in plants treated with the wild-type strain Y6 (17.86) or the controls without bacteria (35.94). Our research provides a new idea for the control of Verticillium wilt in upland cotton via transforming endophytic bacteria of Verticillium wilt-resistant cotton and proposes a new solution to prevent and control Verticillium wilt.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences , Henan University , Kaifeng , Henan 475001 , P. R. China
- Department of Life Science and Biotechnology , Nanyang Normal University , Nanyang 473000 , P. R. China
| | - Wenpeng Li
- Department of Life Science and Biotechnology , Nanyang Normal University , Nanyang 473000 , P. R. China
| | - Ye Tao
- Department of Life Science and Biotechnology , Nanyang Normal University , Nanyang 473000 , P. R. China
| | - Suya Zhao
- Department of Life Science and Biotechnology , Nanyang Normal University , Nanyang 473000 , P. R. China
| | - Lunguang Yao
- China-U.K.-NYNU-RRes Joint Laboratory of Insect Biology , Nanyang Normal University , Nanyang 473000 , P.R. China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences , Henan University , Kaifeng , Henan 475001 , P. R. China
| | - Qiuhong Niu
- Department of Life Science and Biotechnology , Nanyang Normal University , Nanyang 473000 , P. R. China
| |
Collapse
|
50
|
Antagonist effects of strains of Bacillus spp. against Rhizoctonia solani for their protection against several plant diseases: Alternatives to chemical pesticides. C R Biol 2019; 342:124-135. [DOI: 10.1016/j.crvi.2019.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022]
|