1
|
Kulesza E, Thomas P, Prewitt SF, Shalit-Kaneh A, Wafula E, Knollenberg B, Winters N, Esteban E, Pasha A, Provart N, Praul C, Landherr L, dePamphilis C, Maximova SN, Guiltinan MJ. The cacao gene atlas: a transcriptome developmental atlas reveals highly tissue-specific and dynamically-regulated gene networks in Theobroma cacao L. BMC PLANT BIOLOGY 2024; 24:601. [PMID: 38926852 PMCID: PMC11201900 DOI: 10.1186/s12870-024-05171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Theobroma cacao, the cocoa tree, is a tropical crop grown for its highly valuable cocoa solids and fat which are the basis of a 200-billion-dollar annual chocolate industry. However, the long generation time and difficulties associated with breeding a tropical tree crop have limited the progress of breeders to develop high-yielding disease-resistant varieties. Development of marker-assisted breeding methods for cacao requires discovery of genomic regions and specific alleles of genes encoding important traits of interest. To accelerate gene discovery, we developed a gene atlas composed of a large dataset of replicated transcriptomes with the long-term goal of progressing breeding towards developing high-yielding elite varieties of cacao. RESULTS We describe the creation of the Cacao Transcriptome Atlas, its global characterization and define sets of genes co-regulated in highly organ- and temporally-specific manners. RNAs were extracted and transcriptomes sequenced from 123 different tissues and stages of development representing major organs and developmental stages of the cacao lifecycle. In addition, several experimental treatments and time courses were performed to measure gene expression in tissues responding to biotic and abiotic stressors. Samples were collected in replicates (3-5) to enable statistical analysis of gene expression levels for a total of 390 transcriptomes. To promote wide use of these data, all raw sequencing data, expression read mapping matrices, scripts, and other information used to create the resource are freely available online. We verified our atlas by analyzing the expression of genes with known functions and expression patterns in Arabidopsis (ACT7, LEA19, AGL16, TIP13, LHY, MYB2) and found their expression profiles to be generally similar between both species. We also successfully identified tissue-specific genes at two thresholds in many tissue types represented and a set of genes highly conserved across all tissues. CONCLUSION The Cacao Gene Atlas consists of a gene expression browser with graphical user interface and open access to raw sequencing data files as well as the unnormalized and CPM normalized read count data mapped to several cacao genomes. The gene atlas is a publicly available resource to allow rapid mining of cacao gene expression profiles. We hope this resource will be used to help accelerate the discovery of important genes for key cacao traits such as disease resistance and contribute to the breeding of elite varieties to help farmers increase yields.
Collapse
Affiliation(s)
- Evelyn Kulesza
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick Thomas
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah F Prewitt
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- USDA Animal and Plant Health Inspection Service (APHIS), Riverdale, MD, 20737, USA
| | - Akiva Shalit-Kaneh
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Plant Sciences, Volcani-ARO (Agricultural and Rural Organization), Gilat, Israel
| | - Eric Wafula
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Benjamin Knollenberg
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Mars Inc, Davis, CA, 95616, USA
| | - Noah Winters
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Eddi Esteban
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Nicholas Provart
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Craig Praul
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lena Landherr
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Claude dePamphilis
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Siela N Maximova
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark J Guiltinan
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Waldburger T, Anken T, Walter A, Nasser HR, Monney P, Cockburn M. Growing cocoa in semi-arid climate and the rhythmicity of stem growth and leaf flushing determined by dendrometers. Heliyon 2024; 10:e32266. [PMID: 38947431 PMCID: PMC11214439 DOI: 10.1016/j.heliyon.2024.e32266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
This study investigated the performance of cocoa trees within an irrigated cocoa plantation situated in the semi-arid region of Bahia, Brazil. Two treatments were compared: "full sun," where cocoa trees were not shaded, and "shade," where trees were covered with a shading net absorbing 30 % of the radiation. The number of leaves and the leaf area index (LAI) were assessed using destructive method on 8 trees. In addition, new flushing of leaves, categorized into four flushing stages, were assessed visually on a weekly basis during two years. The variation of the stem diameter was measured using dendrometer sensors (n = 12 trees). Yield parameters like dry bean yield and number of fruits (healthy and aborted) were assessed on 40 trees per treatment. Both treatments, performed well in the semi-arid region. Generative parameters, such as dry bean yield (±2,000 kg/ha), fruit healthy and abortion rate per plot, were unaffected by full sun and shade treatments. The treatments showed high fruit abortion rates of (±60 %), showing that there's still much room for yield optimization. Additionally, stem diameter of the trees showed a significant reduction of the stem growth (daily increase of stem diameter) and maximum daily shrinkage (daily variation of stem diameter) during the flushing of new leaves. This implies that the emergence of new leaves significantly influences stem growth, consequently affecting the fruits which are growing on the stem. This assumption was corroborated by the significantly increased fruit abortion rate during the flushing of new leaves (stages 1 & 2). These findings highlight the potential of dendrometers to quantify this effect what can be used in future to optimize management practices. By doing so, more effective strategies can be developed to enhance cocoa yield and overall productivity in semi-arid regions.
Collapse
Affiliation(s)
- Thainná Waldburger
- Agroscope, Competitiveness and System Evaluation, Tänikon1, 8356, Ettenhausen, Switzerland
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Thomas Anken
- Agroscope, Competitiveness and System Evaluation, Tänikon1, 8356, Ettenhausen, Switzerland
| | - Achim Walter
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Hassan-Roland Nasser
- Agroscope, Competitiveness and System Evaluation, Tänikon1, 8356, Ettenhausen, Switzerland
| | - Philippe Monney
- Agroscope, Fruit Production in the Alpine Region, Route des Eterpys 18, 1964, Conthey, Switzerland
| | - Marianne Cockburn
- Agroscope, Animals and Animal Products, Equines, Les Longs-Prés, 1580, Avenches, Switzerland
| |
Collapse
|
3
|
Rodríguez-Castro R, Guerrero R, Valero A, Franco-Rodriguez J, Posada-Izquierdo G. Cocoa Mucilage as a Novel Ingredient in Innovative Kombucha Fermentation. Foods 2024; 13:1636. [PMID: 38890865 PMCID: PMC11171615 DOI: 10.3390/foods13111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Cocoa tree plantations aim to harvest grains found in the cob to produce cocoa and chocolate. There has been a growing interest in valorizing the secondary components of the cocoa fruit, such as the peel, placenta, and mucilage/pulp, as valuable sources of nutrients for healthy food preparation. In other words, by-products derived from these raw materials are an exploitable source of nutrients in the preparation of healthy food. In the present study, two varieties of cocoa, National Cocoa Fino de Aroma (NCFA) and Colección Castro Naranjal 51 (CCN-51), were evaluated and harvested during both dry and rainy seasons. This evaluation was based on the profiling of the cob, peel, grain, placenta, and mucilage in different stages of ripeness (underripe, ripe, and overripe). Also, from the ripe raw material, a fermented beverage prototype was developed, such as kombucha, with different concentrations of mucilage (40, 60, 80, and 100 g/L). Physicochemical analyses, such as acidity, °Brix, pH, moisture, ash, protein, fat, fiber, vitamins, sugars, and polyphenols of the raw mucilage material and acidity, °Brix, and pH values of the fermented kombucha, were carried out. The best performances were obtained with the CCN-51 variety in the rainy season. Among the fermented drink panelists, the CN40 treatment (Nacional Mucilage + 40 g/L of sugar) received the highest acceptability and was considered the best. Given its efficiency, nutritional content, and potential applications, this product presents a promising strategy to address Sustainable Development Goals related to zero hunger, health and well-being, and climate action.
Collapse
Affiliation(s)
- Rossy Rodríguez-Castro
- Facultad de Ciencias de Industria y Producción, Universidad Técnica Estatal de Quevedo, Quevedo 120301, Ecuador; (R.R.-C.); (R.G.)
| | - Raquel Guerrero
- Facultad de Ciencias de Industria y Producción, Universidad Técnica Estatal de Quevedo, Quevedo 120301, Ecuador; (R.R.-C.); (R.G.)
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain;
| | - John Franco-Rodriguez
- Carrera de Agropecuaria, Facultad de Educación Técnica Para el Desarrollo, Universidad Católica de Santiago de Guayaquil, Guayaquil 09014671, Ecuador;
| | - Guiomar Posada-Izquierdo
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain;
| |
Collapse
|
4
|
Mateus-Rodríguez JF, Lahive F, Hadley P, Daymond AJ. Effects of simulated climate change conditions of increased temperature and [CO2] on the early growth and physiology of the tropical tree crop, Theobroma cacao L. TREE PHYSIOLOGY 2023; 43:2050-2063. [PMID: 37758447 PMCID: PMC10714407 DOI: 10.1093/treephys/tpad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Despite multiple studies of the impact of climate change on temperate tree species, experiments on tropical and economically important tree crops, such as cacao (Theobroma cacao L.), are still limited. Here, we investigated the combined effects of increased temperature and atmospheric carbon dioxide concentration ([CO2]) on the growth, photosynthesis and development of juvenile plants of two contrasting cacao genotypes: SCA 6 and PA 107. The factorial growth chamber experiment combined two [CO2] treatments (410 and 700 p.p.m.) and three day/night temperature regimes (control: 31/22 °C, control + 2.5 °C: 33.5/24.5 °C and control + 5.0 °C: 36/27 °C) at a constant vapour pressure deficit (VPD) of 0.9 kPa. At elevated [CO2], the final dry weight and the total and individual leaf areas increased in both genotypes, while the duration for individual leaf expansion declined in PA 107. For both genotypes, elevated [CO2] also improved light-saturated net photosynthesis (Pn) and intrinsic water-use efficiency (iWUE), whereas leaf transpiration (E) and stomatal conductance (gs) decreased. Under a constant low VPD, increasing temperatures above 31/22 °C enhanced the rates of Pn, E and gs in both genotypes, suggesting that photosynthesis responds positively to higher temperatures than previously reported for cacao. However, dry weight and the total and individual leaf areas declined with increases in temperature, which was more evident in SCA 6 than PA 107, suggesting the latter genotype was more tolerant to elevated temperature. Our results suggest that the combined effect of elevated [CO2] and temperature is likely to improve the early growth of high temperature-tolerant genotypes, while elevated [CO2] appeared to ameliorate the negative effects of increased temperatures on growth parameters of more sensitive material. The evident genotypic variation observed in this study demonstrates the scope to select and breed cacao varieties capable of adapting to future climate change scenarios.
Collapse
Affiliation(s)
- Julián Fernando Mateus-Rodríguez
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Intersección Carrera 36A con Calle 23, Palmira, Valle del Cauca, Postcode 753533, Colombia
| | - Fiona Lahive
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6EU, UK
| | - Paul Hadley
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6EU, UK
| | - Andrew J Daymond
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6EU, UK
| |
Collapse
|
5
|
Mensah EO, Ræbild A, Asare R, Amoatey CA, Markussen B, Owusu K, Asitoakor BK, Vaast P. Combined effects of shade and drought on physiology, growth, and yield of mature cocoa trees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165657. [PMID: 37478928 DOI: 10.1016/j.scitotenv.2023.165657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Climate models predict decreasing precipitation and increasing air temperature, causing concern for the future of cocoa in the major producing regions worldwide. It has been suggested that shade could alleviate stress by reducing radiation intensity and conserving soil moisture, but few on-farm cocoa studies are testing this hypothesis. Here, for 33 months, we subjected twelve-year cocoa plants in Ghana to three levels of rainwater suppression (full rainwater, 1/3 rainwater suppression and 2/3 rainwater suppression) under full sun or 40 % uniform shade in a split plot design, monitoring soil moisture, physiological parameters, growth, and yield. Volumetric soil moisture (ϴw) contents in the treatments ranged between 0.20 and 0.45 m3m-3 and increased under shade. Rainwater suppression decreased leaf water potentials (ѱw), reaching -1.5 MPa in full sun conditions indicating severe drought. Stomatal conductance (gs) was decreased under the full sun but was not affected by rainwater suppression, illustrating the limited control of water loss in cocoa plants. Although pre-dawn chlorophyll fluorescence (Fv/Fm) indicated photoinhibition, rates of photosynthesis (Pn) were highest in full sun. On the other hand, litter fall was highest in the full sun and under water stress, while diameter growth and carbon accumulation increased in the shade but was negatively affected by rainwater suppression. Abortion of fruits and damage to pods were high under shade, but dry bean yield was higher compared to under the full sun. The absence of interactions between shade treatments and rainwater suppression suggests that shade may improve the performance of cocoa, but not sufficiently to counteract the negative effects of water stress under field conditions.
Collapse
Affiliation(s)
- Eric Opoku Mensah
- Department of Crop Science, University of Ghana, Legon, Accra, Ghana; Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark; CSIR-Plant Genetic Resources Research Institute, P. O. Box 7, Bunso, Eastern Region, Ghana.
| | - Anders Ræbild
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Richard Asare
- International Institute of Tropical Agriculture (IITA), PMB, L56, Legon, Accra, Ghana
| | | | - Bo Markussen
- Department of Mathematical Sciences, University of Copenhagen, Denmark
| | - Kwadwo Owusu
- Department of Geography and Resources Development, University of Ghana, Legon, Accra, Ghana
| | - Bismark Kwesi Asitoakor
- Department of Crop Science, University of Ghana, Legon, Accra, Ghana; Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark; CSIR-Plant Genetic Resources Research Institute, P. O. Box 7, Bunso, Eastern Region, Ghana
| | - Philippe Vaast
- UMR Eco & Sols. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Université Montpellier, Montpellier, France; World Agroforestry Centre (ICRAF), Nairobi, Kenya
| |
Collapse
|
6
|
Barroso JP, de Almeida AAF, do Nascimento JL, Oliveira BRM, Dos Santos IC, Mangabeira PAO, Ahnert D, Baligar VC. The damage caused by Cd toxicity to photosynthesis, cellular ultrastructure, antioxidant metabolism, and gene expression in young cacao plants are mitigated by high Mn doses in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115646-115665. [PMID: 37884715 DOI: 10.1007/s11356-023-30561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Manganese (Mn) is one of the essential mineral micronutrients most demanded by cacao. Cadmium (Cd) is highly toxic to plants and other living beings. There are indications that Mn can interact with Cd and mitigate its toxicity. The objective of this study was to evaluate the action of Mn on the toxic effect of Cd in young plants of the CCN 51 cacao genotype, subjected to different doses of Mn, Cd, and Mn+Cd in soil, through physiological, biochemical, molecular, and micromorphological and ultrastructural changes. High soil Mn doses favored the maintenance and performance of adequate photosynthetic processes in cacao. However, high doses of Cd and Mn+Cd in soil promoted damage to photosynthesis, alterations in oxidative metabolism, and the uptake, transport, and accumulation of Cd in roots and leaves. In addition, high Cd concentrations in roots and leaf tissues caused irreversible damage to the cell ultrastructure, compromising cell function and leading to programmed cell death. However, there was a mitigation of Cd toxicity when cacao was grown in soils with low Cd doses and in the presence of Mn. Thus, damage to the root and leaf tissues of cacao caused by Cd uptake from contaminated soils can be attenuated or mitigated by the presence of high Mn doses in soil.
Collapse
Affiliation(s)
- Joedson Pinto Barroso
- State University of Santa Cruz, Department of Biological Sciences, Highway Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of Biological Sciences, Highway Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil.
| | - Junea Leandro do Nascimento
- State University of Santa Cruz, Department of Biological Sciences, Highway Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Bruna Rafaela Machado Oliveira
- State University of Santa Cruz, Department of Biological Sciences, Highway Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Ivanildes Conceição Dos Santos
- State University of Santa Cruz, Department of Biological Sciences, Highway Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | | | - Dário Ahnert
- State University of Santa Cruz, Department of Biological Sciences, Highway Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Virupax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center Beltsville, Beltsville, MD, USA
| |
Collapse
|
7
|
de Almeida NM, de Almeida AAF, de Almeida Santos N, Mora-Ocampo IY, Pirovani CP. Leaf proteomic profiles in cacao scion-rootstock combinations tolerant and intolerant to cadmium toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107987. [PMID: 37722279 DOI: 10.1016/j.plaphy.2023.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Cd contamination in cacao beans is one of the major problems faced by cocoa producing countries in Latin America. Cacao scion-rootstock combinations influence the Cd accumulation in the shoot of the plant. The objective of this work was to carry out a comparative analysis between cacao scion rootstock combinations (CCN 51/BN 34, CCN 51/PS 13.19, CCN 51/PH 16 and CCN 51/CCN 51), contrasting for tolerance to cadmium (Cd) toxicity, by means of leaf proteomic profiles, in order to elucidate molecular mechanisms involved in tolerance to Cd toxicity. Cacao scion-rootstock combinations were grown in soil with 150 mg Cd kg-1 soil, together with the control treatment. Leaf samples were collected 96 h after treatments were applied. There were alterations in the leaf proteome of the cacao scion-rootstock combinations, whose molecular responses to Cd toxicity varied depending on the combination. Leaf proteomic analyzes provided important information regarding the molecular mechanisms involved in the tolerance and intolerance of cacao scion-rootstock combinations to Cd toxicity. Enzymatic and non-enzymatic antioxidant systems, efficient for eliminating ROS, especially the expressions of APX and SOD, in addition to the increase in the abundance of metalloproteins, such as ferredoxins, rubredoxin, ALMT, Trx-1 and ABC-transporter were key mechanisms used in the Cd detoxification in cacao scion-rootstock combinations tolerant to Cd toxicity. Carboxylic acid metabolism, glucose activation and signal transduction were also important processes in the responses of cacao scion-rootstock combinations to Cd toxicity. The results confirmed CCN 51/BN 34 as a cacao scion-rootstock combination efficient in tolerance to Cd toxicity.
Collapse
Affiliation(s)
- Nicolle Moreira de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Nayara de Almeida Santos
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Irma Yuliana Mora-Ocampo
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| |
Collapse
|
8
|
Abstract
Cacao swollen shoot virus causes cacao swollen shoot disease of Theobroma cacao (cacao) plants. At least six cacao-infecting Badnavirus species-Cacao swollen shoot Togo A virus, Cacao swollen shoot Togo B virus (previously known as Cacao swollen shoot virus), Cacao swollen shoot CE virus, Cacao swollen shoot Ghana M virus, Cacao swollen shoot Ghana N virus, and Cacao swollen shoot Ghana Q virus-are responsible for the swollen shoot disease of cacao in Ghana. Each of these species consists of a multiplicity of strains. The New Juaben strain, the most virulent cacao swollen shoot virus strain in Ghana, belongs to the Cacao swollen shoot Togo B virus species, and is a commonly used strain in laboratory transmission assays. Infection of cacao trees with multiple strains of the virus is common and new evidence suggests that these coinfections may have resulted in the emergence of recombinant strains of the virus. The impact of these emerging recombinant strains on disease severity is uncertain. This review focuses largely on the discovery of cacao swollen shoot virus in Ghana, diversity of the virus strains, molecular characterization, propagation of virus infection in cacao plants, emergence of recombinant virus strains, vector-mediated transmission of the virus, and the management of the cacao swollen shoot disease in Ghana. It also contains sections on the botany and origin of the cacao tree, its introduction to Ghana, the role of cacao swollen shoot disease in facilitating Ghana's independence from Britain, and a brief history of chocolate.
Collapse
Affiliation(s)
| | - Owusu Domfeh
- Plant Pathology Division, Cocoa Research Institute of Ghana, New Tafo, Akim, Ghana
| | - George Akumfi Ameyaw
- Plant Pathology Division, Cocoa Research Institute of Ghana, New Tafo, Akim, Ghana
| |
Collapse
|
9
|
Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds. Foods 2022; 11:foods11243966. [PMID: 36553708 PMCID: PMC9778104 DOI: 10.3390/foods11243966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cocoa and cupuassu are evergreen Amazonian trees belonging to the genus Theobroma, with morphologically distinct fruits, including pods and beans. These beans are generally used for agri-food and cosmetics and have high fat and carbohydrates contents. The beans also contain interesting bioactive compounds, among which are polyphenols and methylxanthines thought to be responsible for various health benefits such as protective abilities against cardiovascular and neurodegenerative disorders and other metabolic disorders such as obesity and diabetes. Although these pods represent 50-80% of the whole fruit and provide a rich source of proteins, they are regularly eliminated during the cocoa and cupuassu transformation process. The purpose of this work is to provide an overview of recent research on cocoa and cupuassu pods and beans, with emphasis on their chemical composition, bioavailability, and pharmacological properties. According to the literature, pods and beans from cocoa and cupuassu are promising ecological and healthy resources.
Collapse
|
10
|
Blommaert H, Aucour AM, Wiggenhauser M, Moens C, Telouk P, Campillo S, Beauchêne J, Landrot G, Testemale D, Pin S, Lewis C, Umaharan P, Smolders E, Sarret G. From soil to cacao bean: Unravelling the pathways of cadmium translocation in a high Cd accumulating cultivar of Theobroma cacao L. FRONTIERS IN PLANT SCIENCE 2022; 13:1055912. [PMID: 36531371 PMCID: PMC9755593 DOI: 10.3389/fpls.2022.1055912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The research on strategies to reduce cadmium (Cd) accumulation in cacao beans is currently limited by a lack of understanding of the Cd transfer pathways within the cacao tree. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar through Cd stable isotope fractionation, speciation (X-Ray Absorption Spectroscopy), and localization (Laser Ablation Inductively Coupled Plasma Mass Spectrometry). The plant Cd concentrations were 10-28 higher than the topsoil Cd concentrations and increased as placenta< nib< testa< pod husk< root< leaf< branch. The retention of Cd in the roots was low. Light Cd isotopes were retained in the roots whilst heavier Cd isotopes were transported to the shoots (Δ 114/110 Cd shoot-root = 0.27 ± 0.02 ‰ (weighted average ± standard deviation)). Leaf Cd isotopes were heavier than Cd in the branches (Δ 114/110 Cd IF3 leaves-branch = 0.18 ± 0.01 ‰), confirming typical trends observed in annual crops. Nibs and branches were statistically not distinguishable (Δ 114/110 Cd nib-branch = -0.08‰ ± 0.06 ‰), contrary to the leaves and nibs (Δ 114/110 Cd nib-IF3 leaves = -0.25‰ ± 0.05 ‰). These isotope fractionation patterns alluded to a more direct transfer from branches to nibs rather than from leaves to nibs. The largest fraction (57%) of total plant Cd was present in the branches where it was primarily bound to carboxyl-ligands (60-100%) and mainly localized in the phloem rays and phelloderm of the bark. Cadmium in the nibs was mainly bound to oxygen ligands (60-90%), with phytate as the most plausible ligand. The weight of evidence suggested that Cd was transferred like other nutrients from root to shoot and accumulated in the phloem rays and phelloderm of the branches to reduce the transfer to foliage. Finally, the data indicated that the main contribution of nib Cd was from the phloem tissues of the branch rather than from leaf remobilization. This study extended the limited knowledge on Cd accumulation in perennial, woody crops and revealed that the Cd pathways in cacao are markedly different than in annual crops.
Collapse
Affiliation(s)
- Hester Blommaert
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université G. Eiffel, Institut des Sciences de la Terre (ISTERRE), Grenoble, France
| | - Anne-Marie Aucour
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure (ENS) de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5276 Laboratoire de Géologie de Lyon - Terre, Planète et Environment (LGL-TPE), F-6922, Villeurbanne, France
| | - Matthias Wiggenhauser
- Institute of Agricultural Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Lindau, Switzerland
| | - Claudia Moens
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Philippe Telouk
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure (ENS) de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5276 Laboratoire de Géologie de Lyon - Terre, Planète et Environment (LGL-TPE), F-6922, Villeurbanne, France
| | - Sylvain Campillo
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université G. Eiffel, Institut des Sciences de la Terre (ISTERRE), Grenoble, France
| | - Jacques Beauchêne
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche (UMR) Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRA), Université des Antilles, Université de Guyane, Kourou, France
| | - Gautier Landrot
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Denis Testemale
- Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut National polytechnique de Grenoble (INP), Institut Néel, Grenoble, France
| | - Serge Pin
- Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (NIMBE), Gif-sur-Yvette, France
| | - Caleb Lewis
- Cocoa Research Centre, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Pathmanathan Umaharan
- Cocoa Research Centre, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Erik Smolders
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Géraldine Sarret
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université G. Eiffel, Institut des Sciences de la Terre (ISTERRE), Grenoble, France
| |
Collapse
|
11
|
Goñas M, Rubio KB, Rojas Briceño NB, Pariente-Mondragón E, Oliva-Cruz M. Tree diversity in agroforestry systems of native fine-aroma cacao, Amazonas, Peru. PLoS One 2022; 17:e0275994. [PMID: 36227901 PMCID: PMC9560059 DOI: 10.1371/journal.pone.0275994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Cocoa cultivation is of considerable economic and social importance to the Amazonas region and is commonly associated with forest species in the region. However, the diversification level and composition of cacao agroforestry systems in Peru are poorly understood. The objective of this study is, therefore, to describe the diversity of tree species in cocoa AFS by plantation age. Accordingly, the number of species of 15 plots covering a total of 1.5 hectares was recorded. Moderately low levels of tree species diversity were reported (H´ ranged 0.89-1.45). In total 17 species were reported throughout the study area. The most abundant botanical family was represented by a single Musa sp. species. The dissimilarity indices show a moderate similarity between the age ranges evaluated (over 62%). Additionally, the IVI indicates that the most important species are used for food and timber apart from providing shade, additionally major of this species are introduced intentionally for the farmers. Based on the observations, it may be concluded that the farmer's interest in obtaining further benefits from the plot, mostly economic benefits affect the diversification of cocoa agroforestry systems.
Collapse
Affiliation(s)
- Malluri Goñas
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Perú
- * E-mail:
| | - Karol B. Rubio
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Perú
| | - Nilton B. Rojas Briceño
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Perú
| | - Elí Pariente-Mondragón
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Perú
| | - Manuel Oliva-Cruz
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Perú
| |
Collapse
|
12
|
Garcia C, Furtado de Almeida AA, Costa M, Britto D, Correa F, Mangabeira P, Silva L, Silva J, Royaert S, Marelli JP. Single-base resolution methylomes of somatic embryogenesis in Theobroma cacao L. reveal epigenome modifications associated with somatic embryo abnormalities. Sci Rep 2022; 12:15097. [PMID: 36064870 PMCID: PMC9445004 DOI: 10.1038/s41598-022-18035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
Propagation by somatic embryogenesis in Theobroma cacao has some issues to be solved, as many morphologically abnormal somatic embryos that do not germinate into plants are frequently observed, thus hampering plant production on a commercial scale. For the first time the methylome landscape of T. cacao somatic embryogenesis was examined, using whole-genome bisulfite sequencing technique, with the aim to understand the epigenetic basis of somatic embryo abnormalities. We identified 873 differentially methylated genes (DMGs) in the CpG context between zygotic embryos, normal and abnormal somatic embryos, with important roles in development, programmed cell death, oxidative stress, and hypoxia induction, which can help to explain the morphological abnormalities of somatic embryos. We also identified the role of ethylene and its precursor 1-aminocyclopropane-1-carboxylate in several biological processes, such as hypoxia induction, cell differentiation and cell polarity, that could be associated to the development of abnormal somatic embryos. The biological processes and the hypothesis of ethylene and its precursor involvement in the somatic embryo abnormalities in cacao are discussed.
Collapse
Affiliation(s)
| | | | - Marcio Costa
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | - Fabio Correa
- Department of Statistics, Rhodes University, Makhanda, South Africa
| | - Pedro Mangabeira
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | - Jose Silva
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | | |
Collapse
|
13
|
Jaimez RE, Barragan L, Fernández-Niño M, Wessjohann LA, Cedeño-Garcia G, Sotomayor Cantos I, Arteaga F. Theobroma cacao L. cultivar CCN 51: a comprehensive review on origin, genetics, sensory properties, production dynamics, and physiological aspects. PeerJ 2022; 10:e12676. [PMID: 35036091 PMCID: PMC8742540 DOI: 10.7717/peerj.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
Many decades of improvement in cacao have aided to obtain cultivars with characteristics of tolerance to diseases, adaptability to different edaphoclimatic conditions, and higher yields. In Ecuador, as a result of several breeding programs, the clone CCN 51 was obtained, which gradually expanded through the cacao-production regions of Ecuador, Colombia, Brazil and Peru. Recognized for its high yield and adaptability to different regions and environments, it has become one of the most popular clones for breeding programs and cultivation around the world. This review aims to summarize the current evidence on the origin, genetics, morphological, volatile compounds, and organoleptic characteristics of this clone. Physiological evidence, production dynamics, and floral biology are also included to explain the high yield of CCN 51. Thus, characteristics such as osmotic adjustment, long pollen longevity, and fruit formation are further discussed and associated with high production at the end of the dry period. Finally, the impact of this popular clone on the current and future cacao industry will be discussed highlighting the major challenges for flavor enhancement and its relevance as a platform for the identification of novel genetic markers for cultivar improvement in breeding programs.
Collapse
Affiliation(s)
- Ramon E. Jaimez
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Manabí, Ecuador
| | | | - Miguel Fernández-Niño
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle (Saale), Germany
| | - George Cedeño-Garcia
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Manabí, Ecuador
| | - Ignacio Sotomayor Cantos
- Estación Experimental Tropical Pichilingue, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Los Ríos, Ecuador
| | - Francisco Arteaga
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Manabí, Ecuador
| |
Collapse
|
14
|
Osorio Zambrano MA, Castillo DA, Rodríguez Pérez L, Terán W. Cacao ( Theobroma cacao L.) Response to Water Stress: Physiological Characterization and Antioxidant Gene Expression Profiling in Commercial Clones. FRONTIERS IN PLANT SCIENCE 2021; 12:700855. [PMID: 34552605 PMCID: PMC8450537 DOI: 10.3389/fpls.2021.700855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The increase in events associated with drought constraints plant growth and crop performance. Cacao (Theobroma cacao L.) is sensitive to water deficit stress (DS), which limits productivity. The aim of this research was to characterise the response of seven (CCN51, FEAR5, ICS1, ICS60, ICS95, EET8, and TSH565) commercially important cacao clones to severe and temporal water deficit stress. Ten-month-old cacao trees were submitted to two treatments: well-watered and water-stressed until the leaf water potential (Ψ leaf) reached values between -3.0 and -3.5 MPa. The effects of hydric stress on water relations, gas exchange, photochemical activity, membrane integrity and oxidative stress-related gene expression were evaluated. All clones showed decreases in Ψ leaf, but TSH565 had a higher capacity to maintain water homeostasis in leaves. An initial response phase consisted of stomatal closure, a general mechanism to limit water loss: as a consequence, the photosynthetic rate dropped by approximately 98% on average. In some clones, the photosynthetic rate reached negative values at the maximum stress level, evidencing photorespiration and was confirmed by increased intracellular CO2. A second and photosynthetically limited phase was characterized by a drop in PSII quantum efficiency, which affected all clones. On average, all clones were able to recover after 4 days of rewatering. Water deficit triggered oxidative stress at the early phase, as evidenced by the upregulation of oxidative stress markers and genes encoding ROS scavenging enzymes. The effects of water deficit stress on energy metabolism were deduced given the upregulation of fermentative enzyme-coding genes. Altogether, our results suggest that the EET8 clone was the highest performing under water deficit while the ICS-60 clone was more susceptible to water stress. Importantly, the activation of the antioxidant system and PSII repair mechanism seem to play key roles in the observed differences in tolerance to water deficit stress among clones.
Collapse
Affiliation(s)
| | | | | | - Wilson Terán
- Plant and Crop Biology, Department of Biology, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
15
|
Ceccarelli V, Fremout T, Zavaleta D, Lastra S, Imán Correa S, Arévalo‐Gardini E, Rodriguez CA, Cruz Hilacondo W, Thomas E. Climate change impact on cultivated and wild cacao in Peru and the search of climate change‐tolerant genotypes. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
| | - Tobias Fremout
- Bioversity International Lima Peru
- Division of Forest, Nature and Landscape KU Leuven Leuven Belgium
| | | | | | | | - Enrique Arévalo‐Gardini
- Instituto de Cultivos Tropicales (ICT) Tarapoto Peru
- Universidad Nacional Autonoma de Alto Amazonas Yurimaguas Peru
| | | | | | | |
Collapse
|
16
|
The Role of Fungi in the Cocoa Production Chain and the Challenge of Climate Change. J Fungi (Basel) 2021; 7:jof7030202. [PMID: 33802148 PMCID: PMC7999002 DOI: 10.3390/jof7030202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.
Collapse
|
17
|
Apraez Muñoz JJ, de Almeida AAF, Pirovani CP, Ahnert D, Baligar VC. Mitigation of Pb toxicity by Mn in seedling of the cacao clonal CCN 51 genotype grown in soil: physiological, biochemical, nutritional and molecular responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:240-256. [PMID: 33528689 DOI: 10.1007/s10646-021-02348-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a highly toxic metal for humans, animals and plants even at low concentrations in the soil. The ingestion of chocolate produced from contaminated beans can contribute to consumer exposure to Pb. While, Mn is an element essential for plants and participates as enzymatic cofactors in several metabolic pathways. The objective of this study was to evaluate the influence of Mn on mitigation of Pb toxicity in seedling of the cacao clonal CCN 51 genotype grown in soils with different doses of Pb, Mn and Mn+Pb, through physiological, biochemical, molecular and nutritional responses. It was found that the seedling of the cacao clonal CCN 51 genotype grown in soils with high Pb, Mn and Mn+Pb contents accumulated these heavy metals in the roots and leaves. Mn doses reduced the Pb uptake by root system and prevented that the Pb accumulated at toxic levels in the roots and leaves of the plants. High doses of Pb applied in soil were highly toxic to the plants, leading, in some cases, them to death. However, no Mn toxicity was observed in cocoa plants, even at high doses in the soil. Uptake of Pb and Mn by the roots and its transport into the aerial part of the plant promoted changes in photosynthesis, leaf gas exchange, respiration, carboxylation and in the instantaneous efficiency of carboxylation, reducing in the treatments with the highest concentrations of Pb, and the emission of chlorophyll fluorescence, affecting the efficiency of photosystem 2 and the production of photoassimilates. Besides that, Pb, Mn and Mn+Pb toxicities activated defense mechanisms in plants that alter the gene expression of met, psbA and psbO, increasing in plants subjected to high concentrations of Pb and the activity of the enzymes involved in the cellular detoxification of excess ROS at the leaf level. In addition, high uptake of Mn by root system was found to reduced Pb uptake in plants grown with Mn+Pb in the soil. Therefore, application of Mn in the soil can be used to mitigate the Pb toxicity in seedling of the cacao clonal CCN 51 genotype grown in contaminated soils.
Collapse
Affiliation(s)
- Jose Julian Apraez Muñoz
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Dário Ahnert
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Virupax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center, Beltsville, MD, USA
| |
Collapse
|
18
|
Ávila-Lovera E, Blanco H, Móvil O, Santiago LS, Tezara W. Shade tree species affect gas exchange and hydraulic conductivity of cacao cultivars in an agroforestry system. TREE PHYSIOLOGY 2021; 41:240-253. [PMID: 33313911 DOI: 10.1093/treephys/tpaa119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Shade tolerance is a widespread strategy of rainforest understory plants. Many understory species have green young stems that may assimilate CO2 and contribute to whole-plant carbon balance. Cacao commonly grows in the shaded understory and recent emphasis has been placed on diversifying the types of trees used to shade cacao plants to achieve additional ecosystem services. We studied three agricultural cacao cultivars growing in the shade of four timber species (Cedrela odorata L., Cordia thaisiana Agostini, Swietenia macrophylla King and Tabebuia rosea (Bertol) A.D.C.) in an agroforestry system to (i) evaluate the timber species for their effect on the physiological performance of three cacao cultivars; (ii) assess the role of green stems on the carbon economy of cacao; and (iii) examine coordination between stem hydraulic conductivity and stem photosynthesis in cacao. Green young stem photosynthetic CO2 assimilation rate was positive and double leaf CO2 assimilation rate, indicating a positive contribution of green stems to the carbon economy of cacao; however, green stem area is smaller than leaf area and its relative contribution is low. Timber species showed a significant effect on leaf gas exchange traits and on stomatal conductance of cacao, and stem water-use efficiency varied among cultivars. There were no significant differences in leaf-specific hydraulic conductivity among cacao cultivars, but sapwood-specific hydraulic conductivity varied significantly among cultivars and there was an interactive effect of cacao cultivar × timber species. Hydraulic efficiency was coordinated with stem-stomatal conductance, but not with leaf-stomatal conductance or any measure of photosynthesis. We conclude that different shade regimes determined by timber species and the interaction with cacao cultivar had an important effect on most of the physiological traits and growth variables of three cacao cultivars growing in an agroforestry system. Results suggested that C. odorata is the best timber species to provide partial shade for cacao cultivars in the Barlovento region in Venezuela, regardless of cultivar origin.
Collapse
Affiliation(s)
- Eleinis Ávila-Lovera
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas 1041-A, Venezuela
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Héctor Blanco
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas 1041-A, Venezuela
| | - Olga Móvil
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas 1041-A, Venezuela
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Wilmer Tezara
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas 1041-A, Venezuela
- Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres, Estación Experimental Mutile, Código postal 080150, Esmeraldas, Ecuador
| |
Collapse
|
19
|
Genome-Wide Association Study Reveals Novel Candidate Genes Associated with Productivity and Disease Resistance to Moniliophthora spp. in Cacao ( Theobroma cacao L.). G3-GENES GENOMES GENETICS 2020; 10:1713-1725. [PMID: 32169867 PMCID: PMC7202020 DOI: 10.1534/g3.120.401153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cacao (Theobroma cacao L.), the source of chocolate, is one of the most important commodity products worldwide that helps improve the economic livelihood of farmers. Diseases like frosty pod rot caused by Moniliophthora roreri and witches’ broom caused by Moniliophthora perniciosa limit the cacao productivity, this can be solved by using resistant varieties. In the current study, we sequenced 229 cacao accessions using genotyping-by-sequencing to examine the genetic diversity and population structure employing 9,003 and 8,131 single nucleotide polymorphisms recovered by mapping against two cacao genomes (Criollo B97-61/B2 v2 and Matina 1-6 v1.1). In the phenotypic evaluation, three promising accessions for productivity and 10 with good tolerance to the frosty pod rot and witches’ broom diseases were found. A genome-wide association study was performed on 102 accessions, discovering two genes associated with productivity and seven to disease resistance. The results enriched the knowledge of the genetic regions associated with important cacao traits that can have significant implications for conservation and breeding strategies like marker-assisted selection.
Collapse
|
20
|
Oliveira BRM, de Almeida AAF, Pirovani CP, Barroso JP, de C Neto CH, Santos NA, Ahnert D, Baligar VC, Mangabeira PAO. Mitigation of Cd toxicity by Mn in young plants of cacao, evaluated by the proteomic profiles of leaves and roots. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:340-358. [PMID: 32107699 DOI: 10.1007/s10646-020-02178-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 05/28/2023]
Abstract
Cd is a non-essential metal and highly toxic to plants, animals and humans, even at very low concentrations. Cd has been found in cocoa beans and in their products, as in the case of chocolate. Mn plays an important role in photosynthetic and can interact with Cd and attenuate its toxic effects on plants. The objective of this work was to evaluate the mechanisms of Mn response in the mitigation of Cd toxicity in young plants of the CCN 51 cacao genotype submitted to 0.8 mmol Cd kg-1, 1.6 mmol Mn kg-1 or the combination of 0.4 mmol Cd kg-1 + 0.8 mmol Mn kg-1 soil, together with the control treatment (without addition of Cd and Mn in soil), by means of analysis of changes in the profile of exclusive proteins (EP) and differentially accumulated proteins (DAP). Leaf and root proteins were extracted and quantified from the different treatments, followed by proteomic analysis. About eight DAP and 38 EP were identified in leaves, whereas in roots 43 DAP and 21 EP were identified. Some important proteins induced in the presence of Cd and repressed in the presence of Cd + Mn or vice versa, were ATPases, isoflavone reductase, proteasome and chaperonin. It was concluded that proteins involved in oxidoreduction and defense and stress response processes, in addition to other processes, were induced in the presence of Cd and repressed in the presence of Cd + Mn. This demonstrated that Mn was able to mitigate the toxic effects of Cd on young plants of the CCN 51 cocoa genotype.
Collapse
Affiliation(s)
- Bruna Rafaela Machado Oliveira
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil.
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil.
| | - Carlos P Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Joedson P Barroso
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Carlos H de C Neto
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Nayara A Santos
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Dário Ahnert
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Viropax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Pedro Antonio O Mangabeira
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| |
Collapse
|
21
|
De Almeida J, Herrera A, Tezara W. Phenotypic plasticity to photon flux density of physiological, anatomical and growth traits in a modern Criollo cocoa clone. PHYSIOLOGIA PLANTARUM 2019; 166:821-832. [PMID: 30238996 DOI: 10.1111/ppl.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Cocoa grows under shade, but some cultivars develop successfully in full sunlight. In order to characterize the response to photosynthetic photon flux density (PPFD) of a Modern Criollo cocoa clone, gas exchange, photochemical activity and leaf traits, and their relation to growth were measured in seedlings growing in a greenhouse at three different values of PPFD, as well as in adults in full sunlight and shade in the field. Plants showed changes in physiological, biochemical, and morpho-anatomical traits in response to the different light conditions, and in the phenotypic plasticity of these variables. Seedlings subjected to high PPFD in the greenhouse showed decreases in photosynthetic rate, apparent quantum yield of CO2 fixation and photochemical quenching, and increases in non-photochemical quenching, suggesting down-regulation of PSII. In contrast, trees under full sunlight in the field showed a marked reduction in maximum quantum yield of PSII, indicating photoinhibition and supporting that cocoa is a shade tolerant crop. Cocoa showed higher plasticity of physiological and biochemical variables than morpho-anatomical variables in response to PPFD. Effects of time under treatment in the greenhouse and plant age (greenhouse vs field) on plasticity were observed. The acclimation observed in some of the variables studied after 6 months in high light did not represent a particular advantage to seedlings, since relative growth rate was lower than in low- and medium-light seedlings.
Collapse
Affiliation(s)
- Jenny De Almeida
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, 1041-A, Venezuela
| | - Ana Herrera
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, 1041-A, Venezuela
| | - Wilmer Tezara
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, 1041-A, Venezuela
| |
Collapse
|
22
|
Barraza F, Moore RET, Rehkämper M, Schreck E, Lefeuvre G, Kreissig K, Coles BJ, Maurice L. Cadmium isotope fractionation in the soil – cacao systems of Ecuador: a pilot field study. RSC Adv 2019; 9:34011-34022. [PMID: 35528875 PMCID: PMC9073709 DOI: 10.1039/c9ra05516a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
The often high Cd concentrations of cacao beans are a serious concern for producers in Latin America due to the implementation of stricter Cd limits for cocoa products by the European Union in 2019. This is the first investigation to employ coupled Cd isotope and concentration measurements to study soil – cacao systems. Analyses were carried out for 29 samples of soils, soil amendments and cacao tree organs from organic farms in Ecuador that harvest three distinct cacao cultivars. The majority of soils from 0–80 cm depth have very similar δ114/110Cd of about −0.1‰ to 0‰. Two 0–5 cm topsoils, however, have high Cd concentrations coupled with heavy Cd isotope compositions of δ114/110Cd ≈ 0.2%, possibly indicating Cd additions from the tree litter used as organic fertilizer. Whilst cacao leaves, pods and beans are ubiquitously enriched in Cd relative to soils there are distinct Cd isotope signatures. The leaves and pods are isotopically heavier than the soils, with similar Δ114/110Cdleaf–soil values of 0.22 ± 0.07‰ to 0.41 ± 0.09‰. In contrast, the data reveal differences in Δ114/110Cdbean–leaf that may be linked to distinct cacao cultivars. In detail, Δ114/110Cdbean–leaf values of −0.34‰ to −0.40‰ were obtained for Nacional cacao from two farms, whilst CCN-51 hybrid cacao from a third farm showed no fractionation within error (−0.08 ± 0.13‰). As such, further work to investigate whether Cd isotopes are indeed useful for tracing sources of Cd enrichments in soils and to inform genetic efforts to reduce the Cd burden of cocoa is indicated. Cd isotope composition in cacao seems to be cultivar-specific whereas Cd in soil is probably due to tree litter recycling.![]()
Collapse
Affiliation(s)
- Fiorella Barraza
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| | - Rebekah E. T. Moore
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Mark Rehkämper
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| | - Grégoire Lefeuvre
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| | - Katharina Kreissig
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Barry J. Coles
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Laurence Maurice
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| |
Collapse
|
23
|
Santana JO, Gramacho KP, de Souza Eduvirgens Ferreira KT, Rezende RP, Mangabeira PAO, Dias RPM, Couto FM, Pirovani CP. Witches' broom resistant genotype CCN51 shows greater diversity of symbiont bacteria in its phylloplane than susceptible genotype catongo. BMC Microbiol 2018; 18:194. [PMID: 30470193 PMCID: PMC6251189 DOI: 10.1186/s12866-018-1339-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background Theobroma cacao L. (cacao) is a perennial tropical tree, endemic to rainforests of the Amazon Basin. Large populations of bacteria live on leaf surfaces and these phylloplane microorganisms can have important effects on plant health. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated studies of the phylloplane microbiome. In this study, we characterized the bacterial microbiome of the phylloplane of the catongo genotype (susceptible to witch’s broom) and CCN51 (resistant). Bacterial microbiome was determined by sequencing the V3-V4 region of the bacterial 16S rRNA gene. Results After the pre-processing, a total of 1.7 million reads were considered. In total, 106 genera of bacteria were characterized. Proteobacteria was the predominant phylum in both genotypes. The exclusive genera of Catongo showed activity in the protection against UV radiation and in the transport of substrates. CCN51 presented genus that act in the biological control and inhibition in several taxonomic groups. Genotype CCN51 presented greater diversity of microorganisms in comparison to the Catongo genotype and the total community was different between both. Scanning electron microscopy analysis of leaves revealed that on the phylloplane, many bacterial occur in large aggregates in several regions of the surface and isolated nearby to the stomata. Conclusions We describe for the first time the phylloplane bacterial communities of T. cacao. The Genotype CCN51, resistant to the witch’s broom, has a greater diversity of bacterial microbioma in comparison to Catongo and a greater amount of exclusive microorganisms in the phylloplane with antagonistic action against phytopathogens. Electronic supplementary material The online version of this article (10.1186/s12866-018-1339-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Rachel Passos Rezende
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Ricardo Pedro Moreira Dias
- BioISI: Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco M Couto
- LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
24
|
Jaimez RE, Amores Puyutaxi F, Vasco A, Loor RG, Tarqui O, Quijano G, Jimenez JC, Tezara W. Photosynthetic response to low and high light of cacao growing without shade in an area of low evaporative demand. ACTA BIOLÓGICA COLOMBIANA 2018. [DOI: 10.15446/abc.v23n1.64962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los programas de mejoramiento de cacao (Theobroma cacao L.) en Ecuador se han centrado en la obtención de clones de alto rendimiento con mayor resistencia a las enfermedades. Estos clones también deben tener características fotosintéticas que apoyen una mayor productividad. En las condiciones climáticas en la costa de Ecuador, donde la mayor parte del año hay alta densidad de nubes y baja demanda evaporativa, existe la posibilidad de cultivar cacao sin sombra. Este estudio se centró en la respuesta fotosintética de clones de cacao del Ecuador en dos diferentes densidades de flujo de fotones fotosintéticos (PPFD). Se evaluaron diez clones de cacao de siete años de edad: ocho clones de tipo Nacional recientemente desarrollados por el Instituto Nacional de investigaciones Agropecuarias, y dos clones comerciales utilizados como controles (CCN 51 y EET 103). Todos los clones de cacao mostraron un aumento del 35 % en promedio en la tasa fotosintética neta (A) con el incremento del PPFD desde el punto de saturación de luz para el cacao (400 μmol m -2 s -1) hasta valores altos (1000 μmol m -2 s- 1). Dicha respuesta de A a estas condiciones de luz alta no se ha reportado en cacao. La tasa fotosintética neta se asoció con una mayor velocidad aparente de transporte de electrones (J), mientras que la alta conductancia estomática (gs) se mantuvo en ambas condiciones de PPFD. En condiciones de alto PPFD, se encontraron bajos valores del coeficiente de extinción no fotoquímico (NPQ), lo que sugiere una baja disipación de energía, además de presentarse altos rendimientos cuánticos máximos de PSII (Fv / Fm), indicando la ausencia de daño del sistema fotoquímico.
Collapse
|
25
|
Pereira de Araújo R, Furtado de Almeida AA, Silva Pereira L, Mangabeira PAO, Olimpio Souza J, Pirovani CP, Ahnert D, Baligar VC. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:148-157. [PMID: 28614756 DOI: 10.1016/j.ecoenv.2017.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a highly toxic metal for plants, even at low concentrations in the soil. The annual production of world cocoa beans is approximately 4 million tons. Most of these fermented and dried beans are used in the manufacture of chocolate. Recent work has shown that the concentration of Cd in these beans has exceeded the critical level (0.6mgkg-1 DM). The objective of this study was to evaluate the toxicity of Cd in young plants of CCN 51 cacao genotype grown in soil with different concentrations of Cd (0, 0.05 and 0.1gkg-1 soil) through photosynthetic, antioxidative, molecular and ultrastructural changes. The increase of Cd concentration in the soil altered mineral nutrient absorption by competition or synergism, changed photosynthetic activity caused by reduction in chloroplastidic pigment content and damage to the photosynthetic machinery evidenced by the Fv/Fm ratio and expression of the psbA gene and increased GPX activity in the root and SOD in leaves. Additionally, ultrastructural alterations in roots and leaves were also evidenced with the increase of the concentration of Cd in the soil, whose toxicity caused rupture of biomembranes in root and leaf cells, reduction of the number of starch grains in foliar cells, increase of plastoglobules in chloroplasts and presence of multivesiculated bodies in root cells. It was concluded, therefore, that soil Cd toxicity caused damage to the photosynthetic machinery, antioxidative metabolism, gene expression and irreversible damage to root cells ultrastructure of CCN 51 cocoa plants, whose damage intensity depended on the exposure time to the metal.
Collapse
Affiliation(s)
- Romária Pereira de Araújo
- State University of Santa Cruz, Department of biological sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil; Instituto Federal Baiano, Campus Santa Inês, BR 420 (Rodovia Santa Inês - Ubaíra), Zona Rural, Bahia CEP: 45320-000, Brazil.
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of biological sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Lidiane Silva Pereira
- State University of Santa Cruz, Department of biological sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Pedro A O Mangabeira
- State University of Santa Cruz, Department of biological sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - José Olimpio Souza
- State University of Santa Cruz, Department of biological sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos P Pirovani
- State University of Santa Cruz, Department of biological sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Dário Ahnert
- State University of Santa Cruz, Department of biological sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Virupax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center Beltsville, MD, USA
| |
Collapse
|
26
|
Barraza F, Schreck E, Lévêque T, Uzu G, López F, Ruales J, Prunier J, Marquet A, Maurice L. Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:950-963. [PMID: 28781181 DOI: 10.1016/j.envpol.2017.07.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 05/17/2023]
Abstract
Cacao from South America is especially used to produce premium quality chocolate. Although the European Food Safety Authority has not established a limit for cadmium (Cd) in chocolate raw material, recent studies demonstrate that Cd concentrations in cacao beans can reach levels higher than the legal limits for dark chocolate (0.8 mg kg-1, effective January 1st, 2019). Despite the fact that the presence of Cd in agricultural soils is related to contamination by fertilizers, other potential sources must be considered in Ecuador. This field study was conducted to investigate Cd content in soils and cacao cultivated on Ecuadorian farms in areas impacted by oil activities. Soils, cacao leaves, and pod husks were collected from 31 farms in the northern Amazon and Pacific coastal regions exposed to oil production and refining and compared to two control areas. Human gastric bioaccessibility was determined in raw cacao beans and cacao liquor samples in order to assess potential health risks involved. Our results show that topsoils (0-20 cm) have higher Cd concentrations than deeper layers, exceeding the Ecuadorian legislation limit in 39% of the sampling sites. Cacao leaves accumulate more Cd than pod husks or beans but, nevertheless, 50% of the sampled beans have Cd contents above 0.8 mg kg-1. Root-to-cacao transfer seems to be the main pathway of Cd uptake, which is not only regulated by physico-chemical soil properties but also agricultural practices. Additionally, natural Cd enrichment by volcanic inputs must not be neglected. Finally, Cd in cacao trees cannot be considered as a tracer of oil activities. Assuming that total Cd content and its bioaccessible fraction (up to 90%) in cacao beans and liquor is directly linked to those in chocolate, the health risk associated with Cd exposure varies from low to moderate.
Collapse
Affiliation(s)
- F Barraza
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France.
| | - E Schreck
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - T Lévêque
- Escuela Politécnica Nacional, Departamento de Ciencias de Alimentos y Biotecnología, P.O. Box 17, 012759 Quito, Ecuador
| | - G Uzu
- IGE, Université Grenoble Alpes, CNRS, IRD, CS 40700 Cedex 9, F-38058 Grenoble, France
| | - F López
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - J Ruales
- Escuela Politécnica Nacional, Departamento de Ciencias de Alimentos y Biotecnología, P.O. Box 17, 012759 Quito, Ecuador
| | - J Prunier
- Laboratoire des Sciences du Bois, UMR EcoFoG, ZI Pariacabo, 97387 Kourou, French Guiana
| | - A Marquet
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - L Maurice
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| |
Collapse
|
27
|
|
28
|
Hipólito-Romero E, Carcaño-Montiel MG, Ramos-Prado JM, Vázquez-Cabañas EA, López-Reyes L, Ricaño-Rodríguez J. [Effect of mixed edaphic bacterial inoculants in the early development of improved cocoa cultivars (Theobroma cacao L.) in a traditional agroforestry system of Oaxaca, Mexico]. Rev Argent Microbiol 2017; 49:356-365. [PMID: 28774480 DOI: 10.1016/j.ram.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 02/16/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022] Open
Abstract
Cocoa plant (Theobroma cacao L.) is native from South America and it represents one of the most significant "bio-cultural" resources of Mesoamerica, since it is a region where it was domesticated and had a relevance as ritual drink and as currency in many pre-hispanic cultures until the arrival of the Spaniards who spread its use worldwide, and became it one of the most consumed commodity goods. Through this research, an alternative is proposed to address the problem of cultivars through the introduction of a wide variety of cocoa plants in traditional agroforestry systems, in synergy with the inoculation of nitrogen-fixing and insoluble phosphor solubilizing edaphic bacterial consortia. Four cultivars of improved grafted cocoa plants were introduced in a traditional agroforestry plot and three fertilization treatments were applied: application of biofertilizer, application of chemical fertilizer and control. Measurements of height, stem diameter, number of leaves and branches were recorded at 2 and 12 months after planting and rhizosphere microbial populations were characterized. Growth results showed good potential for all studied cultivars and it was observed that biofertilization foresees significant effects in some of the growth indicators of cocoa plant. Thereby, plant associations in an agroforestry system could be favorable to promote fruit development and resistance to pests and diseases.
Collapse
Affiliation(s)
- E Hipólito-Romero
- Centro de EcoAlfabetización y Diálogo de Saberes, Universidad Veracruzana, Campus USBI, Col. Emiliano Zapata, Xalapa, Veracruz, México.
| | - M G Carcaño-Montiel
- Laboratorio de Microbiología de Suelos, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Col. San Manuel, Puebla, Puebla, México
| | - J M Ramos-Prado
- Centro de EcoAlfabetización y Diálogo de Saberes, Universidad Veracruzana, Campus USBI, Col. Emiliano Zapata, Xalapa, Veracruz, México
| | - E A Vázquez-Cabañas
- Laboratorio de Microbiología de Suelos, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Col. San Manuel, Puebla, Puebla, México
| | - L López-Reyes
- Laboratorio de Microbiología de Suelos, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Col. San Manuel, Puebla, Puebla, México
| | - J Ricaño-Rodríguez
- Centro de EcoAlfabetización y Diálogo de Saberes, Universidad Veracruzana, Campus USBI, Col. Emiliano Zapata, Xalapa, Veracruz, México
| |
Collapse
|
29
|
Pereira AS, de Almeida AAF, Branco MCDS, Costa MGC, Ahnert D. Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids. PLoS One 2017. [PMID: 28628670 PMCID: PMC5476260 DOI: 10.1371/journal.pone.0178790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong genetic components were observed from many of the correlations, which indicate the possibility to formulate selection indices for multi-traits, such as dwarfism or semidwarfism, tolerance to increase of leaf sodium concentrations and maintenance of the photosynthetic apparatus integrity under these conditions. Additionally, plants with higher carbon fixation, better water use, higher carboxylation efficiency and greater magnesium accumulation in leaves can be selected.
Collapse
Affiliation(s)
- Allan Silva Pereira
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
| | - Alex-Alan Furtado de Almeida
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
- * E-mail:
| | - Márcia Christina da Silva Branco
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
| | - Marcio Gilberto Cardoso Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
| | - Dario Ahnert
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Ilhéus, BA, Brasil
- Centro de Pesquisas do Cacau, Comissão Executiva do Plano da Lavoura Cacaueira (CEPEC/CEPLAC). Rod. Jorge Amado, Ilhéus, BA, Brasil
| |
Collapse
|
30
|
Ali SS, Shao J, Lary DJ, Strem MD, Meinhardt LW, Bailey BA. Phytophthora megakarya and P. palmivora, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods. FRONTIERS IN PLANT SCIENCE 2017; 8:169. [PMID: 28261234 PMCID: PMC5306292 DOI: 10.3389/fpls.2017.00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/27/2017] [Indexed: 05/29/2023]
Abstract
Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) cause black pod rot of Theobroma cacao L. (cacao). Of these two clade 4 species, Pmeg is more virulent and is displacing Ppal in many cacao production areas in Africa. Symptoms and species specific sporangia production were compared when the two species were co-inoculated onto pod pieces in staggered 24 h time intervals. Pmeg sporangia were predominantly recovered from pod pieces with unwounded surfaces even when inoculated 24 h after Ppal. On wounded surfaces, sporangia of Ppal were predominantly recovered if the two species were simultaneously applied or Ppal was applied first but not if Pmeg was applied first. Pmeg demonstrated an advantage over Ppal when infecting un-wounded surfaces while Ppal had the advantage when infecting wounded surfaces. RNA-Seq was carried out on RNA isolated from control and Pmeg and Ppal infected pod pieces 3 days post inoculation to assess their abilities to alter/suppress cacao defense. Expression of 4,482 and 5,264 cacao genes was altered after Pmeg and Ppal infection, respectively, with most genes responding to both species. Neural network self-organizing map analyses separated the cacao RNA-Seq gene expression profiles into 24 classes, 6 of which were largely induced in response to infection. Using KEGG analysis, subsets of genes composing interrelated pathways leading to phenylpropanoid biosynthesis, ethylene and jasmonic acid biosynthesis and action, plant defense signal transduction, and endocytosis showed induction in response to infection. A large subset of genes encoding putative Pr-proteins also showed differential expression in response to infection. A subset of 36 cacao genes was used to validate the RNA-Seq expression data and compare infection induced gene expression patterns in leaves and wounded and unwounded pod husks. Expression patterns between RNA-Seq and RT-qPCR were generally reproducible. The level and timing of altered gene expression was influenced by the tissues studied and by wounding. Although, in these susceptible interactions gene expression patterns were similar, some genes did show differential expression in a Phytophthora species dependent manner. The biggest difference was the more intense changes in expression in Ppal inoculated wounded pod pieces further demonstrating its rapid progression when penetrating through wounds.
Collapse
Affiliation(s)
- Shahin S. Ali
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| | - Jonathan Shao
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| | - David J. Lary
- Physics Department, University of Texas at DallasRichardson, TX, USA
| | - Mary D. Strem
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| | - Bryan A. Bailey
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| |
Collapse
|
31
|
Dos Santos EA, Almeida AAFD, Ahnert D, Branco MCDS, Valle RR, Baligar VC. Diallel Analysis and Growth Parameters as Selection Tools for Drought Tolerance in Young Theobroma cacao Plants. PLoS One 2016; 11:e0160647. [PMID: 27504627 PMCID: PMC4978391 DOI: 10.1371/journal.pone.0160647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/24/2016] [Indexed: 11/18/2022] Open
Abstract
This study aimed to estimate the combining ability, of T. cacao genotypes preselected for drought tolerance through diallel crosses. The experiment was conducted under greenhouse conditions at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a completely randomized block design, in an experimental arrangement 21 x 2 [21 complete diallel crosses and two water regimes (control and stressed)]. In the control, soil moisture was kept close to field capacity, with predawn leaf water potential (ΨWL) ranging from -0.1 to -0.5 MPa. In the drought regime, the soil moisture was reduced gradually by decreasing the amount of water application until ΨWL reached -2.0 to -2.5 MPa. Significant differences (p < 0.05) were observed for most morphological attributes analyzed regarding progenies, water regime and their interactions. The results of the joint diallel analysis revealed significant effects between general combining ability (GCA) x water regimes and between specific combining ability (SCA) x water regimes. The SCA 6 genetic material showed high general combining ability for growth variables regardless of the water regime. In general, the water deficit influenced the production of biomass in most of the evaluated T. cacao crosses, except for SCA-6 x IMC-67, Catongo x SCA, MOC-01 x Catongo, Catongo x IMC-67 and RB-40 x Catongo. Multivariate analysis showed that stem diameter (CD), total leaf area (TLA), leaf dry biomass (LDB), stem dry biomass (SDB), root dry biomass (RDB), total dry biomass (TDB), root length (RL), root volume (RV), root diameter (RD) <1 mm and 1 <(RD) <2 mm were the most important growth parameters in the separation of T. cacao genotypes in to tolerant and intolerant to soil water deficit.
Collapse
Affiliation(s)
- Emerson Alves Dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brasil
| | - Alex-Alan Furtado de Almeida
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brasil
| | - Dario Ahnert
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brasil
| | - Marcia Christina da Silva Branco
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brasil
| | - Raúl René Valle
- Centro de Pesquisas do Cacau, Comissão Executiva do Plano da Lavoura Cacaueira (CEPEC/CEPLAC), Rod. Jorge Amado, km 22, 45650-000, Ilhéus, BA, Brasil
| | - Virupax C Baligar
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705-2350, United States of America
| |
Collapse
|
32
|
Schroth G, Läderach P, Martinez-Valle AI, Bunn C, Jassogne L. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 556:231-241. [PMID: 26974571 DOI: 10.1016/j.scitotenv.2016.03.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
The West African cocoa belt, reaching from Sierra Leone to southern Cameroon, is the origin of about 70% of the world's cocoa (Theobroma cacao), which in turn is the basis of the livelihoods of about two million farmers. We analyze cocoa's vulnerability to climate change in the West African cocoa belt, based on climate projections for the 2050s of 19 Global Circulation Models under the Intergovernmental Panel on Climate Change intermediate emissions scenario RCP 6.0. We use a combination of a statistical model of climatic suitability (Maxent) and the analysis of individual, potentially limiting climate variables. We find that: 1) contrary to expectation, maximum dry season temperatures are projected to become as or more limiting for cocoa as dry season water availability; 2) to reduce the vulnerability of cocoa to excessive dry season temperatures, the systematic use of adaptation strategies like shade trees in cocoa farms will be necessary, in reversal of the current trend of shade reduction; 3) there is a strong differentiation of climate vulnerability within the cocoa belt, with the most vulnerable areas near the forest-savanna transition in Nigeria and eastern Côte d'Ivoire, and the least vulnerable areas in the southern parts of Cameroon, Ghana, Côte d'Ivoire and Liberia; 4) this spatial differentiation of climate vulnerability may lead to future shifts in cocoa production within the region, with the opportunity of partially compensating losses and gains, but also the risk of local production expansion leading to new deforestation. We conclude that adaptation strategies for cocoa in West Africa need to focus at several levels, from the consideration of tolerance to high temperatures in cocoa breeding programs, the promotion of shade trees in cocoa farms, to policies incentivizing the intensification of cocoa production on existing farms where future climate conditions permit and the establishment of new farms in already deforested areas.
Collapse
Affiliation(s)
| | - Peter Läderach
- International Center for Tropical Agriculture (CIAT), Managua, Nicaragua
| | | | - Christian Bunn
- International Center for Tropical Agriculture (CIAT), Managua, Nicaragua
| | - Laurence Jassogne
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| |
Collapse
|
33
|
Caprioli G, Fiorini D, Maggi F, Nicoletti M, Ricciutelli M, Toniolo C, Prosper B, Vittori S, Sagratini G. Nutritional composition, bioactive compounds and volatile profile of cocoa beans from different regions of Cameroon. Int J Food Sci Nutr 2016; 67:422-30. [PMID: 27055484 DOI: 10.3109/09637486.2016.1170769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Analysis of the complex composition of cocoa beans provides fundamental information for evaluating the quality and nutritional aspects of cocoa-based food products, nutraceuticals and supplements. Cameroon, the world's fourth largest producer of cocoa, has been defined as "Africa in miniature" because of the variety it habitats. In order to evaluate the nutritional characteristics of cocoa beans from five different regions of Cameroon, we studied their polyphenolic content, volatile compounds and fatty acids composition. The High Performance Thin Layer Chromatography (HPTLC) analysis showed that the Mbalmayo sample had the highest content of theobromine (11.6 mg/g) and caffeic acid (2.1 mg/g), while the Sanchou sample had the highest level of (-)-epicatechin (142.9 mg/g). Concerning fatty acids, the lowest level of stearic acid was found in the Mbalmayo sample while the Bertoua sample showed the highest content of oleic acid. Thus, we confirmed that geographical origin influences the quality and nutritional characteristics of cocoa from these regions of Cameroon.
Collapse
Affiliation(s)
| | - Dennis Fiorini
- a School of Pharmacy, University of Camerino , Camerino , Italy
| | - Filippo Maggi
- a School of Pharmacy, University of Camerino , Camerino , Italy
| | - Marcello Nicoletti
- b Department of Environmental Biology , University of Rome "La Sapienza" , Rome , Italy
| | | | - Chiara Toniolo
- b Department of Environmental Biology , University of Rome "La Sapienza" , Rome , Italy
| | - Biapa Prosper
- c Laboratory of Medicinal Plant Biochemistry, Department of Biochemistry, Faculty of Science, Food Science and Nutrition , University of Dschang , Dschang , Cameroon
| | - Sauro Vittori
- a School of Pharmacy, University of Camerino , Camerino , Italy
| | | |
Collapse
|
34
|
Gras P, Tscharntke T, Maas B, Tjoa A, Hafsah A, Clough Y. How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12625] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pierre Gras
- Agroecology; Georg-August-Universität Göttingen; Göttingen Germany
| | - Teja Tscharntke
- Agroecology; Georg-August-Universität Göttingen; Göttingen Germany
| | - Bea Maas
- Agroecology; Georg-August-Universität Göttingen; Göttingen Germany
- Division of Tropical Ecology and Animal Biodiversity; Department of Botany and Biodiversity Research; University of Vienna; Vienna Austria
| | - Aiyen Tjoa
- Fakultas Pertanian; Universitas Tadulako; Palu Indonesia
| | - Awal Hafsah
- Fakultas Pertanian; Universitas Tadulako; Palu Indonesia
| | - Yann Clough
- Agroecology; Georg-August-Universität Göttingen; Göttingen Germany
- Centre for Environmental and Climate Research; Lund University; Lund Sweden
| |
Collapse
|
35
|
Castro AV, de Almeida AAF, Pirovani CP, Reis GSM, Almeida NM, Mangabeira PAO. Morphological, biochemical, molecular and ultrastructural changes induced by Cd toxicity in seedlings of Theobroma cacao L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 115:174-86. [PMID: 25700096 DOI: 10.1016/j.ecoenv.2015.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 05/17/2023]
Abstract
Seeds from Theobroma cacao progenies derived from the self-pollination of 'Catongo'×'Catongo' and the crossing between CCN-10×SCA-6 were immersed for 24h in different Cd solutions (2; 4; 8; 16 and 32 mgL(-1)) along with the control treatment (without Cd). Shortly after, the seeds were sown in plastic tubes containing organic substrate and were grown in a greenhouse for 60 days. The treatment with Cd was observed to cause morphological, biochemical, molecular and ultrastructural changes in both progenies of T. cacao. There has been deformation in chloroplasts, nuclear chromatin condensation, and reduction in thickness of the mesophyll. As for 'Catongo'×'Catongo', a decrease in thickness of the epidermis was noted on the abaxial face. There has been increased guaiacol peroxidase activity in the roots of CCN-10×SCA-6, as well as in the''Catongo'×'Catongo' leaves. In the presence of Cd, CCN-10×SCA-6 showed increased expression of the genes associated with the biosynthesis of phytochelatin (PCS-1) and class III peroxidases (PER-1) in leaves, and metallothionein (MT2b), in roots. In 'Catongo'×'Catongo', there has been an increase in the expression of genes associated with the biosynthesis of PER-1 and cytosolic superoxide dismutase dependent on copper and zinc (Cu-Zn SODCyt) in leaves and from MT2b and PCS-1 and roots. There was higher accumulation of Cd in the aerial parts of seedlings from both progenies, whereas the most pronounced accumulation was seen in''Catongo'×'Catongo'. The increase in Cd concentration has led to lower Zn and Fe levels in both progenies. Hence, one may conclude that the different survival strategies used by CCN-10×SCA-6 made such progeny more tolerant to Cd stress when compared to''Catongo'×'Catongo'.
Collapse
Affiliation(s)
- Andressa V Castro
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Alex-Alan F de Almeida
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Carlos P Pirovani
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Graciele S M Reis
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Nicolle M Almeida
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Pedro A O Mangabeira
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| |
Collapse
|
36
|
Bertolde FZ, Almeida AAF, Pirovani CP. Analysis of gene expression and proteomic profiles of clonal genotypes from Theobroma cacao subjected to soil flooding. PLoS One 2014; 9:e108705. [PMID: 25289700 PMCID: PMC4188525 DOI: 10.1371/journal.pone.0108705] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/01/2014] [Indexed: 11/18/2022] Open
Abstract
Soil flooding causes changes in gene transcription, synthesis and degradation of proteins and cell metabolism. The main objective of this study was to understand the biological events of Theobroma cacao during soil flooding-induced stress, using the analyses of gene expression and activity of key enzymes involved in fermentation, as well as the identification of differentially expressed proteins by mass spectrometry in two contrasting genotypes for flooding tolerance (tolerant - TSA-792 and susceptible - TSH-774). Soil anoxia caused by flooding has led to changes in the expression pattern of genes associated with the biosynthesis of alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC) and lactate dehydrogenase (LDH) in leaves and roots of the two evaluated genotypes. Significant differences were observed between the enzyme activities of the two genotypes. Leaves and roots of the TSA-792 genotype showed higher ADH activity as compared to the TSH-774 genotype, whereas the activities of PDC and LDH have varied over the 96 h of soil flooding, being higher for TSA-792 genotype, at the initial stage, and TSH-774 genotype, at the final stage. Some of the identified proteins are those typical of the anaerobic metabolism-involved in glycolysis and alcoholic fermentation-and different proteins associated with photosynthesis, protein metabolism and oxidative stress. The ability to maintain glycolysis and induce fermentation was observed to play an important role in anoxia tolerance in cacao and may also serve to distinguish tolerant and susceptible genotypes in relation to this stressor.
Collapse
Affiliation(s)
- Fabiana Z. Bertolde
- Instituto Federal de Educação Ciência e Tecnologia, Campus Eunápolis, Eunápolis, Bahia, Brazil
- * E-mail:
| | - Alex-Alan F. Almeida
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carlos P. Pirovani
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
37
|
Gidoin C, Avelino J, Deheuvels O, Cilas C, Bieng MAN. Shade tree spatial structure and pod production explain frosty pod rot intensity in cacao agroforests, Costa Rica. PHYTOPATHOLOGY 2014; 104:275-281. [PMID: 24168046 DOI: 10.1094/phyto-07-13-0216-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vegetation composition and plant spatial structure affect disease intensity through resource and microclimatic variation effects. The aim of this study was to evaluate the independent effect and relative importance of host composition and plant spatial structure variables in explaining disease intensity at the plot scale. For that purpose, frosty pod rot intensity, a disease caused by Moniliophthora roreri on cacao pods, was monitored in 36 cacao agroforests in Costa Rica in order to assess the vegetation composition and spatial structure variables conducive to the disease. Hierarchical partitioning was used to identify the most causal factors. Firstly, pod production, cacao tree density and shade tree spatial structure had significant independent effects on disease intensity. In our case study, the amount of susceptible tissue was the most relevant host composition variable for explaining disease intensity by resource dilution. Indeed, cacao tree density probably affected disease intensity more by the creation of self-shading rather than by host dilution. Lastly, only regularly distributed forest trees, and not aggregated or randomly distributed forest trees, reduced disease intensity in comparison to plots with a low forest tree density. A regular spatial structure is probably crucial to the creation of moderate and uniform shade as recommended for frosty pod rot management. As pod production is an important service expected from these agroforests, shade tree spatial structure may be a lever for integrated management of frosty pod rot in cacao agroforests.
Collapse
|
38
|
Adjaloo MK, Oduro W, Banful BK. Floral Phenology of Upper Amazon Cocoa Trees: Implications for Reproduction and Productivity of Cocoa. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/461674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A study of the floral phenology of cocoa trees was carried out between 2006 and 2008 at Kubease in the Ashanti Region of Ghana, using one hundred cocoa trees from ten farm plots. The objective was to assess the contribution of floral phenology to the productivity of cocoa. Cocoa like all tropical tree species exhibited seasonally-related phenological patterns involving overlapping cycles under both intrinsic and extrinsic controls. However, unlike most tropical plants, flowering was in the rainy season. The production of new pods or cherelles increased during the major rainy season (June, July, and August), but was evenly distributed from the minor to the dry season. Production of small and medium pods peaked in August whereas production of large pods peaked in October. There was a positive correlation between new pod production and pods abortion (r = 0.69; n = 100; P < 0.05). Temperature, light intensity, and rainfall positively affected production of floral buds and production of open flowers. However, rainfall had the greatest influence on the phenological cycle of the cocoa plant. The floral phenological pattern also coincided with the activity of the main pollinators of cocoa which resulted in enhanced reproductive capacity for increased production of cocoa.
Collapse
Affiliation(s)
- M. K. Adjaloo
- Technology Consultancy Centre, College of Engineering, KNUST, Kumasi, Ghana
| | - W. Oduro
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, College of Agriculture and Natural Resources, KNUST, Kumasi, Ghana
| | - B. K. Banful
- Department of Horticulture, Faculty of Agriculture, College of Agriculture and Natural Resources, KNUST, Kumasi, Ghana
| |
Collapse
|
39
|
|
40
|
González-Rodríguez AM, Peters J. Strategies of leaf expansion in Ficus carica under semiarid conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:469-474. [PMID: 20522183 DOI: 10.1111/j.1438-8677.2009.00220.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.
Collapse
Affiliation(s)
- A M González-Rodríguez
- Departamento de Fruticultura Tropical, Instituto Canario de Investigaciones Agrarias (ICIA), La Laguna, Tenerife, Spain.
| | | |
Collapse
|
41
|
Bertolde FZ, De Almeida AAF, Corrêa RX, Gomes FP, Gaiotto FA, Baligar VC, Loguercio LL. Molecular, physiological and morphological analysis of waterlogging tolerance in clonal genotypes of Theobroma cacao L. TREE PHYSIOLOGY 2010; 30:56-67. [PMID: 19959598 DOI: 10.1093/treephys/tpp101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In soil, anoxia conditions generated by waterlogging induce changes in genetic, morphological and physiological processes, altering the growth and development of plants. Mass propagation of cacao (Theobroma cacao L.) plantlets (clones) is affected by waterlogging caused by heavy rains and irrigation methods used to induce rooting. An experiment was undertaken to assess the effects of a 45-day flooding (anoxia) on physiological and morphological traits of 35 elite cacao genotypes, aiming at potentially identifying those with greater tolerance to flooding of the growth substrate. Eighteen fluorochrome-labeled microsatellite (SSR) primer pairs were used to assess genetic variability among clones, with 248 alleles being amplified and used to calculate similarity coefficients. The resulting dendrogram indicated the presence of four major groups, in which two represented 60% and 31% of the genotypes tested. A general trend toward high levels of heterozygosity was also found for physiological and morphological traits. The survival index (IS) for flood tolerance observed varied from 30 to 96%. Clones TSA-654, TSA-656, TSA-792, CA-1.4, CEPEC-2009 and PH-17 showed an IS value above 94%, whereas CEPEC-2010, CEPEC-2002, CA-7.1 and VB-903 clones were those mostly affected by waterlogging, with IS value below 56%. All genotypes displayed lenticel and adventitious root formation in response to waterlogging, although with different intensities. To determine whether patterns of physiological response could be associated with tolerance to anoxia, a similarity-grouping analysis was performed using the ratio between waterlogged and control values obtained for a series of physiological variables assessed. No specific pattern of physiological and morphological responses to waterlogging was strictly associated with survival of plantlets. However, results revealed by the dendrogram suggest that absence of leaf chlorosis may be a proper trait to indicate cacao clones with higher survival rates under flooding conditions. Consequences of these findings are discussed in the context of developing improved strategies for mass production of clones from elite cacao genotypes.
Collapse
Affiliation(s)
- Fabiana Zanelato Bertolde
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, 45662-000 Ilhéus, BA, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Juhrbandt J, Duwe T, Barkmann J, Gerold G, Marggraf R. Structure and management of cocoa agroforestry systems in Central Sulawesi across an intensification gradient. TROPICAL RAINFORESTS AND AGROFORESTS UNDER GLOBAL CHANGE 2010. [DOI: 10.1007/978-3-642-00493-3_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|