1
|
Wang Y, Jiang Z, Zhang K, Tang H, Wang G, Gao J, He G, Liang B, Li L, Yang C, Deng X. Whole-Tumor Clearing and Imaging of Intratumor Microbiota in Three Dimensions with miCDaL Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400694. [PMID: 39378003 PMCID: PMC11600245 DOI: 10.1002/advs.202400694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/16/2024] [Indexed: 11/28/2024]
Abstract
Acquiring detailed spatial information about intratumor microbiota in situ is challenging, which leaves 3D distributions of microbiota within entire tumors largely unexplored. Here, a modified iDISCO-CUBIC tissue clearing and D-amino acid microbiome labeling-based (miCDaL) strategy are proposed, that integrates microbiota in situ labeling, tissue clearing, and whole-mount tissue imaging to enable 3D visualization of indigenous intratumor microbiota. Leveraging whole-mount spatial resolution and centimeter-scale imaging depth, the 3D biogeography of microbiota is successfully charted across various tumors at different developmental stages, providing quantitative spatial insights in relation to host tumors. By incorporating an immunostaining protocol, 3D imaging of the immunologic microenvironment is achieved in both murine and human mammary tumors that is previously assumed to be bacteria-free. Notably, immune infiltrates, including T cells and NK cells, and tertiary lymphoid structures are conspicuously absent in bacteria-colonized regions. This 3D imaging strategy for mapping Indigenous intratumor microbiota offers valuable insights into host-microbiota interactions.
Collapse
Affiliation(s)
- Yuezhou Wang
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zile Jiang
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Kai Zhang
- Department of Infectious Diseases and HepatologyXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Huimin Tang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Guimei Wang
- Department of PathologyXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102China
| | - Jinshan Gao
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Guanghui He
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Baoyue Liang
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Li Li
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentationthe Key Laboratory of Chemical Biology of Fujian ProvinceState Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenFujian361005China
- Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress BiologyState‐province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
- Department of HematologyThe First Affiliated Hospital of Xiamen UniversityXiamen UniversityXiamenFujian361003China
| |
Collapse
|
2
|
Zhu E, Li YR, Margolis S, Wang J, Wang K, Zhang Y, Wang S, Park J, Zheng C, Yang L, Chu A, Zhang Y, Gao L, Hsiai TK. Frontiers in artificial intelligence-directed light-sheet microscopy for uncovering biological phenomena and multi-organ imaging. VIEW 2024; 5:20230087. [PMID: 39478956 PMCID: PMC11521201 DOI: 10.1002/viw.20230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 11/02/2024] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) introduces fast scanning of biological phenomena with deep photon penetration and minimal phototoxicity. This advancement represents a significant shift in 3-D imaging of large-scale biological tissues and 4-D (space + time) imaging of small live animals. The large data associated with LSFM requires efficient imaging acquisition and analysis with the use of artificial intelligence (AI)/machine learning (ML) algorithms. To this end, AI/ML-directed LSFM is an emerging area for multi-organ imaging and tumor diagnostics. This review will present the development of LSFM and highlight various LSFM configurations and designs for multi-scale imaging. Optical clearance techniques will be compared for effective reduction in light scattering and optimal deep-tissue imaging. This review will further depict a diverse range of research and translational applications, from small live organisms to multi-organ imaging to tumor diagnosis. In addition, this review will address AI/ML-directed imaging reconstruction, including the application of convolutional neural networks (CNNs) and generative adversarial networks (GANs). In summary, the advancements of LSFM have enabled effective and efficient post-imaging reconstruction and data analyses, underscoring LSFM's contribution to advancing fundamental and translational research.
Collapse
Affiliation(s)
- Enbo Zhu
- Department of Bioengineering, UCLA, California, 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, California, 90073, USA
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, California, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, California, 90095, USA
| | - Samuel Margolis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
| | - Jing Wang
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, California, 90073, USA
| | - Yaran Zhang
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Shaolei Wang
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Jongchan Park
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Charlie Zheng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, California, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, California, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, California, 90095, USA
- Molecular Biology Institute, UCLA, California, 90095, USA
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, UCLA, California, 90095, USA
| | - Yuhua Zhang
- Doheny Eye Institute, Department of Ophthalmology, UCLA, California, 90095, USA
| | - Liang Gao
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Tzung K. Hsiai
- Department of Bioengineering, UCLA, California, 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, California, 90073, USA
| |
Collapse
|
3
|
Kuo HY, Khan KA, Kerbel RS. Antiangiogenic-immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat Rev Clin Oncol 2024; 21:468-482. [PMID: 38600370 DOI: 10.1038/s41571-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Antiangiogenic agents, generally antibodies or tyrosine-kinase inhibitors that target the VEGF-VEGFR pathway, are currently among the few combination partners clinically proven to improve the efficacy of immune-checkpoint inhibitors (ICIs). This benefit has been demonstrated in pivotal phase III trials across different cancer types, some with practice-changing results; however, numerous phase III trials have also had negative results. The rationale for using antiangiogenic drugs as partners for ICIs relies primarily on blocking the multiple immunosuppressive effects of VEGF and inducing several different vascular-modulating effects that can stimulate immunity, such as vascular normalization leading to increased intratumoural blood perfusion and flow, and inhibition of pro-apoptotic effects of endothelial cells on T cells, among others. Conversely, VEGF blockade can also cause changes that suppress antitumour immunity, such as increased tumour hypoxia, and reduced intratumoural ingress of co-administered ICIs. As a result, the net clinical benefits from antiangiogenic-ICI combinations will be determined by the balance between the opposing effects of VEGF signalling and its inhibition on the antitumour immune response. In this Perspective, we summarize the results from the currently completed phase III trials evaluating antiangiogenic agent-ICI combinations. We also discuss strategies to improve the efficacy of these combinations, focusing on aspects that include the deleterious functions of VEGF-VEGFR inhibition on antitumour immunity, vessel co-option as a driver of non-angiogenic tumour growth, clinical trial design, or the rationale for drug selection, dosing and scheduling.
Collapse
Affiliation(s)
- Hung-Yang Kuo
- Department of Oncology, National Taiwan University Hospital, and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Zheng J, Wu YC, Cai X, Phan P, Er EE, Zhao Z, Lee SSY. Correlative multiscale 3D imaging of mouse primary and metastatic tumors by sequential light sheet and confocal fluorescence microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594162. [PMID: 38798657 PMCID: PMC11118317 DOI: 10.1101/2024.05.14.594162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Three-dimensional (3D) optical microscopy, combined with advanced tissue clearing, permits in situ interrogation of the tumor microenvironment (TME) in large volumetric tumors for preclinical cancer research. Light sheet (also known as ultramicroscopy) and confocal fluorescence microscopy are often used to achieve macroscopic and microscopic 3D images of optically cleared tumor tissues, respectively. Although each technique offers distinct fields of view (FOVs) and spatial resolution, the combination of these two optical microscopy techniques to obtain correlative multiscale 3D images from the same tumor tissues has not yet been explored. To establish correlative multiscale 3D optical microscopy, we developed a method for optically marking defined regions of interest (ROIs) within a cleared mouse tumor by employing a UV light-activated visible dye and Z-axis position-selective UV irradiation in a light sheet microscope system. By integrating this method with subsequent tissue processing, including physical ROI marking, reversal of tissue clearing, tissue macrosectioning, and multiplex immunofluorescence, we established a workflow that enables the tracking and 3D imaging of ROIs within tumor tissues through sequential light sheet and confocal fluorescence microscopy. This approach allowed for quantitative 3D spatial analysis of the immune response in the TME of a mouse mammary tumor following cancer immunotherapy at multiple spatial scales. The workflow also facilitated the direct localization of a metastatic lesion within a whole mouse brain. These results demonstrate that our ROI tracking method and its associated workflow offer a novel approach for correlative multiscale 3D optical microscopy, with the potential to provide new insights into tumor heterogeneity, metastasis, and response to therapy at various spatial levels.
Collapse
|
5
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
6
|
Rafik ST, Vaidya JS, MacRobert AJ, Yaghini E. Organic Nanodelivery Systems as a New Platform in the Management of Breast Cancer: A Comprehensive Review from Preclinical to Clinical Studies. J Clin Med 2023; 12:jcm12072648. [PMID: 37048731 PMCID: PMC10095028 DOI: 10.3390/jcm12072648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer accounts for approximately 25% of cancer cases and 16.5% of cancer deaths in women, and the World Health Organization predicts that the number of new cases will increase by almost 70% over the next two decades, mainly due to an ageing population. Effective diagnostic and treatment strategies are, therefore, urgently required for improving cure rates among patients since current therapeutic modalities have many limitations and side effects. Nanomedicine is evolving as a promising approach for cancer management, including breast cancer, and various types of organic and inorganic nanomaterials have been investigated for their role in breast cancer diagnosis and treatment. Following an overview on breast cancer characteristics and pathogenesis and challenges of the current treatment strategies, the therapeutic potential of biocompatible organic-based nanoparticles such as liposomes and polymeric micelles that have been tested in breast cancer models are reviewed. The efficacies of different drug delivery and targeting strategies are documented, ranging from synthetic to cell-derived nanoformulations together with a summary of the interaction of nanoparticles with externally applied energy such as radiotherapy. The clinical translation of nanoformulations for breast cancer treatment is summarized including those undergoing clinical trials.
Collapse
Affiliation(s)
- Salma T. Rafik
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21516, Egypt
| | - Jayant S. Vaidya
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Alexander J. MacRobert
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Elnaz Yaghini
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| |
Collapse
|
7
|
Frenkel N, Poghosyan S, van Wijnbergen JW, van den Bent L, Wiljer L, Verheem A, Borel Rinkes I, Kranenburg O, Hagendoorn J. Tissue clearing and immunostaining to visualize the spatial organization of vasculature and tumor cells in mouse liver. Front Oncol 2023; 13:1062926. [PMID: 37077833 PMCID: PMC10108913 DOI: 10.3389/fonc.2023.1062926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The liver has a complex and hierarchical segmental organization of arteries, portal veins, hepatic veins and lymphatic vessels. In-depth imaging of liver vasculature and malignancies could improve knowledge on tumor micro-environment, local tumor growth, invasion, as well as metastasis. Non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and positron-emission transmission (PET) are routine for clinical imaging, but show inadequate resolution at cellular and subcellular level. In recent years, tissue clearing – a technique rendering tissues optically transparent allowing enhanced microscopy imaging – has made great advances. While mainly used in the neurobiology field, recently more studies have used clearing techniques for imaging other organ systems as well as tumor tissues. In this study, our aim was to develop a reproducible tissue clearing and immunostaining model for visualizing intrahepatic blood microvasculature and tumor cells in murine colorectal liver metastases. CLARITY and 3DISCO/iDISCO+ are two established clearing methods that have been shown to be compatible with immunolabelling, most often in neurobiology research. In this study, CLARITY unfortunately resulted in damaged tissue integrity of the murine liver lobes and no specific immunostaining. Using the 3DISCO/iDISCO+ method, liver samples were successfully rendered optically transparent. After which, successful immunostaining of the intrahepatic microvasculature using panendothelial cell antigen MECA-32 and colorectal cancer cells using epithelial cell adhesion molecule (EpCAM) was established. This approach for tumor micro-environment tissue clearing would be especially valuable for allowing visualization of spatial heterogeneity and complex interactions of tumor cells and their environment in future studies.
Collapse
|
8
|
Mueller JPJ, Dobosz M, O’Brien N, Abdoush N, Giusti AM, Lechmann M, Osl F, Wolf AK, Arellano-Viera E, Shaikh H, Sauer M, Rosenwald A, Herting F, Umaña P, Colombetti S, Pöschinger T, Beilhack A. ROCKETS - a novel one-for-all toolbox for light sheet microscopy in drug discovery. Front Immunol 2023; 14:1034032. [PMID: 36845124 PMCID: PMC9945347 DOI: 10.3389/fimmu.2023.1034032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advancing novel immunotherapy strategies requires refined tools in preclinical research to thoroughly assess drug targets, biodistribution, safety, and efficacy. Light sheet fluorescence microscopy (LSFM) offers unprecedented fast volumetric ex vivo imaging of large tissue samples in high resolution. Yet, to date laborious and unstandardized tissue processing procedures have limited throughput and broader applications in immunological research. Therefore, we developed a simple and harmonized protocol for processing, clearing and imaging of all mouse organs and even entire mouse bodies. Applying this Rapid Optical Clearing Kit for Enhanced Tissue Scanning (ROCKETS) in combination with LSFM allowed us to comprehensively study the in vivo biodistribution of an antibody targeting Epithelial Cell Adhesion Molecule (EpCAM) in 3D. Quantitative high-resolution scans of whole organs did not only reveal known EpCAM expression patterns but, importantly, uncovered several new EpCAM-binding sites. We identified gustatory papillae of the tongue, choroid plexi in the brain and duodenal papillae as previously unanticipated locations of high EpCAM expression. Subsequently, we confirmed high EpCAM expression also in human tongue and duodenal specimens. Choroid plexi and duodenal papillae may be considered as particularly sensitive sites due to their importance for liquor production or as critical junctions draining bile and digestive pancreatic enzymes into the small bowel, respectively. These newly gained insights appear highly relevant for clinical translation of EpCAM-addressing immunotherapies. Thus, ROCKETS in combination with LSFM may help to set new standards for preclinical evaluation of immunotherapeutic strategies. In conclusion, we propose ROCKETS as an ideal platform for a broader application of LSFM in immunological research optimally suited for quantitative co-localization studies of immunotherapeutic drugs and defined cell populations in the microanatomical context of organs or even whole mice.
Collapse
Affiliation(s)
- Joerg P. J. Mueller
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Dobosz
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nils O’Brien
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nassri Abdoush
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Anna Maria Giusti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Martin Lechmann
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Franz Osl
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ann-Katrin Wolf
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Estibaliz Arellano-Viera
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Frank Herting
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Pablo Umaña
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Thomas Pöschinger
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| |
Collapse
|
9
|
Rakhilin N, Yang B, Spilker ME, Manzuk LK, Montgomery MK, Shin E, Prashad N, Hwang J, Song Y, Loganzo F, Giddabasappa A, Ram S. Volumetric imaging of optically cleared and fluorescently labeled animal tissue (VIOLA) for quantifying the 3D biodistribution of nanoparticles at cellular resolution in tumor tissue. J Control Release 2023; 354:244-259. [PMID: 36596340 DOI: 10.1016/j.jconrel.2022.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Nanoparticle (NP) technology holds significant promise to mediate targeted drug delivery to specific organs in the body. Understanding the 3D biodistribution of NPs in heterogeneous environments such as the tumor tissue can provide crucial information on efficacy, safety and potential clinical outcomes. Here we present a novel end-to-end workflow, VIOLA, which makes use of tissue clearing methodology in conjunction with high resolution imaging and advanced 3D image processing to quantify the spatiotemporal 3D biodistribution of fluorescently labeled ACCURIN® NPs. Specifically, we investigate the spatiotemporal biodistribution of NPs in three different murine tumor models (CT26, EMT6, and KPC-GEM) of increasing complexity and translational relevance. We have developed new endpoints to characterize NP biodistribution at multiple length scales. Our observations reveal that the macroscale NP biodistribution is spatially heterogeneous and exhibits a gradient with relatively high accumulation at the tumor periphery that progressively decreases towards the tumor core in all the tumor models. Microscale analysis revealed that NP extravasation from blood vessels increases in a time dependent manner and plateaus at 72 h post injection. Volumetric analysis and pharmacokinetic modeling of NP biodistribution in the vicinity of the blood vessels revealed that the local NP density exhibits a distance dependent spatiotemporal biodistribution which provide insights into the dynamics of NP extravasation in the tumor tissue. Our data represents a comprehensive analysis of NP biodistribution at multiple length scales in different tumor models providing unique insights into their spatiotemporal dynamics. Specifically, our results show that NPs exhibit a dynamic equilibrium with macroscale heterogeneity combined with microscale homogeneity.
Collapse
Affiliation(s)
| | - Bing Yang
- Comparative Medicine, Pfizer Inc., United States
| | - Mary E Spilker
- Medicine Design - Translational Modeling and Simulation, Pfizer Inc., United States
| | | | | | - Eyoung Shin
- Oncology Research Unit, Pfizer Inc., United States
| | | | | | - Youngho Song
- Oncology Research Unit, Pfizer Inc., United States
| | | | | | - Sripad Ram
- Drug Safety R&D, Pfizer Inc., United States.
| |
Collapse
|
10
|
Ngai J, MacMillan P, Kingston BR, Lin ZP, Ouyang B, Chan WCW. Delineating the tumour microenvironment response to a lipid nanoparticle formulation. J Control Release 2023; 353:988-1001. [PMID: 36516899 DOI: 10.1016/j.jconrel.2022.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanoparticles can reduce cytotoxicity, increase circulation time and increase accumulation in tumours compared to free drug. However, the value of using nanoparticles for carrying small molecules to treat tumours at the cellular level has been poorly established. Here we conducted a cytodistribution analysis on Doxorubicin-treated and Doxil-treated tumours to delineate the differences between the small molecule therapeutic Doxorubicin and its packaged liposomal formulation Doxil. We found that Doxil kills more cancer cells, macrophages and neutrophils in the 4T1 breast cancer tumour model, but there is delayed killing compared to its small molecule counterpart Doxorubicin. The cellular interaction with Doxil has slower uptake kinetics and the particles must be degraded to release the drug and kill the cells. We also found that macrophages and neutrophils in Doxil-treated tumours repopulated faster than cancer cells during the relapse phase. While researchers conventionally use tumour volume and animal survival to determine a therapeutic effect, our results show diverse cell killing and a greater amount of cell death in vivo after Doxil liposomes are administered. We conclude that the fate and behaviour of the nanocarrier influences its effectiveness as a cancer therapy. Further investigations on the interactions between different nanoparticle designs and the tumour microenvironment components will lead to more precise engineering of nanocarriers to selectively kill tumour cells and prolong the therapeutic effect.
Collapse
Affiliation(s)
- Jessica Ngai
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Presley MacMillan
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Benjamin R Kingston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S. Moody Avenue, Portland, OR 97201, United States
| | - Zachary P Lin
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Ben Ouyang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada; MD/PhD Program, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02111, United States of America
| | - Warren C W Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Department of Material Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada.
| |
Collapse
|
11
|
Pac J, Koo DJ, Cho H, Jung D, Choi MH, Choi Y, Kim B, Park JU, Kim SY, Lee Y. Three-dimensional imaging and analysis of pathological tissue samples with de novo generation of citrate-based fluorophores. SCIENCE ADVANCES 2022; 8:eadd9419. [PMID: 36383671 PMCID: PMC9668299 DOI: 10.1126/sciadv.add9419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) histopathology based on the observation of thin tissue slides is the current paradigm in diagnosis and prognosis. However, labeling strategies in conventional histopathology are limited in compatibility with 3D imaging combined with tissue clearing techniques. Here, we present a rapid and efficient volumetric imaging technique of pathological tissues called 3D tissue imaging through de novo formation of fluorophores, or 3DNFC, which is the integration of citrate-based fluorogenic reaction DNFC and tissue clearing techniques. 3DNFC markedly increases the fluorescence intensity of tissues by generating fluorophores on nonfluorescent amino-terminal cysteine and visualizes the 3D structure of the tissues to provide their anatomical morphology and volumetric information. Furthermore, the application of 3DNFC to pathological tissue achieves the 3D reconstruction for the unbiased analysis of diverse features of the disorders in their natural context. We suggest that 3DNFC is a promising volumetric imaging method for the prognosis and diagnosis of pathological tissues.
Collapse
Affiliation(s)
- Jinyoung Pac
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Hyeongjun Cho
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Dongwook Jung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Min-ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae Road, Dongjak-Gu, Seoul 07061, South Korea
| | - Yunjung Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Bohyun Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae Road, Dongjak-Gu, Seoul 07061, South Korea
| | - Sung-Yon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
12
|
Stolz BJ, Kaeppler J, Markelc B, Braun F, Lipsmeier F, Muschel RJ, Byrne HM, Harrington HA. Multiscale topology characterizes dynamic tumor vascular networks. SCIENCE ADVANCES 2022. [PMID: 35687679 DOI: 10.48550/arxiv.2008.08667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Advances in imaging techniques enable high-resolution three-dimensional (3D) visualization of vascular networks over time and reveal abnormal structural features such as twists and loops, and their quantification is an active area of research. Here, we showcase how topological data analysis, the mathematical field that studies the "shape" of data, can characterize the geometric, spatial, and temporal organization of vascular networks. We propose two topological lenses to study vasculature, which capture inherent multiscale features and vessel connectivity, and surpass the single-scale analysis of existing methods. We analyze images collected using intravital and ultramicroscopy modalities and quantify spatiotemporal variation of twists, loops, and avascular regions (voids) in 3D vascular networks. This topological approach validates and quantifies known qualitative trends such as dynamic changes in tortuosity and loops in response to antibodies that modulate vessel sprouting; furthermore, it quantifies the effect of radiotherapy on vessel architecture.
Collapse
Affiliation(s)
| | - Jakob Kaeppler
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Bostjan Markelc
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Franziska Braun
- Data Science, pRED Informatics, Pharma Research & Early Development, Roche Innovation Center Munich, Munich, Germany
| | - Florian Lipsmeier
- Digital Biomarkers, pRED Informatics, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Ruth J Muschel
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Heather A Harrington
- Mathematical Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Stolz BJ, Kaeppler J, Markelc B, Braun F, Lipsmeier F, Muschel RJ, Byrne HM, Harrington HA. Multiscale topology characterizes dynamic tumor vascular networks. SCIENCE ADVANCES 2022; 8:eabm2456. [PMID: 35687679 PMCID: PMC9187234 DOI: 10.1126/sciadv.abm2456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Advances in imaging techniques enable high-resolution three-dimensional (3D) visualization of vascular networks over time and reveal abnormal structural features such as twists and loops, and their quantification is an active area of research. Here, we showcase how topological data analysis, the mathematical field that studies the "shape" of data, can characterize the geometric, spatial, and temporal organization of vascular networks. We propose two topological lenses to study vasculature, which capture inherent multiscale features and vessel connectivity, and surpass the single-scale analysis of existing methods. We analyze images collected using intravital and ultramicroscopy modalities and quantify spatiotemporal variation of twists, loops, and avascular regions (voids) in 3D vascular networks. This topological approach validates and quantifies known qualitative trends such as dynamic changes in tortuosity and loops in response to antibodies that modulate vessel sprouting; furthermore, it quantifies the effect of radiotherapy on vessel architecture.
Collapse
Affiliation(s)
| | - Jakob Kaeppler
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Bostjan Markelc
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Franziska Braun
- Data Science, pRED Informatics, Pharma Research & Early Development, Roche Innovation Center Munich, Munich, Germany
| | - Florian Lipsmeier
- Digital Biomarkers, pRED Informatics, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Ruth J. Muschel
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Heather A. Harrington
- Mathematical Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
van Ineveld RL, van Vliet EJ, Wehrens EJ, Alieva M, Rios AC. 3D imaging for driving cancer discovery. EMBO J 2022; 41:e109675. [PMID: 35403737 PMCID: PMC9108604 DOI: 10.15252/embj.2021109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Our understanding of the cellular composition and architecture of cancer has primarily advanced using 2D models and thin slice samples. This has granted spatial information on fundamental cancer biology and treatment response. However, tissues contain a variety of interconnected cells with different functional states and shapes, and this complex organization is impossible to capture in a single plane. Furthermore, tumours have been shown to be highly heterogenous, requiring large-scale spatial analysis to reliably profile their cellular and structural composition. Volumetric imaging permits the visualization of intact biological samples, thereby revealing the spatio-phenotypic and dynamic traits of cancer. This review focuses on new insights into cancer biology uniquely brought to light by 3D imaging and concomitant progress in cancer modelling and quantitative analysis. 3D imaging has the potential to generate broad knowledge advance from major mechanisms of tumour progression to new strategies for cancer treatment and patient diagnosis. We discuss the expected future contributions of the newest imaging trends towards these goals and the challenges faced for reaching their full application in cancer research.
Collapse
Affiliation(s)
- Ravian L van Ineveld
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Esmée J van Vliet
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Maria Alieva
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
15
|
Winfree S, Al Hasan M, El-Achkar TM. Profiling Immune Cells in the Kidney Using Tissue Cytometry and Machine Learning. KIDNEY360 2022; 3:968-978. [PMID: 36128490 PMCID: PMC9438423 DOI: 10.34067/kid.0006802020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023]
Abstract
The immune system governs key functions that maintain renal homeostasis through various effector cells that reside in or infiltrate the kidney. These immune cells play an important role in shaping adaptive or maladaptive responses to local or systemic stress and injury. We increasingly recognize that microenvironments within the kidney are characterized by a unique distribution of immune cells, the function of which depends on this unique spatial localization. Therefore, quantitative profiling of immune cells in intact kidney tissue becomes essential, particularly at a scale and resolution that allow the detection of differences between the various "nephro-ecosystems" in health and disease. In this review, we discuss advancements in tissue cytometry of the kidney, performed through multiplexed confocal imaging and analysis using the Volumetric Tissue Exploration and Analysis (VTEA) software. We highlight how this tool has improved our understanding of the role of the immune system in the kidney and its relevance in the pathobiology of renal disease. We also discuss how the field is increasingly incorporating machine learning to enhance the analytic potential of imaging data and provide unbiased methods to explore and visualize multidimensional data. Such novel analytic methods could be particularly relevant when applied to profiling immune cells. Furthermore, machine-learning approaches applied to cytometry could present venues for nonexhaustive exploration and classification of cells from existing data and improving tissue economy. Therefore, tissue cytometry is transforming what used to be a qualitative assessment of the kidney into a highly quantitative, imaging-based "omics" assessment that complements other advanced molecular interrogation technologies.
Collapse
Affiliation(s)
- Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Mohammad Al Hasan
- Department of Computer Science, Indiana University–Purdue University, Indianapolis, Indiana
| | - Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana,Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana,Correspondence: Dr. Tarek M. El-Achkar (Ashkar), Division of Nephrology, Department of Medicine, Indiana University, 950 W Walnut St., R2-202, Indianapolis, IN 46202.
| |
Collapse
|
16
|
Fei K, Zhang J, Yuan J, Xiao P. Present Application and Perspectives of Organoid Imaging Technology. Bioengineering (Basel) 2022; 9:121. [PMID: 35324810 PMCID: PMC8945799 DOI: 10.3390/bioengineering9030121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022] Open
Abstract
An organoid is a miniaturized and simplified in vitro model with a similar structure and function to a real organ. In recent years, the use of organoids has increased explosively in the field of growth and development, disease simulation, drug screening, cell therapy, etc. In order to obtain necessary information, such as morphological structure, cell function and dynamic signals, it is necessary and important to directly monitor the culture process of organoids. Among different detection technologies, imaging technology is a simple and convenient choice and can realize direct observation and quantitative research. In this review, the principle, advantages and disadvantages of imaging technologies that have been applied in organoids research are introduced. We also offer an overview of prospective technologies for organoid imaging. This review aims to help biologists find appropriate imaging techniques for different areas of organoid research, and also contribute to the development of organoid imaging systems.
Collapse
Affiliation(s)
| | | | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (K.F.); (J.Z.)
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (K.F.); (J.Z.)
| |
Collapse
|
17
|
Brenna C, Simioni C, Varano G, Conti I, Costanzi E, Melloni M, Neri LM. Optical tissue clearing associated with 3D imaging: application in preclinical and clinical studies. Histochem Cell Biol 2022; 157:497-511. [PMID: 35235045 PMCID: PMC9114043 DOI: 10.1007/s00418-022-02081-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Understanding the inner morphology of intact tissues is one of the most competitive challenges in modern biology. Since the beginning of the twentieth century, optical tissue clearing (OTC) has provided solutions for volumetric imaging, allowing the microscopic visualization of thick sections of tissue, organoids, up to whole organs and organisms (for example, mouse or rat). Recently, tissue clearing has also been introduced in clinical settings to achieve a more accurate diagnosis with the support of 3D imaging. This review aims to give an overview of the most recent developments in OTC and 3D imaging and to illustrate their role in the field of medical diagnosis, with a specific focus on clinical applications.
Collapse
Affiliation(s)
- Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.,Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy.,LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy. .,LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
18
|
Almagro J, Messal HA, Zaw Thin M, van Rheenen J, Behrens A. Tissue clearing to examine tumour complexity in three dimensions. Nat Rev Cancer 2021; 21:718-730. [PMID: 34331034 DOI: 10.1038/s41568-021-00382-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The visualization of whole organs and organisms through tissue clearing and fluorescence volumetric imaging has revolutionized the way we look at biological samples. Its application to solid tumours is changing our perception of tumour architecture, revealing signalling networks and cell interactions critical in tumour progression, and provides a powerful new strategy for cancer diagnostics. This Review introduces the latest advances in tissue clearing and three-dimensional imaging, examines the challenges in clearing epithelia - the tissue of origin of most malignancies - and discusses the insights that tissue clearing has brought to cancer research, as well as the prospective applications to experimental and clinical oncology.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.
- Convergence Science Centre and Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
19
|
Morosi L, Meroni M, Ubezio P, Fuso Nerini I, Minoli L, Porcu L, Panini N, Colombo M, Blouw B, Kang DW, Davoli E, Zucchetti M, D'Incalci M, Frapolli R. PEGylated recombinant human hyaluronidase (PEGPH20) pre-treatment improves intra-tumour distribution and efficacy of paclitaxel in preclinical models. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:286. [PMID: 34507591 PMCID: PMC8434701 DOI: 10.1186/s13046-021-02070-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Scarce drug penetration in solid tumours is one of the possible causes of the limited efficacy of chemotherapy and is related to the altered tumour microenvironment. The abnormal tumour extracellular matrix (ECM) together with abnormal blood and lymphatic vessels, reactive stroma and inflammation all affect the uptake, distribution and efficacy of anticancer drugs. METHODS We investigated the effect of PEGylated recombinant human hyaluronidase PH20 (PEGPH20) pre-treatment in degrading hyaluronan (hyaluronic acid; HA), one of the main components of the ECM, to improve the delivery of antitumor drugs and increase their therapeutic efficacy. The antitumor activity of paclitaxel (PTX) in HA synthase 3-overexpressing and wild-type SKOV3 ovarian cancer model and in the BxPC3 pancreas xenograft tumour model, was evaluated by monitoring tumour growth with or without PEGPH20 pre-treatment. Pharmacokinetics and tumour penetration of PTX were assessed by HPLC and mass spectrometry imaging analysis in the same tumour models. Tumour tissue architecture and HA deposition were analysed by histochemistry. RESULTS Pre-treatment with PEGPH20 modified tumour tissue architecture and improved the antitumor activity of paclitaxel in the SKOV3/HAS3 tumour model, favouring its accumulation and more homogeneous intra-tumour distribution, as assessed by quantitative and qualitative analysis. PEGPH20 also reduced HA content influencing, though less markedly, PTX distribution and antitumor activity in the BxPC3 tumour model. CONCLUSION Remodelling the stroma of HA-rich tumours by depletion of HA with PEGPH20 pre-treatment, is a potentially successful strategy to improve the intra-tumour distribution of anticancer drugs, increasing their therapeutic efficacy, without increasing toxicity.
Collapse
Affiliation(s)
- Lavinia Morosi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.,Present address: IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marina Meroni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Paolo Ubezio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Ilaria Fuso Nerini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.,Present address: IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Lucia Minoli
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy
| | - Luca Porcu
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Nicolò Panini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Marika Colombo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | | | - David W Kang
- Halozyme Therapeutics, San Diego, California, USA
| | - Enrico Davoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Mass Spectrometry, Milan, Italy
| | - Massimo Zucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Maurizio D'Incalci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.,Present address: IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.,Present address: Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Roberta Frapolli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.
| |
Collapse
|
20
|
Schwinn S, Mokhtari Z, Thusek S, Schneider T, Sirén AL, Tiemeyer N, Caruana I, Miele E, Schlegel PG, Beilhack A, Wölfl M. Cytotoxic effects and tolerability of gemcitabine and axitinib in a xenograft model for c-myc amplified medulloblastoma. Sci Rep 2021; 11:14062. [PMID: 34234256 PMCID: PMC8263612 DOI: 10.1038/s41598-021-93586-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma is the most common high-grade brain tumor in childhood. Medulloblastomas with c-myc amplification, classified as group 3, are the most aggressive among the four disease subtypes resulting in a 5-year overall survival of just above 50%. Despite current intensive therapy regimens, patients suffering from group 3 medulloblastoma urgently require new therapeutic options. Using a recently established c-myc amplified human medulloblastoma cell line, we performed an in-vitro-drug screen with single and combinatorial drugs that are either already clinically approved or agents in the advanced stage of clinical development. Candidate drugs were identified in vitro and then evaluated in vivo. Tumor growth was closely monitored by BLI. Vessel development was assessed by 3D light-sheet-fluorescence-microscopy. We identified the combination of gemcitabine and axitinib to be highly cytotoxic, requiring only low picomolar concentrations when used in combination. In the orthotopic model, gemcitabine and axitinib showed efficacy in terms of tumor control and survival. In both models, gemcitabine and axitinib were better tolerated than the standard regimen comprising of cisplatin and etoposide phosphate. 3D light-sheet-fluorescence-microscopy of intact tumors revealed thinning and rarefication of tumor vessels, providing one explanation for reduced tumor growth. Thus, the combination of the two drugs gemcitabine and axitinib has favorable effects on preventing tumor progression in an orthotopic group 3 medulloblastoma xenograft model while exhibiting a favorable toxicity profile. The combination merits further exploration as a new approach to treat high-risk group 3 medulloblastoma.
Collapse
Affiliation(s)
- Stefanie Schwinn
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.,Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany
| | - Zeinab Mokhtari
- Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany
| | - Sina Thusek
- Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany
| | - Theresa Schneider
- Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany
| | - Anna-Leena Sirén
- Department of Neurosurgery, Würzburg University Hospital, Würzburg, Germany
| | - Nicola Tiemeyer
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Ignazio Caruana
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Evelina Miele
- Department of Pediatric Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paul G Schlegel
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.,Comprehensive Cancer Center Main-Franken, Würzburg University Hospital, Würzburg, Germany
| | - Andreas Beilhack
- Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany. .,Comprehensive Cancer Center Main-Franken, Würzburg University Hospital, Würzburg, Germany.
| | - Matthias Wölfl
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
21
|
Brémond Martin C, Simon Chane C, Clouchoux C, Histace A. Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Front Neurosci 2021; 15:629067. [PMID: 34276279 PMCID: PMC8283195 DOI: 10.3389/fnins.2021.629067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose: Since their first generation in 2013, the use of cerebral organoids has spread exponentially. Today, the amount of generated data is becoming challenging to analyze manually. This review aims to overview the current image acquisition methods and to subsequently identify the needs in image analysis tools for cerebral organoids. Methods: To address this question, we went through all recent articles published on the subject and annotated the protocols, acquisition methods, and algorithms used. Results: Over the investigated period of time, confocal microscopy and bright-field microscopy were the most used acquisition techniques. Cell counting, the most common task, is performed in 20% of the articles and area; around 12% of articles calculate morphological parameters. Image analysis on cerebral organoids is performed in majority using ImageJ software (around 52%) and Matlab language (4%). Treatments remain mostly semi-automatic. We highlight the limitations encountered in image analysis in the cerebral organoid field and suggest possible solutions and implementations to develop. Conclusions: In addition to providing an overview of cerebral organoids cultures and imaging, this work highlights the need to improve the existing image analysis methods for such images and the need for specific analysis tools. These solutions could specifically help to monitor the growth of future standardized cerebral organoids.
Collapse
Affiliation(s)
- Clara Brémond Martin
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
- WITSEE, Paris, France
| | - Camille Simon Chane
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| | | | - Aymeric Histace
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| |
Collapse
|
22
|
Kostrikov S, Johnsen KB, Braunstein TH, Gudbergsson JM, Fliedner FP, Obara EAA, Hamerlik P, Hansen AE, Kjaer A, Hempel C, Andresen TL. Optical tissue clearing and machine learning can precisely characterize extravasation and blood vessel architecture in brain tumors. Commun Biol 2021; 4:815. [PMID: 34211069 PMCID: PMC8249617 DOI: 10.1038/s42003-021-02275-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Precise methods for quantifying drug accumulation in brain tissue are currently very limited, challenging the development of new therapeutics for brain disorders. Transcardial perfusion is instrumental for removing the intravascular fraction of an injected compound, thereby allowing for ex vivo assessment of extravasation into the brain. However, pathological remodeling of tissue microenvironment can affect the efficiency of transcardial perfusion, which has been largely overlooked. We show that, in contrast to healthy vasculature, transcardial perfusion cannot remove an injected compound from the tumor vasculature to a sufficient extent leading to considerable overestimation of compound extravasation. We demonstrate that 3D deep imaging of optically cleared tumor samples overcomes this limitation. We developed two machine learning-based semi-automated image analysis workflows, which provide detailed quantitative characterization of compound extravasation patterns as well as tumor angioarchitecture in large three-dimensional datasets from optically cleared samples. This methodology provides a precise and comprehensive analysis of extravasation in brain tumors and allows for correlation of extravasation patterns with specific features of the heterogeneous brain tumor vasculature.
Collapse
Affiliation(s)
- Serhii Kostrikov
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kasper B Johnsen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas H Braunstein
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johann M Gudbergsson
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Laboratory for Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Frederikke P Fliedner
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth A A Obara
- Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Bispebjerg, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anders E Hansen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Casper Hempel
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| | - Thomas L Andresen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
23
|
Development of an Optimized Clearing Protocol to Examine Adipocyte Subpopulations in White Adipose Tissue. Methods Protoc 2021; 4:mps4020039. [PMID: 34199437 PMCID: PMC8293430 DOI: 10.3390/mps4020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
Organic solvent dibenzyl ether (DBE)-based protocols have been widely used in adipose tissue clearing. However, benzyl alcohol/benzyl benzoate (BABB)-based clearing has been shown to offer better transparency in other tissues. The addition of diphenyl ether (DPE) to BABB (BABB-D4) is often included to preserve fluorescent signals, but its effects on adipose tissue transparency and shrinkage have not been explored. Distinct adipocyte subpopulations contribute to its cellular composition and biological activity. Here, we compared clearing solvents to create an optimized clearing methodology for the study of adipocyte subpopulations. Adipose tissues were cleared with BABB, BABB-D4, and DBE, and post-clearing transparency and tissue shrinkage were measured. An optimized protocol, including BABB-D4 clearing, delipidation, and extensive immunofluorescence blocking steps, was created to examine the spatial distribution of Wt-1 positive progenitor-derived (Type-1) adipocytes in intact mesenteric fat. Both BABB and BABB-D4 lead to significantly increased tissue transparency with reduced tissue shrinkage compared to DBE-cleared adipose tissue. Type-1 adipocytes are found in a clustered distribution with predominant residence in fat associated with the ileum and colon. This paper details an optimized clearing methodology for adipose tissue with increased tissue transparency and reduced shrinkage, and therefore will be a useful tool for investigating adipose tissue biology.
Collapse
|
24
|
Taranda J, Turcan S. 3D Whole-Brain Imaging Approaches to Study Brain Tumors. Cancers (Basel) 2021; 13:cancers13081897. [PMID: 33920839 PMCID: PMC8071100 DOI: 10.3390/cancers13081897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Brain tumors integrate into the brain and consist of tumor cells with different molecular alterations. During brain tumor pathogenesis, a variety of cell types surround the tumors to either inhibit or promote tumor growth. These cells are collectively referred to as the tumor microenvironment. Three-dimensional and/or longitudinal visualization approaches are needed to understand the growth of these tumors in time and space. In this review, we present three imaging modalities that are suitable or that can be adapted to study the volumetric distribution of malignant or tumor-associated cells in the brain. In addition, we highlight the potential clinical utility of some of the microscopy approaches for brain tumors using exemplars from solid tumors. Abstract Although our understanding of the two-dimensional state of brain tumors has greatly expanded, relatively little is known about their spatial structures. The interactions between tumor cells and the tumor microenvironment (TME) occur in a three-dimensional (3D) space. This volumetric distribution is important for elucidating tumor biology and predicting and monitoring response to therapy. While static 2D imaging modalities have been critical to our understanding of these tumors, studies using 3D imaging modalities are needed to understand how malignant cells co-opt the host brain. Here we summarize the preclinical utility of in vivo imaging using two-photon microscopy in brain tumors and present ex vivo approaches (light-sheet fluorescence microscopy and serial two-photon tomography) and highlight their current and potential utility in neuro-oncology using data from solid tumors or pathological brain as examples.
Collapse
|
25
|
Lee S, Kim S, Koo DJ, Yu J, Cho H, Lee H, Song JM, Kim SY, Min DH, Jeon NL. 3D Microfluidic Platform and Tumor Vascular Mapping for Evaluating Anti-Angiogenic RNAi-Based Nanomedicine. ACS NANO 2021; 15:338-350. [PMID: 33231435 DOI: 10.1021/acsnano.0c05110] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three-dimensional (3D) visualization of tumor vasculature is a key factor in accurate evaluation of RNA interference (RNAi)-based antiangiogenic nanomedicine, a promising approach for cancer therapeutics. However, this remains challenging because there is not a physiologically relevant in vitro model or precise analytic methodology. To address this limitation, a strategy based on 3D microfluidic angiogenesis-on-a-chip and 3D tumor vascular mapping was developed for evaluating RNAi-based antiangiogenic nanomedicine. We developed a microfluidic model to recapitulate functional 3D angiogenic sprouting when co-cultured with various cancer cell types. This model enabled efficient and rapid assessment of antiangiogenic nanomedicine in treatment of hyper-angiogenic cancer. In addition, tissue-clearing-based whole vascular mapping of tumor xenograft allowed extraction of complex 3D morphological information in diverse quantitative parameters. Using this 3D imaging-based analysis, we observed tumor sub-regional differences in the antiangiogenic effect. Our systematic strategy can help in narrowing down the promising targets of antiangiogenic nanomedicine and then enables deep analysis of complex morphological changes in tumor vasculature, providing a powerful platform for the development of safe and effective nanomedicine for cancer therapeutics.
Collapse
Affiliation(s)
- Somin Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongchan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Jun Koo
- Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | - James Yu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongjun Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyojin Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangno 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Yon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
26
|
Fiedler S, Wünnemann H, Hofmann I, Theobalt N, Feuchtinger A, Walch A, Schwaiger J, Wanke R, Blutke A. A practical guide to unbiased quantitative morphological analyses of the gills of rainbow trout (Oncorhynchus mykiss) in ecotoxicological studies. PLoS One 2020; 15:e0243462. [PMID: 33296424 PMCID: PMC7725368 DOI: 10.1371/journal.pone.0243462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) are frequently used as experimental animals in ecotoxicological studies, in which they are experimentally exposed to defined concentrations of test substances, such as heavy metals, pesticides, or pharmaceuticals. Following exposure to a broad variety of aquatic pollutants, early morphologically detectable toxic effects often manifest in alterations of the gills. Suitable methods for an accurate and unbiased quantitative characterization of the type and the extent of morphological gill alterations are therefore essential prerequisites for recognition, objective evaluation and comparison of the severity of gill lesions. The aim of the present guidelines is to provide practicable, standardized and detailed protocols for the application of unbiased quantitative stereological analyses of relevant morphological parameters of the gills of rainbow trout. These gill parameters inter alia include the total volume of the primary and secondary gill lamellae, the surface area of the secondary gill lamellae epithelium (i.e., the respiratory surface) and the thickness of the diffusion barrier. The featured protocols are adapted to fish of frequently used body size classes (300-2000 g). They include well-established, conventional sampling methods, probes and test systems for unbiased quantitative stereological analyses of light- and electron microscopic 2-D gill sections, as well as the application of modern 3-D light sheet fluorescence microscopy (LSFM) of optically cleared gill samples as an innovative, fast and efficient quantitative morphological analysis approach. The methods shown here provide a basis for standardized and representative state-of-the-art quantitative morphological analyses of trout gills, ensuring the unbiasedness and reproducibility, as well as the intra- and inter-study comparability of analyses results. Their broad implementation will therefore significantly contribute to the reliable identification of no observed effect concentration (NOEC) limits in ecotoxicological studies and, moreover, to limit the number of experimental animals by reduction of unnecessary repetition of experiments.
Collapse
Affiliation(s)
- Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannah Wünnemann
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Schwaiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
27
|
Liapis E, Klemm U, Karlas A, Reber J, Ntziachristos V. Resolution of Spatial and Temporal Heterogeneity in Bevacizumab-Treated Breast Tumors by Eigenspectra Multispectral Optoacoustic Tomography. Cancer Res 2020; 80:5291-5304. [PMID: 32994204 DOI: 10.1158/0008-5472.can-20-1011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Understanding temporal and spatial hemodynamic heterogeneity as a function of tumor growth or therapy affects the development of novel therapeutic strategies. In this study, we employed eigenspectra multispectral optoacoustic tomography (eMSOT) as a next-generation optoacoustic method to impart high accuracy in resolving tumor hemodynamics during bevacizumab therapy in two types of breast cancer xenografts (KPL-4 and MDA-MB-468). Patterns of tumor total hemoglobin concentration (THb) and oxygen saturation (sO2) were imaged in control and bevacizumab-treated tumors over the course of 58 days (KPL-4) and 16 days (MDA-MB-468), and the evolution of functional vasculature "normalization" was resolved macroscopically. An initial sharp drop in tumor sO2 and THb content shortly after the initiation of bevacizumab treatment was followed by a recovery in oxygenation levels. Rim-core subregion analysis revealed steep spatial oxygenation gradients in growing tumors that were reduced after bevacizumab treatment. Critically, eMSOT imaging findings were validated directly by histopathologic assessment of hypoxia (pimonidazole) and vascularity (CD31). These data demonstrate how eMSOT brings new abilities for accurate observation of entire tumor responses to challenges at spatial and temporal dimensions not available by other techniques today. SIGNIFICANCE: Accurate assessment of hypoxia and vascularization over space and time is critical for understanding tumor development and the role of spatial heterogeneity in tumor aggressiveness, metastasis, and response to treatment.
Collapse
Affiliation(s)
- Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Blutke A, Sun N, Xu Z, Buck A, Harrison L, Schriever SC, Pfluger PT, Wiles D, Kunzke T, Huber K, Schlegel J, Aichler M, Feuchtinger A, Matiasek K, Hauck SM, Walch A. Light sheet fluorescence microscopy guided MALDI-imaging mass spectrometry of cleared tissue samples. Sci Rep 2020; 10:14461. [PMID: 32879402 PMCID: PMC7468256 DOI: 10.1038/s41598-020-71465-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) of optically cleared biological samples represents a powerful tool to analyze the 3-dimensional morphology of tissues and organs. Multimodal combinations of LSFM with additional analyses of the identical sample help to limit the consumption of restricted specimen and reduce inter-sample variation. Here, we demonstrate the proof-of-concept that LSFM of cleared brain tissue samples can be combined with Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) for detection and quantification of proteins. Samples of freshly dissected murine brain and of archived formalin-fixed paraffin-embedded (FFPE) human brain tissue were cleared (3DISCO). Tissue regions of interest were defined by LSFM and excised, (re)-embedded in paraffin, and sectioned. Mouse sections were coated with sinapinic acid matrix. Human brain sections were pre-digested with trypsin and coated with α-cyano-4-hydroxycinnamic acid matrix. Subsequently, sections were subjected to MALDI-time-of-flight (TOF)-MSI in mass ranges between 0.8 to 4 kDa (human tissue sections), or 2.5–25 kDa (mouse tissue sections) with a lateral resolution of 50 µm. Protein- and peptide-identities corresponding to acquired MALDI-MSI spectra were confirmed by parallel liquid chromatography tandem mass spectrometry (LC–MS/MS) analysis. The spatial abundance- and intensity-patterns of established marker proteins detected by MALDI-MSI were also confirmed by immunohistochemistry.
Collapse
Affiliation(s)
- Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Zhihao Xu
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Luke Harrison
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, 80333, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | | | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Katharina Huber
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Jürgen Schlegel
- Institute for Pathology, Department of Neuropathology, Technische Universität München, 80333, Munich, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany.
| | - Kaspar Matiasek
- Institute for Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Stefanie M Hauck
- Research Unit for Protein Science, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| |
Collapse
|
29
|
Nikolenko VN, Terpilovsky AA, Kuzmin AL, Lukashkina RA, Strizhkov AE, Suslov AV, Kochurova EV, Gavrushova LV, Sinelnikov MY. Cryogenic sequenced layering for the 3D reconstruction of biological objects. Sci Rep 2020; 10:11899. [PMID: 32681082 PMCID: PMC7367884 DOI: 10.1038/s41598-020-68682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
Three-dimensional (3D) visualization is applied throughout many specialities, prompting an important breakthrough in accessibility and modeling of data. Experimental rendering and computerized reconstruction of objects has influenced many scientific achievements, facilitating one of the greatest advancements in medical education since the first illustrated anatomy book changed specialist training forever. Modern medicine relies on detailed, high quality virtual models for educational, experimental and clinical purposes. Almost all current virtual visualization methods rely on object slicing producing serial sections, which can then be digitalized or analyzed manually. The tendency to computerize serial sections roots from convenience, accessibility, decent visualization quality and automation capabilities. Drawbacks of serial section imaging is tissue damage occurring within each consequent sectioning. To utilize the important aspects of real-life object reconstruction, and maintain integrity of biological structures, we suggest a novel method of low-temperature layering of objects for digitization and computerized virtual reconstruction. Here we show the process of consequent imaging of each novel layer of a biological object, which provides a computer with high quality data for virtual reconstruction and creation of a multidimensional real-life model. Our method prevents tissue deformation and biodegradation due to specific methods used in preparation of the biological object. The resulting images can be applied in surgical training, medical education and numerous scientific fields for realistic reconstruction of biological objects.
Collapse
Affiliation(s)
- Vladimir Nikolaevich Nikolenko
- Department of Human Anatomy, Sechenov University, Mohovaya, 11/10, Moscow, Russia, 125009.
- Department of Anatomy, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, Russia, 119991.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brenna C, Khan AUM, Picascia T, Sun Q, Heuveline V, Gretz N. New technical approaches for
3D
morphological imaging and quantification of measurements. Anat Rec (Hoboken) 2020; 303:2702-2715. [DOI: 10.1002/ar.24463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Cinzia Brenna
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
| | - Arif ul Maula Khan
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
| | - Tiziana Picascia
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
| | - Quanchao Sun
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
- Department of Thoracic Surgery, Union HospitalTongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Vincent Heuveline
- University Computing CenterUniversity of Heidelberg Heidelberg Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty MannheimUniversity of Heidelberg Mannheim Germany
| |
Collapse
|
31
|
Koo DJ, Choi J, Ahn M, Ahn BH, Min DH, Kim SY. Large-Scale 3D Optical Mapping and Quantitative Analysis of Nanoparticle Distribution in Tumor Vascular Microenvironment. Bioconjug Chem 2020; 31:1784-1794. [DOI: 10.1021/acs.bioconjchem.0c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Program in Neuroscience, Seoul National University, Seoul 08826, South Korea
| | - Jinahn Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Minchul Ahn
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, South Korea
| | - Benjamin H. Ahn
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, South Korea
| | - Sung-Yon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Program in Neuroscience, Seoul National University, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
32
|
A new method for three-dimensional immunofluorescence study of the cochlea. Hear Res 2020; 392:107956. [PMID: 32464455 DOI: 10.1016/j.heares.2020.107956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 01/07/2023]
Abstract
Visualisation of cochlear histopathology in three-dimensions has been long desired in the field of hearing research. This paper outlines a technique that has made this possible and shows a research application in the field of hearing protection after cochlear implantation. The technique utilises robust immunofluorescent labelling followed by effective tissue clearing and fast image acquisition using Light Sheet Microscopy. We can access the health of individual components by immunofluorescent detection of proteins such as myosin VIIa to look at cochlear hair cells, NaKATPase alpha 3 to look at spiral ganglion neurons, and IBA1 to look at macrophages within a single cochlea, whilst maintaining the integrity of fine membranous structures and keeping the cochlear implant in place. This allows the tissue response to cochlear implantation to be studied in detail, including the immune reaction to the implant and the impact on the structure and health of neural components such as hair cells. This technique reduces time and labour required for sectioning of cochleae and can allow visualisation of cellular detail. Use of image analysis software allows conversion of high-resolution image stacks into three-dimensional interactive data sets so volumes and numbers of surfaces can be measured. Immunofluorescent whole cochlea labelling and Light Sheet Microscopy have the capacity to be applied to many questions in hearing research of both the cochlea and vestibular system.
Collapse
|
33
|
Li J, Chekkoury A, Prakash J, Glasl S, Vetschera P, Koberstein-Schwarz B, Olefir I, Gujrati V, Omar M, Ntziachristos V. Spatial heterogeneity of oxygenation and haemodynamics in breast cancer resolved in vivo by conical multispectral optoacoustic mesoscopy. LIGHT, SCIENCE & APPLICATIONS 2020; 9:57. [PMID: 32337021 PMCID: PMC7154032 DOI: 10.1038/s41377-020-0295-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 05/11/2023]
Abstract
The characteristics of tumour development and metastasis relate not only to genomic heterogeneity but also to spatial heterogeneity, associated with variations in the intratumoural arrangement of cell populations, vascular morphology and oxygen and nutrient supply. While optical (photonic) microscopy is commonly employed to visualize the tumour microenvironment, it assesses only a few hundred cubic microns of tissue. Therefore, it is not suitable for investigating biological processes at the level of the entire tumour, which can be at least four orders of magnitude larger. In this study, we aimed to extend optical visualization and resolve spatial heterogeneity throughout the entire tumour volume. We developed an optoacoustic (photoacoustic) mesoscope adapted to solid tumour imaging and, in a pilot study, offer the first insights into cancer optical contrast heterogeneity in vivo at an unprecedented resolution of <50 μm throughout the entire tumour mass. Using spectral methods, we resolve unknown patterns of oxygenation, vasculature and perfusion in three types of breast cancer and showcase different levels of structural and functional organization. To our knowledge, these results are the most detailed insights of optical signatures reported throughout entire tumours in vivo, and they position optoacoustic mesoscopy as a unique investigational tool linking microscopic and macroscopic observations.
Collapse
Affiliation(s)
- Jiao Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, No.92, Weijin Road, Nankai District, 300072 Tianjin, China
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
| | - Andrei Chekkoury
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
| | - Jaya Prakash
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, CV Raman Rd, Bengaluru, 560012 Karnataka India
| | - Sarah Glasl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
| | - Paul Vetschera
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
| | - Benno Koberstein-Schwarz
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
| | - Ivan Olefir
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
| | - Murad Omar
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Ismaningerstr. 22, D-81675 Munich, Germany
| |
Collapse
|
34
|
Yang R, Guo J, Lin Z, Song H, Feng Z, Ou Y, Zhou M, Li Y, Yi G, Li K, Li K, Guo M, Wang X, Huang G, Liu Z, Qi S, Liu Y. The combination of two-dimensional and three-dimensional analysis methods contributes to the understanding of glioblastoma spatial heterogeneity. JOURNAL OF BIOPHOTONICS 2020; 13:e201900196. [PMID: 31743584 DOI: 10.1002/jbio.201900196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Heterogeneity is regarded as the major factor leading to the poor outcomes of glioblastoma (GBM) patients. However, conventional two-dimensional (2D) analysis methods, such as immunohistochemistry and immunofluorescence, have limited capacity to reveal GBM spatial heterogeneity. Thus, we sought to develop an effective analysis strategy to increase the understanding of GBM spatial heterogeneity. Here, 2D and three-dimensional (3D) analysis methods were compared for the examination of cell morphology, cell distribution and large intact structures, and both types of methods were employed to dissect GBM spatial heterogeneity. The results showed that 2D assays showed only cross-sections of specimens but provided a full view. To visualize intact GBM specimens in 3D without sectioning, the optical tissue clearing methods CUBIC and iDISCO+ were used to clear opaque specimens so that they would become more transparent, after which the specimens were imaged with a two-photon microscope. The 3D analysis methods showed specimens at a large spatial scale at cell-level resolution and had overwhelming advantages in comparison to the 2D methods. Furthermore, in 3D, heterogeneity in terms of cell stemness, the microvasculature, and immune cell infiltration within GBM was comprehensively observed and analysed. Overall, we propose that 2D and 3D analysis methods should be combined to provide much greater detail to increase the understanding of GBM spatial heterogeneity.
Collapse
Affiliation(s)
- Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinglin Guo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiying Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haimin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yichao Ou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaomin Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Li
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaishu Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manlan Guo
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiran Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
| | - Zhifeng Liu
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Glioma Center, Guangzhou, China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Kennel P, Dichamp J, Barreau C, Guissard C, Teyssedre L, Rouquette J, Colombelli J, Lorsignol A, Casteilla L, Plouraboué F. From whole-organ imaging to in-silico blood flow modeling: A new multi-scale network analysis for revisiting tissue functional anatomy. PLoS Comput Biol 2020; 16:e1007322. [PMID: 32059013 PMCID: PMC7062279 DOI: 10.1371/journal.pcbi.1007322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/09/2020] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
We present a multi-disciplinary image-based blood flow perfusion modeling of a whole organ vascular network for analyzing both its structural and functional properties. We show how the use of Light-Sheet Fluorescence Microscopy (LSFM) permits whole-organ micro-vascular imaging, analysis and modelling. By using adapted image post-treatment workflow, we could segment, vectorize and reconstruct the entire micro-vascular network composed of 1.7 million vessels, from the tissue-scale, inside a ∼ 25 × 5 × 1 = 125mm3 volume of the mouse fat pad, hundreds of times larger than previous studies, down to the cellular scale at micron resolution, with the entire blood perfusion modeled. Adapted network analysis revealed the structural and functional organization of meso-scale tissue as strongly connected communities of vessels. These communities share a distinct heterogeneous core region and a more homogeneous peripheral region, consistently with known biological functions of fat tissue. Graph clustering analysis also revealed two distinct robust meso-scale typical sizes (from 10 to several hundred times the cellular size), revealing, for the first time, strongly connected functional vascular communities. These community networks support heterogeneous micro-environments. This work provides the proof of concept that in-silico all-tissue perfusion modeling can reveal new structural and functional exchanges between micro-regions in tissues, found from community clusters in the vascular graph.
Collapse
Affiliation(s)
- Pol Kennel
- Institute of Fluid Mechanics of Toulouse (IMFT), Toulouse University, CNRS, INPT, UPS, Toulouse, France
| | - Jules Dichamp
- Institute of Fluid Mechanics of Toulouse (IMFT), Toulouse University, CNRS, INPT, UPS, Toulouse, France
| | - Corinne Barreau
- CNRS 5273; UMR STROMALab, BP 84225, F-31 432 Toulouse Cedex 4, France
| | | | | | | | - Julien Colombelli
- Advanced Digital Microscopy Core Facility, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology. C. Baldiri Reixac, 10. E-08028 Barcelona, Spain
| | - Anne Lorsignol
- CNRS 5273; UMR STROMALab, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - Louis Casteilla
- CNRS 5273; UMR STROMALab, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - Franck Plouraboué
- Institute of Fluid Mechanics of Toulouse (IMFT), Toulouse University, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
36
|
Fischer C, Munks MW, Hill AB, Kroczek RA, Bissinger S, Brand V, Schmittnaegel M, Imhof-Jung S, Hoffmann E, Herting F, Klein C, Knoetgen H. Vaccine-induced CD8 T cells are redirected with peptide-MHC class I-IgG antibody fusion proteins to eliminate tumor cells in vivo. MAbs 2020; 12:1834818. [PMID: 33151105 PMCID: PMC7668529 DOI: 10.1080/19420862.2020.1834818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Simulating a viral infection in tumor cells is an attractive concept to eliminate tumor cells. We previously reported the molecular design and the in vitro potency of recombinant monoclonal antibodies fused to a virus-derived peptide MHC class I complex that bypass the peptide processing and MHC loading pathway and directly displays a viral peptide in an MHC class I complex on the tumor cell surface. Here, we show that a vaccination-induced single peptide-specific CD8 T cell response was sufficient to eliminate B16 melanoma tumor cells in vivo in a fully immunocompetent, syngeneic mouse tumor model when mice were treated with mouse pMHCI-IgGs fusion proteins targeting the mouse fibroblast activation protein. Tumor growth of small, established B16 lung metastases could be controlled. The pMHCI-IgG had similar potency as an analogous pan-CD3 T-cell bispecific antibody. In contrast to growth control of small tumors, none of the compounds controlled larger solid tumors of MC38 cancer cells, despite penetration of pMHCI-IgGs into the tumor tissue and clear attraction and activation of antigen-specific CD8 T cells inside the tumor. pMHCI-IgG can have a similar potency as classical pan-T-cell recruiting molecules. The results also highlight the need to better understand immune suppression in advanced solid tumors.
Collapse
Affiliation(s)
- Cornelia Fischer
- Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Michael W. Munks
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Ann B. Hill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | | | - Stefan Bissinger
- Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Verena Brand
- Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Sabine Imhof-Jung
- Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Eike Hoffmann
- Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Frank Herting
- Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian Klein
- Discovery Oncology, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Hendrik Knoetgen
- Therapeutic Modalities, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
37
|
de Jongh SJ, Tjalma JJJ, Koller M, Linssen MD, Vonk J, Dobosz M, Jorritsma-Smit A, Kleibeuker JH, Hospers GAP, Havenga K, Hemmer PHJ, Karrenbeld A, van Dam GM, van Etten B, Nagengast WB. Back-Table Fluorescence-Guided Imaging for Circumferential Resection Margin Evaluation Using Bevacizumab-800CW in Patients with Locally Advanced Rectal Cancer. J Nucl Med 2019; 61:655-661. [PMID: 31628218 DOI: 10.2967/jnumed.119.232355] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Negative circumferential resection margins (CRM) are the cornerstone for the curative treatment of locally advanced rectal cancer (LARC). However, in up to 18.6% of patients, tumor-positive resection margins are detected on histopathology. In this proof-of-concept study, we investigated the feasibility of optical molecular imaging as a tool for evaluating the CRM directly after surgical resection to improve tumor-negative CRM rates. Methods: LARC patients treated with neoadjuvant chemoradiotherapy received an intravenous bolus injection of 4.5 mg of bevacizumab-800CW, a fluorescent tracer targeting vascular endothelial growth factor A, 2-3 d before surgery (ClinicalTrials.gov identifier: NCT01972373). First, for evaluation of the CRM status, back-table fluorescence-guided imaging (FGI) of the fresh surgical resection specimens (n = 8) was performed. These results were correlated with histopathology results. Second, for determination of the sensitivity and specificity of bevacizumab-800CW for tumor detection, a mean fluorescence intensity cutoff value was determined from the formalin-fixed tissue slices (n = 42; 17 patients). Local bevacizumab-800CW accumulation was evaluated by fluorescence microscopy. Results: Back-table FGI correctly identified a tumor-positive CRM by high fluorescence intensities in 1 of 2 patients (50%) with a tumor-positive CRM. For the other patient, low fluorescence intensities were shown, although (sub)millimeter tumor deposits were present less than 1 mm from the CRM. FGI correctly identified 5 of 6 tumor-negative CRM (83%). The 1 patient with false-positive findings had a marginal negative CRM of only 1.4 mm. Receiver operating characteristic curve analysis of the fluorescence intensities of formalin-fixed tissue slices yielded an optimal mean fluorescence intensity cutoff value for tumor detection of 5,775 (sensitivity of 96.19% and specificity of 80.39%). Bevacizumab-800CW enabled a clear differentiation between tumor and normal tissue up to a microscopic level, with a tumor-to-background ratio of 4.7 ± 2.5 (mean ± SD). Conclusion: In this proof-of-concept study, we showed the potential of back-table FGI for evaluating the CRM status in LARC patients. Optimization of this technique with adaptation of standard operating procedures could change perioperative decision making with regard to extending resections or applying intraoperative radiation therapy in the case of positive CRM.
Collapse
Affiliation(s)
- Steven J de Jongh
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien J J Tjalma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjory Koller
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs D Linssen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jasper Vonk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Dobosz
- Discovery Oncology, Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Annelies Jorritsma-Smit
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan H Kleibeuker
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Havenga
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick H J Hemmer
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arend Karrenbeld
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Gooitzen M van Dam
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Boudewijn van Etten
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Bai SB, Liu DZ, Cheng Y, Cui H, Liu M, Cui MX, Zhang BL, Mei QB, Zhou SY. Osteoclasts and tumor cells dual targeting nanoparticle to treat bone metastases of lung cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102054. [DOI: 10.1016/j.nano.2019.102054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/16/2019] [Accepted: 06/30/2019] [Indexed: 01/01/2023]
|
39
|
Assessing micrometastases as a target for nanoparticles using 3D microscopy and machine learning. Proc Natl Acad Sci U S A 2019; 116:14937-14946. [PMID: 31285340 DOI: 10.1073/pnas.1907646116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Metastasis of solid tumors is a key determinant of cancer patient survival. Targeting micrometastases using nanoparticles could offer a way to stop metastatic tumor growth before it causes excessive patient morbidity. However, nanoparticle delivery to micrometastases is difficult to investigate because micrometastases are small in size and lie deep within tissues. Here, we developed an imaging and image analysis workflow to analyze nanoparticle-cell interactions in metastatic tumors. This technique combines tissue clearing and 3D microscopy with machine learning-based image analysis to assess the physiology of micrometastases with single-cell resolution and quantify the delivery of nanoparticles within them. We show that nanoparticles access a higher proportion of cells in micrometastases (50% nanoparticle-positive cells) compared with primary tumors (17% nanoparticle-positive cells) because they reside close to blood vessels and require a small diffusion distance to reach all tumor cells. Furthermore, the high-throughput nature of our image analysis workflow allowed us to profile the physiology and nanoparticle delivery of 1,301 micrometastases. This enabled us to use machine learning-based modeling to predict nanoparticle delivery to individual micrometastases based on their physiology. Our imaging method allows researchers to measure nanoparticle delivery to micrometastases and highlights an opportunity to target micrometastases with nanoparticles. The development of models to predict nanoparticle delivery based on micrometastasis physiology could enable personalized treatments based on the specific physiology of a patient's micrometastases.
Collapse
|
40
|
Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. Eur J Pharm Biopharm 2019; 142:195-203. [PMID: 31228557 DOI: 10.1016/j.ejpb.2019.06.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 02/01/2023]
Abstract
We recently constructed a multicellular spheroid model of pancreatic tumor based on a triple co-culture of cancer cells, fibroblasts and endothelial cells and characterized by the presence of fibronectin, an important component of the tumor extracellular matrix. By combining cancer cells and stromal components, this model recreates in vitro the three-dimensional (3D) architecture of solid tumors. In this study, we used these hetero-type spheroids as a tool to assess the penetration of doxorubicin (used as a model drug) through the whole tumor mass either in a free form or loaded into polymer nanoparticles (NPs), and we investigated whether microscopy images, acquired by Confocal Laser Scanning Microscopy (CLSM) and Light Sheet Fluorescence Microscopy (LSFM), would be best to provide reliable information on this process. Results clearly demonstrated that CLSM was not suitable to accurately monitor the diffusion of small molecules such as the doxorubicin. Indeed, it only allowed to scan a layer of 100 µm depth and no information on deeper layers could be available because of a progressive loss of the fluorescence signal. On the contrary, a complete 3D tomography of the hetero-type multicellular tumor spheroids (MCTS) was obtained by LSFM and multi-view image fusion which revealed that the fluorescent molecule was able to reach the core of spheroids as large as 1 mm in diameter. However, no doxorubicin-loaded polymer nanoparticles were detected in the spheroids, highlighting the challenge of nanomedicine delivery through biological barriers. Overall, the combination of hetero-type MCTS and LSFM allowed to carry out a highly informative microscopic assessment and represents a suitable approach to precisely follow up the drug penetration in tumors. Accordingly, it could provide useful support in the preclinical investigation and optimization of nanoscale systems for drug delivery to solid tumors.
Collapse
|
41
|
Zhou K, Zhang JW, Wang QZ, Liu WY, Liu JL, Yao L, Cai MM, Ni SY, Cai QY, Wang GJ, Zhou F. Apatinib, a selective VEGFR2 inhibitor, improves the delivery of chemotherapeutic agents to tumors by normalizing tumor vessels in LoVo colon cancer xenograft mice. Acta Pharmacol Sin 2019; 40:556-562. [PMID: 29977004 DOI: 10.1038/s41401-018-0058-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor vascular normalization has been proposed as a therapeutic strategy for malignant neoplasms, which can also interpret the synergistic effect of anti-angiogenesis agents combined with chemotherapy. Apatinib (Apa), a highly selective VEGFR2 inhibitor, attracts much attentions due to its encouraging anticancer activity, especially in the clinical trials of combined treatment. In this study, we investigated whether Apa could promote vascular normalization in tumor in a certain time window. Mice bearing LoVo colon cancer xenograft were orally administrated Apa (150 mg kg-1 per day) for 5, 7, 10, or 12 days. Apa significantly inhibited tumor growth and decreased the microvessel density. Using multi-photon microscopy and electron microscopy, we found that Apa improved tumor vessel morphology by pruning distorted vessel branches and decreased the gap between endothelial cells after a 7-day treatment. Furthermore, Apa decreased vessel leakage and increased pericyte coverage on vascular endothelial cells, suggesting that tumor vessels were more mature and integrated. The intratumoral distribution of adriamycin (ADR) in Apa group was improved from day 7 to 10 without change in plasma drug concentration. Tumor blood perfusion was also increased in this window, and the expression of hypoxia induced factor 1α was downregulated, suggesting the effect of Apa on alleviating tumor hypoxic micro-environment. In conclusion, Apa may improve the effective perfusion of tumor vessels and increase the intratumoral distribution of ADR in a certain time window via normalizing tumor vessels. This normalization window (7 to 10 days of treatment) may contribute to develop a regimen of combined medication in clinic use of Apa.
Collapse
|
42
|
Garattini S, Fuso Nerini I, D'Incalci M. Not only tumor but also therapy heterogeneity. Ann Oncol 2019; 29:13-19. [PMID: 29045538 DOI: 10.1093/annonc/mdx646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- S Garattini
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - I Fuso Nerini
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - M D'Incalci
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
43
|
Toolbox for In Vivo Imaging of Host-Parasite Interactions at Multiple Scales. Trends Parasitol 2019; 35:193-212. [PMID: 30745251 DOI: 10.1016/j.pt.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host-pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology.
Collapse
|
44
|
Lee SSY, Bindokas VP, Kron SJ. Multiplex Three-Dimensional Mapping of Macromolecular Drug Distribution in the Tumor Microenvironment. Mol Cancer Ther 2019; 18:213-226. [PMID: 30322947 PMCID: PMC6318001 DOI: 10.1158/1535-7163.mct-18-0554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Macromolecular cancer drugs such as therapeutic antibodies and nanoparticles are well known to display slow extravasation and incomplete penetration into tumors, potentially protecting cancer cells from therapeutic effects. Conventional assays to track macromolecular drug delivery are poorly matched to the heterogeneous tumor microenvironment, but recent progress on optical tissue clearing and three-dimensional (3D) tumor imaging offers a path to quantitative assays with cellular resolution. Here, we apply transparent tissue tomography (T3) as a tool to track perfusion and delivery in the tumor and to evaluate target binding and vascular permeability. Using T3, we mapped anti-programmed cell death protein-ligand 1 (PD-L1) antibody distribution in whole mouse tumors. By measuring 3D penetration distances of the antibody drug out from the blood vessel boundaries into the tumor parenchyma, we determined spatial pharmacokinetics of anti-PD-L1 antibody drugs in mouse tumors. With multiplex imaging of tumor components, we determined the distinct distribution of anti-PD-L1 antibody drug in the tumor microenvironment with different PD-L1 expression patterns. T3 imaging revealed CD31+ capillaries are more permeable to anti-PD-L1 antibody transport compared with the blood vessels composed of endothelium supported by vascular fibroblasts and smooth muscle cells. T3 analysis also confirmed that isotype IgG antibody penetrates more deeply into tumor parenchyma than anti-Her2 or anti-EGFR antibody, which were restrained by binding to their respective antigens on tumor cells. Thus, T3 offers simple and rapid access to 3D, quantitative maps of macromolecular drug distribution in the tumor microenvironment, offering a new tool for development of macromolecular cancer therapeutics.
Collapse
Affiliation(s)
- Steve Seung-Young Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Vytautas P Bindokas
- Integrated Light Microscopy Facility, The University of Chicago, Chicago, Illinois
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois.
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
45
|
Kannan P, Kretzschmar WW, Winter H, Warren D, Bates R, Allen PD, Syed N, Irving B, Papiez BW, Kaeppler J, Markelc B, Kinchesh P, Gilchrist S, Smart S, Schnabel JA, Maughan T, Harris AL, Muschel RJ, Partridge M, Sharma RA, Kersemans V. Functional Parameters Derived from Magnetic Resonance Imaging Reflect Vascular Morphology in Preclinical Tumors and in Human Liver Metastases. Clin Cancer Res 2018; 24:4694-4704. [PMID: 29959141 PMCID: PMC6171743 DOI: 10.1158/1078-0432.ccr-18-0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Purpose: Tumor vessels influence the growth and response of tumors to therapy. Imaging vascular changes in vivo using dynamic contrast-enhanced MRI (DCE-MRI) has shown potential to guide clinical decision making for treatment. However, quantitative MR imaging biomarkers of vascular function have not been widely adopted, partly because their relationship to structural changes in vessels remains unclear. We aimed to elucidate the relationships between vessel function and morphology in vivo Experimental Design: Untreated preclinical tumors with different levels of vascularization were imaged sequentially using DCE-MRI and CT. Relationships between functional parameters from MR (iAUC, K trans, and BATfrac) and structural parameters from CT (vessel volume, radius, and tortuosity) were assessed using linear models. Tumors treated with anti-VEGFR2 antibody were then imaged to determine whether antiangiogenic therapy altered these relationships. Finally, functional-structural relationships were measured in 10 patients with liver metastases from colorectal cancer.Results: Functional parameters iAUC and K trans primarily reflected vessel volume in untreated preclinical tumors. The relationships varied spatially and with tumor vascularity, and were altered by antiangiogenic treatment. In human liver metastases, all three structural parameters were linearly correlated with iAUC and K trans For iAUC, structural parameters also modified each other's effect.Conclusions: Our findings suggest that MR imaging biomarkers of vascular function are linked to structural changes in tumor vessels and that antiangiogenic therapy can affect this link. Our work also demonstrates the feasibility of three-dimensional functional-structural validation of MR biomarkers in vivo to improve their biological interpretation and clinical utility. Clin Cancer Res; 24(19); 4694-704. ©2018 AACR.
Collapse
Affiliation(s)
- Pavitra Kannan
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom.
| | - Warren W Kretzschmar
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Helen Winter
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Daniel Warren
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Russell Bates
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Philip D Allen
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nigar Syed
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
- NHS, Department of Radiology, Churchill Hospital, Oxford, United Kingdom
| | - Benjamin Irving
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Bartlomiej W Papiez
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Jakob Kaeppler
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bosjtan Markelc
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Kinchesh
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stuart Gilchrist
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Julia A Schnabel
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tim Maughan
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruth J Muschel
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mike Partridge
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ricky A Sharma
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, University College London, London, United Kingdom
| | - Veerle Kersemans
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
d'Esposito A, Sweeney PW, Ali M, Saleh M, Ramasawmy R, Roberts TA, Agliardi G, Desjardins A, Lythgoe MF, Pedley RB, Shipley R, Walker-Samuel S. Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours. Nat Biomed Eng 2018; 2:773-787. [PMID: 31015649 DOI: 10.1038/s41551-018-0306-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 09/06/2018] [Indexed: 01/02/2023]
Abstract
Understanding the uptake of a drug by diseased tissue, and the drug's subsequent spatiotemporal distribution, are central factors in the development of effective targeted therapies. However, the interaction between the pathophysiology of diseased tissue and individual therapeutic agents can be complex, and can vary across tissue types and across subjects. Here, we show that the combination of mathematical modelling, high-resolution optical imaging of intact and optically cleared tumour tissue from animal models, and in vivo imaging of vascular perfusion predicts the heterogeneous uptake, by large tissue samples, of specific therapeutic agents, as well as their spatiotemporal distribution. In particular, by using murine models of colorectal cancer and glioma, we report and validate predictions of steady-state blood flow and intravascular and interstitial fluid pressure in tumours, of the spatially heterogeneous uptake of chelated gadolinium by tumours, and of the effect of a vascular disrupting agent on tumour vasculature.
Collapse
Affiliation(s)
- Angela d'Esposito
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Paul W Sweeney
- Department of Mechanical Engineering, University College London, London, UK
| | - Morium Ali
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Magdy Saleh
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Rajiv Ramasawmy
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Thomas A Roberts
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Giulia Agliardi
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adrien Desjardins
- Department of Medical Physics, University College London, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | | | - Rebecca Shipley
- Department of Mechanical Engineering, University College London, London, UK.
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| |
Collapse
|
47
|
Godefroy D, Rostène W, Anouar Y, Goazigo ARL. Tyrosine-hydroxylase immunoreactivity in the mouse transparent brain and adrenal glands. J Neural Transm (Vienna) 2018; 126:367-375. [PMID: 30206700 DOI: 10.1007/s00702-018-1925-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023]
Abstract
Working on catecholamine systems for years, the neuropharmacologist Arvid Carlsson has made a number of important and pioneering discoveries, which have highlighted the key role of these neuronal and peripheral neurotransmitters in brain functions and adrenal regulations. Since then, major advances have been made concerning the distribution of the catecholaminergic systems in particular by studying their rate-limiting enzyme, tyrosine hydroxylase (TH). Recently new methods of tissue transparency coupled with in toto immununostaining and three-dimensional (3D) imaging technologies allow to precisely map TH immunoreactive pathways in the mouse brain and adrenal glands. High magnification images and movies obtained with combined technologies (iDISCO+ and light-sheet microscopy) are presented in this review dedicated to the pioneer work of Arvid Carlsson and his collaborators.
Collapse
Affiliation(s)
- David Godefroy
- Institut de la Vision, Sorbonne Université, INSERM CNRS UMRS 968, Paris, France
- Normandie Université, INSERM, U1239, DC2N, IRIB, UNIROUEN, Mont-St-Aignan, France
| | - William Rostène
- Institut de la Vision, Sorbonne Université, INSERM CNRS UMRS 968, Paris, France.
| | - Youssef Anouar
- Normandie Université, INSERM, U1239, DC2N, IRIB, UNIROUEN, Mont-St-Aignan, France
| | | |
Collapse
|
48
|
Kennel P, Teyssedre L, Colombelli J, Plouraboué F. Toward quantitative three-dimensional microvascular networks segmentation with multiview light-sheet fluorescence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-14. [PMID: 30120828 DOI: 10.1117/1.jbo.23.8.086002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/18/2018] [Indexed: 05/08/2023]
Abstract
Three-dimensional (3-D) large-scale imaging of microvascular networks is of interest in various areas of biology and medicine related to structural, functional, developmental, and pathological issues. Light-sheet fluorescence microscopy (LSFM) techniques are rapidly spreading and are now on the way to offer operational solutions for large-scale tissue imaging. This contribution describes how reliable vessel segmentation can be handled from LSFM data in very large tissue volumes using a suitable image analysis workflow. Since capillaries are tubular objects of a few microns scale radius, they represent challenging structures to reliably reconstruct without distortion and artifacts. We provide a systematic analysis of multiview deconvolution image processing workflow to control and evaluate the accuracy of the reconstructed vascular network using various low to high level, metrics. We show that even if low-level structural metrics are sensitive to isotropic imaging enhancement provided by a larger number of views, functional high-level metrics, including perfusion permeability, are less sensitive. Hence, combining deconvolution and registration onto a few number of views appears sufficient for a reliable quantitative 3-D vessel segmentation for their possible use for perfusion modeling.
Collapse
Affiliation(s)
- Pol Kennel
- Toulouse University, CNRS, INPT, UPS, Institute of Fluid Mechanics of Toulouse, Toulouse, France
| | - Lise Teyssedre
- ITAV, USR 3505, National Center of Scientific Research, Toulouse, France
| | - Julien Colombelli
- Institute of Science et Technology, Advanced Digital Microscopy Core Facility, Barcelona, Spain
| | - Franck Plouraboué
- Toulouse University, CNRS, INPT, UPS, Institute of Fluid Mechanics of Toulouse, Toulouse, France
| |
Collapse
|
49
|
El Alaoui-Lasmaili K, Faivre B. Antiangiogenic therapy: Markers of response, "normalization" and resistance. Crit Rev Oncol Hematol 2018; 128:118-129. [PMID: 29958627 DOI: 10.1016/j.critrevonc.2018.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023] Open
Abstract
Currently in cancer treatment, one premise is to use antiangiogenic therapies in association with chemotherapy or radiotherapy to augment their efficacy by benefiting from the vascular "normalization" induced by antiangiogenic therapy. This concept defines the time during which the tumor blood vessels adopt normal-like morphology and functionality, i.e. the blood vessels become more mature, the perfusion augments and hypoxia decreases. To date, there is such a diversity of treatment protocols where the type of antiangiogenic to adopt, its dose and duration of administration are different, that knowing when and how to treat is problematic. In this review, we analyzed thoroughly preclinical and clinical studies that use antiangiogenic treatments to benefit from the "normalization" and showed that the effects depend on the type of antiangiogenic administrated (anti-VEGF, anti-VEGFR, Multi-Kinase Inhibitor) and on the duration of treatment. Finally, biomarkers of "normalization" and resistance that could be used in the clinic are presented.
Collapse
Affiliation(s)
| | - Béatrice Faivre
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, Faculté de Pharmacie, Nancy, France.
| |
Collapse
|
50
|
Morotti M, Dass PH, Harris AL, Lord S. Pharmacodynamic and Pharmacokinetic Markers For Anti-angiogenic Cancer Therapy: Implications for Dosing and Selection of Patients. Eur J Drug Metab Pharmacokinet 2018; 43:137-153. [PMID: 29019020 DOI: 10.1007/s13318-017-0442-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is integral to tumour growth and invasion, and is a key target for cancer therapeutics. However, for many of the licensed indications, only a modest clinical benefit has been observed for both monoclonal antibody and small-molecule tyrosine kinase inhibitor anti-angiogenic therapy. Pre-clinical and clinical studies have attempted to evaluate circulating, imaging, genomic, pharmacokinetic, and pharmacodynamic markers that may aid both the selection of patients for treatment and define dosing. Correct dosing is likely to be critical in the context of vascular normalization to allow better delivery of concomitant anti-cancer therapy and novel imaging techniques hold much promise in the early evaluation of pharmacodynamic response to improve efficacy.
Collapse
Affiliation(s)
- Matteo Morotti
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK.
- Department of Gynaecology Oncology, University of Oxford, Oxford, UK.
- Department of Oncology, Churchill Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Prashanth Hari Dass
- Department of Oncology, Churchill Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Adrian L Harris
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
- Department of Oncology, Churchill Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Simon Lord
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
- Department of Oncology, Churchill Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|