1
|
Bayles BR, George MF, Christofferson RC. Long-term trends and spatial patterns of West Nile Virus emergence in California, 2004-2021. Zoonoses Public Health 2024; 71:258-266. [PMID: 38110854 DOI: 10.1111/zph.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
AIMS West Nile Virus (WNV) has remained a persistent source of vector-borne disease risk in California since first being identified in the state in 2003. The geographic distribution of WNV activity is relatively widespread, but varies considerably across different regions within the state. Spatial variation in human WNV infection depends upon social-ecological factors that influence mosquito populations and virus transmission dynamics. Measuring changes in spatial patterns over time is necessary for uncovering the underlying regional drivers of disease risk. METHODS AND RESULTS In this study, we utilized statewide surveillance data to quantify temporal changes and spatial patterns of WNV activity in California. We obtained annual WNV mosquito surveillance data from 2004 through 2021 from the California Arbovirus Surveillance Program. Geographic coordinates for mosquito pools were analysed using a suite of spatial statistics to identify and classify patterns in WNV activity over time. CONCLUSIONS We detected clear patterns of non-random WNV risk during the study period, including emerging hot spots in the Central Valley and non-random periods of oscillating WNV risk in Southern and Northern California subregions. Our findings offer new insights into 18 years of spatio-temporal variation in WNV activity across California, which may be used for targeted surveillance efforts and public health interventions.
Collapse
Affiliation(s)
- Brett R Bayles
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
- Department of Natural Sciences and Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Michaela F George
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
| | | |
Collapse
|
2
|
Foss L, Feiszli T, Kramer VL, Reisen WK, Padgett K. Epidemic versus endemic West Nile virus dead bird surveillance in California: Changes in sensitivity and focus. PLoS One 2023; 18:e0284039. [PMID: 37023091 PMCID: PMC10079120 DOI: 10.1371/journal.pone.0284039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Since 2003, the California West Nile virus (WNV) dead bird surveillance program (DBSP) has monitored publicly reported dead birds for WNV surveillance and response. In the current paper, we compared DBSP data from early epidemic years (2004-2006) with recent endemic years (2018-2020), with a focus on specimen collection criteria, county report incidence, bird species selection, WNV prevalence in dead birds, and utility of the DBSP as an early environmental indicator of WNV. Although fewer agencies collected dead birds in recent years, most vector control agencies with consistent WNV activity continued to use dead birds as a surveillance tool, with streamlined operations enhancing efficiency. The number of dead bird reports was approximately ten times greater during 2004-2006 compared to 2018-2020, with reports from the Central Valley and portions of Southern California decreasing substantially in recent years; reports from the San Francisco Bay Area decreased less dramatically. Seven of ten counties with high numbers of dead bird reports were also high human WNV case burden areas. Dead corvid, sparrow, and quail reports decreased the most compared to other bird species reports. West Nile virus positive dead birds were the most frequent first indicators of WNV activity by county in 2004-2006, followed by positive mosquitoes; in contrast, during 2018-2020 mosquitoes were the most frequent first indicators followed by dead birds, and initial environmental WNV detections occurred later in the season during 2018-2020. Evidence for WNV impacts on avian populations and susceptibility are discussed. Although patterns of dead bird reports and WNV prevalence in tested dead birds have changed, dead birds have endured as a useful element within our multi-faceted WNV surveillance program.
Collapse
Affiliation(s)
- Leslie Foss
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| | - Tina Feiszli
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| | - Vicki L. Kramer
- Vector-Borne Disease Section, California Department of Public Health, Sacramento, California, United States of America
| | - William K. Reisen
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Kerry Padgett
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| |
Collapse
|
3
|
Hager KM, Gaona E, Kistler A, Ratnasiri K, Retallack H, Barretto M, Wheeler SS, Hoover CM, Haas-Stapleton EJ. Quantitative reverse transcription PCR assay to detect a genetic marker of pyrethroid resistance in Culex mosquitoes. PLoS One 2022; 17:e0252498. [PMID: 35939507 PMCID: PMC9359573 DOI: 10.1371/journal.pone.0252498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Pyrethroid insecticides are widely used to control mosquitoes that transmit pathogens such as West Nile virus (WNV) to people. Single nucleotide polymorphisms (SNP) in the knockdown resistance locus (kdr) of the voltage gated sodium channel (Vgsc) gene in Culex mosquitoes are associated with knockdown resistance to pyrethroids. RNAseq was used to sequence the coding region of Vgsc for Culex tarsalis Coquillett and Culex erythrothorax Dyar, two WNV vectors. The cDNA sequences were used to develop a quantitative reverse transcriptase PCR assay that detects the L1014F kdr mutation in the Vgsc. Because this locus is conserved, the assay was used successfully in six Culex spp. The resulting Culex RTkdr assay was validated using quantitative PCR and sequencing of PCR products. The accuracy of the Culex RTkdr assay was 99%. The L1014F kdr mutation associated with pyrethroid resistance was more common among Cx. pipiens than other Culex spp. and was more prevalent in mosquitoes collected near farmland. The Culex RTkdr assay takes advantage of the RNA that vector control agencies routinely isolate to assess arbovirus prevalence in mosquitoes. We anticipate that public health and vector control agencies may employ the Culex RTkdr assay to define the geographic distribution of the L1014F kdr mutation in Culex species and improve the monitoring of insecticide resistance that will ultimately contribute to effective control of Culex mosquitoes.
Collapse
Affiliation(s)
- Kelli M. Hager
- Alameda County Mosquito Abatement District, Hayward, CA, United States of America
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States of America
| | - Erick Gaona
- Alameda County Mosquito Abatement District, Hayward, CA, United States of America
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Kalani Ratnasiri
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Hanna Retallack
- University of California, San Francisco, CA, United States of America
| | - Miguel Barretto
- Alameda County Mosquito Abatement District, Hayward, CA, United States of America
| | - Sarah S. Wheeler
- Sacramento-Yolo County Mosquito and Vector Control District, Elk Grove, CA, United States of America
| | - Christopher M. Hoover
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States of America
| | | |
Collapse
|
4
|
Watts MJ, Sarto i Monteys V, Mortyn PG, Kotsila P. The rise of West Nile Virus in Southern and Southeastern Europe: A spatial-temporal analysis investigating the combined effects of climate, land use and economic changes. One Health 2021; 13:100315. [PMID: 34485672 PMCID: PMC8408625 DOI: 10.1016/j.onehlt.2021.100315] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
West Nile Virus (WNV) has recently emerged as a major public health concern in Europe; its recent expansion also coincided with some remarkable socio-economic and environmental changes, including an economic crisis and some of the warmest temperatures on record. Here we empirically investigate the drivers of this phenomenon at a European wide scale by constructing and analyzing a unique spatial–temporal data-set, that includes data on climate, land-use, the economy, and government spending on environmental related sectors. Drivers and risk factors of WNV were identified by building a conceptual framework, and relationships were tested using a Generalized Additive Model (GAM), which could capture complex non-linear relationships and also account for spatial and temporal auto-correlation. Some of the key risk factors identified in our conceptual framework, such as a higher percentage of wetlands and arable land, climate factors (higher summer rainfall and higher summer temperatures) were positive predictors of WNV infections. Interestingly, winter temperatures of between 2 °C and 6 °C were among some of the strongest predictors of annual WNV infections; one possible explanation for this result is that successful overwintering of infected adult mosquitoes (likely Culex pipiens) is key to the intensity of outbreaks for a given year. Furthermore, lower surface water extent over the summer is also associated with more intense outbreaks, suggesting that drought, which is known to induce positive changes in WNV prevalence in mosquitoes, is also contributing to the upward trend in WNV cases in affected regions. Our indicators representing the economic crisis were also strong predictors of WNV infections, suggesting there is an association between austerity and cuts to key sectors, which could have benefited vector species and the virus during this crucial period. These results, taken in the context of recent winter warming due to climate change, and more frequent droughts, may offer an explanation of why the virus has become so prevalent in Europe.
Collapse
Affiliation(s)
- Matthew J. Watts
- Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Corresponding author.
| | - Victor Sarto i Monteys
- Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, Generalitat de Catalunya, Avinguda Meridiana, Barcelona, Spain
| | - P. Graham Mortyn
- Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Department of Geography, Autonomous University of Barcelona (UAB), Bellaterra, Spain
| | - Panagiota Kotsila
- Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Barcelona Laboratory for Urban Environmental Justice and Sustainability (BCNEJ), Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
5
|
Rochlin I, Faraji A, Healy K, Andreadis TG. West Nile Virus Mosquito Vectors in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1475-1490. [PMID: 31549725 DOI: 10.1093/jme/tjz146] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 05/11/2023]
Abstract
In North America, the geographic distribution, ecology, and vectorial capacity of a diverse assemblage of mosquito species belonging to the genus Culex determine patterns of West Nile virus transmission and disease risk. East of the Mississippi River, mostly ornithophagic Culex pipiens L. complex mosquitoes drive intense enzootic transmission with relatively small numbers of human cases. Westward, the presence of highly competent Culex tarsalis (Coquillett) under arid climate and hot summers defines the regions with the highest human risk. West Nile virus human risk distribution is not uniform geographically or temporally within all regions. Notable geographic 'hotspots' persist with occasional severe outbreaks. Despite two decades of comprehensive research, several questions remain unresolved, such as the role of non-Culex bridge vectors, which are not involved in the enzootic cycle, but may be involved in virus transmission to humans. The absence of bridge vectors also may help to explain the frequent lack of West Nile virus 'spillover' into human populations despite very intense enzootic amplification in the eastern United States. This article examines vectorial capacity and the eco-epidemiology of West Nile virus mosquito vectors in four geographic regions of North America and presents some of the unresolved questions.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District, Salt Lake City, UT
| | - Kristen Healy
- Department of Entomology, Louisiana State University, Baton Rouge, LA
| | - Theodore G Andreadis
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
| |
Collapse
|
6
|
Kilpatrick AM, Wheeler SS. Impact of West Nile Virus on Bird Populations: Limited Lasting Effects, Evidence for Recovery, and Gaps in Our Understanding of Impacts on Ecosystems. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1491-1497. [PMID: 31549723 PMCID: PMC6821264 DOI: 10.1093/jme/tjz149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/16/2023]
Abstract
The introduction of West Nile virus to North America in 1999 had profound impacts on human and wildlife health. Here, we review studies of WNV impacts on bird populations and find that overall impacts have been less than initially anticipated, with few species showing sustained changes in population size or demographic rates across multiple regions. This raises four questions: 1) What is the evidence for WNV impact on bird populations and how can we strengthen future analyses? We argue that future studies of WNV impacts should explicitly incorporate temporal variation in WNV transmission intensity, integrate field data with laboratory experimental infection studies, and correct for multiple comparisons. 2) What mechanisms might explain the relatively modest impact of WNV on most bird populations? We suggest that spatial and temporal variation in WNV transmission moderates WNV impacts on species that occur in multiple habitats, some of which provide refugia from infection. 3) Have species recovered from the initial invasion of WNV? We find evidence that many species and populations have recovered from initial WNV impact, but a few have not. 4) Did WNV cause cascading effects on other species and ecosystems? Unfortunately, few studies have examined the cascading effects of WNV population declines, but evidence suggests that some species may have been released from predation or competition. We close by discussing potentially overlooked groups of birds that may have been affected by WNV, and one highlight species, the yellow-billed magpie (Pica nutalli Audubon, 1837 [Passeriformes: Corvidae]), that appears to have suffered the largest range-wide impact from WNV.
Collapse
Affiliation(s)
- A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| | - Sarah S Wheeler
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, CA
| |
Collapse
|
7
|
Reisen WK, Wheeler SS. Overwintering of West Nile Virus in the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1498-1507. [PMID: 31549726 DOI: 10.1093/jme/tjz070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 06/10/2023]
Abstract
The establishment of a tropical virus such as West Nile (WNV; Flaviviridae: Flavivirus) within the temperate latitudes of the continental United States was unexpected and perhaps contingent, in part, upon the ability of this invasive virus to persist during winter when temperatures become too cold for replication and vector mosquito gonotrophic activity. Our Forum article reviews research examining possible overwintering mechanisms that include consistent reintroduction and local persistence in vector mosquitoes and avian hosts, mostly using examples from research conducted in California. We conclude that the transmission of WNV involves so many vectors and hosts within different landscapes that multiple overwintering pathways are possible and collectively may be necessary to allow this virus to overwinter consistently within the United States.
Collapse
Affiliation(s)
- William K Reisen
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA
| | - Sarah S Wheeler
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, CA
| |
Collapse
|
8
|
Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus. Sci Rep 2019; 9:6637. [PMID: 31036953 PMCID: PMC6488619 DOI: 10.1038/s41598-019-43246-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/18/2019] [Indexed: 11/08/2022] Open
Abstract
West Nile virus (WNV) has become the most epidemiologically important mosquito-borne disease in the United States, causing ~50,000 cases since its introduction in 1999. Transmitted primarily by Culex species, WNV transmission requires the complex interplay between bird reservoirs and mosquito vectors, with human cases the result of epizootic spillover. To better understand the intrinsic factors that drive these interactions, we have compiled infection data from sentinel chickens, mosquito vectors, and human cases in Iowa over a 15 year period (2002-2016) to better understand the spatial and temporal components that drive WNV transmission. Supplementing these findings with mosquito abundance, distribution, and host preferences data, we provide strong support that Culex tarsalis is the most important vector of human WNV infections in the region. Together, our analysis provides new insights into WNV infection patterns in multiple hosts and highlights the importance of long-term surveillance to understand the dynamics of mosquito-borne-disease transmission.
Collapse
|
9
|
Worwa G, Hutton AA, Brault AC, Reisen WK. Comparative fitness of West Nile virus isolated during California epidemics. PLoS Negl Trop Dis 2019; 13:e0007135. [PMID: 30716113 PMCID: PMC6375641 DOI: 10.1371/journal.pntd.0007135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/14/2019] [Accepted: 01/07/2019] [Indexed: 11/30/2022] Open
Abstract
West Nile virus (WNV) has been circulating in California since its first detection in 2003, causing repeated outbreaks affecting public, wildlife and veterinary health. Epidemics of WNV are difficult to predict due to the multitude of factors influencing transmission dynamics among avian and mosquito hosts. Typically, high levels of WNV amplification are required for outbreaks to occur, and therefore associated viral strains may exhibit enhanced virulence and mortality in competent bird species resulting in increased mosquito infection prevalence. In our previous study, most WNV isolates made from California during 2007-08 showed increased fitness when competed in House Finches (HOFI, Haemorhous mexicanus) and Culex tarsalis Coquillett mosquitoes against COAV997-5nt, a genetically marked recombinant virus derived from a 2003 California strain. Herein, we evaluated the competitive fitness of WNV strains isolated during California epidemics in 2004, 2005, 2007, 2011 and 2012 against COAV997-5nt. These outbreak isolates did not produce elevated mortality in HOFIs, but replicated more efficiently than did COAV997-5nt based on quantification of WNV RNA copies in sera, thereby demonstrating increased competitive fitness. Oral co-infections in Cx. tarsalis resulted in similar virus-specific infection and transmission rates, indicating that outbreak isolates did not have a fitness advantage over COAV997-5nt. Collectively, WNV isolates from outbreaks demonstrated relatively greater avian, but not vector, replicative fitness compared to COAV997-5nt, similar to previously characterized non-outbreak isolates of WNV. Our results indicated that ecological rather than viral factors may facilitate WNV amplification to outbreak levels, but monitoring viral phenotypes through competitive fitness studies may provide insight into altered replication and transmission potential among emerging WNV strains.
Collapse
Affiliation(s)
- Gabriella Worwa
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Andra A. Hutton
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
10
|
Danforth ME, Reisen WK, Barker CM. Detection of Arbovirus Transmission via Sugar Feeding in a Laboratory Setting. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1575-1579. [PMID: 29924335 DOI: 10.1093/jme/tjy089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Most species of mosquitoes consume sugar to survive and during sugar feeding can expectorate virus. Scientists have used this behavior to develop novel methods of mosquito control and arbovirus surveillance. In this study, we use sugar feeding and corresponding viral expectoration to develop an affordable method of monitoring individual mosquitoes for longitudinal data collection. Female Culex tarsalis Coquillett (Diptera: Culicidae) that consumed an infectious bloodmeal of West Nile virus were placed into separate containers and offered a sucrose-soaked cotton wick. Wicks were then collected daily and tested for virus with similar results to those from standard capillary tube method. This yielded a direct longitudinal estimate of the extrinsic incubation period, while using fewer mosquitoes. This approach could be used to further characterize variation in the amount and diversity of expectorated virus over the life span of individual mosquitoes.
Collapse
Affiliation(s)
- Mary E Danforth
- Davis Arbovirus Research and Training and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA
| | - William K Reisen
- Davis Arbovirus Research and Training and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA
| | - Christopher M Barker
- Davis Arbovirus Research and Training and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
11
|
McClure KM, Lawrence C, Kilpatrick AM. Land Use and Larval Habitat Increase Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) Abundance in Lowland Hawaii. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1509-1516. [PMID: 30085189 PMCID: PMC6201829 DOI: 10.1093/jme/tjy117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 05/30/2023]
Abstract
Vector abundance plays a key role in transmission of mosquito-borne disease. In Hawaii, Aedes albopictus (Skuse) (Diptera: Culicidae), the Asian tiger mosquito, has been implicated in locally-transmitted dengue outbreaks, while Culex quinquefasciatus Say (Diptera: Culicidae), the southern house mosquito, is the primary vector of avian malaria, a wildlife disease that has contributed to declines and extinctions of native Hawaiian birds. Despite the importance of these introduced species to human and wildlife health, little is known about the local-scale drivers that shape mosquito abundance across lowland Hawaii, where forest, agricultural, and residential land uses are prevalent. We examined landscape, larval habitat, and climate drivers of Ae. albopictus and Cx. quinquefasciatus abundance in eight lowland wet forest fragments on the Big Island of Hawaii. We found that the abundance of both species increased with the proportion of surrounding developed land and the availability of larval habitat, which were themselves correlated. Our findings suggest that conversion of natural habitats to residential and agricultural land increases mosquito larval habitats, increasing the abundance of Ae. albopictus and Cx. quinquefasciatus and increasing disease risk to humans and wildlife in Hawaii. Our results further indicate that while source reduction of artificial larval habitats-particularly moderately-sized human-made habitats including abandoned cars and tires-could reduce mosquito abundance, eliminating larval habitat will be challenging because both species utilize both natural and human-made larval habitats in lowland Hawaii.
Collapse
Affiliation(s)
- Katherine M McClure
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| | | | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| |
Collapse
|
12
|
Goodman H, Egizi A, Fonseca DM, Leisnham PT, LaDeau SL. Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasit Vectors 2018; 11:218. [PMID: 29631602 PMCID: PMC5891940 DOI: 10.1186/s13071-018-2779-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Temperate urban landscapes support persistent and growing populations of Culex and Aedes mosquito vectors. Large urban mosquito populations can represent a significant risk for transmission of emergent arboviral infection. However, even large mosquito populations are only a risk to the animals they bite. The purpose of this study is to identify and assess spatial patterns of host-use in a temperate urban landscape with heterogeneous socio-economic and ecological conditions. Results Mosquito blood meals were collected from neighborhoods categorized along a socio-economic gradient in Baltimore, MD, USA. Blood meal hosts were identified for two Aedes (Ae. albopictus and Ae. japonicus) and three Culex (Cx. pipiens, Cx. restuans and Cx. salinarius) species. The brown rat (Rattus norvegicus) was the most frequently detected host in both Aedes species and Cx. salinarius. Human biting was evident in Aedes and Culex species and the proportion of human blood meals from Ae. albopictus varied significantly with neighborhood socio-economic status. Aedes albopictus was most likely to feed on human blood hosts (at 50%) in residential blocks categorized as having income above the city median, although there were still more total human bites detected from lower income blocks where Ae. albopictus was more abundant. Birds were the most frequently detected Culex blood hosts but were absent from all Aedes sampled. Conclusions This study highlights fine-scale variation in host-use by medically important mosquito vectors and specifically investigates blood meal composition at spatial scales relevant to urban mosquito dispersal and human exposure. Further, the work emphasizes the importance of neighborhood economics and infrastructure management in shaping both the relative abundance of vectors and local blood feeding strategies. The invasive brown rat was an important blood source across vector species and neighborhoods in Baltimore. We show that social and economic conditions can be important predictors of transmission potential in urban landscapes and identify important questions about the role of rodents in supporting urban mosquito populations.
Collapse
Affiliation(s)
- Heather Goodman
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
| | - Andrea Egizi
- Monmouth County Division of Mosquito Control, Tick-Borne Disease Laboratory, New Brunswick, NJ, 08901, USA
| | - Dina M Fonseca
- Center for Vector Biology, Entomology Department, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Paul T Leisnham
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | | |
Collapse
|
13
|
Ukawuba I, Shaman J. Association of spring-summer hydrology and meteorology with human West Nile virus infection in West Texas, USA, 2002-2016. Parasit Vectors 2018; 11:224. [PMID: 29618375 PMCID: PMC5885460 DOI: 10.1186/s13071-018-2781-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background The emergence of West Nile virus (WNV) in the Western Hemisphere has motivated research into the processes contributing to the incidence and persistence of the disease in the region. Meteorology and hydrology are fundamental determinants of vector-borne disease transmission dynamics of a region. The availability of water influences the population dynamics of vector and host, while temperature impacts vector growth rates, feeding habits, and disease transmission potential. Characterization of the temporal pattern of environmental factors influencing WNV risk is crucial to broaden our understanding of local transmission dynamics and to inform efforts of control and surveillance. Methods We used hydrologic, meteorological and WNV data from west Texas (2002–2016) to analyze the relationship between environmental conditions and annual human WNV infection. A Bayesian model averaging framework was used to evaluate the association of monthly environmental conditions with WNV infection. Results Findings indicate that wet conditions in the spring combined with dry and cool conditions in the summer are associated with increased annual WNV cases. Bayesian multi-model inference reveals monthly means of soil moisture, specific humidity and temperature to be the most important variables among predictors tested. Environmental conditions in March, June, July and August were the leading predictors in the best-fitting models. Conclusions The results significantly link soil moisture and temperature in the spring and summer to WNV transmission risk. Wet spring in association with dry and cool summer was the temporal pattern best-describing WNV, regardless of year. Our findings also highlight that soil moisture may be a stronger predictor of annual WNV transmission than rainfall.
Collapse
Affiliation(s)
- Israel Ukawuba
- Mailman School of Public Health, Columbia University, 722 W 168th, New York, NY, 10032, USA.
| | - Jeffrey Shaman
- Mailman School of Public Health, Columbia University, 722 W 168th, New York, NY, 10032, USA
| |
Collapse
|
14
|
Stein R, Chirilã M. Routes of Transmission in the Food Chain. FOODBORNE DISEASES 2017. [PMCID: PMC7148622 DOI: 10.1016/b978-0-12-385007-2.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
More than 250 different foodborne diseases have been described to date, annually affecting about one-third of the world's population. The incidence of foodborne diseases has been underreported and underestimated, and the asymptomatic presentation of some of the illnesses, worldwide heterogeneities in reporting, and the alternative transmission routes of certain pathogens are among the factors that contribute to this. Globalization, centralization of the food supply, transportation of food products progressively farther from their places of origin, and the multitude of steps where contamination may occur have made it increasingly challenging to investigate foodborne and waterborne outbreaks. Certain foodborne pathogens may be transmitted directly from animals to humans, while others are transmitted through vectors, such as insects, or through food handlers, contaminated food products or food-processing surfaces, or transfer from sponges, cloths, or utensils. Additionally, the airborne route may contribute to the transmission of certain foodborne pathogens. Complicating epidemiological investigations, multiple transmission routes have been described for some foodborne pathogens. Two types of transmission barriers, primary and secondary, have been described for foodborne pathogens, each of them providing opportunities for preventing and controlling outbreaks. Primary barriers, the most effective sites of prophylactic intervention, prevent pathogen entry into the environment, while secondary barriers prevent the multiplication and dissemination of pathogens that have already entered the environment. Understanding pathogen dynamics, monitoring transmission, and implementing preventive measures are complicated by the phenomenon of superspreading, which refers to the concept that, at the level of populations, a minority of hosts is responsible for the majority of transmission events.
Collapse
|
15
|
Field Methods and Sample Collection Techniques for the Surveillance of West Nile Virus in Avian Hosts. Methods Mol Biol 2016. [PMID: 27188560 DOI: 10.1007/978-1-4939-3670-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Avian hosts play an important role in the spread, maintenance, and amplification of West Nile virus (WNV). Avian susceptibility to WNV varies from species to species thus surveillance efforts can focus both on birds that survive infection and those that succumb. Here we describe methods for the collection and sampling of live birds for WNV antibodies or viremia, and methods for the sampling of dead birds. Target species and study design considerations are discussed.
Collapse
|
16
|
Bodner D, LaDeau SL, Biehler D, Kirchoff N, Leisnham PT. Effectiveness of Print Education at Reducing Urban Mosquito Infestation through Improved Resident-Based Management. PLoS One 2016; 11:e0155011. [PMID: 27171195 PMCID: PMC4865130 DOI: 10.1371/journal.pone.0155011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022] Open
Abstract
Improving resident-based management and knowledge of mosquitoes is often an integral component of integrated mosquito management, especially in urban landscapes with considerable mosquito habitat on privately owned lands. This study tested the effectiveness of print education materials at reducing urban mosquito exposure through improving resident knowledge of, and attitudes towards, mosquitoes and mosquito management in Washington DC, USA. There was a specific focus on the removal of water-filled containers that are utilized by the developmental stages of the two most common vector species in the region, Aedes albopictus and Culex pipiens. Households in six neighborhoods that varied in socio-economic status were administered knowledge, attitude, and practice (KAP) surveys in 2010 and 2012, and had their yards surveyed for container habitats and immature mosquitoes (larvae and pupae) in 2010, 2011, and 2012. Half the households (intervention, n = 120) received education materials in 2011 and 2012 to yield a before-after control-intervention (BACI) design. Unexpectedly, residents in intervention households were more likely to show decreased concern for mosquito-borne illnesses than residents in control households, which did not receive materials. Moreover, there was a greater probability that control households reduced containers in 2012 than intervention households, particularly when they had low numbers of baseline (2010) containers. Irrespective of control, reductions in containers were associated with decreased abundances of immature mosquitoes. Overall, our findings suggest that print education materials may have unintended negative effects on resident attitudes and household management of mosquito production. We recommend that mosquito control agencies need to carefully consider their content of print messages and the effectiveness of strategies that passively convey information with little or no engagement with control professionals.
Collapse
Affiliation(s)
- Danielle Bodner
- Ecosystem Health and Natural Resource Management, Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - Shannon L LaDeau
- Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America
| | - Dawn Biehler
- Geography and Environmental Systems, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Nicole Kirchoff
- Ecosystem Health and Natural Resource Management, Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - Paul T Leisnham
- Ecosystem Health and Natural Resource Management, Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
17
|
Danforth ME, Reisen WK, Barker CM. The Impact of Cycling Temperature on the Transmission of West Nile Virus. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:681-686. [PMID: 27026160 PMCID: PMC5853677 DOI: 10.1093/jme/tjw013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/04/2016] [Indexed: 05/08/2023]
Abstract
West Nile virus (WNV) is an important cause of disease in humans and animals. Risk of WNV infection varies seasonally, with the greatest risk during the warmest parts of the year due in part to the accelerated extrinsic incubation rate of the virus in mosquitoes. Rates of extrinsic incubation have been shown in constant-temperature studies to increase as an approximately linear function of temperature, but for other vector-borne pathogens, such as malaria or dengue virus, nonlinear relationships have been demonstrated under cycling temperatures near the thermal limits of pathogen replication. Using typical daily air temperature profiles from three key periods of WNV amplification in a hyperendemic area of WNV activity in California's Central Valley, as well as a fourth temperature profile based on exposures that would result from daily mosquito host-seeking and resting behavior, we explored the impacts of cycling temperatures on WNV transmission by Culex tarsalis Coquillett, one of the principal vectors in the western United States. The daily cycling temperature ranges studied were representative of those that occur across much of California, but they did not significantly alter the extrinsic incubation period of WNV compared with estimates from mean temperatures alone. This suggests that within the relatively broad range we studied, WNV incubation rates are a simple function of mean temperature. Realistic daily temperature patterns that reflected mosquitoes' avoidance of daytime high temperatures during summer reduced transmission over time compared with air temperatures, indicating that adjustment for mosquito exposure temperatures would be prudent for calculating risk.
Collapse
Affiliation(s)
- Mary E Danforth
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616 (; ; )
| | - William K Reisen
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616 (; ; )
| | - Christopher M Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616 (; ; ),
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Reisen WK, Wheeler SS. Surveys for Antibodies Against Mosquitoborne Encephalitis Viruses in California Birds, 1996-2013. Vector Borne Zoonotic Dis 2016; 16:264-82. [PMID: 26974395 PMCID: PMC4800269 DOI: 10.1089/vbz.2015.1888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
From 1996 through 2013, 54,546 individual birds comprising 152 species and 7 orders were banded, bled, and released at four study areas within California, from which 28,388 additional serum samples were collected at one or more recapture encounters. Of these, 142, 99, and 1929 birds from 41 species were positive for neutralizing antibodies against western equine encephalomyelitis virus (WEEV), St. Louis encephalitis virus (SLEV), or West Nile virus (WNV) at initial capture or recapture, respectively. Overall, 83% of the positive serum samples were collected from five species: House Finch, House Sparrow, Mourning Dove, California Quail, and Western Scrub-Jay. Temporal data supported concurrent arbovirus surveillance and documented the disappearance of birds positive for WEEV in 2008 and SLEV in 2003 and the appearance of birds positive for WNV after its invasion in 2003. Results of these serosurveys agreed well with the host selection patterns of the Culex vectors as described from bloodmeal sequencing data and indicated that transmission of WNV seemed most effective within urban areas where avian and mosquito host diversity was limited to relatively few competent species.
Collapse
Affiliation(s)
- William K Reisen
- Department of Pathology, Microbiology and Immunology, Center for Vectorborne Diseases, School of Veterinary Medicine, University of California , Davis, California
| | - Sarah S Wheeler
- Department of Pathology, Microbiology and Immunology, Center for Vectorborne Diseases, School of Veterinary Medicine, University of California , Davis, California
| |
Collapse
|
19
|
Wang Y, Ostlund EN, Jun Y, Nie FP, Li YG, Johnson DJ, Lin R, Li ZG. Combining reverse-transcription multiplex PCR and microfluidic electrophoresis to simultaneously detect seven mosquito-transmitted zoonotic encephalomyelitis viruses. Vet J 2015; 212:27-35. [PMID: 27256022 DOI: 10.1016/j.tvjl.2015.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
Several mosquito-transmitted viruses are causative agents for zoonotic encephalomyelitis. Rapid identification of these viruses in mosquito populations is an effective method for surveying these diseases. To detect multiple mosquito-transmitted viral agents, including West Nile virus, Saint Louis encephalitis virus, Venezuelan equine encephalomyelitis virus, Western equine encephalomyelitis virus, Eastern equine encephalomyelitis virus, Highlands J virus and Japanese encephalitis virus, an assay using multiplex reverse-transcription PCR combined with microfluidic electrophoresis was developed and evaluated. Tailed nested primers were used in the assay to amplify specific viral genomic segments, and products with specific length were further analyzed by using a microfluidic electrophoresis chip. The assay exhibited good specificity and analytical sensitivity (10(2) copies/µL). This technology can be helpful in the quarantine and surveillance of exotic encephalomyelitis viruses which are transmitted by mosquitoes.
Collapse
Affiliation(s)
- Yu Wang
- School of Life Sciences, Chongqing University, Chongqing 400030, China; Technical Center of Chongqing Entry Inspection and Quarantine Bureau, Engineering Research Center for Import and Export Food Safety, Chongqing 400020, China
| | - Eileen N Ostlund
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, STAS/VS/APHIS/USDA, Ames, IA 50010, USA
| | - Yang Jun
- Technical Center of Chongqing Entry Inspection and Quarantine Bureau, Engineering Research Center for Import and Export Food Safety, Chongqing 400020, China
| | - Fu-Ping Nie
- Technical Center of Chongqing Entry Inspection and Quarantine Bureau, Engineering Research Center for Import and Export Food Safety, Chongqing 400020, China
| | - Ying-Guo Li
- School of Life Sciences, Chongqing University, Chongqing 400030, China; Technical Center of Chongqing Entry Inspection and Quarantine Bureau, Engineering Research Center for Import and Export Food Safety, Chongqing 400020, China
| | - Donna J Johnson
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, STAS/VS/APHIS/USDA, Ames, IA 50010, USA
| | - Rui Lin
- School of Life Sciences, Chongqing University, Chongqing 400030, China
| | - Zheng-Guo Li
- School of Life Sciences, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
20
|
Danforth ME, Reisen WK, Barker CM. Extrinsic Incubation Rate is Not Accelerated in Recent California Strains of West Nile Virus in Culex tarsalis (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1083-9. [PMID: 26336222 PMCID: PMC4574603 DOI: 10.1093/jme/tjv082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/08/2015] [Indexed: 05/09/2023]
Abstract
The efficiency of West Nile virus (WNV) transmission by competent mosquito vectors is driven by temperature and defined, in part, by the extrinsic incubation period, which is the time from a mosquito's consumption of an infected bloodmeal until it becomes capable of transmitting the virus to the next vertebrate host. The extrinsic incubation period can be altered by a variety of factors involved in vector-pathogen interactions, and in North America, the WN02 strain of WNV emerged and displaced the founding NY99 strain reportedly because the duration of the extrinsic incubation period in Culex mosquitoes was shortened by a single positively selected mutation. However, recent work has suggested that this change is not universal and may depend on vector species or strain. In the current study, we estimated the extrinsic incubation periods at 22 and 30°C in Culex tarsalis Coquillett. We found that the time to transmission of the original North American WNV strain, NY99, was not different from two more recent California isolates of the WN02 genotype: one of the earliest California isolates from the southeastern deserts, and a more recent 2011 isolate from a hyperendemic region in the Central Valley. We conclude with a model-based assessment of the epidemiological effects of temperature on the duration of mosquitoes' infectious life, which estimated that most mosquitoes have an infectious life of only a few days, but its duration expands markedly at warmer temperatures.
Collapse
Affiliation(s)
- Mary E Danforth
- Center for Vectorborne Diseases and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - William K Reisen
- Center for Vectorborne Diseases and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Christopher M Barker
- Center for Vectorborne Diseases and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616. Fogarty International Center, National Institutes of Health, Bethesda, MD 20892.
| |
Collapse
|
21
|
Yusa A, Berry P, J Cheng J, Ogden N, Bonsal B, Stewart R, Waldick R. Climate Change, Drought and Human Health in Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8359-412. [PMID: 26193300 PMCID: PMC4515727 DOI: 10.3390/ijerph120708359] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022]
Abstract
Droughts have been recorded all across Canada and have had significant impacts on individuals and communities. With climate change, projections suggest an increasing risk of drought in Canada, particularly in the south and interior. However, there has been little research on the impacts of drought on human health and the implications of a changing climate. A review of the Canadian, U.S. and international literature relevant to the Canadian context was conducted to better define these impacts and adaptations available to protect health. Drought can impact respiratory health, mental health, illnesses related to exposure to toxins, food/water security, rates of injury and infectious diseases (including food-, water- and vector-borne diseases). A range of direct and indirect adaptation (e.g., agricultural adaptation) options exist to cope with drought. Many have already been employed by public health officials, such as communicable disease monitoring and surveillance and public education and outreach. However, gaps exist in our understanding of the impacts of short-term vs. prolonged drought on the health of Canadians, projections of drought and its characteristics at the regional level and the effectiveness of current adaptations. Further research will be critical to inform adaptation planning to reduce future drought-related risks to health.
Collapse
Affiliation(s)
- Anna Yusa
- Environmental Health Program, Health Canada, 180 Queen St. West, Toronto, ON M5V 3L7, Canada.
| | - Peter Berry
- Climate Change and Health Office, Health Canada, 269 Laurier Ave. West, Ottawa, ON K1A 0K9, Canada.
| | - June J Cheng
- Sherbourne Health Centre, 333 Sherbourne St., Toronto, ON M5A 2S5, Canada.
| | - Nicholas Ogden
- Centre for Food-Borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, 3200 Sicotte, P.O. Box 5000, Saint-Hyacinthe, QC J2S 7C6, Canada.
| | - Barrie Bonsal
- Watershed Hydrology and Ecology Research Division, Environment Canada, 11 Innovation Blvd., Saskatoon, Saskatchewan S7N 3H5, Canada.
| | - Ronald Stewart
- Department of Environment and Geography, University of Manitoba, 70A Dysart Road, Winnipeg, MB R3T 2N2, Canada.
| | - Ruth Waldick
- Environmental Health, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0Z2, Canada.
- Department of Geography and Environmental Studies, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
22
|
LaDeau SL, Allan BF, Leisnham PT, Levy MZ. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct Ecol 2015; 29:889-901. [PMID: 26549921 PMCID: PMC4631442 DOI: 10.1111/1365-2435.12487] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector's thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain persistent gaps in understanding of vital rates and drivers in mosquito-vectored disease systems, and vast holes in understanding for other arthropod vectored diseases. Empirical studies are needed to better understand the physiological constraints and socio-ecological processes that generate heterogeneity in critical transmission parameters, including vector survival and fitness. Likewise, laboratory experiments and transmission models must evaluate vector response to realistic field conditions, including variability in sociological and environmental conditions.
Collapse
Affiliation(s)
| | - Brian F. Allan
- Department of Entomology, University of Illinois, Urbana, IL, USA
| | - Paul T. Leisnham
- Concentration in Ecosystem Health and Natural Resource Management, Department of Environmental Science & Technology, University of Maryland, College Park, MD, USA
| | - Michael Z. Levy
- Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Worwa G, Wheeler SS, Brault AC, Reisen WK. Comparing competitive fitness of West Nile virus strains in avian and mosquito hosts. PLoS One 2015; 10:e0125668. [PMID: 25965850 PMCID: PMC4428627 DOI: 10.1371/journal.pone.0125668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/23/2015] [Indexed: 11/21/2022] Open
Abstract
Enzootic transmission of West Nile virus (WNV; Flaviviridae, Flavivirus) involves various species of birds and ornithophilic mosquitoes. Single nucleotide substitutions in the WNV genome may impact viral fitness necessary for WNV adaptation and evolution as previously shown for the WN02 genotype. In an effort to study phenotypic change, we developed an in vivo fitness competition model in two biologically relevant hosts for WNV. The House Finch (HOFI; Haemorhous mexicanus) and Culex tarsalis mosquitoes represent moderately susceptible hosts for WNV, are highly abundant in Western North America and frequently are infected with WNV in nature. Herein, we inoculated HOFIs and Cx. tarsalis competitively (dually) and singly with infectious-clone derived viruses of the founding California isolate COAV997-2003 (COAV997-IC), the founding North American isolate NY99 (NY99-IC), and a 2004 field isolate from California (CA-04), and compared the replicative capacities (fitness) of these viruses to a genetically marked virus of COAV997 (COAV997-5nt) by measuring RNA copy numbers. COAV997 and COAV997-5nt exhibited neutral fitness in HOFIs and Cx. tarsalis, and the temperature-sensitive phenotype of COAV997 did not affect replication in HOFIs as none of the infected birds became febrile. The NY99 and CA-04 isolates demonstrated elevated fitness in HOFIs compared to COAV997-5nt, whereas all viruses replicated to similar titers and RNA copies in Cx. tarsalis, and the only fitness differences were related to infection rates. Our data demonstrated that competitive replication allows for the sensitive comparison of fitness differences among two genetically closely related viruses using relevant hosts of WNV while eliminating host-to-host differences. In conclusion, our approach may be helpful in understanding the extent of phenotypic change in fitness associated with genetic changes in WNV.
Collapse
Affiliation(s)
- Gabriella Worwa
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Sarah S. Wheeler
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Brault AC, Fang Y, Reisen WK. Multiplex qRT-PCR for the Detection of Western Equine Encephalomyelitis, St. Louis Encephalitis, and West Nile Viral RNA in Mosquito Pools (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:491-9. [PMID: 26334826 PMCID: PMC4581483 DOI: 10.1093/jme/tjv021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/26/2015] [Indexed: 05/15/2023]
Abstract
Following the introduction of West Nile virus into California during the summer of 2003, public health and vector control programs expanded surveillance efforts and were in need of diagnostics capable of rapid, sensitive, and specific detection of arbovirus infections of mosquitoes to inform decision support for intervention. Development of a multiplex TaqMan or real-time semiquantitative reverse transcription polymerase chain reaction (RT-PCR) assay in which three virus specific primer-probe sets were used in the same reaction is described herein for the detection of western equine encephalomyelitis, St. Louis encephalitis and West Nile viral RNA. Laboratory validation and field data from 10 transmission seasons are reported. The comparative sensitivity and specificity of this multiplex assay to singleplex RT-PCR as well as an antigen detection (rapid analyte measurement platform) and standard plaque assays indicate this assay to be rapid and useful in providing mosquito infection data to estimate outbreak risk.
Collapse
Affiliation(s)
- Aaron C Brault
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616. Division of Vector-Borne Diseases, Centers for Diseases Control and Prevention, Fort Collins, CO 80512
| | - Ying Fang
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - William K Reisen
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616.
| |
Collapse
|
25
|
Abstract
West Nile virus (WNV) is an arbovirus transmitted enzootically by Culex mosquitoes among avian hosts. Since 2000, the California Dead Bird Surveillance Program (DBSP) has tracked avian mortality reported by the public on a telephone hotline and website and measured the prevalence of WNV infection in dead birds. We summarize herein WNV prevalence in dead birds tested and variation of WNV transmission over time and space with the use of DBSP data from 2003 to 2012. Prevalence among dead birds was highest in 2004, 2008, and 2012. This pattern was similar to peak WNV infection years for mosquitoes but not to human WNV incidence. Although American Crows (Corvus brachyrhynchos) were most frequently reported and tested, this species ranked third in infection prevalence (44%) after Yellow-billed Magpies (Pica nuttalli; 62%) and Western Scrub-Jays (Aphelocoma californica; 48%). Overall prevalence in American Robin (Turdus migratorius), House Finch (Haemorhous mexicanus), and House Sparrow (Passer domesticus) carcasses ranged from 18% to 22%. Corvid WNV prevalence was highest in South Coast, Bay/Delta, Sacramento, and San Joaquin valleys, and Klamath/North Coast bioregions, overlapping areas of elevated WNV activity in other surveillance measurements. Bioregional analysis revealed the avian species most likely to be reported and found positive in each bioregion. Our results may be useful to WNV surveillance and control efforts and provide insight into bird population trends in California.
Collapse
|
26
|
Tsai AC. Home foreclosure, health, and mental health: a systematic review of individual, aggregate, and contextual associations. PLoS One 2015; 10:e0123182. [PMID: 25849962 PMCID: PMC4388711 DOI: 10.1371/journal.pone.0123182] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/01/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The U.S. foreclosure crisis intensified markedly during the Great Recession of 2007-09, and currently an estimated five percent of U.S. residential properties are more than 90 days past due or in the process of foreclosure. Yet there has been no systematic assessment of the effects of foreclosure on health and mental health. METHODS AND FINDINGS I applied systematic search terms to PubMed and PsycINFO to identify quantitative or qualitative studies about the relationship between home foreclosure and health or mental health. After screening the titles and abstracts of 930 publications and reviewing the full text of 76 articles, dissertations, and other reports, I identified 42 publications representing 35 unique studies about foreclosure, health, and mental health. The majority of studies (32 [91%]) concluded that foreclosure had adverse effects on health or mental health, while three studies yielded null or mixed findings. Only two studies examined the extent to which foreclosure may have disproportionate impacts on ethnic or racial minority populations. CONCLUSIONS Home foreclosure adversely affects health and mental health through channels operating at multiple levels: at the individual level, the stress of personally experiencing foreclosure was associated with worsened mental health and adverse health behaviors, which were in turn linked to poorer health status; at the community level, increasing degradation of the neighborhood environment had indirect, cross-level adverse effects on health and mental health. Early intervention may be able to prevent acute economic shocks from eventually developing into the chronic stress of foreclosure, with all of the attendant benefits this implies for health and mental health status. Programs designed to encourage early return of foreclosed properties back into productive use may have similar health and mental health benefits.
Collapse
Affiliation(s)
- Alexander C. Tsai
- Center for Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Mbarara University of Science and Technology, Mbarara, Uganda
- * E-mail:
| |
Collapse
|
27
|
Anderson JF, Main AJ, Armstrong PM, Andreadis TG, Ferrandino FJ. Arboviruses in North Dakota, 2003-2006. Am J Trop Med Hyg 2015; 92:377-93. [PMID: 25487728 PMCID: PMC4347345 DOI: 10.4269/ajtmh.14-0291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/02/2014] [Indexed: 11/07/2022] Open
Abstract
To investigate arbovirus transmission in North Dakota, we collected and screened mosquitoes for viral infection by Vero cell culture assay. Seven viruses were isolated from 13 mosquito species. Spatial and temporal distributions of the important vectors of West Nile virus (WNV), Cache Valley virus, Jamestown Canyon virus (JCV), and trivittatus virus are reported. Snowshoe hare virus, Potosi virus, and western equine encephalomyelitis virus were also isolated. The risks of Culex tarsalis and Aedes vexans transmitting WNV to humans were 61.4% and 34.0% in 2003-2006, respectively, but in 2003 when the largest epidemic was reported, risks for Ae. vexans and Cx. tarsalis in Cass County were 73.6% and 23.9%, respectively. Risk of humans acquiring an infectious bite was greatest from about the second week of July through most of August. West Nile virus sequences were of the WN02 genotype. Most JCV strains belonged to a single clade of genetically related strains. Cache Valley virus and JCV were prevalent during August and early September and during July and August, respectively.
Collapse
Affiliation(s)
- John F Anderson
- Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut; Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases; Department of Plant Pathology and Ecology
| | - Andy J Main
- Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut; Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases; Department of Plant Pathology and Ecology
| | - Philip M Armstrong
- Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut; Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases; Department of Plant Pathology and Ecology
| | - Theodore G Andreadis
- Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut; Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases; Department of Plant Pathology and Ecology
| | - Francis J Ferrandino
- Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut; Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases; Department of Plant Pathology and Ecology
| |
Collapse
|
28
|
Krebs BL, Anderson TK, Goldberg TL, Hamer GL, Kitron UD, Newman CM, Ruiz MO, Walker ED, Brawn JD. Host group formation decreases exposure to vector-borne disease: a field experiment in a 'hotspot' of West Nile virus transmission. Proc Biol Sci 2014; 281:20141586. [PMID: 25339722 PMCID: PMC4213639 DOI: 10.1098/rspb.2014.1586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/22/2014] [Indexed: 11/12/2022] Open
Abstract
Animals can decrease their individual risk of predation by forming groups. The encounter-dilution hypothesis extends the potential benefits of gregariousness to biting insects and vector-borne disease by predicting that the per capita number of insect bites should decrease within larger host groups. Although vector-borne diseases are common and can exert strong selective pressures on hosts, there have been few tests of the encounter-dilution effect in natural systems. We conducted an experimental test of the encounter-dilution hypothesis using the American robin (Turdus migratorius), a common host species for the West Nile virus (WNV), a mosquito-borne pathogen. By using sentinel hosts (house sparrows, Passer domesticus) caged in naturally occurring communal roosts in the suburbs of Chicago, we assessed sentinel host risk of WNV exposure inside and outside of roosts. We also estimated per capita host exposure to infected vectors inside roosts and outside of roosts. Sentinel birds caged inside roosts seroconverted to WNV more slowly than those outside of roosts, suggesting that social groups decrease per capita exposure to infected mosquitoes. These results therefore support the encounter-dilution hypothesis in a vector-borne disease system. Our results suggest that disease-related selective pressures on sociality may depend on the mode of disease transmission.
Collapse
Affiliation(s)
- Bethany L Krebs
- School of Integrative Biology, University of Illinois, Urbana, IL 61801, USA
| | - Tavis K Anderson
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Uriel D Kitron
- Department of Environmental Studies, Emory University, Atlanta, GA 30322, USA
| | - Christina M Newman
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois, Urbana, IL 61801, USA
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI 48824-4320, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Chaintoutis SC, Dovas CI, Danis K, Gewehr S, Mourelatos S, Hadjichristodoulou C, Papanastassopoulou M. Surveillance and Early Warning of West Nile Virus Lineage 2 Using Backyard Chickens and Correlation to Human Neuroinvasive Cases. Zoonoses Public Health 2014; 62:344-55. [DOI: 10.1111/zph.12152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 11/30/2022]
Affiliation(s)
- S. C. Chaintoutis
- Laboratory of Microbiology and Infectious Diseases; School of Veterinary Medicine; Faculty of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - C. I. Dovas
- Laboratory of Microbiology and Infectious Diseases; School of Veterinary Medicine; Faculty of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - K. Danis
- Department of Surveillance and Intervention; Hellenic Centre for Disease Control and Prevention; Athens Greece
| | - S. Gewehr
- Ecodevelopment S.A. - Environmental Applications; Thessaloniki Greece
| | - S. Mourelatos
- Ecodevelopment S.A. - Environmental Applications; Thessaloniki Greece
| | - C. Hadjichristodoulou
- Department of Hygiene and Epidemiology; School of Medicine; Faculty of Health Sciences; University of Thessaly; Larissa Greece
| | - M. Papanastassopoulou
- Laboratory of Microbiology and Infectious Diseases; School of Veterinary Medicine; Faculty of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
30
|
Becker B, Leisnham PT, LaDeau SL. A tale of two city blocks: differences in immature and adult mosquito abundances between socioeconomically different urban blocks in Baltimore (Maryland, USA). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:3256-70. [PMID: 24651396 PMCID: PMC3987033 DOI: 10.3390/ijerph110303256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 11/30/2022]
Abstract
Infrastructure degradation in many post-industrial cities has increased the availability of potential mosquito habitats, including container habitats that support infestations of invasive disease-vectors. This study is unique in examining both immature and adult mosquito abundance across the fine-scale variability in socio-economic condition that occurs block-to-block in many cities. We hypothesized that abundant garbage associated with infrastructure degradation would support greater mosquito production but instead, found more mosquito larvae and host-seeking adults (86%) in parcels across the higher socio-economic, low-decay block. Aedes albopictus and Culex pipiens were 5.61 (p < 0.001) and 4.60 (p = 0.001) times more abundant, respectively. Most discarded (garbage) containers were dry during peak mosquito production, which occurred during the 5th hottest July on record. Containers associated with human residence were more likely to hold water and contain immature mosquitoes. We propose that mosquito production switches from rain-fed unmanaged containers early in the season to container habitats that are purposefully shaded or watered by mid-season. This study suggests that residents living in higher socioeconomic areas with low urban decay may be at greater risk of mosquito-borne disease during peak mosquito production when local container habitats are effectively decoupled from environmental constraints.
Collapse
Affiliation(s)
- Brian Becker
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA.
| | - Paul T Leisnham
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Shannon L LaDeau
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA.
| |
Collapse
|
31
|
Impact of drought on vector-borne diseases – how does one manage the risk? Public Health 2014; 128:29-37. [DOI: 10.1016/j.puhe.2013.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/05/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022]
|
32
|
Reisen WK. Medical entomology--back to the future? INFECTION GENETICS AND EVOLUTION 2013; 28:573-82. [PMID: 24316291 DOI: 10.1016/j.meegid.2013.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 12/29/2022]
Abstract
Some of problems and challenges facing Medical/Veterinary Entomology are presented from my perspective, focusing on the current millennium. Topics include anthropogenic environmental changes created by population growth, administrative problems hindering science's response to these changes, and some of the scientific discoveries potentially providing solutions. As the title implies, many recent research discoveries have yet to be translated into major changes in control approaches for the major vectorborne public health problems, thereby providing an interesting mix of modern surveillance technology used to track problems and direct historical intervention solutions.
Collapse
Affiliation(s)
- William K Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
33
|
Barker CM, Niu T, Reisen WK, Hartley DM. Data-driven modeling to assess receptivity for Rift Valley Fever virus. PLoS Negl Trop Dis 2013; 7:e2515. [PMID: 24244769 PMCID: PMC3828160 DOI: 10.1371/journal.pntd.0002515] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 09/23/2013] [Indexed: 01/02/2023] Open
Abstract
Rift Valley Fever virus (RVFV) is an enzootic virus that causes extensive morbidity and mortality in domestic ruminants in Africa, and it has shown the potential to invade other areas such as the Arabian Peninsula. Here, we develop methods for linking mathematical models to real-world data that could be used for continent-scale risk assessment given adequate data on local host and vector populations. We have applied the methods to a well-studied agricultural region of California with [Formula: see text]1 million dairy cattle, abundant and competent mosquito vectors, and a permissive climate that has enabled consistent transmission of West Nile virus and historically other arboviruses. Our results suggest that RVFV outbreaks could occur from February-November, but would progress slowly during winter-early spring or early fall and be limited spatially to areas with early increases in vector abundance. Risk was greatest in summer, when the areas at risk broadened to include most of the dairy farms in the study region, indicating the potential for considerable economic losses if an introduction were to occur. To assess the threat that RVFV poses to North America, including what-if scenarios for introduction and control strategies, models such as this one should be an integral part of the process; however, modeling must be paralleled by efforts to address the numerous remaining gaps in data and knowledge for this system.
Collapse
Affiliation(s)
- Christopher M. Barker
- Center for Vectorborne Diseases and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tianchan Niu
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Integrated Biodefense, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Hartley
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Integrated Biodefense, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| |
Collapse
|
34
|
Nemeth NM, Oesterle PT. West Nile virus from an avian conservation perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/izy.12031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N. M. Nemeth
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine; University of Georgia; Athens Georgia 30602 USA
- Department of Pathobiology; Ontario Veterinary College; University of Guelph; Guelph Ontario N1G 2W1 Canada
| | - P. T. Oesterle
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine; University of Georgia; Athens Georgia 30602 USA
| |
Collapse
|
35
|
Chen CC, Epp T, Jenkins E, Waldner C, Curry PS, Soos C. Modeling monthly variation of Culex tarsalis (Diptera: Culicidae) abundance and West Nile Virus infection rate in the Canadian Prairies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3033-51. [PMID: 23880728 PMCID: PMC3734475 DOI: 10.3390/ijerph10073033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/16/2022]
Abstract
The Canadian prairie provinces of Alberta, Saskatchewan, and Manitoba have generally reported the highest human incidence of West Nile virus (WNV) in Canada. In this study, environmental and biotic factors were used to predict numbers of Culex tarsalis Coquillett, which is the primary mosquito vector of WNV in this region, and prevalence of WNV infection in Cx. tarsalis in the Canadian prairies. The results showed that higher mean temperature and elevated time lagged mean temperature were associated with increased numbers of Cx. tarsalis and higher WNV infection rates. However, increasing precipitation was associated with higher abundance of Cx. tarsalis and lower WNV infection rate. In addition, this study found that increased temperature fluctuation and wetland land cover were associated with decreased infection rate in the Cx. tarsalis population. The resulting monthly models can be used to inform public health interventions by improving the predictions of population abundance of Cx. tarsalis and the transmission intensity of WNV in the Canadian prairies. Furthermore, these models can also be used to examine the potential effects of climate change on the vector population abundance and the distribution of WNV.
Collapse
Affiliation(s)
- Chen-Chih Chen
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; E-Mails: (T.E.); (C.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-306-966-7214; Fax: +1-306-966-7159
| | - Tasha Epp
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; E-Mails: (T.E.); (C.W.)
| | - Emily Jenkins
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; E-Mail:
| | - Cheryl Waldner
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; E-Mails: (T.E.); (C.W.)
| | - Philip S. Curry
- Saskatchewan Ministry of Health, 3475 Albert Street, Regina, SK S4S 6X6, Canada; E-Mail:
| | - Catherine Soos
- Environment Canada, Science & Technology Branch, 115 Perimeter Road, Saskatoon, SK S7N 0X4, Canada; E-Mail:
| |
Collapse
|
36
|
Stanke C, Kerac M, Prudhomme C, Medlock J, Murray V. Health effects of drought: a systematic review of the evidence. PLOS CURRENTS 2013; 5:ecurrents.dis.7a2cee9e980f91ad7697b570bcc4b004. [PMID: 23787891 PMCID: PMC3682759 DOI: 10.1371/currents.dis.7a2cee9e980f91ad7697b570bcc4b004] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction. Climate change projections indicate that droughts will become more intense in the 21 century in some areas of the world. The El Niño Southern Oscillation is associated with drought in some countries, and forecasts can provide advance warning of the increased risk of adverse climate conditions. The most recent available data from EMDAT estimates that over 50 million people globally were affected by drought in 2011. Documentation of the health effects of drought is difficult, given the complexity in assigning a beginning/end and because effects tend to accumulate over time. Most health impacts are indirect because of its link to other mediating circumstances like loss of livelihoods. Methods. The following databases were searched: MEDLINE; CINAHL; Embase; PsychINFO, Cochrane Collection. Key references from extracted papers were hand-searched, and advice from experts was sought for further sources of literature. Inclusion criteria for papers summarised in tables include: explicit link made between drought as exposure and human health outcomes; all study designs/methods; all countries/contexts; any year of publication. Exclusion criteria include: drought meaning shortage unrelated to climate; papers not published in English; studies on dry/arid climates unless drought was noted as an abnormal climatological event. No formal quality evaluation was used on papers meeting inclusion criteria. Results. 87 papers meeting the inclusion criteria are summarised in tables. Additionally, 59 papers not strictly meeting the inclusion criteria are used as supporting text in relevant parts of the results section. Main categories of findings include: nutrition-related effects (including general malnutrition and mortality, micronutrient malnutrition, and anti-nutrient consumption); water-related disease (including E coli, cholera and algal bloom); airborne and dust-related disease (including silo gas exposure and coccidioidomycosis); vector borne disease (including malaria, dengue and West Nile Virus); mental health effects (including distress and other emotional consequences); and other health effects (including wildfire, effects of migration, and damage to infrastructure). Conclusions. The probability of drought-related health impacts varies widely and largely depends upon drought severity, baseline population vulnerability, existing health and sanitation infrastructure, and available resources with which to mitigate impacts as they occur. The socio-economic environment in which drought occurs influences the resilience of the affected population. Forecasting can be used to provide advance warning of the increased risk of adverse climate conditions and can support the disaster risk reduction process. Despite the complexities involved in documentation, research should continue and results should be shared widely in an effort to strengthen drought preparedness and response activities.
Collapse
Affiliation(s)
- Carla Stanke
- Extreme Events and Health Protection Section, Health Protection Agency, London, UK
| | | | | | | | | |
Collapse
|
37
|
Reisen WK, Padgett K, Fang Y, Woods L, Foss L, Anderson J, Kramer V. Chronic infections of West Nile virus detected in California dead birds. Vector Borne Zoonotic Dis 2013; 13:401-5. [PMID: 23488452 DOI: 10.1089/vbz.2012.1097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During 2010 and 2011, 933 recently deceased birds, submitted as part of the dead bird surveillance program, tested positive for West Nile virus RNA at necropsy. The relative amount of RNA measured by qRT-PCR cycles ranged from 8.2 to 37.0 cycle threshold (Ct) and formed a bimodal frequency distribution, with maxima at 20 and 36 Ct and minima at 28-30 Ct. On the basis of frequency distributions among different avian species with different responses to infection following experimental inoculation, field serological data indicating survival of infection, and the discovery of persistent RNA in experimentally infected birds, dead birds collected in nature were scored as "recent" or "chronic" infections on the basis of Ct scores. The percentage of birds scored as having chronic infections was highest during late winter/spring, when all birds were after hatching year, and lowest during late summer, when enzootic transmission was typically highest as indicated by mosquito infections. Our data indicated that intervention efforts should not be based on dead birds with chronic infections unless supported by additional surveillance metrics.
Collapse
Affiliation(s)
- William K Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Calzolari M, Albieri A. Could drought conditions trigger Schmallenberg virus and other arboviruses circulation? Int J Health Geogr 2013; 12:7. [PMID: 23409725 PMCID: PMC3614475 DOI: 10.1186/1476-072x-12-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In 2011, a new orthobunyavirus, named the Schmallenberg virus (SBV), was discovered in Europe. Like the related Shamonda virus, SBV is an arbovirus (arthropod-borne virus). After its discovery, the virus was detected in a wide area in north-western Europe, an unexpected finding in a territory where climatic conditions would not seem ideal for arbovirus transmission. This sudden expansion suggests the effect of 2011 drought as a key factor that may have triggered SBV circulation. The possible influence of drought, recorded in north-western Europe in early 2011, on virus circulation was evaluated. METHODS AND RESULTS The locations of SBV detections in Europe until April 2012 were obtained, and area of virus circulation was evaluated by kernel density estimation. Precipitation data in SBV circulation area, summarized by the 3 month precipitation indexes of May, were compared with precipitation data outside that area, confirming driest conditions in that area. CONCLUSIONS The onset of drought conditions recorded in the SBV detection area in early 2011 may have promoted the circulation of this virus. A correlation between circulation of some arboviruses and drought has been reported elsewhere. This was mainly explained by an effect of water deficit on the environment, which altered the relationships between vectors and reservoirs, but this correlation might be also the result of unknown effects of drought on the vectors. The effect of drought conditions on arbovirus circulation is most likely underestimated and should be considered, since it could promote expansion of arboviruses into new areas in a global warming scenario.
Collapse
|
39
|
Kwan JL, Park BK, Carpenter TE, Ngo V, Civen R, Reisen WK. Comparison of enzootic risk measures for predicting West Nile disease, Los Angeles, California, USA, 2004-2010. Emerg Infect Dis 2013; 18:1298-306. [PMID: 22840314 PMCID: PMC3414020 DOI: 10.3201/eid1808.111558] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The best model comprised enzootic surveillance data from avian, mosquito, and climate sources. In Los Angeles, California, USA, 2 epidemics of West Nile virus (WNV) disease have occurred since WNV was recognized in 2003. To assess which measure of risk was most predictive of human cases, we compared 3 measures: the California Mosquito-Borne Virus Surveillance and Response Plan Assessment, the vector index, and the Dynamic Continuous-Area Space-Time system. A case–crossover study was performed by using symptom onset dates from 384 persons with WNV infection to determine their relative environmental exposure to high-risk conditions as measured by each method. Receiver-operating characteristic plots determined thresholds for each model, and the area under the curve was used to compare methods. We found that the best risk assessment model for human WNV cases included surveillance data from avian, mosquito, and climate sources.
Collapse
|
40
|
Andreadis TG. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2012; 28:137-151. [PMID: 23401954 DOI: 10.2987/8756-971x-28.4s.137] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mosquitoes within the Culex pipiens complex have been implicated as major vectors of West Nile virus (WNV) in North America due to their seasonal abundance, vector competence and high field infection rates. However, the role of Cx. p. pipiens complex mosquitoes in enzootic amplification of WNV among avian hosts and epidemic transmission to humans varies throughout its geographical distribution. In the northeastern United States, Cx. p. pipiens is recognized as the primary enzootic vector responsible for amplification of virus among wild bird populations. However, because this mosquito is strongly ornithophilic, its role in transmission to humans appears to be more limited in this region. In the north central and Mid-Atlantic States by contrast, Cx. p. pipiens shows an increased affinity for human hosts and has been incriminated as a key bridge vector. In southern regions of the United States, Culex p. quinquefasciatus are more opportunistic feeders, and are thought to be principal enzootic and epidemic vectors. In western regions of the United States where Culex tarsalis predominates, especially in rural areas, Cx. p. pipiens and Cx. p. quinquefasciatus play roles that are more limited and are recognized as secondary vectors. In the southwestern United States Cx. p. quinquefasciatus also appears to be the predominant vector in urban habitats, but only a secondary vector in more rural environs. The direct involvement of Cx. p. pipiens form molestus in WNV transmission is largely unknown, but human-biting Cx. p. pipiens are more likely to have a probability of genetic ancestry with Cx. p. pipiens form molestus. The detection of WNV from overwintering populations of diapausing Cx. p. pipiens and non-diapausing Cx. p. quinquefaciatus and their role in local overwintering of WNV are addressed.
Collapse
Affiliation(s)
- Theodore G Andreadis
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| |
Collapse
|
41
|
Reisen WK. The contrasting bionomics of Culex mosquitoes in western North America. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2012; 28:82-91. [PMID: 23401947 DOI: 10.2987/8756-971x-28.4.82] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mosquitoes in the genus Culex are the primary enzootic maintenance and bridge vectors of the North American encephalitides, now including West Nile virus. This review briefly summarizes the biology of three key vector species in western North America, Culex tarsalis, Cx. pipiens complex and Cx. stigmatosoma, focusing on the long history of research done in California. Topics reviewed include population genetic structure, larval ecology, autogeny, mating behavior, host-seeking behavior, host-selection patterns, and overwintering strategies. These attributes collectively have allowed the successful exploitation of anthropogenically altered ecosystems and enabled the role of these species as maintenance and bridge vectors of arboviruses.
Collapse
Affiliation(s)
- William K Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
42
|
Morales-Betoulle ME, Komar N, Panella NA, Alvarez D, López MR, Betoulle JL, Sosa SM, Müller ML, Kilpatrick AM, Lanciotti RS, Johnson BW, Powers AM, Cordón-Rosales C. West Nile virus ecology in a tropical ecosystem in Guatemala. Am J Trop Med Hyg 2012; 88:116-26. [PMID: 23149586 DOI: 10.4269/ajtmh.2012.12-0276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
West Nile virus ecology has yet to be rigorously investigated in the Caribbean Basin. We identified a transmission focus in Puerto Barrios, Guatemala, and established systematic monitoring of avian abundance and infection, seroconversions in domestic poultry, and viral infections in mosquitoes. West Nile virus transmission was detected annually between May and October from 2005 to 2008. High temperature and low rainfall enhanced the probability of chicken seroconversions, which occurred in both urban and rural sites. West Nile virus was isolated from Culex quinquefasciatus and to a lesser extent, from Culex mollis/Culex inflictus, but not from the most abundant Culex mosquito, Culex nigripalpus. A calculation that combined avian abundance, seroprevalence, and vertebrate reservoir competence suggested that great-tailed grackle (Quiscalus mexicanus) is the major amplifying host in this ecosystem. West Nile virus transmission reached moderate levels in sentinel chickens during 2007, but less than that observed during outbreaks of human disease attributed to West Nile virus in the United States.
Collapse
|
43
|
Chen CC, Epp T, Jenkins E, Waldner C, Curry PS, Soos C. Predicting weekly variation of Culex tarsalis (Diptera: Culicidae) West Nile virus infection in a newly endemic region, the Canadian prairies. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:1144-1153. [PMID: 23025197 DOI: 10.1603/me11221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
West Nile virus (WNV) spread across most of North America within a short time period after its incursion into the Western Hemisphere. The Canadian prairies had the highest human incidence of WNV disease in Canada, particularly in 2007. Statistical modeling and geographic information systems can be used to develop a predictive model and facilitate the mobilization of targeted disease management strategies. Using data collected between 2005 and 2008, we constructed models integrating abiotic and biotic factors to predict the WNV infection rate in female Culex tarsalis Coquillett, the primary vector of WNV in the Canadian prairies. During the study period, the highest mean Cx. tarsalis infection rate was during week 34 (late August). The Cx. tarsalis infection rate increased with increasing Cx. tarsalis abundance and mean temperature lagged from 1 to 8 wk, but decreased with increasing mean precipitation lagged from 2 to 6 wk. Furthermore, precipitation was a 'distorter variable' that altered the association between Cx. tarsalis abundance and the WNV infection rate. Our model clarified how weather influenced the Cx. tarsalis infection rate in the Canadian prairies, a newly and highly WNV endemic region of North America. An understanding of the role of lagged weather variables was essential for providing sufficient lead time to predict WNV occurrence, and for implementing disease control and prevention strategies. Furthermore, it is a useful tool for assessing the potential effects of future climate change on WNV in areas near its northern distributional limit.
Collapse
Affiliation(s)
- Chen-Chih Chen
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
THIEMANN TC, LEMENAGER DA, KLUH S, CARROLL BD, LOTHROP HD, REISEN WK. Spatial variation in host feeding patterns of Culex tarsalis and the Culex pipiens complex (Diptera: Culicidae) in California. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:903-16. [PMID: 22897051 PMCID: PMC3542768 DOI: 10.1603/me11272] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
West Nile virus (family Flaviviridae, genus Flavivirus, WNV) is now endemic in California across a variety of ecological regions that support a wide diversity of potential avian and mammalian host species. Because different avian hosts have varying competence for WNV, determining the blood-feeding patterns of Culex (Diptera: Culicidae) vectors is a key component in understanding the maintenance and amplification of the virus as well as tangential transmission to humans and horses. We investigated the blood-feeding patterns of Culex tarsalis Coquillett and members of the Culex pipiens L. complex from southern to northern California. Nearly 100 different host species were identified from 1,487 bloodmeals, by using the mitochondrial gene cytochrome c oxidase I (COI). Cx. tarsalis fed on a higher diversity of hosts and more frequently on nonhuman mammals than did the Cx. pipiens complex. Several WNV-competent host species, including house finch and house sparrow, were common bloodmeal sources for both vector species across several biomes and could account for WNV maintenance and amplification in these areas. Highly competent American crow, western scrub-jay and yellow-billed magpie also were fed upon often when available and are likely important as amplifying hosts for WNV in some areas. Neither species fed frequently on humans (Cx. pipiens complex [0.4%], Cx. tarsalis [0.2%]), but with high abundance, both species could serve as both enzootic and bridge vectors for WNV.
Collapse
Affiliation(s)
- T. C. THIEMANN
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California–Davis, Davis, CA 95616
| | - D. A. LEMENAGER
- Sutter-Yuba Mosquito and Vector Control District, P.O. Box 726, Yuba City, CA 95992
| | - S. KLUH
- Greater Los Angeles County Vector Control District, 12545 Florence Ave., Santa Fe Springs, CA 90670
| | - B. D. CARROLL
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California–Davis, Davis, CA 95616
| | - H. D. LOTHROP
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California–Davis, Davis, CA 95616
| | - W. K. REISEN
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California–Davis, Davis, CA 95616
| |
Collapse
|
45
|
Chuang TW, Hockett CW, Kightlinger L, Wimberly MC. Landscape-level spatial patterns of West Nile virus risk in the northern Great Plains. Am J Trop Med Hyg 2012; 86:724-31. [PMID: 22492161 DOI: 10.4269/ajtmh.2012.11-0515] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Understanding the landscape-level determinants of West Nile virus (WNV) can aid in mapping high-risk areas and enhance disease control and prevention efforts. This study analyzed the spatial patterns of human WNV cases in three areas in South Dakota during 2003-2007 and investigated the influences of land cover, hydrology, soils, irrigation, and elevation by using case-control models. Land cover, hydrology, soils, and elevation all influenced WNV risk, although the main drivers were different in each study area. Risk for WNV was generally higher in areas with rural land cover than in developed areas, and higher close to wetlands or soils with a high ponding frequency. In western South Dakota, WNV risk also decreased with increasing elevation and was higher in forested areas. Our results showed that the spatial patterns of human WNV risk were associated with landscape-level features that likely reflect variability in mosquito ecology, avian host communities, and human activity.
Collapse
Affiliation(s)
- Ting-Wu Chuang
- Geographic Information Science Center of Excellence, South Dakota State University, Brookings, 57007, USA.
| | | | | | | |
Collapse
|
46
|
DeGroote JP, Sugumaran R. National and regional associations between human West Nile virus incidence and demographic, landscape, and land use conditions in the coterminous United States. Vector Borne Zoonotic Dis 2012; 12:657-65. [PMID: 22607071 DOI: 10.1089/vbz.2011.0786] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The incidence of human West Nile virus (WNV) varies spatially and temporally and is influenced by a wide range of biotic and abiotic factors. There are numerous important vector species, with variable geographic ranges and ecologies, considered crucial to the transmission of WNV in the coterminous United States. To date there has been a lack of a systematic investigation in the United States, at a regional scale, of the wide variety of landscape, land use, and demographic influences on WNV incidence. In this study, we use published vector species distribution maps, as well as prominent landscape features, to define six distinct regions of the coterminous United States. We relate data on demographic, landscape, and land use conditions to the incidence of human WNV by region recorded at county level in the coterminous United States from 2002-2009. The observed relationships varied by region with the Great Plains, Northwest, and Southwest regions showing high WNV incidence associated with rural irrigated landscapes, indicating the importance of Culex tarsalis as the primary vector. In the Southeast, the percent of the population in poverty was positively associated with high WNV incidence, potentially indicating the quality of housing in relation to the vector Culex quinquefasciatus, a mosquito that often feeds indoors. The Northeast region human WNV incidence was positively associated with agricultural landscapes, potentially implying the importance of Culex restuans in a region generally thought of as being dominated by Culex pipiens transmission. There was strong spatial autocorrelation in most of the regions, but with a spatial autologistic term accounted for in binary logistic regression models, there were significant landscape, land use, and demographic covariates for each region.
Collapse
Affiliation(s)
- John P DeGroote
- GeoInformatics, Training, Research, Education, and Extension Center, Geography Department, University of Northern Iowa, Cedar Falls, Iowa 50614-0406, USA.
| | | |
Collapse
|
47
|
Hartley DM, Barker CM, Le Menach A, Niu T, Gaff HD, Reisen WK. Effects of temperature on emergence and seasonality of West Nile virus in California. Am J Trop Med Hyg 2012; 86:884-94. [PMID: 22556092 PMCID: PMC3335698 DOI: 10.4269/ajtmh.2012.11-0342] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 02/04/2012] [Indexed: 11/07/2022] Open
Abstract
Temperature has played a critical role in the spatiotemporal dynamics of West Nile virus transmission throughout California from its introduction in 2003 through establishment by 2009. We compared two novel mechanistic measures of transmission risk, the temperature-dependent ratio of virus extrinsic incubation period to the mosquito gonotrophic period (BT), and the fundamental reproductive ratio (R(0)) based on a mathematical model, to analyze spatiotemporal patterns of receptivity to viral amplification. Maps of BT and R(0) were created at 20-km scale and compared throughout California to seroconversions in sentinel chicken flocks at half-month intervals. Overall, estimates of BT and R(0) agreed with intensity of transmission measured by the frequency of sentinel chicken seroconversions. Mechanistic measures such as these are important for understanding how temperature affects the spatiotemporal dynamics of West Nile virus transmission and for delineating risk estimates useful to inform vector control agency intervention decisions and communicate outbreak potential.
Collapse
Affiliation(s)
- David M Hartley
- Georgetown University Medical Center, Washington, District of Columbia 20057, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Tang Y, Diao Y, Yu C, Gao X, Ju X, Xue C, Liu X, Ge P, Qu J, Zhang D. Characterization of a Tembusu virus isolated from naturally infected house sparrows (Passer domesticus) in Northern China. Transbound Emerg Dis 2012; 60:152-8. [PMID: 22515847 DOI: 10.1111/j.1865-1682.2012.01328.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The house sparrow (Passer domesticus) is one of the most widely distributed wild birds in China. Tembusu virus (TMUV) strain, TMUV-SDHS, was isolated from house sparrows living around the poultry farms in Shandong Province, Northern China. Genetic analysis of E and NS5 genes showed that it had a close relationship with that of the YY5 strain, which can cause severe egg drop in ducks. Pathogenicity studies showed that the virus is highly virulent when experimentally inoculated into the ducks. These findings show that house sparrows carrying the Tembusu virus may play an important role in transmitting the virus among other species.
Collapse
Affiliation(s)
- Y Tang
- Zoology Institute, Agricultural University of Shan Dong Province, Shan Dong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kwan JL, Kluh S, Reisen WK. Antecedent avian immunity limits tangential transmission of West Nile virus to humans. PLoS One 2012; 7:e34127. [PMID: 22457819 PMCID: PMC3311586 DOI: 10.1371/journal.pone.0034127] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/22/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND West Nile virus (WNV) is a mosquito-borne flavivirus maintained and amplified among birds and tangentially transmitted to humans and horses which may develop terminal neuroinvasive disease. Outbreaks typically have a three-year pattern of silent introduction, rapid amplification and subsidence, followed by intermittent recrudescence. Our hypothesis that amplification to outbreak levels is contingent upon antecedent seroprevalence within maintenance host populations was tested by tracking WNV transmission in Los Angeles, California from 2003 through 2011. METHODS Prevalence of antibodies against WNV was monitored weekly in House Finches and House Sparrows. Tangential or spillover transmission was measured by seroconversions in sentinel chickens and by the number of West Nile neuroinvasive disease (WNND) cases reported to the Los Angeles County Department of Public Health. RESULTS Elevated seroprevalence in these avian populations was associated with the subsidence of outbreaks and in the antecedent dampening of amplification during succeeding years. Dilution of seroprevalence by recruitment resulted in the progressive loss of herd immunity following the 2004 outbreak, leading to recrudescence during 2008 and 2011. WNV appeared to be a significant cause of death in these avian species, because the survivorship of antibody positive birds significantly exceeded that of antibody negative birds. Cross-correlation analysis showed that seroprevalence was negatively correlated prior to the onset of human cases and then positively correlated, peaking at 4-6 weeks after the onset of tangential transmission. Antecedent seroprevalence during winter (Jan - Mar) was negatively correlated with the number of WNND cases during the succeeding summer (Jul-Sep). CONCLUSIONS Herd immunity levels within after hatching year avian maintenance host populations <10% during the antecedent late winter and spring period were followed on three occasions by outbreaks of WNND cases during the succeeding summer. Because mosquitoes feed almost exclusively on these avian species, amplification was directly related to the availability of receptive non-immune hosts.
Collapse
Affiliation(s)
- Jennifer L. Kwan
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Susanne Kluh
- Greater Los Angeles County Vector Control District, Santa Fe Springs, California, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Thiemann TC, Wheeler SS, Barker CM, Reisen WK. Mosquito host selection varies seasonally with host availability and mosquito density. PLoS Negl Trop Dis 2011; 5:e1452. [PMID: 22206038 PMCID: PMC3243726 DOI: 10.1371/journal.pntd.0001452] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/11/2011] [Indexed: 11/28/2022] Open
Abstract
Host selection by vector mosquitoes is a critical component of virus proliferation, particularly for viruses such as West Nile (WNV) that are transmitted enzootically to a variety of avian hosts, and tangentially to dead-end hosts such as humans. Culex tarsalis is a principal vector of WNV in rural areas of western North America. Based on previous work, Cx. tarsalis utilizes a variety of avian and mammalian hosts and tends to feed more frequently on mammals in the late summer than during the rest of the year. To further explore this and other temporal changes in host selection, bloodfed females were collected at a rural farmstead and heron nesting site in Northern California from May 2008 through May 2009, and bloodmeal hosts identified using either a microsphere-based array or by sequencing of the mitochondrial cytochrome c oxidase I (COI) gene. Host composition during summer was dominated by four species of nesting Ardeidae. In addition, the site was populated with various passerine species as well as domestic farm animals and humans. When present, Cx. tarsalis fed predominantly (>80%) upon the ardeids, with Black-crowned Night-Herons, a highly competent WNV host, the most prevalent summer host. As the ardeids fledged and left the area and mosquito abundance increased in late summer, Cx. tarsalis feeding shifted to include more mammals, primarily cattle, and a high diversity of avian species. In the winter, Yellow-billed Magpies and House Sparrows were the predominant hosts, and Yellow-billed Magpies and American Robins were fed upon more frequently than expected given their relative abundance. These data demonstrated that host selection was likely based both on host availability and differences in utilization, that the shift of bloodfeeding to include more mammalian hosts was likely the result of both host availability and increased mosquito abundance, and that WNV-competent hosts were fed upon by Cx. tarsalis throughout the year. West Nile virus (WNV) is transmitted from one vertebrate host to another by the bite of a mosquito. The virus is maintained primarily in birds, but can also be transmitted to mammals such as horses and humans which may suffer severe neurological disease. Culex tarsalis is a primary mosquito vector of WNV in the western United States. Because this mosquito will bite a variety of host species, understanding bloodfeeding patterns and host selection is important for understanding WNV transmission. In our study, the bloodfeeding patterns of Cx. tarsalis varied markedly throughout the year. During summer nesting herons were utilized almost exclusively; avian host diversity increased in the fall, when an increase in the proportion of bloodfeeding on mammals was also observed. Yellow-billed Magpies and House Sparrows were common hosts in the winter, when no mammalian bloodmeals were detected. Seasonal shifts corresponded to both changes in host availability and mosquito density; however, WNV-competent hosts were fed upon throughout the year. This work supports the role of Cx. tarsalis as a vector of WNV to both avian and mammalian hosts and provides insight into seasonal changes in host selection that may influence the seasonality of WNV transmission to equines and humans.
Collapse
Affiliation(s)
- Tara C. Thiemann
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Sarah S. Wheeler
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Christopher M. Barker
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|