1
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Begum M, Choubey M, Tirumalasetty MB, Arbee S, Mohib MM, Wahiduzzaman M, Mamun MA, Uddin MB, Mohiuddin MS. Adiponectin: A Promising Target for the Treatment of Diabetes and Its Complications. Life (Basel) 2023; 13:2213. [PMID: 38004353 PMCID: PMC10672343 DOI: 10.3390/life13112213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes mellitus, a chronic metabolic disorder characterized by hyperglycemia, presents a formidable global health challenge with its associated complications. Adiponectin, an adipocyte-derived hormone, has emerged as a significant player in glucose metabolism and insulin sensitivity. Beyond its metabolic effects, adiponectin exerts anti-inflammatory, anti-oxidative, and vasoprotective properties, making it an appealing therapeutic target for mitigating diabetic complications. The molecular mechanisms by which adiponectin impacts critical pathways implicated in diabetic nephropathy, retinopathy, neuropathy, and cardiovascular problems are thoroughly examined in this study. In addition, we explore possible treatment options for increasing adiponectin levels or improving its downstream signaling. The multifaceted protective roles of adiponectin in diabetic complications suggest its potential as a novel therapeutic avenue. However, further translational studies and clinical trials are warranted to fully harness the therapeutic potential of adiponectin in the management of diabetic complications. This review highlights adiponectin as a promising target for the treatment of diverse diabetic complications and encourages continued research in this pivotal area of diabetes therapeutics.
Collapse
Affiliation(s)
- Mahmuda Begum
- Department of Internal Medicine, HCA-St David’s Medical Center, 919 E 32nd St, Austin, TX 78705, USA;
| | - Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| | - Munichandra Babu Tirumalasetty
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| | - Shahida Arbee
- Institute for Molecular Medicine, Aichi Medical University, 1-Yazako, Karimata, Aichi, Nagakute 480-1103, Japan;
| | - Mohammad Mohabbulla Mohib
- Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Magdeburger Straße 6, 06112 Halle, Germany;
| | - Md Wahiduzzaman
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| | - Mohammed A. Mamun
- CHINTA Research Bangladesh, Savar 1342, Bangladesh;
- Department of Public Health and Informatics, Jahangirnagar University, Savar 1342, Bangladesh
| | - Mohammad Borhan Uddin
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh;
| | - Mohammad Sarif Mohiuddin
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA; (M.C.); (M.B.T.); (M.W.)
| |
Collapse
|
3
|
Kim J, Oh CM, Kim H. The Interplay of Adipokines and Pancreatic Beta Cells in Metabolic Regulation and Diabetes. Biomedicines 2023; 11:2589. [PMID: 37761031 PMCID: PMC10526203 DOI: 10.3390/biomedicines11092589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The interplay between adipokines and pancreatic beta cells, often referred to as the adipo-insular axis, plays a crucial role in regulating metabolic homeostasis. Adipokines are signaling molecules secreted by adipocytes that have profound effects on several physiological processes. Adipokines such as adiponectin, leptin, resistin, and visfatin influence the function of pancreatic beta cells. The reciprocal communication between adipocytes and beta cells is remarkable. Insulin secreted by beta cells affects adipose tissue metabolism, influencing lipid storage and lipolysis. Conversely, adipokines released from adipocytes can influence beta cell function and survival. Chronic obesity and insulin resistance can lead to the release of excess fatty acids and inflammatory molecules from the adipose tissue, contributing to beta cell dysfunction and apoptosis, which are key factors in developing type 2 diabetes. Understanding the complex interplay of the adipo-insular axis provides insights into the mechanisms underlying metabolic regulation and pathogenesis of metabolic disorders. By elucidating the molecular mediators involved in this interaction, new therapeutic targets and strategies may emerge to reduce the risk and progression of diseases, such as type 2 diabetes and its associated complications. This review summarizes the interactions between adipokines and pancreatic beta cells, and their roles in the pathogenesis of diabetes and metabolic diseases.
Collapse
Affiliation(s)
- Joon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hyeongseok Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
| |
Collapse
|
4
|
Reiterer M, Gilani A, Lo JC. Pancreatic Islets as a Target of Adipokines. Compr Physiol 2022; 12:4039-4065. [PMID: 35950650 DOI: 10.1002/cphy.c210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.
Collapse
Affiliation(s)
- Moritz Reiterer
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
5
|
Feyzi M, Tabandeh MR, Shariati M, Edalatmanesh MA. Age Associated Changes in Transcription of Adiponectin, AdipoR1 and AdipoR2 Genes in Pancreas of Rats. CELL JOURNAL 2020; 22:61-67. [PMID: 32779434 PMCID: PMC7481892 DOI: 10.22074/cellj.2020.6921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/02/2019] [Indexed: 12/04/2022]
Abstract
Objective Adiponectin has a crucial role in the function, proliferation and viability of β-cell via action of two receptors:
AdipoR1 and AdipoR2. Nevertheless, age related change of Adiponectin system genes in pancreas is unclear or
controversial. This study sought to investigate the effects of aging process on serum Adiponectin levels, Adiponectin
and its receptor expression in the rat pancreas.
Materials and Methods In this experimental study, insulin resistance markers including serum insulin and glucose
concentrations, homeostatic model assessment of insulin resistance (HOMA-IR), oral glucose tolerance test (OGTT),
glucose induced insulin secretion (GIIS), serum Adiponectin levels, pancreatic expression of Adiponectin and its
receptors were studied in male Sprague-Dawley rats at the age of 2, 5, 10, 18, 52 and 72 weeks of age.
Results We found that aging triggered signs of insulin resistance characteristics in rats at 72 age weeks including
marked insulin reduction, hyperglycemia and increased HOMA-IR. Circulating Adiponectin as well as pancreatic
expression of Adiponectin and AdipoR1 was gradually decreased with age, while the opposite expression pattern of
AdipoR2 was observed in the old rats.
Conclusion Because Adiponectin and Adiponectin signaling have crucial role in β-cell function and viability, we
concluded that reduction of Adiponectin signaling may be involved in aging induced β-cell dysfunction. As a result,
manipulation of Adiponectin signaling may be a beneficial approach for improvement of β-cell function in the old people.
Collapse
Affiliation(s)
- Marziyeh Feyzi
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic Address: .,Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehrdad Shariati
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | | |
Collapse
|
6
|
Wang Y, Li Y, Qiao J, Li N, Qiao S. AMPK α1 mediates the protective effect of adiponectin against insulin resistance in INS-1 pancreatic β cells. Cell Biochem Funct 2019; 37:625-632. [PMID: 31693217 DOI: 10.1002/cbf.3440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022]
Abstract
The fat-derived protein adiponectin is known to reverse the effects of insulin resistance and to lower blood glucose levels. The AMP-activated protein kinase (AMPK) signalling pathway plays a central role in metabolism and energy homeostasis. Here, to investigate the role of AMPK in the protective effect of adiponectin against insulin resistance, we established the model of high-glucose (HG)- and high-lipid (HL)-induced insulin resistance in INS-1 pancreatic β cells. We found that 25mM of glucose and 0.4mM of palmitic acid treatment significantly increased cell apoptosis and impaired insulin secretion in INS-1 cells. However, recombinant human adiponectin dramatically reduced HG- and/or HL-induced cell apoptosis and greatly improved insulin secretion. Interestingly, adiponectin treatment also activated AMPK signalling pathway by increasing the phosphorylation of Thr172 in the AMPK α subunit; 10μM of compound C, a potent AMPK inhibitor, blocked the protective effects of adiponectin against HG/HL-induced insulin resistance. Furthermore, knockout experiments by CRISPR/Cas9 technology showed that AMPK α1, but not AMPK α2, is involved in the protective effects of adiponectin. Taken together, adiponectin reversed the effects of insulin resistance via AMPK α1, which provides a novel insight into the protective mechanism of adiponectin and may be used as a new strategy for the treatment of type 2 diabetes. SIGNIFICANCE OF THE STUDY: Adiponectin can reverse the effects of insulin resistance and lower blood glucose levels. Here, adiponectin reduced HG/HL-induced cell apoptosis and greatly improved insulin secretion. These effects were blocked by AMPK inhibitor, compound C. Specifically, we found that AMPK α1, but not AMPK α2, mediates the protective effects of adiponectin, which provides a novel insight into the protective mechanism of adiponectin against insulin resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Li
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Qiao
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Na Li
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shun Qiao
- Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Gerst F, Wagner R, Oquendo MB, Siegel-Axel D, Fritsche A, Heni M, Staiger H, Häring HU, Ullrich S. What role do fat cells play in pancreatic tissue? Mol Metab 2019; 25:1-10. [PMID: 31113756 PMCID: PMC6600604 DOI: 10.1016/j.molmet.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background It is now generally accepted that obesity is a major risk factor for type 2 diabetes mellitus (T2DM). Hepatic steatosis in particular, as well as visceral and ectopic fat accumulation within tissues, is associated with the development of the disease. We recently presented the first study on isolated human pancreatic adipocytes and their interaction with islets [Gerst, F., Wagner, R., Kaiser, G., Panse, M., Heni, M., Machann, J., et al., 2017. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60(11):2240–2251.]. The results indicate that the function of adipocytes depends on the overall metabolic status in humans which, in turn, differentially affects islet hormone release. Scope of Review This review summarizes former and recent studies on factors derived from adipocytes and their effects on insulin-secreting β-cells, with particular emphasis on the human pancreas. The adipocyte secretome is discussed with a special focus on its influence on insulin secretion, β-cell survival and apoptotic β-cell death. Major Conclusions Human pancreatic adipocytes store lipids and release adipokines, metabolites, and pro-inflammatory molecules in response to the overall metabolic, humoral, and neuronal status. The differentially regulated adipocyte secretome impacts on endocrine function, i.e., insulin secretion, β-cell survival and death which interferes with glycemic control. This review attempts to explain why the extent of pancreatic steatosis is associated with reduced insulin secretion in some studies but not in others.
Collapse
Affiliation(s)
- Felicia Gerst
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Morgana Barroso Oquendo
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Dorothea Siegel-Axel
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Harald Staiger
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Ullrich
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Sharp J, Vermette P. An In-situ
glucose-stimulated insulin secretion assay under perfusion bioreactor conditions. Biotechnol Prog 2016; 33:454-462. [DOI: 10.1002/btpr.2407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/23/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jamie Sharp
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering; Université de Sherbrooke; 2500 boulevard de l'Université Sherbrooke QC J1K 2R1 Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering; Université de Sherbrooke; 2500 boulevard de l'Université Sherbrooke QC J1K 2R1 Canada
| |
Collapse
|
9
|
Hu S, Li S, Song W, Ji L, Cai L, Wang Y, Jiang W. Fucoidan from Cucumaria frondosa Inhibits Pancreatic Islets Apoptosis Through Mitochondrial Signaling Pathway in Insulin Resistant Mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shiwei Hu
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan
| | - Shijie Li
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan
| | - Wendong Song
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan
| | - Lili Ji
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan
| | - Lu Cai
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan
| | - Yaning Wang
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan
| | - Wei Jiang
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention
| |
Collapse
|
10
|
Bhattacharya S, Oksbjerg N, Young JF, Jeppesen PB. Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells. Diabetes Obes Metab 2014; 16:602-12. [PMID: 24205999 DOI: 10.1111/dom.12236] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/21/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
Abstract
AIMS Caffeic acid, naringenin and quercetin are naturally occurring phenolic compounds (PCs) present in many plants as secondary metabolites. The aim of this study was to investigate their effect on glucose-stimulated insulin secretion (GSIS) in INS-1E cells and to explore their effect on expression of genes involved in β-cell survival and function under normoglycaemic and glucotoxic conditions. METHODS For acute studies, INS-1E cells were grown in 11 mM glucose (72 h) and then incubated with the PCs (1 h) with 3.3/16.7 mM glucose; whereas, for chronic studies, the cells were grown in 11 mM glucose (72 h) with/without the PCs, and then incubated with 3.3/16.7 mM glucose (1 h); thereafter, GSIS was measured. For GSIS and gene expression studies (GES) under glucotoxic conditions, two sets of cells were grown in 11/25 mM glucose with/without the PCs (72 h): one was used for GES, using real time RT-PCR, and the other was exposed to 3.3/16.7 mM glucose, followed by measurement of GSIS. RESULTS The study demonstrated that the PCs can enhance GSIS under hyperglycaemic and glucotoxic conditions in INS-1E cells. Moreover, these compounds can differentially, yet distinctly change the expression profile of genes [Glut2 (glucose transporter 2), Gck (glucokinase), Ins1 (insulin 1), Ins2, Beta2 (neurogenic differentiation protein 1), Pdx1 (pancreatic and duodenal homeobox protein 1), Akt1 (RAC-α serine/threonine-protein kinase encoding gene), Akt2 (RAC-β serine/threonine-protein kinase encoding gene), Irs1 (insulin receptor substrate 1), Acc1 (acetyl CoA carboxylase 1), Bcl2 (β-cell lymphoma 2 protein), Bax (Bcl-2 associated X protein), Casp3 (Caspase 3), Hsp70 (heat shock protein 70), and Hsp90] involved in β-cell stress, survival and function. CONCLUSION The results indicate that the PCs tested enhance GSIS and glucose sensitivity in INS-1E cells. They also modulate gene expression profiles to improve β-cell survival and function during glucotoxicity.
Collapse
Affiliation(s)
- S Bhattacharya
- Department of Food Science, Aarhus University, Tjele, Denmark
| | | | | | | |
Collapse
|
11
|
Romacho T, Elsen M, Röhrborn D, Eckel J. Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxf) 2014; 210:733-53. [PMID: 24495317 DOI: 10.1111/apha.12246] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/18/2013] [Accepted: 01/28/2014] [Indexed: 12/13/2022]
Abstract
The discovery of adipokines has revealed adipose tissue as a central node in the interorgan crosstalk network, which mediates the regulation of multiple organs and tissues. Adipose tissue is a true endocrine organ that produces and secretes a wide range of mediators regulating adipose tissue function in an auto-/paracrine manner and important distant targets, such as the liver, skeletal muscle, the pancreas and the cardiovascular system. In metabolic disorders such as obesity, enlargement of adipocytes leads to adipose tissue dysfunction and a shift in the secretory profile with an increased release of pro-inflammatory adipokines. Adipose tissue dysfunction has a central role in the development of insulin resistance, type 2 diabetes, and cardiovascular diseases. Besides the well-acknowledged role of adipokines in metabolic diseases, and the increasing number of adipokines being discovered in the last years, the mechanisms underlying the release of many adipokines from adipose tissue remain largely unknown. To combat metabolic diseases, it is crucial to better understand how adipokines can modulate adipose tissue growth and function. Therefore, we will focus on adipokines with a prominent role in auto-/paracrine crosstalk within the adipose tissue such as RBP4, HO-1, WISP2, SFRPs and chemerin. To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, we will report the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β-cell growth and function.
Collapse
Affiliation(s)
- T. Romacho
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - M. Elsen
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - D. Röhrborn
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - J. Eckel
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
- German Center for Diabetes Research (DZD e.V.); Düsseldorf Germany
| |
Collapse
|
12
|
Hu S, Wang J, Xu H, Wang Y, Li Z, Xue C. Fucosylated chondroitin sulphate from sea cucumber inhibits high-fat-sucrose diet-induced apoptosis in mouse pancreatic islets via down-regulating mitochondrial signaling pathway. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Yang J, Kang J, Guan Y. The mechanisms linking adiposopathy to type 2 diabetes. Front Med 2013; 7:433-44. [PMID: 24085616 DOI: 10.1007/s11684-013-0288-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
Obesity is defined as excessive accumulation of body fat in proportion to body size. When obesity occurs, the functions of adipose tissue may be deregulated, which is termed as adiposopathy. Adiposopathy is an independent risk factor for many diseases, including diabetes and cardiovascular diseases. In overweight or obese subjects with adiposopathy, hyperlipidemia exerts lipotoxicity in pancreatic islet and liver and induces pancreatic β cell dysfunction and liver insulin resistance, which are the decisive factors causing type 2 diabetes. Moreover, adipokines have been shown to play important roles in the regulation of glucose homeostasis. When adiposopathy occurs, abnormal changes in the serum adipokine profile correlate with the development and progression of pancreatic β cell dysfunction and insulin resistance in peripheral tissue. The current paper briefly discusses the latest findings regarding the effects of adiposopathy-related lipotoxicity and cytokine toxicity on the development of type 2 diabetes.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing, 100191, China
| | | | | |
Collapse
|
14
|
Vasu S, McClenaghan NH, McCluskey JT, Flatt PR. Cellular responses of novel human pancreatic β-cell line, 1.1B4 to hyperglycemia. Islets 2013; 5:170-7. [PMID: 23985558 DOI: 10.4161/isl.26184] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The novel human-derived pancreatic β-cell line, 1.1B4 exhibits insulin secretion and β-cell enriched gene expression. Recent investigations of the cellular responses of this novel cell line to lipotoxicity and cytokine toxicity revealed similarities to primary human β cells. The current study has investigated the responses of 1.1B4 cells to chronic 48 and 72 h exposure to hyperglycemia to probe mechanisms of human β-cell dysfunction and cell death. Exposure to 25 mM glucose significantly reduced insulin content (p<0.05) and glucokinase activity (p<0.01) after 72 h. Basal insulin release was unaffected but acute secretory response to 16.7 mM glucose was impaired (p<0.05). Insulin release stimulated by alanine, GLP-1, KCl, elevated Ca (2+) and forskolin was also markedly reduced after exposure to hyperglycemia (p<0.001). In addition, PDX1 protein expression was reduced by 58% by high glucose (p<0.05). Effects of hyperglycemia on secretory function were accompanied by decreased mRNA expression of INS, GCK, PCSK1, PCSK2, PPP3CB, GJA1, ABCC8, and KCNJ11. In contrast, exposure to hyperglycemia upregulated the transcription of GPX1, an antioxidant enzyme involved in detoxification of hydrogen peroxide and HSPA4, a molecular chaperone involved in ER stress response. Hyperglycemia-induced DNA damage was demonstrated by increased % tail DNA and olive tail moment, assessed by comet assay. Hyperglycemia-induced apoptosis was evident from increased activity of caspase 3/7 and decreased BCL2 protein. These observations reveal significant changes in cellular responses and gene expression in novel human pancreatic 1.1B4 β cells exposed to hyperglycemia, illustrating the usefulness of this novel human-derived cell line for studying human β-cell biology and diabetes.
Collapse
Affiliation(s)
- Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes; University of Ulster; Coleraine, Northern Ireland, UK
| | | | | | | |
Collapse
|
15
|
Abstract
β-Cell failure coupled with insulin resistance is a key factor in the development of type 2 diabetes. Changes in circulating levels of adipokines, factors released from adipose tissue, form a significant link between excessive adiposity in obesity and both aforementioned factors. In this review, we consider the published evidence for the role of individual adipokines on the function, proliferation, death and failure of β-cells, focusing on those reported to have the most significant effects (leptin, adiponectin, tumour necrosis factor α, resistin, visfatin, dipeptidyl peptidase IV and apelin). It is apparent that some adipokines have beneficial effects whereas others have detrimental properties; the overall contribution to β-cell failure of changed concentrations of adipokines in the blood of obese pre-diabetic subjects will be highly dependent on the balance between these effects and the interactions between the adipokines, which act on the β-cell via a number of intersecting intracellular signalling pathways. We emphasise the importance, and comparative dearth, of studies into the combined effects of adipokines on β-cells.
Collapse
Affiliation(s)
- Simon J Dunmore
- Diabetes and Metabolic Disease Research Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | | |
Collapse
|
16
|
Vaspin attenuates the apoptosis of human osteoblasts through ERK signaling pathway. Amino Acids 2012; 44:961-8. [DOI: 10.1007/s00726-012-1425-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/22/2012] [Indexed: 11/25/2022]
|
17
|
Rao JR, Keating DJ, Chen C, Parkington HC. Adiponectin increases insulin content and cell proliferation in MIN6 cells via PPARγ-dependent and PPARγ-independent mechanisms. Diabetes Obes Metab 2012; 14:983-9. [PMID: 22594400 DOI: 10.1111/j.1463-1326.2012.01626.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/14/2012] [Accepted: 04/16/2012] [Indexed: 11/28/2022]
Abstract
AIMS Adiponectin is an important adipokine whose levels are decreased in obesity despite increases in adipocyte mass. Studies in animal models implicate adiponectin as an insulin sensitizer in skeletal muscle and liver. Thiazolidinediones (TZDs) are insulin sensitizers and ligands for peroxisome proliferator-activated γ receptors (PPARγ) and these receptors are expressed in β cells where their activation promotes cell survival. We hypothesize that adiponectin promotes β cell survival by activating PPARγ. METHODS We used MIN6 cells to investigate the effect of adiponectin on PPARγ expression, β-cell proliferation, insulin synthesis and insulin secretion. RESULTS We demonstrate that MIN6 cells contain adiponectin receptors and that adiponectin activates PPARγ mRNA and protein expression. This increase in PPARγ expression is blocked by the PPARγ antagonist, GW9662, indicating a transcriptional feedback loop involving PPARγ activation of itself. Adiponectin causes a significant increase in insulin content and secretion and this occurs also via PPARγ activation due to the inhibitory effect of GW9662. Adiponectin also promotes MIN6 cell proliferation, however, this effect is independent of PPARγ activation. CONCLUSIONS Our results identify novel roles for the adipokine, adiponectin, in β-cells function. Adiponectin upregulates PPARγ expression, insulin content and insulin secretion through PPARγ-dependent mechanisms. Reductions in circulating adiponectin levels in obese individuals could therefore result in negative effects on β-cell function and this may have direct relevance to β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- J R Rao
- Prince Henry's Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
18
|
Tsai CJ, Hsieh CJ, Tung SC, Kuo MC, Shen FC. Acute blood glucose fluctuations can decrease blood glutathione and adiponectin levels in patients with type 2 diabetes. Diabetes Res Clin Pract 2012; 98:257-63. [PMID: 23084042 DOI: 10.1016/j.diabres.2012.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/22/2012] [Accepted: 09/04/2012] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Glutathione appears to have apparent antioxidant activity to counter regulate hyperglycemia induced oxidative stress. Adiponectin also plays a role in the suppression of the metabolic derangements in type 2 diabetes mellitus (DM). The aim of this study was to determine whether blood glucose fluctuations can alter blood levels of glutathione and adiponectin. METHODS We enrolled 34 patients with type 2 DM. As a measure of short-term glycemic variability, the mean amplitude of glycemic excursions (MAGE) was computed from a continuous glucose monitor system (CGMS), and data were recorded over 72 h. For long-term glycemic variability, we calculated the standard deviation (SD) of HbA1c over a 2-year period. Glutathione and adiponectin levels were measured after completing the 72-h CGMS data collection. RESULTS The blood levels of glutathione were significantly and negatively correlated with MAGE (r = -0.543; P < 0.001), but not with HbA1c and SD of HbA1c. Adiponectin levels were also significantly and negatively correlated with MAGE and SD of HbA1c (r = -0.64 and r = -0.55, respectively; P < 0.001). Using generalized estimating equations, multivariate regression analysis revealed that MAGE is an independent predictor of serum levels of adiponectin (P = 0.002) and glutathione (P = 0.004). CONCLUSIONS We found strong associations between acute blood glucose variability, glutathione, and adiponectin in type 2 diabetic patients treated with oral hypoglycemic agent therapy.
Collapse
Affiliation(s)
- Chia-Jen Tsai
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Chetboun M, Abitbol G, Rozenberg K, Rozenfeld H, Deutsch A, Sampson SR, Rosenzweig T. Maintenance of redox state and pancreatic beta-cell function: role of leptin and adiponectin. J Cell Biochem 2012; 113:1966-76. [PMID: 22253064 DOI: 10.1002/jcb.24065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Whereas oxidative stress is linked to cellular damage, reactive oxygen species (ROS) are also believed to be involved in the propagation of signaling pathways. Studies on the role of ROS in pancreatic beta-cell physiology, in contrast to pathophysiology, have not yet been reported. In this study we investigate the importance of maintaining cellular redox state on pancreatic beta-cell function and viability, and the effects of leptin and adiponectin on this balance. Experiments were conducted on RINm and MIN6 pancreatic beta-cells. Leptin (1-100 ng/ml) and adiponectin (1-100 nM) increased ROS accumulation, as was determined by DCFDA fluorescence. Using specific inhibitors, we found that the increase in ROS levels was mediated by NADPH oxidase (Nox), but not by AMP kinase (AMPK) or phosphatidyl inositol 3 kinase (PI3K). Leptin and adiponectin increased beta-cell number as detected by the XTT method, but did not affect apoptosis, indicating that the increased cell number results from increased proliferation. The adipokines-induced increase in viability is ROS dependent as this effect was abolished by N-acetyl-L-cysteine (NAC) or PEG-catalase. In addition, insulin secretion was found to be regulated by alterations in redox state, but not by adipokines. Finally, the effects of the various treatments on activity and mRNA expression of several antioxidant enzymes were determined. Both leptin and adiponectin reduced mRNA levels of superoxide dismutase (SOD)1. Adiponectin also decreased SOD activity and increased catalase and glutathione peroxidase (GPx) activities in the presence of H2O2. The results of this study show that leptin and adiponectin, by inducing a physiological increase in ROS levels, may be positive regulators of beta-cell mass.
Collapse
Affiliation(s)
- Moria Chetboun
- Department of Molecular Biology, Ariel University Center of Samaria, Ariel, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Sun LQ, Xue B, Li XJ, Wang X, Qu L, Zhang TT, Zhao J, Wang BA, Zou XM, Mu YM, Lu JM. Inhibitory effects of Salvianolic acid B on apoptosis of Schwann cells and its mechanism induced by intermittent high glucose. Life Sci 2012; 90:99-108. [DOI: 10.1016/j.lfs.2011.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 09/12/2011] [Accepted: 10/05/2011] [Indexed: 01/22/2023]
|
21
|
Yanjun W, Yue X, Shixing L. WITHDRAWN: Effect of blood glucose fluctuation on the function of rat pancreatic islets in vivo. REGULATORY PEPTIDES 2011:S0167-0115(11)00174-1. [PMID: 21982784 DOI: 10.1016/j.regpep.2011.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 05/31/2023]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Wang Yanjun
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | | | | |
Collapse
|
22
|
Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem 2010; 285:33623-31. [PMID: 20709750 DOI: 10.1074/jbc.m109.085084] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The functional impact of adiponectin on pancreatic beta cells is so far poorly understood. Although adiponectin receptors (AdipoR1/2) were identified, their involvement in adiponectin-induced signaling and other molecules involved is not clearly defined. Therefore, we investigated the role of adiponectin in beta cells and the signaling mediators involved. MIN6 beta cells and mouse islets were stimulated with globular (2.5 μg/ml) or full-length (5 μg/ml) adiponectin under serum starvation, and cell viability, proliferation, apoptosis, insulin gene expression, and secretion were measured. Lysates were subjected to Western blot analysis to determine phosphorylation of AMP-activated protein kinase (AMPK), Akt, or ERK. Functional significance of signaling was confirmed using dominant negative mutants or pharmacological inhibitors. Participation of AdipoRs was assessed by overexpression or siRNA. Adiponectin failed to activate AMPK after 10 min or 1- and 24-h stimulation. ERK was significantly phosphorylated after 24-h treatment with adiponectin, whereas Akt was activated at all time points examined. 24-h stimulation with adiponectin significantly increased cell viability by decreasing cellular apoptosis, and this was prevented by dominant negative Akt, wortmannin (PI3K inhibitor), and U0126 (MEK inhibitor). Moreover, adiponectin regulated insulin gene expression and glucose-stimulated insulin secretion, which was also prevented by wortmannin and U0126 treatment. Interestingly, the data also suggest adiponectin-induced changes in Akt and ERK phosphorylation and caspase-3 may occur independent of the level of AdipoR expression. This study demonstrates a lack of AMPK involvement and implicates Akt and ERK in adiponectin signaling, leading to protection against apoptosis and stimulation of insulin gene expression and secretion in pancreatic beta cells.
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Adiponectin is a protein hormone mainly secreted by adipose tissue that regulates energy homeostasis and glucose and lipid metabolism. Compared with other adipose-derived hormones, adiponectin is very abundant in plasma and is proposed to be a convenient biomarker for many diseases. A large number of in vitro and in vivo studies support the beneficial effects of adiponectin on metabolic syndrome, diabetes, and atherosclerosis. However, the protective actions were challenged occasionally by the controversies in its role in inflammation and in the specific functions of its different conformations. Recently, quite a few reports suggested that the antiapoptotic activity of adiponectin might contribute to its therapeutic potential during ischemia/reperfusion injury in vivo, whereas some studies demonstrated that adiponectin induced apoptosis both in vitro and in vivo. Herein, this review attempts to summarize the present consensus and divergence and to provide possible alternative and/or complementary explanations for this apparent paradox.
Collapse
Affiliation(s)
- Yiyi Sun
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | | |
Collapse
|
24
|
Wang C, Guan Y, Yang J. Cytokines in the Progression of Pancreatic β-Cell Dysfunction. Int J Endocrinol 2010; 2010:515136. [PMID: 21113299 PMCID: PMC2989452 DOI: 10.1155/2010/515136] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/05/2010] [Accepted: 10/07/2010] [Indexed: 12/29/2022] Open
Abstract
The dysfunction of pancreatic β-cell and the reduction in β-cell mass are the decisive events in the progression of type 2 diabetes. There is increasing evidence that cytokines play important roles in the procedure of β-cell failure. Cytokines, such as IL-1β, IFN-γ, TNF-α, leptin, resistin, adiponectin, and visfatin, have been shown to diversely regulate pancreatic β-cell function. Recently, islet-derived cytokine PANcreatic DERived factor (PANDER or FAM3B) has also been demonstrated to be a regulator of islet β-cell function. The change in cytokine profile in islet and plasma is associated with pancreatic β-cell dysfunction and apoptosis. In this paper, we summarize and discuss the recent studies on the effects of certain important cytokines on pancreatic β-cell function. The imbalance in deleterious and protective cytokines plays pivotal roles in the development and progression of pancreatic β-cell dysfunction under insulin-resistant conditions.
Collapse
Affiliation(s)
- Chunjiong Wang
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing 100191, China
- *Jichun Yang:
| |
Collapse
|