1
|
Dai S, Chen Y, Fan X, Han J, Zhong L, Zhang Y, Liu Q, Lin J, Huang W, Su L, Huang Z, Ye B. Emodin attenuates cardiomyocyte pyroptosis in doxorubicin-induced cardiotoxicity by directly binding to GSDMD. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155105. [PMID: 37801893 DOI: 10.1016/j.phymed.2023.155105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/15/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Doxorubicin (Dox), which is an anticancer drug, has significant cardiac toxicity and side effects. Pyroptosis occurs during Dox-induced cardiotoxicity (DIC), and drug inhibition of this process is one therapeutic approach for treating DIC. Previous studies have indicated that emodin can reduce pyroptosis. However, the role of emodin in DIC and its molecular targets remain unknown. HYPOTHESIS/PURPOSE We aimed to clarify the protective role of emodin in mitigating DIC, as well as the mechanisms underlying this effect. METHODS The model of DIC was established via the intraperitoneal administration of Dox at a dosage of 5 mg/kg per week for a span of 4 weeks. Emodin at two different doses (10 and 20 mg/kg) or a vehicle was intragastrically administered to the mice once per day throughout the Dox treatment period. Cardiac function, myocardial injury markers, pathological morphology of the heart, level of pyroptosis and mitochondrial function were assessed. Protein microarray, biolayer interferometry and pull-down assays were used to confirm the target of emodin. Moreover, GSDMD-overexpressing plasmids were transfected into GSDMD-/- mice and HL-1 cells to further verify whether emodin suppressed GSDMD activation. RESULTS Emodin therapy markedly enhanced cardiac function and reduced cardiomyocyte pyroptosis in mice induced by Dox. Mechanistically, emodin binds to GSDMD and inhibits the activation of GSDMD by targeting the Trp415 and Leu290 residues. Moreover, emodin was able to mitigate Dox-induced cardiac dysfunction and myocardial injury in GSDMD-/- mice overexpressing GSDMD, as shown by increased EF and FS, decreased serum levels of CK-MB, LDH and IL-1β and mitigated cell death and cell morphological disorder. Additionally, emodin treatment significantly reduced GSDMD-N expression and plasma membrane disruption in HL-1 cells overexpressing GSDMD induced by Dox. In addition, emodin reduced mitochondrial damage by alleviating Dox-induced GSDMD perforation in the mitochondrial membrane. CONCLUSION Emodin has the potential to attenuate DIC by directly binding to GSDMD to inhibit pyroptosis. Emodin may become a promising drug for prevention and treatment of DIC.
Collapse
Affiliation(s)
- Shanshan Dai
- The Key Laboratory of Emergency and Disaster Medicine of Wenzhou, Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yunxuan Chen
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoxi Fan
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingfeng Zhong
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yucong Zhang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qingran Liu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahui Lin
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Lan Su
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Bozhi Ye
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
2
|
Wang X, Yang S, Li Y, Jin X, Lu J, Wu M. Role of emodin in atherosclerosis and other cardiovascular diseases: Pharmacological effects, mechanisms, and potential therapeutic target as a phytochemical. Biomed Pharmacother 2023; 161:114539. [PMID: 36933375 DOI: 10.1016/j.biopha.2023.114539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/20/2023] Open
Abstract
The morbidity and mortality of cardiovascular diseases (CVDs) are increasing in recent years, and atherosclerosis (AS), a major CVD, becomes a disorder that afflicts human beings severely, especially the elders. AS is recognized as the primary cause and pathological basis of some other CVDs. The active constituents of Chinese herbal medicines have garnered increasing interest in recent researches owing to their influence on AS and other CVDs. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a naturally occurring anthraquinone derivative found in some Chinese herbal medicines such as Rhei radix et rhizome, Polygoni cuspidati rhizoma et radix and Polygoni multiflori root. In this paper, we first review the latest researches about emodin's pharmacology, metabolism and toxicity. Meanwhile, it has been shown to be effective in treating CVDs caused by AS in dozens of previous studies. Therefore, we systematically reviewed the mechanisms by which emodin treats AS. In summary, these mechanisms include anti-inflammatory activity, lipid metabolism regulation, anti-oxidative stress, anti-apoptosis and vascular protection. The mechanisms of emodin in other CVDs are also discussed, such as vasodilation, inhibition of myocardial fibrosis, inhibition of cardiac valve calcification and antiviral properties. We have further summarized the potential clinical applications of emodin. Through this review, we hope to provide guidance for clinical and preclinical drug development.
Collapse
Affiliation(s)
- Xinyue Wang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Jin
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Guo Y, Zhang R, Li W. Emodin in cardiovascular disease: The role and therapeutic potential. Front Pharmacol 2022; 13:1070567. [PMID: 36618923 PMCID: PMC9816479 DOI: 10.3389/fphar.2022.1070567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Emodin is a natural anthraquinone derivative extracted from Chinese herbs, such as Rheum palmatum L, Polygonum cuspidatum, and Polygonum multiflorum. It is now also a commonly used clinical drug and is listed in the Chinese Pharmacopoeia. Emodin has a wide range of pharmacological properties, including anticancer, antiinflammatory, antioxidant, and antibacterial effects. Many in vivo and in vitro experiments have demonstrated that emodin has potent anticardiovascular activity. Emodin exerts different mechanisms of action in different types of cardiovascular diseases, including its involvement in pathological processes, such as inflammatory response, apoptosis, cardiac hypertrophy, myocardial fibrosis, oxidative damage, and smooth muscle cell proliferation. Therefore, emodin can be used as a therapeutic drug against cardiovascular disease and has broad application prospects. This paper summarized the main pharmacological effects and related mechanisms of emodin in cardiovascular diseases in recent years and discussed the limitations of emodin in terms of extraction preparation, toxicity, and bioavailability-related pharmacokinetics in clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Pharmacy, Harbin University of Commerce, Harbin, China,Department of Cardiology, Geriatrics, and General Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongzhen Zhang
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China,*Correspondence: Wenlan Li,
| |
Collapse
|
4
|
Mechanism of Emodin in the Treatment of Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9482570. [PMID: 36225183 PMCID: PMC9550445 DOI: 10.1155/2022/9482570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, and autoimmune disease, and its main pathological changes are inflammatory cell infiltration accompanied by the secretion and accumulation of a variety of related cytokines, which induce the destruction of cartilage and bone tissue. Therefore, the modulation of inflammatory cells and cytokines is a key therapeutic target for controlling inflammation in RA. This review details the effects of emodin on the differentiation and maturation of T lymphocytes, dendritic cells, and regulatory T cells. In addition, the systematic introduction of emodin directly or indirectly affects proinflammatory cytokines (TNF-α, IL-6, IL-1, IL-1β, IL-17, IL-19, and M-CSF) and anti-inflammatory cytokines (the secretion of IL-4, IL-10, IL-13, and TGF-β) through the coregulation of a variety of inflammatory cytokines to inhibit inflammation in RA and promote recovery. Understanding the potential mechanism of emodin in the treatment of RA in detail provides a systematic theoretical basis for the clinical application of emodin in the future.
Collapse
|
5
|
Sougiannis AT, VanderVeen B, Chatzistamou I, Kubinak JL, Nagarkatti M, Fan D, Murphy EA. Emodin reduces tumor burden by diminishing M2-like macrophages in colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2022; 322:G383-G395. [PMID: 35018819 PMCID: PMC8897011 DOI: 10.1152/ajpgi.00303.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Emodin, a natural anthraquinone, has been shown to have antitumorigenic properties and may be an effective therapy for colorectal cancer (CRC). However, its clinical development has been hampered by a poor understanding of its mechanism of action. The purpose of this study was to 1) evaluate the efficacy of emodin in mouse models of intestinal/colorectal cancer and 2) to examine the impact of emodin on macrophage behavior in the context of CRC. We used a genetic model of intestinal cancer (ApcMin/+) and a chemically induced model of CRC [azoxymethane/dextran sodium sulfate (AOM/DSS)]. Emodin was administered orally (40 or 80 mg/kg in AOM/DSS and 80 mg/kg in ApcMin/+) three times a week to observe its preventative effects. Emodin reduced polyp count and size in both rodent models (P < 0.05). We further analyzed the colon microenvironment of AOM/DSS mice and found that mice treated with emodin exhibited lower protumorigenic M2-like macrophages and a reduced ratio of M2/M1 macrophages within the colon (P < 0.05). Despite this, we did not detect any significant changes in M2-associated cytokines (IL10, IL4, and Tgfb1) nor M1-associated cytokines (IL6, TNFα, IL1β, and IFNγ) within excised polyps. However, there was a significant increase in NOS2 expression (M1 marker) in mice treated with 80 mg/kg emodin (P < 0.05). To confirm emodin's effects on macrophages, we exposed bone marrow-derived macrophages (BMDMs) to C26 colon cancer cell conditioned media. Supporting our in vivo data, emodin reduced M2-like macrophages. Overall, these data support the development of emodin as a natural compound for prevention of CRC given its ability to target protumor macrophages.NEW & NOTEWORTHY Our study confirms that emodin is an effective primary therapy against the onset of genetic and chemically induced sporadic colorectal cancer. We established that emodin reduces the M2-like protumorigenic macrophages in the tumor microenvironment. Furthermore, we provide evidence that emodin may be acting to antagonize the P2X7 receptor within the bone tissue and consequently decrease the activation of proinflammatory cells, which may have implications for recruitment of cells to the tumor microenvironment.
Collapse
Affiliation(s)
- Alexander T. Sougiannis
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina,4College of Medicine, Medical University of South Carolina, Columbia, South Carolina
| | - Brandon VanderVeen
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina,3AcePre, LLC, Columbia, South Carolina
| | - Ioulia Chatzistamou
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Jason L. Kubinak
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Mitzi Nagarkatti
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Daping Fan
- 2Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina,3AcePre, LLC, Columbia, South Carolina
| | - E. Angela Murphy
- 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina,3AcePre, LLC, Columbia, South Carolina
| |
Collapse
|
6
|
Semwal RB, Semwal DK, Combrinck S, Viljoen A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. PHYTOCHEMISTRY 2021; 190:112854. [PMID: 34311280 DOI: 10.1016/j.phytochem.2021.112854] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural anthraquinone derivative that is present in numerous globally renowned herbal medicines. It is recognised as a protein tyrosine kinase inhibitor and as an anticancer drug, active against various tumour cells, including lung, breast, liver, and ovarian cancer cells. Recently, its role in combination chemotherapy with various allopathic medicines, to minimize their toxicity and to enhance their efficacy, has been studied. The use of emodin in these therapies is gaining popularity, due to fewer associated side effects compared with standard anticancer drugs. Emodin has a broad therapeutic window, and in addition to its antineoplastic activity, it displays anti-ulcer, anti-inflammatory, hepatoprotective, neuroprotective, antimicrobial, muscle relaxant, immunosuppressive and antifibrotic activities, in both in vitro and in vivo models. Although reviews on the anticancer activity of emodin have been published, none coherently unite all the pharmacological properties of emodin, particularly the anti-oxidant, antimicrobial, antidiabetic, immunosuppressive and hepatoprotective activities of the compound. Hence, in this review, all of the available data regarding the pharmacological properties of emodin are explored, with particular emphasis on the modes of action of the molecule. In addition, the manuscript details the occurrence, biosynthesis and chemical synthesis of the compound, as well as its toxic effects on biotic systems.
Collapse
Affiliation(s)
- Ruchi Badoni Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Chemistry, Pt. Lalit Mohan Sharma Govt. Post Graduate College, Rishikesh, 249201, India
| | - Deepak Kumar Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
7
|
Dai S, Ye B, Chen L, Hong G, Zhao G, Lu Z. Emodin alleviates LPS-induced myocardial injury through inhibition of NLRP3 inflammasome activation. Phytother Res 2021; 35:5203-5213. [PMID: 34131970 DOI: 10.1002/ptr.7191] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Myocardial injury and cardiovascular dysfunction are serious consequences of sepsis and contribute to high mortality. Currently, the pathogenesis of myocardial injury in sepsis is still unclear, and therapeutic approaches are limited. In this study, we investigated the protective effect of emodin on septic myocardial injury and the underlying mechanism. Lipopolysaccharide (LPS)-induced C57BL/6 mice and cardiomyocytes were used as models of sepsis in vivo and in vitro, respectively. The results showed that emodin alleviated cardiac dysfunction, myocardial injury and improved survival rate in LPS-induced septic mice. Emodin attenuated the levels of inflammatory cytokines and cardiac inflammation induced by LPS. Emodin reduced NOD-like receptor protein 3 (NLRP3) and Gasdermin D (GSDMD) expression in the heart tissue of LPS-induced septic mice. In vitro, emodin alleviated LPS-induced cell injury and inflammation in cardiomyocytes by inhibiting NLRP3 inflammasome activation. In addition, an NLRP3 inhibitor was used to further confirm the function of the NLRP3 inflammasome in LPS-induced myocardial injury. Taken together, our findings suggest that emodin improves LPS-induced myocardial injury and cardiac dysfunction by alleviating the inflammatory response and cardiomyocyte pyroptosis by inhibiting NLRP3 inflammasome activation, which provides a feasible strategy for preventing and treating myocardial injury in sepsis.
Collapse
Affiliation(s)
- Shanshan Dai
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Bozhi Ye
- Department of Cardiology, The Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Longwang Chen
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Guangliang Hong
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Guangju Zhao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
8
|
Hu H, Song X, Li Y, Ma T, Bai H, Zhao M, Wang X, Liu L, Gao L. Emodin protects knee joint cartilage in rats through anti-matrix degradation pathway: An in vitro and in vivo study. Life Sci 2021; 269:119001. [PMID: 33421527 DOI: 10.1016/j.lfs.2020.119001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022]
Abstract
AIMS Osteoarthritis (OA) is a common joint disease and the main cause of disability. We sought to determine the effective concentration of emodin on chondrocytes and to identify the dosage of emodin that induces a comparable therapeutic effect with the COX-2 inhibitor drug, celecoxib that is currently used to treat OA. MATERIAL AND METHODS In vitro experiments induced inflammation of chondrocytes by IL-1β, and an osteoarthritis model was established in vivo by cutting rat anterior cruciate ligament. Western Blot, Real-time PCR, HE staining, Safranin O-green staining and immunohistochemistry were performed to detect MMP-3, MMP-13, ADAMTS-4, iNOS and COL2A1 on the chondrocytes or the tibial plateau. The cytokine activity and content in serum of six groups of rats were measured by kit. RESULTS It was found that the surface layer of the cartilage was thicker and smoother after the administration of emodin. Tissue expression of MMP-3, MMP-13, ADAMTS-4 and iNOS were significantly (p < 0.05) decreased in chondrocytes and cartilage treated with different doses of emodin, and the content of COL2A1 was reversed. Emodin also significantly decreased the blood levels of COX-2 and PGE2. The effective emodin in vitro was 5 μmol/L, whereas emodin at 80 mg/kg was equivalent to celecoxib in vivo. CONCLUSION Emodin reduces the expression of cartilage matrix degradation biomarkers, thereby reducing the degradation of cartilage matrix and protecting the knee joint cartilage. Emodin at 5 μmol/L shows the best concentration to treat chondrocytes, and the protective effect of emodin at 80 mg/kg is comparable to that of celecoxib.
Collapse
Affiliation(s)
- Hailong Hu
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Key Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Xiaopeng Song
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Key Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Key Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Key Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Hui Bai
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Key Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Mingchao Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Key Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Xinyu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Key Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Lin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Key Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Key Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
9
|
Sougiannis AT, Enos RT, VanderVeen BN, Velazquez KT, Kelly B, McDonald S, Cotham W, Chatzistamou I, Nagarkatti M, Fan D, Murphy EA. Safety of natural anthraquinone emodin: an assessment in mice. BMC Pharmacol Toxicol 2021; 22:9. [PMID: 33509280 PMCID: PMC7845031 DOI: 10.1186/s40360-021-00474-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emodin, a natural anthraquinone, has shown potential as an effective therapeutic agent in the treatment of many diseases including cancer. However, its clinical development is hindered by uncertainties surrounding its potential toxicity. The primary purpose of this study was to uncover any potential toxic properties of emodin in mice at doses that have been shown to have efficacy in our cancer studies. In addition, we sought to assess the time course of emodin clearance when administered both intraperitoneally (I.P.) and orally (P.O.) in order to begin to establish effective dosing intervals. METHODS We performed a subchronic (12 week) toxicity study using 3 different doses of emodin (~ 20 mg/kg, 40 mg/kg, and 80 mg/kg) infused into the AIN-76A diet of male and female C57BL/6 mice (n = 5/group/sex). Body weight and composition were assessed following the 12-week feeding regime. Tissues were harvested and assessed for gross pathological changes and blood was collected for a complete blood count and evaluation of alanine transaminase (ALT), aspartate transaminase (AST) and creatinine. For the pharmacokinetic study, emodin was delivered intraperitoneally I.P. or P.O. at 20 mg/kg or 40 mg/kg doses to male and female mice (n = 4/group/sex/time-point) and circulating levels of emodin were determined at 1, 4 and 12 h following administration via liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RESULTS We found that 12 weeks of low (20 mg/kg), medium (40 mg/kg), or high (80 mg/kg) emodin feeding did not cause pathophysiological perturbations in major organs. We also found that glucuronidated emodin peaks at 1 h for both I.P. and P.O. administered emodin and is eliminated by 12 h. Interestingly, female mice appear to metabolize emodin at a faster rate than male mice as evidenced by greater levels of glucuronidated emodin at the 1 h time-point (40 mg/kg for both I.P. and P.O. and 20 mg/kg I.P.) and the 4-h time-point (20 mg/kg I.P.). CONCLUSIONS In summary, our studies establish that 1) emodin is safe for use in both male and female mice when given at 20, 40, and 80 mg/kg doses for 12 weeks and 2) sex differences should be considered when establishing dosing intervals for emodin treatment.
Collapse
Affiliation(s)
- Alexander T Sougiannis
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Kandy T Velazquez
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Brittany Kelly
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Sierra McDonald
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - William Cotham
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
- AcePre, LLC, Columbia, SC, 29209, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.
- AcePre, LLC, Columbia, SC, 29209, USA.
| |
Collapse
|
10
|
Cui Y, Chen LJ, Huang T, Ying JQ, Li J. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin J Nat Med 2020; 18:425-435. [PMID: 32503734 DOI: 10.1016/s1875-5364(20)30050-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a derived anthraquinone compound extracted from roots and barks of pharmaceutical plants, including Rheum palmatum, Aloe vera, Giant knotweed, Polygonum multiflorum and Polygonum cuspidatum. The review aims to provide a scientific summary of emodin in pharmacological activities and toxicity in order to identify the therapeutic potential for its use in human specific organs as a new medicine. Based on the fundamental properties, such as anticancer, anti-inflammatory, antioxidant, antibacterial, antivirs, anti-diabetes, immunosuppressive and osteogenesis promotion, emodin is expected to become an effective preventive and therapeutic drug of cancer, myocardial infarction, atherosclerosis, diabetes, acute pancreatitis, asthma, periodontitis, fatty livers and neurodegenerative diseases. This article intends to provide a novel insight for further development of emodin, hoping to reveal the potential of emodin and necessity of further studies in this field.
Collapse
Affiliation(s)
- Ya Cui
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Liu-Jing Chen
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Tu Huang
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Jian-Qiong Ying
- West China Hospital of Clinical Medicine, Sichuan University, Chengdu 610041, China
| | - Juan Li
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Li Q, Gao J, Pang X, Chen A, Wang Y. Molecular Mechanisms of Action of Emodin: As an Anti-Cardiovascular Disease Drug. Front Pharmacol 2020; 11:559607. [PMID: 32973538 PMCID: PMC7481471 DOI: 10.3389/fphar.2020.559607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Emodin is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found to be an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and it is a pleiotropic molecule with diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Moreover, emodin has also been shown to have a wide activity of anti-cardiovascular diseases. It is mainly involved in multiple molecular targets such as inflammatory, anti-apoptosis, anti-hypertrophy, anti-fibrosis, anti-oxidative damage, abnormal, and excessive proliferation of smooth muscle cells in cardiovascular diseases. As a new type of cardiovascular disease treatment drug, emodin has broad application prospects. However, a large amount of evidences detailing the effect of emodin on many signaling pathways and cellular functions in cardiovascular disease, the overall understanding of its mechanisms of action remains elusive. In addition, by describing the evidence of the effects of emodin in detail, the toxicity and poor oral bioavailability of mice have been continuously discovered. This review aims to describe a timely overview of emodin related to the treatment of cardiovascular disease. The emphasis is to summarize the pharmacological effects of emodin as an anti-cardiovascular drug, as well as the targets and its potential mechanisms. Furthermore, the treatment of emodin compared with conventional cardiovascular drugs or target inhibitors, the toxicity, pharmacokinetics and derivatives of emodin were discussed.
Collapse
Affiliation(s)
- Qianqian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohan Pang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Pharmaceutical Informatics Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Sumi FA, Sikder B, Rahman MM, Lubna SR, Ulla A, Hossain MH, Jahan IA, Alam MA, Subhan N. Phenolic Content Analysis of Aloe vera Gel and Evaluation of the Effect of Aloe Gel Supplementation on Oxidative Stress and Fibrosis in Isoprenaline-Administered Cardiac Damage in Rats. Prev Nutr Food Sci 2019; 24:254-264. [PMID: 31608250 PMCID: PMC6779078 DOI: 10.3746/pnf.2019.24.3.254] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
We evaluated the cardioprotective effect of Aloe vera gel isoprenaline (ISO)-administered myocardial infarction in rats. ISO administration increased lipid peroxidation and oxidative stress in rats, which were ameliorated by A. vera gel supplementation. Our study also revealed that creatine kinase-MB (CK-MB) activities were increased in ISO-administered rats, while the activities of cellular antioxidants, such as superoxide dismutase and catalase, and glutathione concentration were decreased. A. vera gel lowered CK-MB enzyme activities and the glutathione concentration in ISO-administered rats, and increased antioxidant activities. Histopathological examination also revealed increases in thickness of the left ventricle myocardium, increases in mononuclear cell infiltrations, increased degeneration of focal areas of the endocardium, and increased fibrous tissue deposition in the heart of ISO-administered rats; whereas, A. vera prevented infiltration of inflammatory cells and reduced left ventricular fibrosis. In conclusion, we show that A. vera supplementation protects against development of cardiac inflammation, fibrosis, and oxidative stress in ISO-administered rats.
Collapse
Affiliation(s)
- Farzana Akther Sumi
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Biswajit Sikder
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shamshad Rahman Lubna
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Anayt Ulla
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Ismet Ara Jahan
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| |
Collapse
|
13
|
Xiao D, Zhang Y, Wang R, Fu Y, Zhou T, Diao H, Wang Z, Lin Y, Li Z, Wen L, Kang X, Kopylov P, Shchekochikhin D, Zhang Y, Yang B. Emodin alleviates cardiac fibrosis by suppressing activation of cardiac fibroblasts via upregulating metastasis associated protein 3. Acta Pharm Sin B 2019; 9:724-733. [PMID: 31384533 PMCID: PMC6664101 DOI: 10.1016/j.apsb.2019.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Excess activation of cardiac fibroblasts inevitably induces cardiac fibrosis. Emodin has been used as a natural medicine against several chronic diseases. The objective of this study is to determine the effects of emodin on cardiac fibrosis and the underlying molecular mechanisms. Intragastric administration of emodin markedly decreased left ventricular wall thickness in a mouse model of pathological cardiac hypertrophy with excess fibrosis induced by transaortic constriction (TAC) and suppressed activation of cardiac fibroblasts induced by angiotensin II (AngII). Emodin upregulated expression of metastasis associated protein 3 (MTA3) and restored the MTA3 expression in the setting of cardiac fibrosis. Moreover, overexpression of MTA3 promoted cardiac fibrosis; in contrast, silence of MTA3 abrogated the inhibitory effect of emodin on fibroblast activation. Our findings unraveled the potential of emodin to alleviate cardiac fibrosis via upregulating MTA3 and highlight the regulatory role of MTA3 in the development of cardiac fibrosis.
Collapse
|
14
|
Jing L, Sun Y, Wang Y, Liang B, Chen T, Zheng D, Zhao X, Zhou X, Sun Z, Shi Z. Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. CHEMOSPHERE 2019; 223:675-685. [PMID: 30802833 DOI: 10.1016/j.chemosphere.2019.02.115] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 05/08/2023]
Abstract
Recent reports indicated that decabrominated diphenyl ether (BDE-209) and decabromodiphenyl ethane (DBDPE) exist extensively in the environment. The toxicity of BDE-209 has been reported in quite a few studies, whereas the data of DBDPE are relatively rare. However, databases regarding cardiovascular toxicities of both BDE-209 and DBDPE are lacking. In this study, we investigated the vascular/cardiac trauma induced by DBDPE after oral exposure and compared the results with those of BDE-209 using rat model. Male rats were orally administered with corn oil containing DBDPE or BDE-209 (5, 50, 500 mg/kg/day) for 28 days, then oxidative stress, morphological and ultrastructural changes of the heart and abdominal aorta, levels of creatine kinase (CK) and lactate dehydrogenase (LDH), inflammatory cytokines, endothelin-1 (ET-1), and intercellular adhesion molecule-1 (ICAM-1) in the serum were monitored. Results showed that BDE-209 and DBDPE caused heart and abdominal aorta morphological and ultrastructural damage, serum CK and LDH elevation, and antioxidant enzyme activity changes. BDE-209 and DBDPE-induced inflammation was characterized by the upregulation of key inflammatory mediators, including interleukin-1beta (IL-1β), IL-6, IL-10, and tumor necrosis factor alpha (TNFα). Additionally, BDE-209 and DBDPE led to endothelial dysfunction, as evidenced by the ET-1 and ICAM-1 elevation. Our findings demonstrated that BDE-209 and DBDPE could induce oxidative stress, inflammation, and eventually lead to endothelial dysfunction and cardiovascular injury. Compared to DBDPE, these toxic responses were stronger in the hearts and abdominal aorta of Sprague-Dawley rats exposed to BDE-209. Our findings indicated a potential deleterious effect of BDE-209 and DBDPE on the cardiovascular system.
Collapse
Affiliation(s)
- Li Jing
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanmin Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yuwei Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Baolu Liang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Dan Zheng
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
15
|
Yang Y, Jiang Z, Zhuge D. Emodin Attenuates Lipopolysaccharide-Induced Injury via Down-Regulation of miR-223 in H9c2 Cells. Int Heart J 2019; 60:436-443. [PMID: 30745529 DOI: 10.1536/ihj.18-048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Emodin is a natural product extracted from Rheum palmatum. There are few recent studies on emodin in the treatment of myocarditis. This study aimed to investigate the effect of emodin on lipopolysaccharide (LPS)-induced inflammatory injury in cardiomyocytes. H9c2 cells were treated with 10 μM of LPS and different concentrations (0, 1, 5, 10, 15, and 20 μM) of emodin. The expression of miR-223 was changed by transient transfection. Thereafter, cell viability, apoptosis, the expression of CyclinD1 and Jnk-associated proteins, and the release of pro-inflammatory factors were assessed by cell Counting Kit-8, flow cytometry analysis, quantitative real-time polymerase chain reaction Western blot, and enzyme-linked immunosorbent assay respectively. The results showed that 20 μM of emodin significantly decreased H9c2 cells viability. LPS significantly damaged H9c2 cells, as cell viability was reduced, CyclinD1 was down-regulated, apoptosis was induced, the release of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha were increased, and the phosphorylation of Jnk and c-Jun were promoted. Emodin protected H9c2 cells against LPS-induced inflammatory injury. miR-223 expression was significantly up-regulated by LPS exposure, while emodin lessened this up-regulation. LPS-injured H9c2 cells were attenuated by the overexpression of miR-223; emodin has protective actions on LPS-injured H9c2 cells and targets. Besides, SP600125 (an inhibitor of Jnk) eliminated miR-223-modulated inflammatory injury in H9c2 cells. These data demonstrated that emodin could attenuate LPS-induced inflammatory injury and deactivate Jnk signaling pathway through down-regulation of miR-223.
Collapse
Affiliation(s)
- Yuping Yang
- Department of General Medicine, East Medical District of Linyi People's Hospital
| | - Zijun Jiang
- Department of Emergency, East Medical District of Linyi People's Hospital
| | - Dong Zhuge
- Department of General Medicine, East Medical District of Linyi People's Hospital
| |
Collapse
|
16
|
Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 2019; 23:733-758. [PMID: 29862462 DOI: 10.1007/s10741-018-9716-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.
Collapse
Affiliation(s)
- Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marek Jelemensky
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
17
|
Zhang H, Li H, Ge A, Guo E, Liu S, Zhang L. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Shou X, Zhou R, Zhu L, Ren A, Wang L, Wang Y, Zhou J, Liu X, Wang B. Emodin, A Chinese Herbal Medicine, Inhibits Reoxygenation-Induced Injury in Cultured Human Aortic Endothelial Cells by Regulating the Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) and Endothelial Nitric Oxide Synthase (eNOS) Signaling Pathway. Med Sci Monit 2018; 24:643-651. [PMID: 29386501 PMCID: PMC5804301 DOI: 10.12659/msm.908237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Ischemia-reperfusion injury is associated with vascular dysfunction. The aim of this study was to investigate the role of emodin, a Chinese herbal medicine, in hypoxia-reoxygenation injury in cultured human aortic endothelial cells (HAECs) and its effects on the expression of the peroxisome proliferator-activated receptor-γ (PPAR-γ) and endothelial nitric oxide synthase (eNOS) signaling pathway. Material/Methods An in vitro hypoxia-reoxygenation model used cultured human aortic endothelial cells (HAECs). A colorimetric method evaluated the activity of peroxisome proliferator-activated receptor-γ (PPAR-γ). Phosphorylation of PPAR-γ and endothelial nitric oxide synthase (eNOS) were measured by Western blotting. Expression of inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8 were evaluated by enzyme-linked immunosorbent assay (ELISA) and Western blotting. Nitric oxide (NO) production was detected by diaminofluorescein-FM diacetate (DAF-FM DA) fluorescence. Immunoprecipitation was used to evaluate the molecular coupling of heat shock protein (HSP)90 and eNOS. Results Hypoxia-reoxygenation injury of HAECs reduced the activity and phosphorylation of PPAR-γ, and eNOS, NO production, and HSP90/eNOS molecular coupling in a time-dependent manner. Hypoxia-reoxygenation increased the levels of inflammatory cytokines TNF-α, IL-6, and IL-8 in a time-dependent manner. Emodin treatment recovered PPAR-γ activity and phosphorylation, eNOS phosphorylation, and HSP90/eNOS coupling in HAECS in a concentration-dependent manner, which was reversed by the PPAR-γ inhibitor GW9662, and the eNOS inhibitor, L-NAME. The recovery of HSP90/eNOS coupling by emodin was impaired by GW9662 treatment. Conclusions An in vitro hypoxia-reoxygenation (ischemia-reperfusion injury) model of induction of endothelial cell inflammatory mediators showed that emodin recovered the PPAR-γ and eNOS pathway activity.
Collapse
Affiliation(s)
- Xiaoling Shou
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Rongfang Zhou
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Liyue Zhu
- Rehabilitation Center, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Aihua Ren
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Lei Wang
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Yan Wang
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jianmei Zhou
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xinwen Liu
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Bozhong Wang
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
19
|
Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacol Res 2017; 124:34-42. [PMID: 28757189 DOI: 10.1016/j.phrs.2017.07.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Myocarditis is an inflammatory disease of the myocardium associated with immune dysfunction which may frequently lead to the development of dilated cardiomyopathy. Experimental autoimmune myocarditis is an animal model which mimics myocarditis in order to allow assessment of the therapeutic effects of different molecules on this disease. We aimed to review the inflammatory and immunological mechanisms involved in the pathogenesis of the myocarditis and finding natural products and phytochemicals with anti-myocarditis activities based on studies of cardiac myosin-induced experimental autoimmune myocarditis in rodents. A number of natural molecules (e.g. apigenin, berberine and quercetin) along with some plant extracts were found to be effective in alleviating experimental autoimmune myocarditis. Upregulation of Th1-type cytokines and elevation of the Th2-type cytokines (IL-4 and IL-10), mitigation of oxidative stress, modulation of mitogen-activated protein kinase signaling pathways and increasing Sarco-endoplasmic reticulum Ca2+-ATPase levels are among the most important anti-myocarditis mechanisms for the retrieved molecules and extracts. Interestingly, there are structural similarities between the anti-EAM compounds, suggesting the presence of similar pharmacophore and enzymatic targets for these molecules. Naturally occurring molecules discussed in the present article are potential anti-myocarditis drugs and future additional animal studies and clinical trials would shed more light on their effectiveness in the treatment of myocarditis and prevention of dilated cardiomyopathy.
Collapse
|
20
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Chen GL, Zhang JJ, Kao X, Wei LW, Liu ZY. Emodin ameliorates lipopolysaccharides-induced corneal inflammation in rats. Int J Ophthalmol 2015; 8:665-9. [PMID: 26308161 DOI: 10.3980/j.issn.2222-3959.2015.04.04] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/05/2015] [Indexed: 01/30/2023] Open
Abstract
AIM To investigate the effect of emodin on pseudomonas aeruginosa lipopolysaccharides (LPS)-induced corneal inflammation in rats. METHODS Corneal infection was induced by pseudomonas aeruginosa LPS in Wistar rats. The inflammation induced by LPS were examined by slit lamp microscope and cytological checkup of aqueous humor. Corneal tissue structure was observed by hematoxylin and eosin (HE) staining. The activation of nuclear factor kappaB (NF-κB) was determined by Western blot. Messenger ribonucleic acid (mRNA) of tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) in LPS-challenged rat corneas were measured with reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Typical manifestations of acute corneal inflammation were observed in LPS-induce rat model, and the corneal inflammatory response and structure were improved in rats pretreated with emodin. Treatment with emodin could improve corneal structure, reduce corneal injure by reducing corneal inflammatory response. Emodin could inhibit the decreasing lever of inhibitor of kappaB alpha (IкBα) express, and the mRNA expression of TNF-α and ICAM-1 in corneal tissues was also inhibited by emodin. The differences were statistically significant between groups treated with emodin and those without treatment (P<0.01). CONCLUSION Emodin could ameliorate LPS-induced corneal inflammation, which might via inhibiting the activation of NF-κB.
Collapse
Affiliation(s)
- Guo-Ling Chen
- Department of Ophthalmology, the Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Jing-Jing Zhang
- Department of Ophthalmology, the Third People's Hospital of Jinan, Jinan 250101, Shandong Province, China
| | - Xin Kao
- Department of Ophthalmology, the Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Lu-Wan Wei
- Department of Anatomy, Shandong Univeristy School of Medicine, Jinan 250012, Shandong Province, China
| | - Zhi-Yu Liu
- Department of Anatomy, Shandong Univeristy School of Medicine, Jinan 250012, Shandong Province, China
| |
Collapse
|
22
|
Wang T, Zhong XG, Li YH, Jia X, Zhang SJ, Gao YS, Liu M, Wu RH. Protective effect of emodin against airway inflammation in the ovalbumin-induced mouse model. Chin J Integr Med 2014; 21:431-7. [PMID: 25519442 DOI: 10.1007/s11655-014-1898-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate whether emodin exerts protective effects on mouse with allergic asthma. METHODS A mouse model of allergic airway inflflammation was employed. The C57BL/6 mice sensitized and challenged with ovalbumin (OVA) were intraperitoneally administered 10 or 20 mg/kg emodin for 3 days during OVA challenge. Animals were sacrificed 48 h after the last challenge. Inflammatory cell count in the bronchoalveolar lavage fluid (BALF) was measured. The levels of interleukin (IL)-4, IL-5, IL-13 and eotaxin in BALF and level of immunoglobulin E (IgE) in serum were measured with enzyme-linked immuno sorbent assay kits. The mRNA expressions of IL-4, IL-5, heme oxygenase (HO)-1 and matrix metalloproteinase-9 (MMP-9) were determined by real-time quantitative polymerase chain reaction. RESULTS Emodin induced significant suppression of the number of OVA-induced total inflammatory cells in BALF. Treatment with emodin led to significant decreases in the levels of IL-4, IL-5, IL-13 and eotaxin in BALF and total IgE level in serum. Histological examination of lung tissue revealed marked attenuation of allergen-induced lung eosinophilic inflammation. Additionally, emodin suppressed IL-4, IL-5 and MMP-9 mRNA expressions and induced HO-1 mRNA expression. CONCLUSION Emodin exhibits anti-inflammatory activity in the airway inflammation mouse model, supporting its therapeutic potential for the treatment of allergic bronchial asthma.
Collapse
Affiliation(s)
- Tan Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys 2014; 559:91-9. [DOI: 10.1016/j.abb.2014.06.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 02/07/2023]
|
24
|
Schmerler P, Jeuthe S, O h-Ici D, Wassilew K, Lauer D, Kaschina E, Kintscher U, Müller S, Muench F, Kuehne T, Berger F, Unger T, Steckelings UM, Paulis L, Messroghli D. Mortality and morbidity in different immunization protocols for experimental autoimmune myocarditis in rats. Acta Physiol (Oxf) 2014; 210:889-98. [PMID: 24410878 DOI: 10.1111/apha.12227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/04/2013] [Accepted: 01/06/2014] [Indexed: 01/22/2023]
Abstract
AIM We aimed to investigate the histological and clinical presentations of experimental autoimmune myocarditis (EAM) induced by different immunization schemes. METHODS Male young Lewis rats were divided into five groups immunized by porcine myocardial myosin: subcutaneously (SC) 2 mg (in two 1-mg doses on day 0 and 7), 0 mg (sham group) subcutaneously into rear footpads (RF), 0.25 mg RF, 0.5 mg RF or 1 mg RF (all RF once on day 0). On day 21, left ventricular (LV) function was assessed by cardiac magnetic resonance imaging and cardiac catheterization. The type and degree of myocardial inflammatory infiltrates were determined by conventional histology and immunohistochemistry. RESULTS In the SC immunized rats and in the RF sham group, we observed 0% mortality, while in the actively RF immunized rats, mortality was 20, 20 and 44% for the 0.25 mg, 0.5 mg and 1 mg myosin doses respectively. Morbidity as defined by inflammatory infiltrates on haematoxylin and eosin (HE) staining was 22% in the SC immunized rats, 0% in the RF sham group and 100% in all actively RF immunized groups. We observed augmented relative ventricle weight and spleen weight, increased LV end-diastolic pressure, reduced LV developed pressure and reduced LV ejection fraction in all with myosin-immunized RF groups without any systematic dose effect. CONCLUSION Subcutaneous immunization to the neck and flanks did not induce a reproducible EAM, while RF myosin administration reliably led to EAM. Lower myosin doses seem to induce the complete histological and clinical picture of EAM while being associated with lower mortality, non-specific symptoms and animal distress.
Collapse
Affiliation(s)
- P. Schmerler
- Center for Cardiovascular Research; Charité-University Medicine; Berlin Germany
| | - S. Jeuthe
- Congenital Heart Disease and Pediatric Cardiology; German Heart Institute; Berlin Germany
| | - D. O h-Ici
- Congenital Heart Disease and Pediatric Cardiology; German Heart Institute; Berlin Germany
| | - K. Wassilew
- Department of Pathology; German Heart Institute; Berlin Germany
| | - D. Lauer
- Center for Cardiovascular Research; Charité-University Medicine; Berlin Germany
| | - E. Kaschina
- Center for Cardiovascular Research; Charité-University Medicine; Berlin Germany
| | - U. Kintscher
- Center for Cardiovascular Research; Charité-University Medicine; Berlin Germany
| | - S. Müller
- Experimental Neurology; Charité-University Medicine; Berlin Germany
| | - F. Muench
- Congenital Heart Disease and Pediatric Cardiology; German Heart Institute; Berlin Germany
| | - T. Kuehne
- Congenital Heart Disease and Pediatric Cardiology; German Heart Institute; Berlin Germany
| | - F. Berger
- Congenital Heart Disease and Pediatric Cardiology; German Heart Institute; Berlin Germany
| | - T. Unger
- CARIM-School for Cardiovascular Diseases; Maastricht University; Maastricht the Netherlands
| | - U. M. Steckelings
- Center for Cardiovascular Research; Charité-University Medicine; Berlin Germany
- Department of Cardiovascular and Renal Research; University of Southern Denmark; Odense Denmark
| | - L. Paulis
- Center for Cardiovascular Research; Charité-University Medicine; Berlin Germany
- Institute of Pathophysiology; Faculty of Medicine; Comenius University; Bratislava Slovak Republic
| | - D. Messroghli
- Congenital Heart Disease and Pediatric Cardiology; German Heart Institute; Berlin Germany
| |
Collapse
|
25
|
Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BKH, Ahn KS, Sethi G. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 2013; 341:139-49. [PMID: 23962559 DOI: 10.1016/j.canlet.2013.08.023] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/01/2023]
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found as an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and has diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. The anti-inflammatory effects of emodin have been exhibited in various in vitro as well as in vivo models of inflammation including pancreatitis, arthritis, asthma, atherosclerosis and glomerulonephritis. As an anti-cancer agent, emodin has been shown to suppress the growth of various tumor cell lines including hepatocellular carcinoma, pancreatic, breast, colorectal, leukemia, and lung cancers. Emodin is a pleiotropic molecule capable of interacting with several major molecular targets including NF-κB, casein kinase II, HER2/neu, HIF-1α, AKT/mTOR, STAT3, CXCR4, topoisomerase II, p53, p21, and androgen receptors which are involved in inflammation and cancer. This review summarizes reported anti-inflammatory and anti-cancer effects of emodin, and re-emphasizes its potential therapeutic role in the treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Deepti Shrimali
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | | | | | |
Collapse
|