1
|
Chen J, Chen W, Zhang J, Zhao H, Cui J, Wu J, Shi A. Dual effects of endogenous formaldehyde on the organism and drugs for its removal. J Appl Toxicol 2024; 44:798-817. [PMID: 37766419 DOI: 10.1002/jat.4546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Endogenous formaldehyde (FA) is produced in the human body via various mechanisms to preserve healthy energy metabolism and safeguard the organism. However, endogenous FA can have several negative effects on the body through epigenetic alterations, including cancer growth promotion; neuronal, hippocampal and endothelial damages; atherosclerosis acceleration; haemopoietic stem cell destruction and haemopoietic cell production reduction. Certain medications with antioxidant effects, such as glutathione, vitamin E, resveratrol, alpha lipoic acid and polyphenols, lessen the detrimental effects of endogenous FA by reducing oxidative stress, directly scavenging endogenous FA or promoting its degradation. This study offers fresh perspectives for managing illnesses associated with endogenous FA exposure.
Collapse
Affiliation(s)
- Jiaxin Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinjia Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Ji Cui
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Anhua Shi
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Ludhiadch A, Yadav UP, Munshi A. Currently available COVID-19 management options. OMICS APPROACHES AND TECHNOLOGIES IN COVID-19 2023:111-124. [DOI: 10.1016/b978-0-323-91794-0.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Trifuoggi M. Mitigating the pro-oxidant state and melanogenesis of Retinitis pigmentosa: by counteracting mitochondrial dysfunction. Cell Mol Life Sci 2021; 78:7491-7503. [PMID: 34718826 PMCID: PMC11072988 DOI: 10.1007/s00018-021-04007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is a group of mitochondrial diseases characterized by progressive degeneration of rods and cones leading to retinal loss of light sensitivity and, consequently, to blindness. To date, no cure is available according to the clinical literature. As a disease associated with pigmentation-related, pro-oxidant state, and mitochondrial dysfunction, RP may be viewed at the crossroads of different pathogenetic pathways involved in adverse health outcomes, where mitochondria play a preeminent role. RP has been investigated in a number of experimental and clinical studies aimed at delaying retinal hyperpigmentation by means of a number of natural and synthetic antioxidants, as well as mitochondrial cofactors, also termed mitochondrial nutrients (MNs), such as alpha-lipoic acid, coenzyme Q10 and carnitine. One should consider that each MN plays distinct-and indispensable-roles in mitochondrial function. Thus, a logical choice would imply the administration of MN combinations, instead of individual MNs, as performed in previous studies, and with limited, if any, positive outcomes. A rational study design aimed at comparing the protective effects of MNs, separately or in combinations, and in association with other antioxidants, might foresee the utilization of animal RP models. The results should verify a comparative optimization in preventing or effectively contrasting retinal oxidative stress in mouse RP models and, in prospect, in human RP cases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy.
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, 46010, Valencia, Spain
| | - Alex Lyakhovich
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, 60121, Ancona, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy
| |
Collapse
|
4
|
Speakman LL, Michienzi SM, Badowski ME. Vitamins, supplements and COVID-19: a review of currently available evidence. Drugs Context 2021; 10:2021-6-2. [PMID: 34659426 PMCID: PMC8496749 DOI: 10.7573/dic.2021-6-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the midst of the COVID-19 pandemic, there has been an information overload of health data (both accurate and inaccurate) available to the public. With vitamins and supplements being readily accessible, many have turned to using them in an effort to combat the virus. The purpose of this review was to analyse clinical trials regarding vitamins and supplements for the treatment of COVID-19 infections. METHODS Articles were identified through a literature search utilizing online databases and bibliographic review. RESULTS A total of seven articles were identified for review. All articles evaluated the use of vitamins and supplements for the treatment of COVID-19. Drug therapies included oral vitamin D, intravenous and oral vitamin C, oral vitamin D/magnesium/vitamin B12, oral zinc, oral combination zinc/ascorbic acid, and intravenous alpha-lipoic acid. The end points of each study varied, including the Sequential Organ Failure Assessment score, mortality, rate of intensive care unit (ICU) admissions, negativity of COVID-19 tests, oxygen requirements, and symptom burden. CONCLUSION Of the vitamins and supplements that were studied, vitamin D presented the most promising data demonstrating significant decreases in oxygen requirements, need for ICU treatment, SARS-CoV-2 RNA test positivity, and mortality. All of these benefits were exhibited in hospitalized patients. Other vitamins and supplements that were evaluated in studies did not demonstrate any statistically significant benefits. Common shortcomings of the articles included generally small sample sizes, varying sites of study (which could determine the virus variant), a lack of standard of care as background therapy, and utilization of doses that were higher than standard.
Collapse
Affiliation(s)
- Lauren L Speakman
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Sarah M Michienzi
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Melissa E Badowski
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
5
|
Uberti F, Ruga S, Farghali M, Galla R, Molinari C. A Combination of α-Lipoic Acid (ALA) and Palmitoylethanolamide (PEA) Blocks Endotoxin-Induced Oxidative Stress and Cytokine Storm: A Possible Intervention for COVID-19. J Diet Suppl 2021; 20:133-155. [PMID: 34405764 DOI: 10.1080/19390211.2021.1966152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The global scientific community is striving to understand the pathophysiological mechanisms and develop effective therapeutic strategies for COVID-19. Despite overwhelming data, there is limited knowledge about the molecular mechanisms involved in the prominent cytokine storm syndrome and multiple organ failure and fatality in COVID-19 cases. The aim of this work is to investigate the possible role of of α-lipoic acid (ALA) and palmitoylethanolamide (PEA), in countering the mechanisms in overproduction of reactive oxygen species (ROS), and inflammatory cytokines. An in vitro model of lipopolysaccharide (LPS)-stimulated human epithelial lung cells that mimics the pathogen-associated molecular pattern and reproduces the cell signaling pathways in cytokine storm syndrome has been used. In this model of acute lung injury, the combination effects of ALAPEA, administered before and after LPS injury, were investigated. Our data demonstrated that a combination of 50 µM ALA + 5 µM PEA can reduce ROS and nitric oxide (NO) levels modulating the major cytokines involved on COVID-19 infection when administered either before or after LPS-induced damage. The best outcome was observed when administered after LPS, thus reinforcing the hypothesis that ALA combined with PEA to modulate the key point of cytokine storm syndrome. This work supports for the first time that the combination of ALA with PEA may represent a novel intervention strategy to counteract inflammatory damage related to COVID-19 by restoring the cascade activation of the immune response and acting as a powerful antioxidant.
Collapse
Affiliation(s)
- Francesca Uberti
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Sara Ruga
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Mahitab Farghali
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Rebecca Galla
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Claudio Molinari
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| |
Collapse
|
6
|
Vajdi M, Mahmoudi-Nezhad M, Farhangi MA. An updated systematic review and dose-response meta-analysis of the randomized controlled trials on the effects of Alpha-Lipoic acid supplementation on inflammatory biomarkers. INT J VITAM NUTR RES 2021; 93:164-177. [PMID: 33827267 DOI: 10.1024/0300-9831/a000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Data about the effects of alpha-lipoic acid (ALA) supplementation on inflammatory markers are inconsistent. This systematic review and dose-response meta-analysis of randomized controlled trials was performed to summarize the effects of ALA supplementation on inflammatory markers such as C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in adults. A comprehensive literature search was conducted in the electronic databases of PubMed, Web of Science, ProQuest, Embase, and SCOPUS from inception to February 2020. Among all of the eligible studies, 20 articles were selected. The weighted mean differences (WMD) and 95% confidence intervals (CI) were calculated to evaluate the pooled effect size. Between-study heterogeneity was evaluated using Cochran's Q test and I2. Subgroup analysis was done to evaluate the potential sources of heterogeneity. The dose-response relationship was evaluated using fractional polynomial modeling. Twenty eligible studies with a total sample size of 947 participants were included in the current meta-analysis. The findings of the meta-analysis showed that ALA supplementation significantly reduced CRP (WMD: -0.69 mg/L, 95% CI: -1.13, -0.26, P=0.002), IL-6 (WMD: -1.83 pg/ml, 95% CI: -2.90, -0.76, P=0.001), and TNF-α concentrations (WMD: -0.45 pg/ml, 95% CI: -0.85, -0.04, P=0.032). No evidence of departure from linearity was observed between dose and duration of the ALA supplementation on serum CRP, IL-6 and TNF-α concentration. In subgroup analysis, ALA dosage, baseline concentrations of the parameter, sample size, and gender were considered as possible sources of heterogeneity. In summary, ALA supplementation improves inflammatory markers without any evidence of non-linear association to dose or duration of the trial.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
7
|
Zhang R, Ji Z, Cai J, Li Y, Ma G. Clinical Significance of Serum Kallistatin and ENOX1 Levels in Patients with Coronary Heart Disease. Med Princ Pract 2021; 30:339-346. [PMID: 32712615 PMCID: PMC8436622 DOI: 10.1159/000510427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/20/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Kallistatin and ENOX1 are regulators of inflammation and oxidative stress which are typical pathological reactions in atherosclerosis. However, there is limited information of kallistatin and ENOX1 in coronary heart disease (CHD). METHODS Fifty healthy controls, 56 stable angina pectoris (SAP) patients, and 47 acute coronary syndrome (ACS) patients were included in this study. Levels of kallistatin and ENOX1 in serum were measured by ELISA. χ2 test was performed to analyze categorical data. ANOVA, Pearson correlation analysis, and multiple linear regression were performed to analyze the numerical data. Finally, receiver operating characteristic (ROC) curve was applied to assess the diagnostic value of kallistatin in CHD. RESULTS Among the 153 participants, 59.5% were male and the average age was 63.8 ± 11.39 years. Compared with the control group, kallistatin expression was decreased in the SAP and ACS groups while expression of ENOX1 was increased in the ACS group (p < 0.05). Pearson correlation analysis showed that the kallistatin level was negatively correlated with the Gensini score (r = -0.210, p < 0.01), white blood cell (WBC) count (r = -0.283, p < 0.001), and triglyceride levels (r = -0.242, p < 0.01) and positively correlated with age (r = 0.353, p < 0.001) and high-density lipoprotein cholesterol (r = 0.310, p < 0.001). ENOX1 expression was positively correlated with WBC count (r = 0.244, p < 0.01), international normalized ratio (r = 0.177, p < 0.05), and Gensini score (r = 0.201, p < 0.05). Multiple linear regression showed that Cr, alanine transaminase, glucose, and kallistatin are independent predictors for Gensini score. The ROC curve showed that kallistatin had the highest diagnostic significance (p = 0.007) when the area under curve was 0.636, with a sensitivity of 0.735 and a specificity of 0.495. CONCLUSION Expression of kallistatin was decreased in CHD patients and that of ENOX1 was increased in ACS patients. Kallistatin and ENOX1 were closely connected with the severity of CHD, and kallistatin may be helpful in the diagnosis of CHD.
Collapse
|
8
|
Hajizadeh-Sharafabad F, Sharifi Zahabi E. Role of alpha-lipoic acid in vascular function: A systematic review of human intervention studies. Crit Rev Food Sci Nutr 2020; 62:2928-2941. [DOI: 10.1080/10408398.2020.1861425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fatemeh Hajizadeh-Sharafabad
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Sharifi Zahabi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Xiang W, Wang L, Cheng S, Zhou Y, Ma L. Protective Effects of α-Lipoic Acid on Vascular Oxidative Stress in Rats with Hyperuricemia. Curr Med Sci 2019; 39:920-928. [PMID: 31845223 DOI: 10.1007/s11596-019-2124-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 10/06/2019] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to observe the protective effects of α-lipoic acid (ALA) on vascular injury in rats with hyperuricemia (HUA). The ALA treatment groups (10, 30 and 90 mg/kg, respectively) were administered with ALA via gavage for 2 weeks. Subsequently, the levels of blood urea nitrogen (BUN), creatinine (CREA), uric acid (UA), total cholesterol (TC), high density lipoprotein-C (HDL-C) and low density lipoprotein-C (LDL-C) were measured; the activities of glutathione peroxidase (GSH-Px), catalase (CAT), malonaldehyde (MDA), superoxide dismutase (SOD) and xanthine oxidase (XOD) were also determined. The thoracic aorta of rats in each experimental group was observed under a light microscope; ultrastructural analysis was performed. SOD and CAT protein contents were investigated by Western blotting. The results revealed that: i) Compared with the model group, the levels of UA were decreased in the ALA groups and the levels of BUN, CREA, TC, and LDL-C decreased in the 30 and 90 mg/kg ALA groups (P<0.05); ii) compared with the model group, the activities of GSH-Px, SOD and XOD were increased and the levels of MDA were reduced in the 90 mg/kg ALA group (P<0.05); and iii) in the model and 10 mg/kg ALA groups, edema and shedding were observed in endothelial cells. Compared with the model and 10 mg/kg ALA groups, the 30 and 90 mg/kg ALA groups exhibited fewer swollen endothelial cells. In summary, the results of the present study indicated that HUA resulted in vascular oxidative stress injury and decreased the activity of antioxidative enzymes, which leads to endothelial cell damage and vascular lesions. ALA may serve as a therapeutic agent for the treatment of HUA-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Li Wang
- Community Health Service Management Center, Dong cheng District, Beijing, 100000, China
| | - Shi Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, College of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
10
|
Inactivation of Aldehyde Dehydrogenase by Disulfiram in the Presence and Absence of Lipoic Acid or Dihydrolipoic Acid: An in Vitro Study. Biomolecules 2019; 9:biom9080375. [PMID: 31426424 PMCID: PMC6723463 DOI: 10.3390/biom9080375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 01/22/2023] Open
Abstract
The inhibition of aldehyde dehydrogenase (ALDH) by disulfiram (DSF) in vitro can be prevented and/or reversed by dithiothreitol (DTT), which is a well-known low molecular weight non-physiological redox reagent commonly used in laboratory experiments. These observations inspired us to ask the question whether the inhibition of ALDH by DSF can be preserved or abolished also by dihydrolipoic acid (DHLA), which is the only currently known low molecular weight physiological dithiol in the body of humans and other animals. It can even be metaphorized that DHLA is an "endogenous DTT". Lipoic acid (LA) is the oxidized form of DHLA. We investigated the inactivation of ALDH derived from yeast and rat liver by DSF in the presence or absence of LA or DHLA. The results clearly show that DHLA is able both to restore and protect ALDH activity blocked by DSF. The proposed mechanism is discussed.
Collapse
|
11
|
Abuyassin B, Badran M, Ayas NT, Laher I. The antioxidant α-lipoic acid attenuates intermittent hypoxia-related renal injury in a mouse model of sleep apnea. Sleep 2019; 42:5382296. [DOI: 10.1093/sleep/zsz066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Bisher Abuyassin
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad Badran
- Departments of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Najib T Ayas
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ismail Laher
- Departments of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Yasue H, Mizuno Y, Harada E. Association of East Asian Variant Aldehyde Dehydrogenase 2 Genotype (ALDH2*2*) with Coronary Spasm and Acute Myocardial Infarction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:121-134. [PMID: 31368101 DOI: 10.1007/978-981-13-6260-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coronary spasm plays an important role in the pathogenesis of ischemic heart disease, including angina pectoris, acute myocardial infarction (AMI), silent myocardial ischemia, and sudden death. The prevalence of coronary spasm is higher among East Asians probably due to genetic as well as environmental factors. ALDH2 eliminates toxic aldehydes including 4-hydroxy-2-nonenal (4-HNE) derived from lipid peroxidation and acrolein in tobacco smoking as well as ethanol-derived acetaldehyde and thereby protects tissues and cells from oxidative damage. Deficient variant ALDH2*2 genotype is prevalent among East Asians and is a significant risk factor for both coronary spasm and AMI through accumulation of toxic aldehydes, thereby contributing to oxidative stress, endothelial damage, vasoconstriction, and thrombosis. Toxic aldehydes are thus identified as risk factors to be targeted for the treatment of coronary spasm and AMI.
Collapse
Affiliation(s)
- Hirofumi Yasue
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto City, Japan.
| | - Yuji Mizuno
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto City, Japan
| | - Eisaku Harada
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto City, Japan
| |
Collapse
|
13
|
Munukutla S, Pan G, Palaniyandi SS. Aldehyde Dehydrogenase (ALDH) 2 in Diabetic Heart Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:155-174. [PMID: 31368103 DOI: 10.1007/978-981-13-6260-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major pathophysiological mechanism behind the development of diabetic heart diseases is oxidative stress mediated by toxic reactive aldehydes such as 4-hydroxynonenal (4HNE). Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that has been found to detoxify these deleterious aldehydes and thereby mitigate cardiac damage. Furthermore, its protective role in cellular signaling reverses aberrations caused by hyperglycemia, thereby protecting cardiac function. This chapter assesses the role of ALDH2 in diabetic heart diseases by examining preclinical studies where ALDH2 activity is perturbed in both decreased and increased directions. In doing so, issues in improving ALDH2 activity in select human populations are elucidated, and further research directions are discussed.
Collapse
Affiliation(s)
- Srikar Munukutla
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
- Department of Physiology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
14
|
Dorokhov YL, Sheshukova EV, Bialik TE, Komarova TV. Human Endogenous Formaldehyde as an Anticancer Metabolite: Its Oxidation Downregulation May Be a Means of Improving Therapy. Bioessays 2018; 40:e1800136. [PMID: 30370669 DOI: 10.1002/bies.201800136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Malignant cells are characterized by an increased content of endogenous formaldehyde formed as a by-product of biosynthetic processes. Accumulation of formaldehyde in cancer cells is combined with activation of the processes of cellular formaldehyde clearance. These mechanisms include increased ALDH and suppressed ADH5/FDH activity, which oncologists consider poor and favorable prognostic markers, respectively. Here, the sources and regulation of formaldehyde metabolism in cancer cells are reviewed. The authors also analyze the participation of oncoproteins such as fibulins, FGFR1, HER2/neu, FBI-1, and MUC1-C in the control of genes related to formaldehyde metabolism, suggesting the existence of two mutually exclusive processes in cancer cells: 1) production and 2) oxidation and elimination of formaldehyde from the cell. The authors hypothesize that the study of the anticancer properties of disulfiram and alpha lipoic acid - which affect the balance of formaldehyde in the body - may serve as the basis of future anticancer therapy.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - Tatiana E Bialik
- N.N. Blokhin National Medical Research Center of Oncology, 115478, Moscow, Russia
| | - Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
15
|
Fatahi S, Kord Varkaneh H, Teymouri A, Azadbakht L. Beneficiary effect of a-lipoic acid supplementation on C-reactive protein level among adults. ACTA ACUST UNITED AC 2018. [DOI: 10.1108/nfs-03-2018-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Clinical evidence has suggested that alpha-lipoic acid (ALA), a potent antioxidant, seems to have some effects on inflammatory process. However, these results are equivocal. The purpose of this paper is to investigate the nature of association between ALA and serum C-reactive protein (CRP) level by pooling the results from clinical trial studies.
Design/methodology/approach
Relevant studies were identified by systematic literature search of PubMed/MEDLINE, Scopus, Web of Sciences and Cochrane library up to September 2016 for randomized controlled trials (RCTs) evaluating the impact of ALA supplementation on CRP. The pooled data were summarized as weighted mean difference (WMD) and 95 per cent confidence interval (CI). Effect sizes of eligible studies were pooled using random- or fixed-effects (the DerSimonian–Laird estimator) depending on the results of heterogeneity tests.
Findings
Of 212 papers, 15 were eligible RCTs according to inclusion criteria. The selected studies comprised 1,408 cases and 457 controls. The dose of ALA supplement ranged from 300 to 1,200 mg, and the duration of follow-up was from 1 to 48 weeks. ALA supplementation significantly reduced the levels of circulating CRP (WMD: −0.088, 95 per cent CI: −0.131, −0.045, p < 0.001) with significant heterogeneity (I2 = 73.4 per cent, p < 0.001). Populations with age younger than 50 years (PMD: −0.060 mg/dl), receiving doses less than 600 mg/day (PMD: −0.057 mg/dl), having cardiovascular disease (PMD: −0.105 mg/dl), hemodialysis (PMD: −0.209 mg/dl), diabetes (PMD: −0.021 mg/dl) and otherwise healthy subjects (PMD: −0.045 mg/dl) were sources of heterogeneity.
Originality/Value
This meta-analysis of RCTs suggests that ALA supplementation seems to significantly reduce circulating CRP level.
Collapse
|
16
|
Lennox RD, Cecchini-Sternquist M. Safety and tolerability of sauna detoxification for the protracted withdrawal symptoms of substance abuse. J Int Med Res 2018; 46:4480-4499. [PMID: 30209965 PMCID: PMC6259397 DOI: 10.1177/0300060518779314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective Protracted drug withdrawal symptoms can last months or years after drug cessation, often precipitating a return to substance misuse. We evaluated the safety and preliminary health benefits of a unique chemical exposure regimen based on exercise, sauna and therapeutic nutrients. Methods This was a prospective evaluation of 109 individuals sequentially enrolled into a sauna detoxification component of a multi-modal, long-term residential substance abuse treatment centre. Results Data from medical charts, client self-reports and Short Form Health Survey (SF-36) responses indicated that the Hubbard sauna detoxification method was well tolerated, with a 99% completion rate, including one human immunodeficiency virus and nine hepatitis C positive clients. There were no cases of dehydration, overhydration or heat illness. Statistically significant improvements were seen in both mental and physical SF-36 scores at regimen completion, as well as in Addiction Severity Index and Global Appraisal of Individual Needs Short Screener change scores at rehabilitation program discharge, compared with enrolment. Conclusions The regimen lacked serious adverse events, had a very low discontinuation rate and high client-reported satisfaction. The SF-36 data indicated improved physical and emotional symptoms. Therefore, broader investigation of this sauna-based treatment regimen is warranted.
Collapse
Affiliation(s)
- Richard D Lennox
- Chestnut Global Partners, Chestnut Health Systems, Martin Luther King Drive, Bloomington, Illinois, USA
| | - Marie Cecchini-Sternquist
- Chestnut Global Partners, Chestnut Health Systems, Martin Luther King Drive, Bloomington, Illinois, USA
| |
Collapse
|
17
|
Zhang T, Zhao Q, Ye F, Huang CY, Chen WM, Huang WQ. Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress. Free Radic Res 2018; 52:629-638. [PMID: 29589772 DOI: 10.1080/10715762.2018.1459042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1 h, followed by 6 h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30 min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.
Collapse
Affiliation(s)
- Tao Zhang
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Qiang Zhao
- b Organ transplantation center , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Fang Ye
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Chan-Yan Huang
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Wan-Mei Chen
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Wen-Qi Huang
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
18
|
Abstract
As a result of many years of research, the intricate cellular mechanisms of burn injury are slowly becoming clear. Yet, knowledge of these cellular mechanisms and a multitude of resulting studies have often failed to translate into improved clinical treatment for burn injuries. Perhaps the most valuable information to date is the years of clinical experience and observations in the management and treatment of patients, which has contributed to a gradual improvement in reported outcomes of mortality. This review provides a discussion of the cellular mechanisms and pathways involved in burn injury, resultant systemic effects on organ systems, current management and treatment, and potential therapies that we may see implemented in the future.
Collapse
|
19
|
Shindyapina AV, Komarova TV, Sheshukova EV, Ershova NM, Tashlitsky VN, Kurkin AV, Yusupov IR, Mkrtchyan GV, Shagidulin MY, Dorokhov YL. The Antioxidant Cofactor Alpha-Lipoic Acid May Control Endogenous Formaldehyde Metabolism in Mammals. Front Neurosci 2017; 11:651. [PMID: 29249928 PMCID: PMC5717020 DOI: 10.3389/fnins.2017.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
The healthy human body contains small amounts of metabolic formaldehyde (FA) that mainly results from methanol oxidation by pectin methylesterase, which is active in a vegetable diet and in the gastrointestinal microbiome. With age, the ability to maintain a low level of FA decreases, which increases the risk of Alzheimer's disease and dementia. It has been shown that 1,2-dithiolane-3-pentanoic acid or alpha lipoic acid (ALA), a naturally occurring dithiol and antioxidant cofactor of mitochondrial α-ketoacid dehydrogenases, increases glutathione (GSH) content and FA metabolism by mitochondrial aldehyde dehydrogenase 2 (ALDH2) thus manifests a therapeutic potential beyond its antioxidant property. We suggested that ALA can contribute to a decrease in the FA content of mammals by acting on ALDH2 expression. To test this assumption, we administered ALA in mice in order to examine the effect on FA metabolism and collected blood samples for the measurement of FA. Our data revealed that ALA efficiently eliminated FA in mice. Without affecting the specific activity of FA-metabolizing enzymes (ADH1, ALDH2, and ADH5), ALA increased the GSH content in the brain and up-regulated the expression of the FA-metabolizing ALDH2 gene in the brain, particularly in the hippocampus, but did not impact its expression in the liver in vivo or in rat liver isolated from the rest of the body. After ALA administration in mice and in accordance with the increased content of brain ALDH2 mRNA, we detected increased ALDH2 activity in brain homogenates. We hypothesized that the beneficial effects of ALA on patients with Alzheimer's disease may be associated with accelerated ALDH2-mediated FA detoxification and clearance.
Collapse
Affiliation(s)
- Anastasia V Shindyapina
- Department of Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia.,Department of Chemistry and Biochemistry of Nucleoproteins, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V Komarova
- Department of Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia.,Department of Chemistry and Biochemistry of Nucleoproteins, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina V Sheshukova
- Department of Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia.,Department of Chemistry and Biochemistry of Nucleoproteins, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia M Ershova
- Department of Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia.,Department of Chemistry and Biochemistry of Nucleoproteins, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Ildar R Yusupov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Garik V Mkrtchyan
- Department of Chemistry and Biochemistry of Nucleoproteins, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Murat Y Shagidulin
- Academician V. I. Schumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Yuri L Dorokhov
- Department of Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia.,Department of Chemistry and Biochemistry of Nucleoproteins, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
20
|
Kosoko A, Olurinde O, Akinloye O. Doxorubicin induced neuro- and cardiotoxicities in experimental rats: Protection against oxidative damage by Theobroma cacao Stem bark. Biochem Biophys Rep 2017; 10:303-317. [PMID: 28955758 PMCID: PMC5614625 DOI: 10.1016/j.bbrep.2017.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/03/2017] [Accepted: 01/27/2017] [Indexed: 12/20/2022] Open
Abstract
80 rats, randomly selected, were divided into 3 treatment groups: pre-, co- and post-treatment; consisting of 6 sub-groups each (5 rats per sub-group): baseline, normal saline (2 mL), α-lipoic acid (20 mg/kg body weight), 200 mg/kg, 400 mg/kg or 800 mg/kg body weight Theobroma cacao stem bark aqueous extract (TCAE). All rats except for baseline group were intoxicated with 20 mg/kg body weight doxorubicin (DOX) intraperitoneally. The animals in pre- or post-treatment group received a single dose of DOX (20 mg/kg body weight) intraperitoneally 24 h before or after 7 days' oral administration with TCAE respectively while those in co-treatment group were co-administered 2.86 mg/kg body weight of DOX with either normal saline, α- lipoic acid or TCAE orally for 7 days. Animals were sacrificed (pre- and post- treatment groups were sacrificed on the ninth day while the co-treatment group sacrificed on the 8th day). Brain and heart tissue samples were harvested for enzyme markers of toxicity, oxidative stress and histopathological examinations. DOX intoxication caused significant decrease in activities of LDH and ACP, and increase in γGT and ALP activities in brain tissues while causing a significant increase in LDH, ACP, γGT activities and decrease in ALP activity in the cardiac tissues. DOX intoxication caused a significant increase in concentrations of H2O2 generated, MDA and PC, XO, MPx and NOX activities with concomitant decrease in CAT, SOD, GPx and GST activities, and in concentrations of GSH, AsA and α-Toc in brain and cardiac tissues. Pre-, co- and post-treatment with TCAE at either 200 mg/kg, 400 mg/kg or 800 mg/kg body weight significantly reversed the oxidative damage to the organs induced by DOX-intoxication. The result affirmed that T. cacao stem bark aqueous extract protected against DOX induced oxidative damage in brain and cardiac tissues of experimental rats.
Collapse
Affiliation(s)
- A.M. Kosoko
- Department of Biochemistry, College of Biosciences (COLBIOS), Federal University of Agriculture, Abeokuta (FUNAAB), Nigeria
| | | | | |
Collapse
|
21
|
Pretreatment with the ALDH2 agonist Alda-1 reduces intestinal injury induced by ischaemia and reperfusion in mice. Clin Sci (Lond) 2017; 131:1123-1136. [PMID: 28325855 PMCID: PMC5434792 DOI: 10.1042/cs20170074] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/05/2017] [Accepted: 03/20/2017] [Indexed: 12/20/2022]
Abstract
Many studies demonstrate that activation of aldehyde dehydrogenase 2 (ALDH2) protects against oxidative stress via detoxification of cytotoxic aldehydes, and could attenuate cardiac, cerebral, lung and renal ischaemia-reperfusion (I/R) injuries. However, the effect of ALDH2 in intestinal I/R is unknown. The present study was set up to determine whether an ALDH2 agonist, Alda-1, could alleviate intestinal injury after gut I/R. In a mouse model of intestinal I/R injury, histological grading, proinflammatory cytokines, oxidative stress, cellular apoptosis, chemokine contents, ALDH2 activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were evaluated. The results indicated that I/R treatment conferred elevation in pathological scores, proinflammatory cytokines, oxidative stress, cellular apoptosis and chemokine levels, accompanied by accumulated 4-HNE and MDA. No significant changes in ALDH2 activity were observed after I/R. However, Alda-1 pretreatment significantly decreased these injurious indicators, concomitant with up-regulated ALDH2 activity, and lessened 4-HNE and MDA accumulation. Taken together, our results implicate activation of ALDH2 by Alda-1 in the significant abatement intestinal I/R injury.
Collapse
|
22
|
Sprague Dawley rats: A model of successful heart aging. EUPA OPEN PROTEOMICS 2016; 12:22-30. [PMID: 29900116 PMCID: PMC5988506 DOI: 10.1016/j.euprot.2016.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/14/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023]
Abstract
Sprague Dawley rat hearts of 6, 22 and 30 months were analysed by DIGE and blotting. Results indicate that this animal model experiences the so-called successful aging. Mybpc3, Aldh2 and serpins could be used as early biomarkers. Sirtuin-3 increment suggests the activation of protective non-canonical autophagy.
Aging is a universal phenomenon involving the whole body and is characterized by metabolic and physiological decline, leading to cardiovascular defects and heart failure. To characterize the molecular basis of physiological cardiac aging, the proteomic profiles of Sprague Dawley rat hearts of 6, 22 and 30 months were analysed by DIGE and immunoblotting. Results indicate changes in myosin binding protein C, aldehyde dehydrogenase, serpins and sirtuin-3 which protects from the opening of the mitochondrial permeability transition pore induced by cyclophilin D increment. Conversely, an increase of fusion, a decrease of mitochondrial fission and the activation of the non-canonical autophagy pathway were observed. These results support the hypothesis of successful aging in this rat model.
Collapse
|
23
|
Hoang BX, Shaw DG, Han B, Fang JY, Nimni M. Acidosis and Formaldehyde Secretion as a Possible Pathway of Cancer Pain and Options for Improved Cancer Pain Control. J Pain Palliat Care Pharmacother 2015; 29:276-80. [PMID: 26368037 DOI: 10.3109/15360288.2015.1063561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The prevalence of cancer pain in patients with cancer is high. The majority of efforts are spent on research in cancer treatment, but only a small fraction focuses on cancer pain. Pain in cancer patients, viewed predominantly as a secondary issue, is considered to be due to the destruction of tissues, compression of the nerves, inflammation, and secretion of biological mediators from the necrotic tumor mass. As a result, opioid drugs have remained as the primary pharmacological therapy for cancer pain for the past hundred years. This report reviews evidence that cancer pain may be produced by the metabolic effects of two byproducts of cancer-high acidity in the cancer microenvironment and the secretion of formaldehyde and its metabolites. We propose the research and development of therapeutic approaches for preemptive, short- and long-term management of cancer pain using available drugs or nutraceutical agents that can suppress or neutralize lactic acid production in combination with formaldehyde scavengers. We believe this approach may not only improve cancer pain control but may also enhance the quality of life for patients.
Collapse
|
24
|
Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiol Rev 2015; 95:603-44. [PMID: 25834233 DOI: 10.1152/physrev.00034.2014] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Anastasia V Shindyapina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Ekaterina V Sheshukova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Tatiana V Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
25
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Current experience in testing mitochondrial nutrients in disorders featuring oxidative stress and mitochondrial dysfunction: rational design of chemoprevention trials. Int J Mol Sci 2014; 15:20169-208. [PMID: 25380523 PMCID: PMC4264162 DOI: 10.3390/ijms151120169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with "classical" antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed.
Collapse
Affiliation(s)
- Giovanni Pagano
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Annarita Aiello Talamanca
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Giuseppe Castello
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Mario D Cordero
- Research Laboratory, Dental School, Universidad de Sevilla, Sevilla 41009, Spain.
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Naples I-80126, Italy.
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, Bari I-70126, Italy.
| | - Federico V Pallardó
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), University of Valencia-INCLIVA, Valencia 46010, Spain.
| | - Sandra Petrović
- Vinca" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11001, Serbia.
| | - Luca Tiano
- Biochemistry Unit, Department of Clinical and Dental Sciences, Polytechnical University of Marche, Ancona I-60131, Italy.
| | - Adriana Zatterale
- Genetics Unit, Azienda Sanitaria Locale (ASL) Napoli 1 Centro, Naples I-80136, Italy.
| |
Collapse
|