1
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Lee E, Choi HK, Kwon Y, Lee KB. Real-Time, Non-Invasive Monitoring of Neuronal Differentiation Using Intein-Enabled Fluorescence Signal Translocation in Genetically Encoded Stem Cell-Based Biosensors. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2400394. [PMID: 39308638 PMCID: PMC11412434 DOI: 10.1002/adfm.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 09/25/2024]
Abstract
Real-time and non-invasive monitoring of neuronal differentiation will help increase our understanding of neuronal development and help develop regenerative stem cell therapies for neurodegenerative diseases. Traditionally, reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence (IF) staining have been widely used to investigate stem cell differentiation; however, their limitations include endpoint analysis, invasive nature of monitoring, and lack of single-cell-level resolution. Several limitations hamper current approaches to studying neural stem cell (NSC) differentiation. In particular, fixation and staining procedures can introduce artificial changes in cellular morphology, hindering our ability to accurately monitor the progression of the process and fully understand its functional aspects, particularly those related to cellular connectivity and neural network formation. Herein, we report a novel approach to monitor neuronal differentiation of NSCs non-invasively in real-time using cell-based biosensors (CBBs). Our research efforts focused on utilizing intein-mediated protein engineering to design and construct a highly sensitive biosensor capable of detecting a biomarker of neuronal differentiation, hippocalcin. Hippocalcin is a critical protein involved in neurogenesis, and the CBB functions by translocating a fluorescence signal to report the presence of hippocalcin externally. To construct the hippocalcin sensor proteins, hippocalcin bioreceptors, AP2 and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2), were fused to each split-intein carrying split-nuclear localization signal (NLS) peptides, respectively, and a fluorescent protein was introduced as a reporter. Protein splicing (PS) was triggered in the presence of hippocalcin to generate functional signal peptides, which promptly translocated the fluorescence signal to the nucleus. The stem cell-based biosensor showed fluorescence signal translocation only upon neuronal differentiation. Undifferentiated stem cells or cells that had differentiated into astrocytes or oligodendrocytes did not show fluorescence signal translocation. The number of differentiated neurons was consistent with that measured by conventional IF staining. Furthermore, this approach allowed for the monitoring of neuronal differentiation at an earlier stage than that detected using conventional approaches, and the translocation of fluorescence signal was monitored before the noticeable expression of class III β-tubulin (TuJ1), an early neuronal differentiation marker. We believe that these novel CBBs offer an alternative to current techniques by capturing the dynamics of differentiation progress at the single-cell level and by providing a tool to evaluate how NSCs efficiently differentiate into specific cell types, particularly neurons.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Lee J, Sternberg H, Bignone PA, Murai J, Malik NN, West MD, Larocca D. Clonal and Scalable Endothelial Progenitor Cell Lines from Human Pluripotent Stem Cells. Biomedicines 2023; 11:2777. [PMID: 37893151 PMCID: PMC10604251 DOI: 10.3390/biomedicines11102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can be used as a renewable source of endothelial cells for treating cardiovascular disease and other ischemic conditions. Here, we present the derivation and characterization of a panel of distinct clonal embryonic endothelial progenitor cells (eEPCs) lines that were differentiated from human embryonic stem cells (hESCs). The hESC line, ESI-017, was first partially differentiated to produce candidate cultures from which eEPCs were cloned. Endothelial cell identity was assessed by transcriptomic analysis, cell surface marker expression, immunocytochemical marker analysis, and functional analysis of cells and exosomes using vascular network forming assays. The transcriptome of the eEPC lines was compared to various adult endothelial lines as well as various non-endothelial cells including both adult and embryonic origins. This resulted in a variety of distinct cell lines with functional properties of endothelial cells and strong transcriptomic similarity to adult endothelial primary cell lines. The eEPC lines, however, were distinguished from adult endothelium by their novel pattern of embryonic gene expression. We demonstrated eEPC line scalability of up to 80 population doublings (pd) and stable long-term expansion of over 50 pd with stable angiogenic properties at late passage. Taken together, these data support the finding that hESC-derived clonal eEPC lines are a potential source of scalable therapeutic cells and cell products for treating cardiovascular disease. These eEPC lines offer a highly promising resource for the development of further preclinical studies aimed at therapeutic interventions.
Collapse
Affiliation(s)
- Jieun Lee
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | - Hal Sternberg
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | - Paola A. Bignone
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | - James Murai
- Advanced Cell Technology, Alameda, CA 94502, USA
| | - Nafees N. Malik
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| | | | - Dana Larocca
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Alameda, CA 94501, USA; (H.S.); (P.A.B.); (N.N.M.); (D.L.)
| |
Collapse
|
4
|
Rabino M, Sommariva E, Zacchigna S, Pompilio G. From bedside to the bench: patient-specific hiPSC-EC models uncover endothelial dysfunction in genetic cardiomyopathies. Front Physiol 2023; 14:1237101. [PMID: 37538375 PMCID: PMC10394630 DOI: 10.3389/fphys.2023.1237101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Genetic cardiomyopathies are a group of inherited disorders in which myocardial structure and function are damaged. Many of these pathologies are rare and present with heterogenous phenotypes, thus personalized models are required to completely uncover their pathological mechanisms and develop valuable therapeutic strategies. Both cardiomyocytes and fibroblasts, differentiated from patient-specific human induced pluripotent stem cells, represent the most studied human cardiac cell models in the context of genetic cardiomyopathies. While endothelial dysfunction has been recognized as a possible pathogenetic mechanism, human induced pluripotent stem cell-derived endothelial cells are less studied, despite they constitute a suitable model to specifically dissect the role of the dysfunctional endothelium in the development and progression of these pathologies. In this review, we summarize the main studies in which human induced pluripotent stem cell-derived endothelial cells are used to investigate endothelial dysfunction in genetic-based cardiomyopathies to highlight new potential targets exploitable for therapeutic intervention, and we discuss novel perspectives that encourage research in this direction.
Collapse
Affiliation(s)
- Martina Rabino
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Serena Zacchigna
- Unit of Cardio-Oncology, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Noh KM, Park SJ, Moon SH, Jung SY. Extracellular matrix cues regulate the differentiation of pluripotent stem cell-derived endothelial cells. Front Cardiovasc Med 2023; 10:1169331. [PMID: 37435057 PMCID: PMC10330705 DOI: 10.3389/fcvm.2023.1169331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
The generation of endothelial cells (ECs) from human pluripotent stem cells (PSCs) has been a promising approach for treating cardiovascular diseases for several years. Human PSCs, particularly induced pluripotent stem cells (iPSCs), are an attractive source of ECs for cell therapy. Although there is a diversity of methods for endothelial cell differentiation using biochemical factors, such as small molecules and cytokines, the efficiency of EC production varies depending on the type and dose of biochemical factors. Moreover, the protocols in which most EC differentiation studies have been performed were in very unphysiological conditions that do not reflect the microenvironment of native tissue. The microenvironment surrounding stem cells exerts variable biochemical and biomechanical stimuli that can affect stem cell differentiation and behavior. The stiffness and components of the extracellular microenvironment are critical inducers of stem cell behavior and fate specification by sensing the extracellular matrix (ECM) cues, adjusting the cytoskeleton tension, and delivering external signals to the nucleus. Differentiation of stem cells into ECs using a cocktail of biochemical factors has been performed for decades. However, the effects of mechanical stimuli on endothelial cell differentiation remain poorly understood. This review provides an overview of the methods used to differentiate ECs from stem cells by chemical and mechanical stimuli. We also propose the possibility of a novel EC differentiation strategy using a synthetic and natural extracellular matrix.
Collapse
Affiliation(s)
- Kyung Mu Noh
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| | - Soon-Jung Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Republic of Korea
| | - Seok Yun Jung
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| |
Collapse
|
6
|
Ashmore-Harris C, Fruhwirth GO. Generation of In Vivo Traceable Hepatocyte-Like Cells from Human iPSCs. Methods Mol Biol 2022; 2544:15-49. [PMID: 36125708 DOI: 10.1007/978-1-0716-2557-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, we describe a protocol for differentiation of human-induced pluripotent stem cells (iPSCs) into hepatocyte-like cells (HLCs) and their transduction with a lentivirus for gene transfer. Here, we engineer them to express the human sodium iodide symporter, which can be exploited as a radionuclide reporter gene, thereby enabling these cells to be tracked in vivo by single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. Differentiation of HLCs from iPSCs involves three steps: induction of iPSCs to definitive endoderm, differentiation to a hepatic progenitor cell population, and maturation of immature HLCs. Once proliferation of hepatic progenitors has ceased and an immature HLC population is generated, lentiviral transduction can be performed. The immature hepatic gene expression profile/morphology at the stage of transduction will be compatible with further maturation following transgene expression either in vitro or in vivo, with expression of the transgene retained. We detail how transgenic cells can be imaged in vivo. While we provide a protocol for the NIS reporter gene, the cell engineering aspects of this protocol are transferable for use with other (reporter) genes if desired.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK.
| |
Collapse
|
7
|
Encapsulin Based Self-Assembling Iron-Containing Protein Nanoparticles for Stem Cells MRI Visualization. Int J Mol Sci 2021; 22:ijms222212275. [PMID: 34830156 PMCID: PMC8618560 DOI: 10.3390/ijms222212275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Over the past decade, cell therapy has found many applications in the treatment of different diseases. Some of the cells already used in clinical practice include stem cells and CAR-T cells. Compared with traditional drugs, living cells are much more complicated systems that must be strictly controlled to avoid undesirable migration, differentiation, or proliferation. One of the approaches used to prevent such side effects involves monitoring cell distribution in the human body by any noninvasive technique, such as magnetic resonance imaging (MRI). Long-term tracking of stem cells with artificial magnetic labels, such as magnetic nanoparticles, is quite problematic because such labels can affect the metabolic process and cell viability. Additionally, the concentration of exogenous labels will decrease during cell division, leading to a corresponding decrease in signal intensity. In the current work, we present a new type of genetically encoded label based on encapsulin from Myxococcus xanthus bacteria, stably expressed in human mesenchymal stem cells (MSCs) and coexpressed with ferroxidase as a cargo protein for nanoparticles' synthesis inside encapsulin shells. mZip14 protein was expressed for the enhancement of iron transport into the cell. Together, these three proteins led to the synthesis of iron-containing nanoparticles in mesenchymal stem cells-without affecting cell viability-and increased contrast properties of MSCs in MRI.
Collapse
|
8
|
Kovina MV, Dyuzheva TG, Krasheninnikov ME, Yakovenko SA, Khodarovich YM. Co-growth of Stem Cells With Target Tissue Culture as an Easy and Effective Method of Directed Differentiation. Front Bioeng Biotechnol 2021; 9:591775. [PMID: 34222206 PMCID: PMC8242343 DOI: 10.3389/fbioe.2021.591775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
The long-term co-culture of mouse embryonic stem cells (mESC) with rat endothelial cells (EC) was tested for contact differentiation into the endothelial lineage. Serial passaging of rat ECs mixed with mESC in ratio 10:1 resulted in the emergence of a homogeneous cell population expressing mouse endothelial surface markers CD102, CD29, CD31. Rat endothelial surface marker RECA-1 completely disappeared from the co-cultured population after 2 months of weekly passaging. Co-incubation of mESC with rat ECs without cell-to-cell contact did not result in the conversion of mESC into ECs. After co-cultivation of adult mesenchymal stem cells from human endometrium (eMSC) with pre-hepatocyte-like cells of human hepatocarcinoma Huh7 the resulting co-culture expressed mature liver markers (oval cell antigen and cytokeratin 7), none of which were expressed by any of co-cultivated cultures, thus proving that even an immature (proliferating) pre-hepatocyte-like line can induce hepatic differentiation of stem cells. In conclusion, we have developed conditions where long-term co-proliferation of embryonic or adult SC with fully or partially differentiated cells results in stem cell progeny expressing markers of target tissue. In the case of endothelial differentiation, the template population quickly disappeared from the resulted culture and the pure endothelial population of stem cell progeny emerged. This approach demonstrates the expected fate of stem cells during various in vivo SC-therapies and also might be used as an effective in vitro differentiation method to develop the pure endothelium and, potentially, other tissue types of desirable genetic background.
Collapse
Affiliation(s)
- Marina Valentinovna Kovina
- Peoples’ Friendship University of Russia, Moscow, Russia
- AltraVita IVF Clinic, Moscow, Russia
- The University of Texas Health Science Center at Houston, Medical School, Department of Integrative Biology and Pharmacology, Houston, TX, United States
| | | | | | | | | |
Collapse
|
9
|
Li X, Yu Y, Wei R, Li Y, Lv J, Liu Z, Zhang Y. In vitro and in vivo study on angiogenesis of porcine induced pluripotent stem cell-derived endothelial cells. Differentiation 2021; 120:10-18. [PMID: 34116291 DOI: 10.1016/j.diff.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/16/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Pluripotent stem cells (PSCs) are a promising source of endothelial cells (ECs) for the treatment of cardiovascular diseases. Since clinical application of embryo stem cells (ESCs) involves issues of medical ethics and risk of immune rejection, induced pluripotent stem cells (iPSCs) will facilitate cell transplantation therapy for the cardiovascular diseases. Swine is identified as an ideal large-animal model for human, because of its similar organ size and physiological characteristics. However, there are very few studies on EC differentiation of porcine iPSCs (piPSCs). In recent study, we provided an efficient protocol to differentiate piPSCs into ECs with the purity of 19.76% CD31 positive cells within 16 days. Passaging of these cells yielded a nearly pure population, which also expressed other endothelial markers such as CD144, eNOS and vWF. Besides, these cells exhibited functions of ECs such as uptake of low-density lipoprotein and formation of tubes in vitro or blood vessels in vivo. Our study successfully obtained ECs from piPSCs via a feeder- and serum-free monolayer system and demonstrated their angiogenic function in vivo and in vitro. piPSC-ECs derivation is not only potential for the autologous cell transplantation and cardiovascular drug screening, but also for the mechanistic studies on EC differentiation and endothelial dysfunction.
Collapse
Affiliation(s)
- Xuechun Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yang Yu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yimei Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiawei Lv
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yu Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
10
|
Chandy M, Wu JC. Molecular Imaging of Stem Cell Therapy in Ischemic Cardiomyopathy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
12
|
Iafrate M, Fruhwirth GO. How Non-invasive in vivo Cell Tracking Supports the Development and Translation of Cancer Immunotherapies. Front Physiol 2020; 11:154. [PMID: 32327996 PMCID: PMC7152671 DOI: 10.3389/fphys.2020.00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is a relatively new treatment regimen for cancer, and it is based on the modulation of the immune system to battle cancer. Immunotherapies can be classified as either molecular or cell-based immunotherapies, and both types have demonstrated promising results in a growing number of cancers. Indeed, several immunotherapies representing both classes are already approved for clinical use in oncology. While spectacular treatment successes have been reported, particularly for so-called immune checkpoint inhibitors and certain cell-based immunotherapies, they have also been accompanied by a variety of severe, sometimes life-threatening side effects. Furthermore, not all patients respond to immunotherapy. Hence, there is the need for more research to render these promising therapeutics more efficacious, more widely applicable, and safer to use. Whole-body in vivo imaging technologies that can interrogate cancers and/or immunotherapies are highly beneficial tools for immunotherapy development and translation to the clinic. In this review, we explain how in vivo imaging can aid the development of molecular and cell-based anti-cancer immunotherapies. We describe the principles of imaging host T-cells and adoptively transferred therapeutic T-cells as well as the value of traceable cancer cell models in immunotherapy development. Our emphasis is on in vivo cell tracking methodology, including important aspects and caveats specific to immunotherapies. We discuss a variety of associated experimental design aspects including parameters such as cell type, observation times/intervals, and detection sensitivity. The focus is on non-invasive 3D cell tracking on the whole-body level including aspects relevant for both preclinical experimentation and clinical translatability of the underlying methodologies.
Collapse
Affiliation(s)
| | - Gilbert O. Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Han D, Wu JC. Using Bioengineered Bioluminescence to Track Stem Cell Transplantation In Vivo. Methods Mol Biol 2020; 2126:1-11. [PMID: 32112374 PMCID: PMC10902212 DOI: 10.1007/978-1-0716-0364-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Bioluminescence imaging enables the real-time detection and tracking of engrafted cells in vivo noninvasively and dynamically. By detecting and quantifying the photons released from the oxidation of luciferin catalyzed by luciferase enzymes, this approach has proven effective in tracking engrafted stem cell survival and retention, making it a powerful tool to monitor cell fate after transplantation without animal sacrifice. Here we describe a protocol that allows luciferase-labeled stem cells to be imaged and tracked in vivo by bioluminescent imaging via an IVIS spectrum imaging system.
Collapse
Affiliation(s)
- Dong Han
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Abstract
Regenerative medicine with the use of stem cells has appeared as a potential therapeutic alternative for many disease states. Despite initial enthusiasm, there has been relatively slow transition to clinical trials. In large part, numerous questions remain regarding the viability, biology and efficacy of transplanted stem cells in the living subject. The critical issues highlighted the importance of developing tools to assess these questions. Advances in molecular biology and imaging have allowed the successful non-invasive monitoring of transplanted stem cells in the living subject. Over the years these methodologies have been updated to assess not only the viability but also the biology of transplanted stem cells. In this review, different imaging strategies to study the viability and biology of transplanted stem cells are presented. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use.
Collapse
Affiliation(s)
- Fakhar Abbas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph C. Wu
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Medicine (Cardiology), Stanford University, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Bio-Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
15
|
Bao X, Adil MM, Muckom R, Zimmermann JA, Tran A, Suhy N, Xu Y, Sampayo RG, Clark DS, Schaffer DV. Gene Editing to Generate Versatile Human Pluripotent Stem Cell Reporter Lines for Analysis of Differentiation and Lineage Tracing. Stem Cells 2019; 37:1556-1566. [DOI: 10.1002/stem.3096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/22/2019] [Accepted: 08/23/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaoping Bao
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
- Davidson School of Chemical Engineering; Purdue University; West Lafayette Indiana USA
| | - Maroof M. Adil
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Riya Muckom
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Joshua A. Zimmermann
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Aurelie Tran
- Department of Molecular and Cell Biology; University of California; Berkeley California USA
| | - Natalie Suhy
- Department of Molecular and Cell Biology; University of California; Berkeley California USA
| | - Yibo Xu
- Davidson School of Chemical Engineering; Purdue University; West Lafayette Indiana USA
| | - Rocío G. Sampayo
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
- Department of Chemistry; University of California; Berkeley California USA
| | - David V. Schaffer
- Department of Bioengineering; University of California; Berkeley California USA
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California USA
- Davidson School of Chemical Engineering; Purdue University; West Lafayette Indiana USA
- Department of Molecular and Cell Biology; University of California; Berkeley California USA
| |
Collapse
|
16
|
Abstract
Extracellular vesicles (EVs) are essential tools for conveying biological information and modulating functions of recipient cells. Implantation of isolated or modulated EVs can be innovative therapeutics for various diseases. Furthermore, EVs could be a biocompatible drug delivery vehicle to carry both endogenous and exogenous biologics. Tracking EVs should play essential roles in understanding the functions of EVs and advancing EV therapeutics. EVs have the characteristic structures consisting of the lipid bilayer and specific membrane proteins, through which they can be labeled efficiently. EVs can be labeled either directly using probes or indirectly by transfection of reporter genes. Optical imaging (fluorescent imaging and bioluminescent imaging), single-photon emission computed tomography (SPECT)/positron emission tomography (PET), and magnetic resonance imaging (MRI) are currently used for imaging EVs. Labeling EVs with superparamagnetic iron oxide (SPIO) nanoparticles for MRI tracking is a promising method that can be translated into clinic. SPIO can be internalized by most of the cell types and then released as SPIO containing EVs, which can be visualized on T2*-weighted imaging. However, this method has limitations in real-time imaging because of the life cycle of SPIO after EV degradation. Further studies will be needed to validate SPIO labeling by other imaging modalities in preclinical studies. The emerging technologies of labeling and imaging EVs with SPIO in comparison with other imaging modalities are reviewed in this paper.
Collapse
|
17
|
Palladino A, Mavaro I, Pizzoleo C, De Felice E, Lucini C, de Girolamo P, Netti PA, Attanasio C. Induced Pluripotent Stem Cells as Vasculature Forming Entities. J Clin Med 2019; 8:E1782. [PMID: 31731464 PMCID: PMC6912734 DOI: 10.3390/jcm8111782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023] Open
Abstract
Tissue engineering (TE) pursues the ambitious goal to heal damaged tissues. One of the most successful TE approaches relies on the use of scaffolds specifically designed and fabricated to promote tissue growth. During regeneration the guidance of biological events may be essential to sustain vasculature neoformation inside the engineered scaffold. In this context, one of the most effective strategies includes the incorporation of vasculature forming cells, namely endothelial cells (EC), into engineered constructs. However, the most common EC sources currently available, intended as primary cells, are affected by several limitations that make them inappropriate to personalized medicine. Human induced Pluripotent Stem Cells (hiPSC), since the time of their discovery, represent an unprecedented opportunity for regenerative medicine applications. Unfortunately, human induced Pluripotent Stem Cells-Endothelial Cells (hiPSC-ECs) still display significant safety issues. In this work, we reviewed the most effective protocols to induce pluripotency, to generate cells displaying the endothelial phenotype and to perform an efficient and safe cell selection. We also provide noteworthy examples of both in vitro and in vivo applications of hiPSC-ECs in order to highlight their ability to form functional blood vessels. In conclusion, we propose hiPSC-ECs as the preferred source of endothelial cells currently available in the field of personalized regenerative medicine.
Collapse
Affiliation(s)
- Antonio Palladino
- CESMA—Centro Servizi Metrologici e Tecnologici Avanzati, University of Naples Federico II, 80146 Naples, Italy
| | - Isabella Mavaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
| | - Carmela Pizzoleo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
| | - Paolo A. Netti
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, I-80137 Naples, Italy
- Interdepartmental Center for Research in Biomaterials (CRIB) University of Naples Federico II, I-80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
18
|
Li D, Yan X, Hu Y, Liu Y, Guo R, Liao M, Shao B, Tang Q, Guo X, Chai R, Zhang Q, Tang M. Two-Photon Image Tracking of Neural Stem Cells via Iridium Complexes Encapsulated in Polymeric Nanospheres. ACS Biomater Sci Eng 2019; 5:1561-1568. [PMID: 33405629 DOI: 10.1021/acsbiomaterials.8b01231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iridium(III) complexes have been shown to be promising probes in two-photon imaging to real-time track the transplanted cells in stem-cell-based therapy. Here, we report on polymeric nanocapsules loaded with red phosphorescence dye of bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) iridium(III) (Ir(MDQ)2acac) with excellent stability created by the double emulsion method. The Ir(MDQ)2acac nanocapsules present high biocompatibility and an efficient fluorescent labeling rate when incubated with cultured mouse neural stem cells (NSCs). More importantly, the Ir(MDQ)2acac nanocapsules had both one- and two-photon imaging properties with stable phosphorescence lasting for 72 h. Furthermore, data from in vivo tracking in nude mice demonstrated that the photoluminescence from Ir(MDQ)2acac nanocapsules in NSCs could be stably monitored for up to 21 days. Our data shed light on the potential clinical application of iridium complexes encapsulated in polymeric nanospheres for two-photon imaging in real-time tracking of the transplanted stem cells.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xiaoqian Yan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yun Liu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Qilin Tang
- The First Clinical Medical School, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 10010, China.,ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Qi Zhang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| |
Collapse
|
19
|
Takayama Y, Kusamori K, Nishikawa M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019; 24:molecules24010172. [PMID: 30621193 PMCID: PMC6337375 DOI: 10.3390/molecules24010172] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023] Open
Abstract
Click chemistry has great potential for use in binding between nucleic acids, lipids, proteins, and other molecules, and has been used in many research fields because of its beneficial characteristics, including high yield, high specificity, and simplicity. The recent development of copper-free and less cytotoxic click chemistry reactions has allowed for the application of click chemistry to the field of medicine. Moreover, metabolic glycoengineering allows for the direct modification of living cells with substrates for click chemistry either in vitro or in vivo. As such, click chemistry has become a powerful tool for cell transplantation and drug delivery. In this review, we describe some applications of click chemistry for cell engineering in cell transplantation and for drug delivery in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
20
|
Yang C, Ni X, Mao D, Ren C, Liu J, Gao Y, Ding D, Liu J. Seeing the fate and mechanism of stem cells in treatment of ionizing radiation-induced injury using highly near-infrared emissive AIE dots. Biomaterials 2019; 188:107-117. [DOI: 10.1016/j.biomaterials.2018.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
|
21
|
Zhang Y, Wang D, Xu J, Wang Y, Ma F, Li Z, Liu N. Stat3 activation is critical for pluripotency maintenance. J Cell Physiol 2018; 234:1044-1051. [DOI: 10.1002/jcp.27241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yan Zhang
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| | - Dan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
- Department of Genetics and Cell Biology College of Life Sciences, Nankai University Tianjin China
| | - Jia Xu
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| | - Yuebing Wang
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| | - Fengxia Ma
- State Key Lab of Experimental Hematology, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences Tianjin China
| | - Zongjin Li
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| | - Na Liu
- Department of Cell Biology School of Medicine, Nankai University Tianjin China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University Tianjin China
| |
Collapse
|
22
|
Wang C, Lin G, Luan Y, Ding J, Li PC, Zhao Z, Qian C, Liu G, Ju S, Teng GJ. HIF-prolyl hydroxylase 2 silencing using siRNA delivered by MRI-visible nanoparticles improves therapy efficacy of transplanted EPCs for ischemic stroke. Biomaterials 2018; 197:229-243. [PMID: 30677555 DOI: 10.1016/j.biomaterials.2018.05.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Abstract
Endothelial progenitor cell (EPC)-based therapy has brought potential benefits to stroke patients as an important restorative therapeutics. However, its efficacy is limited by poor migration and survival ability. Here, we found out that hif-prolyl hydroxylase 2 (PHD2) silencing could enhance the migration and survival ability of EPCs which could improve the therapy efficacy for ischemic stroke. We successfully developed a siRNA delivery system, which could achieve siRNA delivery and EPCs tracking with magnetic resonance imaging (MRI) simultaneously. Besides, combining MRI and bioluminescence imaging (BLI), we successfully observed full temporal profile of EPCs dynamics in vivo. Furthermore, we found out that PHD2 silencing in EPCs elevated the expression of C-X-C chemokine receptor type 4 (CXCR4) and hypoxia-inducible factor 1α (HIF-1α), which enhanced the migration and survival ability of EPCs respectively. Significantly decreased infarct volume, functional deficits and increased fractional anisotrophy (FA) value, fiber counts were observed in the siPHD2-EPCs (EPCs transfected with siRNA targeting PHD2) group. What's more, higher level of BNDF, CD31, DCX, NeuN and MBP were also observed in the siPHD2-EPCs group. Altogether, our study provides an effective method to improve EPC-based therapy efficacy for ischemic stroke.
Collapse
Affiliation(s)
- Congxiao Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ying Luan
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Jie Ding
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Pei-Cheng Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Zhen Zhao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Cheng Qian
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) emerged as an important source of cells for cardiovascular regeneration. This review summarizes protocols for generating hPSC-ECs and provides an overview of the current state of the research in clinical application of hPSC-derived ECs. RECENT FINDINGS Various systems were developed for differentiating hPSCs into the EC lineage. Stepwise two-dimensional systems are now well established, in which various growth factors, small molecules, and coating materials are used at specific developmental stages. Moreover, studies made significant advances in clinical applicability of hPSC-ECs by removing undefined components from the differentiation system, improving the differentiation efficiency, and proving their direct vascular incorporating effects, which contrast with adult stem cells and their therapeutic effects in vivo. Finally, by using biomaterial-mediated delivery, investigators improved the survival of hPSC-ECs to more than 10 months in ischemic tissues and described long-term behavior and safety of in vivo transplanted hPSC-ECs at the histological level. hPSC-derived ECs can be as a critical source of cells for treating advanced cardiovascular diseases. Over the past two decades, substantial improvement has been made in the differentiation systems and their clinical compatibility. In the near future, establishment of fully defined differentiation systems and proof of the advantages of biomaterial-mediated cell delivery, with some additional pre-clinical studies, will move this therapy into a vital option for treating those diseases that cannot be managed by currently available therapies.
Collapse
Affiliation(s)
- Shin-Jeong Lee
- Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung Hee Kim
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle. WMB 3309, Atlanta, GA, 30322, USA
| | - Young-Sup Yoon
- Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle. WMB 3309, Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Lu GJ, Farhadi A, Szablowski JO, Lee-Gosselin A, Barnes SR, Lakshmanan A, Bourdeau RW, Shapiro MG. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. NATURE MATERIALS 2018; 17:456-463. [PMID: 29483636 PMCID: PMC6015773 DOI: 10.1038/s41563-018-0023-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/17/2018] [Indexed: 05/11/2023]
Abstract
Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.
Collapse
Affiliation(s)
- George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jerzy O Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Samuel R Barnes
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA
| | - Anupama Lakshmanan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Raymond W Bourdeau
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
25
|
VE-Cadherin regulates the self-renewal of mouse embryonic stem cells via LIF/Stat3 signaling pathway. Biomaterials 2018; 158:34-43. [DOI: 10.1016/j.biomaterials.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023]
|
26
|
Mangoni M, Livi L, Biti G, Di Cataldo V, Capaccioli N, Castier Y, Loriot Y, Mordant P, Deutsch E. Stem Cell Tracking: Toward Clinical Application in Oncology? TUMORI JOURNAL 2018; 98:535-42. [DOI: 10.1177/030089161209800501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Noninvasive cellular imaging allows the tracking of grafted cells as well as the monitoring of their migration, suggesting potential applications to track both cancer and therapeutic stem cells. Cell tracking can be performed by two approaches: direct labeling (cells are labeled with tags) and indirect labeling (cells are transfected with a reporter gene and visualized after administration of a reporter probe). Techniques for in vivo detection of grafted cells include optic imaging, nuclear medicine imaging, magnetic resonance imaging, microCT imaging and ultrasound imaging. The ideal imaging modality would bring together high sensitivity, high resolution and low toxicity. All of the available imaging methods are based on different principles, have different properties and different limitations, so several of them can be considered complementary. Transfer of these preclinical cellular imaging modalities to stem cells has already been reported, and transfer to clinical practice within the next years can be reasonably considered.
Collapse
Affiliation(s)
- Monica Mangoni
- UPRES EA 2710, Gustave Roussy
Institute, Villejuif, France
- Clinical Physiopathology Department,
Radiotherapy Unit, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Clinical Physiopathology Department,
Radiotherapy Unit, University of Florence, Florence, Italy
| | - Giampaolo Biti
- Clinical Physiopathology Department,
Radiotherapy Unit, University of Florence, Florence, Italy
| | - Vanessa Di Cataldo
- Clinical Physiopathology Department,
Radiotherapy Unit, University of Florence, Florence, Italy
| | - Neri Capaccioli
- Department of Anatomy, Histology and
Forensic Medicine, University of Florence, Florence, Italy
- Radiology Unit, Val di Sieve Clinic,
Florence, Italy
| | - Yves Castier
- Department of General Thoracic and
Vascular Surgery, Bichat Hospital, Paris Diderot University, Paris, France
| | - Yohann Loriot
- UPRES EA 2710, Gustave Roussy
Institute, Villejuif, France
- Department of General Thoracic and
Vascular Surgery, Bichat Hospital, Paris Diderot University, Paris, France
| | - Pierre Mordant
- UPRES EA 2710, Gustave Roussy
Institute, Villejuif, France
- Department of Medicine, Gustave Roussy
Institute, Villejuif, France
| | - Eric Deutsch
- UPRES EA 2710, Gustave Roussy
Institute, Villejuif, France
| |
Collapse
|
27
|
Santoso MR, Yang PC. Molecular Imaging of Stem Cells and Exosomes for Myocardial Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9433-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Zhang Y, Zhang H, Ding L, Zhang H, Zhang P, Jiang H, Tan B, Deng Z. MRI reveals slow clearance of dead cell transplants in mouse forelimb muscles. Mol Med Rep 2017; 16:4068-4074. [PMID: 28765924 PMCID: PMC5646989 DOI: 10.3892/mmr.2017.7100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022] Open
Abstract
A small molecule tetraazacyclododecane-1,4,7,10-tetraacetic acid (Gd-DOTA)4-TPP agent is used to label human mesenchymal stem cells (hMSCs) via electroporation (EP). The present study assessed the cytotoxicity of cell labeling, in addition to its effect on cell differentiation potential. There were no significant adverse effects on cell viability or differentiation induced by either EP or cellular uptake of (Gd-DOTA)4-TPP. Labeled live and dead hMSCs were transplanted into mouse forelimb muscles. T2-weighted magnetic resonance imaging (MRI) was used to track the in vivo fate of the cell transplants. The labeling and imaging strategy allowed long term tracking of the cell transplants and unambiguous distinguishing of the cell transplants from their surrounding tissues. Cell migration was observed for live hMSCs injected into subcutaneous tissues, however not for either live or dead hMSCS injected into limb muscles. A slow clearance process occurred of the dead cell transplants in the limb muscular tissue. The MRI results therefore reveal that the fate and physiological activities of cell transplants depend on the nature of their host tissue.
Collapse
Affiliation(s)
- Yanhui Zhang
- College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Hongyan Zhang
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| | - Lijun Ding
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hailu Zhang
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| | - Pengli Zhang
- College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Haizhen Jiang
- College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Bo Tan
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| | - Zongwu Deng
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
29
|
Genetically encoded iron-associated proteins as MRI reporters for molecular and cellular imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
|
30
|
|
31
|
Zhang Q, Nie J, Xu H, Qiu Y, Li X, Gu W, Tang G, Luo J. Fluorescent microspheres for one-photon and two-photon imaging of mesenchymal stem cells. J Mater Chem B 2017; 5:7809-7818. [DOI: 10.1039/c7tb01942d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Preparation of fluorescent beads to quantitatively evaluate the one-photon and two-photon imaging of hMSCs that have endocytosed AO-PLGA nanospheres.
Collapse
Affiliation(s)
- Qi Zhang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X)
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Medical College of Soochow University
- Suzhou
- China
| | - Jihua Nie
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X)
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Medical College of Soochow University
- Suzhou
- China
| | - Hong Xu
- Department of Radiology
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| | - Yuyou Qiu
- Department of Radiology
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Wei Gu
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X)
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Medical College of Soochow University
- Suzhou
- China
| | - Guangyu Tang
- Department of Radiology
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| | - Judong Luo
- Department of Oncology
- The Affiliated Changzhou No. 2 People's Hospital With Nanjing Medical University
- Changzhou
- China
| |
Collapse
|
32
|
Stem Cells and Labeling for Spinal Cord Injury. Int J Mol Sci 2016; 18:ijms18010006. [PMID: 28035961 PMCID: PMC5297641 DOI: 10.3390/ijms18010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that usually results in sudden and long-lasting locomotor and sensory neuron degeneration below the lesion site. During the last two decades, the search for new therapies has been revolutionized with the improved knowledge of stem cell (SC) biology. SCs therapy offers several attractive strategies for spinal cord repair. The transplantation of SCs promotes remyelination, neurite outgrowth and axonal elongation, and activates resident or transplanted progenitor cells across the lesion cavity. However, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of SCs. Additionally, the ideal method of SCs labeling for efficient cell tracking after SCI remains a challenging issue that requires further investigation. This review summarizes the current findings on the SCs-based therapeutic strategies, and compares different SCs labeling approaches for SCI.
Collapse
|
33
|
Chen H, Wang L, Fu H, Wang Z, Xie Y, Zhang Z, Tang Y. Gadolinium functionalized carbon dots for fluorescence/magnetic resonance dual-modality imaging of mesenchymal stem cells. J Mater Chem B 2016; 4:7472-7480. [PMID: 32263747 DOI: 10.1039/c6tb01422d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of multimodal nanoprobes is of great importance in nanomedicine because it integrates the advantages of each imaging modality and offers a significantly enhanced diagnostic effect. In this work, gadolinium(iii) functionalized fluorescent carbon dots (Gd-CDs) are synthesized by means of a one-step hydrothermal approach. As a fluorescent nanomaterial, the obtained Gd-CDs exhibit strong and stable fluorescence with excitation-independent emission behavior. Moreover, as an MRI contrast agent, the Gd-CDs exhibited a longitudinal relaxation rate of 6.06 mM-1 s-1, which is significantly higher than that of the commercially available MRI agent Gadovist (4.24 mM-1 s-1). In addition, the cellular experiment reveals that Gd-CDs promote the proliferation of human mesenchymal stem cells (hMSCs), which is tracked by the fluorescence/Magnetic Resonance dual-modality imaging of hMSCs by the Gd-CDs.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Cen P, Chen J, Hu C, Fan L, Wang J, Li L. Noninvasive in-vivo tracing and imaging of transplanted stem cells for liver regeneration. Stem Cell Res Ther 2016; 7:143. [PMID: 27664081 PMCID: PMC5035504 DOI: 10.1186/s13287-016-0396-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Terminal liver disease is a major cause of death globally. The only ultimate therapeutic approach is orthotopic liver transplant. Because of the innate defects of organ transplantation, stem cell-based therapy has emerged as an effective alternative, based on the capacity of stem cells for multilineage differentiation and their homing to injured sites. However, the disease etiology, cell type, timing of cellular graft, therapeutic dose, delivery route, and choice of endpoints have varied between studies, leading to different, even divergent, results. In-vivo cell imaging could therefore help us better understand the fate and behaviors of stem cells to optimize cell-based therapy for liver regeneration. The primary imaging techniques in preclinical or clinical studies have consisted of optical imaging, magnetic resonance imaging, radionuclide imaging, reporter gene imaging, and Y chromosome-based fluorescence in-situ hybridization imaging. More attention has been focused on developing new or modified imaging methods for longitudinal and high-efficiency tracing. Herein, we provide a descriptive overview of imaging modalities and discuss recent advances in the field of molecular imaging of intrahepatic stem cell grafts.
Collapse
Affiliation(s)
- Panpan Cen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Jiajia Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Linxiao Fan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Jie Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
35
|
Abstract
Stem cell-based drug delivery for cancer therapy has steadily gained momentum in the past decade as several studies have reported stem cells' inherent tropism towards tumors. Since this science is still in its early stages and there are many factors that could significantly impact tumor tropism of stem cells, some contradictory results have been observed. This review starts by examining a number of proof-of-concept studies that demonstrate the potential application of stem cells in cancer therapy. Studies that illustrate stem cells' tumor tropism and discuss the technical difficulties that could impact the therapeutic outcome are also highlighted. The discussion also emphasizes stem cell imaging/tracking, as it plays a crucial role in performing reliable dose-response studies and evaluating the therapeutic outcome of treatment protocols. In each section, the pros and cons associated with each method are highlighted, limitations are underlined, and potential solutions are discussed. The overall intention is to familiarize the reader with important practical issues related to stem cell cancer tropism and in vivo tracking, underline the shortcomings, and emphasize critical factors that need to be considered for effective translation of this science into the clinic.
Collapse
|
36
|
Increased Understanding of Stem Cell Behavior in Neurodegenerative and Neuromuscular Disorders by Use of Noninvasive Cell Imaging. Stem Cells Int 2016; 2016:6235687. [PMID: 26997958 PMCID: PMC4779824 DOI: 10.1155/2016/6235687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Numerous neurodegenerative and neuromuscular disorders are associated with cell-specific depletion in the human body. This imbalance in tissue homeostasis is in healthy individuals repaired by the presence of endogenous stem cells that can replace the lost cell type. However, in most disorders, a genetic origin or limited presence or exhaustion of stem cells impairs correct cell replacement. During the last 30 years, methods to readily isolate and expand stem cells have been developed and this resulted in a major change in the regenerative medicine field as it generates sufficient amount of cells for human transplantation applications. Furthermore, stem cells have been shown to release cytokines with beneficial effects for several diseases. At present however, clinical stem cell transplantations studies are struggling to demonstrate clinical efficacy despite promising preclinical results. Therefore, to allow stem cell therapy to achieve its full potential, more insight in their in vivo behavior has to be achieved. Different methods to noninvasively monitor these cells have been developed and are discussed. In some cases, stem cell monitoring even reached the clinical setting. We anticipate that by further exploring these imaging possibilities and unraveling their in vivo behavior further improvement in stem cell transplantations will be achieved.
Collapse
|
37
|
Wang L, Su W, Du W, Xu Y, Wang L, Kong D, Han Z, Zheng G, Li Z. Gene and MicroRNA Profiling of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Stem Cell Rev Rep 2016; 11:219-27. [PMID: 25618294 DOI: 10.1007/s12015-014-9582-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The differentiated cell lineages from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have shown their potential in regenerative medicine. However, the functional and transcriptional microRNA (miRNA) expression pattern during endothelial differentiation has yet to be characterized. METHODS In this study, hESCs and hiPSCs were differentiated into endothelial cells (ECs). Then the endothelial-related gene profiling and miRNA profiling of hiPSCs, hESCs, hiPSCs derived endothelial cells (hiPSC-ECs), hESC derived endothelial cells (hESC-ECs) and human umbilical vein endothelial cells (HUVECs) were compared using RT-PCR Array. The data was analyzed using the data analysis system on QIAGEN's website. RESULTS Our analysis demonstrated that the endothelial differentiation was triggered after EB formation and the EC-associated genes were up-regulated swiftly in both hESC-EBs and hiPSC-EBs; hiPSC-ECs and hESC-ECs had the similar EC-associated gene expression patterns. Moreover, we report here the first miRNA profiling study of hiPSC-ECs. Analyzing 376 unique miRNAs, we have identified several interesting miRNAs, including miR-20a, miR-20b, miR-222, miR-210, which have been previously reported to be involved in endothelial differentiation and show surprising expression patterns across our samples. We also identified novel miRNAs, such as miR-125a-5p, miR-149, miR-296-5p, miR-100, miR-27b, miR-181a and miR-137, which were up-regulated in both hiPSC-ECs and hESC-ECs during endothelial differentiation. CONCLUSION hiPSC-ECs and hESC-ECs exhibited a high degree of similarity with HUVECs in EC-associated genes expression. And the miRNA profiling analysis revealed significant differences between hiPSCs and hESCs, but a high degree of similarity between hiPSC-ECs and hESC-ECs.
Collapse
Affiliation(s)
- Lina Wang
- State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Spinal Cord Cellular Therapeutics Delivery: Device Design Considerations. REGENERATIVE MEDICINE FOR DEGENERATIVE MUSCLE DISEASES 2016. [DOI: 10.1007/978-1-4939-3228-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
|
40
|
Holvoet B, Quattrocelli M, Belderbos S, Pollaris L, Wolfs E, Gheysens O, Gijsbers R, Vanoirbeek J, Verfaillie CM, Sampaolesi M, Deroose CM. Sodium Iodide Symporter PET and BLI Noninvasively Reveal Mesoangioblast Survival in Dystrophic Mice. Stem Cell Reports 2015; 5:1183-1195. [PMID: 26626179 PMCID: PMC4682284 DOI: 10.1016/j.stemcr.2015.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 01/27/2023] Open
Abstract
Muscular dystrophies are a heterogeneous group of myopathies, characterized by muscle weakness and degeneration, without curative treatment. Mesoangioblasts (MABs) have been proposed as a potential regenerative therapy. To improve our understanding of the in vivo behavior of MABs and the effect of different immunosuppressive therapies, like cyclosporine A or co-stimulation-adhesion blockade therapy, on cell survival noninvasive cell monitoring is required. Therefore, cells were transduced with a lentiviral vector encoding firefly luciferase (Fluc) and the human sodium iodide transporter (hNIS) to allow cell monitoring via bioluminescence imaging (BLI) and small-animal positron emission tomography (PET). Non-H2 matched mMABs were injected in the femoral artery of dystrophic mice and were clearly visible via small-animal PET and BLI. Based on noninvasive imaging data, we were able to show that co-stim was clearly superior to CsA in reducing cell rejection and this was mediated via a reduction in cytotoxic T cells and upregulation of regulatory T cells. Longitudinal monitoring of murine mesoangioblasts with BLI and small-animal PET Noninvasive evaluation of immune suppressant efficacy Inhibition of co-stimulation outperformed cyclosporin Inhibition of co-stimulation reduced cytotoxic and upregulated regulatory T cells
Collapse
Affiliation(s)
- Bryan Holvoet
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven 3000, Belgium
| | - Mattia Quattrocelli
- Department of Development and Regeneration, Translational Cardiomyology Lab, KU Leuven, Leuven 3000, Belgium
| | - Sarah Belderbos
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven 3000, Belgium
| | - Lore Pollaris
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven 3000, Belgium
| | - Esther Wolfs
- Department of Morphology, Biomedical Research Institute, Lab of Histology, Universiteit Hasselt, Diepenbeek 3590, Belgium
| | - Olivier Gheysens
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven 3000, Belgium
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, Leuven Viral Vector Core, KU Leuven, Leuven 3000, Belgium
| | - Jeroen Vanoirbeek
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven 3000, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven 3000, Belgium
| | - Maurilio Sampaolesi
- Department of Development and Regeneration, Translational Cardiomyology Lab, KU Leuven, Leuven 3000, Belgium
| | - Christophe M Deroose
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|
41
|
PTH Induces Systemically Administered Mesenchymal Stem Cells to Migrate to and Regenerate Spine Injuries. Mol Ther 2015; 24:318-330. [PMID: 26585691 DOI: 10.1038/mt.2015.211] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis affects more than 200 million people worldwide leading to more than 2 million fractures in the United States alone. Unfortunately, surgical treatment is limited in patients with low bone mass. Parathyroid hormone (PTH) was shown to induce fracture repair in animals by activating mesenchymal stem cells (MSCs). However, it would be less effective in patients with fewer and/or dysfunctional MSCs due to aging and comorbidities. To address this, we evaluated the efficacy of combination i.v. MSC and PTH therapy versus monotherapy and untreated controls, in a rat model of osteoporotic vertebral bone defects. The results demonstrated that combination therapy significantly increased new bone formation versus monotherapies and no treatment by 2 weeks (P < 0.05). Mechanistically, we found that PTH significantly enhanced MSC migration to the lumbar region, where the MSCs differentiated into bone-forming cells. Finally, we used allogeneic porcine MSCs and observed similar findings in a clinically relevant minipig model of vertebral defects. Collectively, these results demonstrate that in addition to its anabolic effects, PTH functions as an adjuvant to i.v. MSC therapy by enhancing migration to heal bone loss. This systemic approach could be attractive for various fragility fractures, especially using allogeneic cells that do not require invasive tissue harvest.
Collapse
|
42
|
Skelton RJP, Khoja S, Almeida S, Rapacchi S, Han F, Engel J, Zhao P, Hu P, Stanley EG, Elefanty AG, Kwon M, Elliott DA, Ardehali R. Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors. Stem Cells Transl Med 2015; 5:67-74. [PMID: 26582908 DOI: 10.5966/sctm.2015-0077] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Given the limited regenerative capacity of the heart, cellular therapy with stem cell-derived cardiac cells could be a potential treatment for patients with heart disease. However, reliable imaging techniques to longitudinally assess engraftment of the transplanted cells are scant. To address this issue, we used ferumoxytol as a labeling agent of human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) to facilitate tracking by magnetic resonance imaging (MRI) in a large animal model. Differentiating hESCs were exposed to ferumoxytol at different time points and varying concentrations. We determined that treatment with ferumoxytol at 300 μg/ml on day 0 of cardiac differentiation offered adequate cell viability and signal intensity for MRI detection without compromising further differentiation into definitive cardiac lineages. Labeled hESC-CPCs were transplanted by open surgical methods into the left ventricular free wall of uninjured pig hearts and imaged both ex vivo and in vivo. Comprehensive T2*-weighted images were obtained immediately after transplantation and 40 days later before termination. The localization and dispersion of labeled cells could be effectively imaged and tracked at days 0 and 40 by MRI. Thus, under the described conditions, ferumoxytol can be used as a long-term, differentiation-neutral cell-labeling agent to track transplanted hESC-CPCs in vivo using MRI. SIGNIFICANCE The development of a safe and reproducible in vivo imaging technique to track the fate of transplanted human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) is a necessary step to clinical translation. An iron oxide nanoparticle (ferumoxytol)-based approach was used for cell labeling and subsequent in vivo magnetic resonance imaging monitoring of hESC-CPCs transplanted into uninjured pig hearts. The present results demonstrate the use of ferumoxytol labeling and imaging techniques in tracking the location and dispersion of cell grafts, highlighting its utility in future cardiac stem cell therapy trials.
Collapse
Affiliation(s)
- Rhys J P Skelton
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California, USA
| | - Suhail Khoja
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California, USA
| | - Shone Almeida
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Stanislas Rapacchi
- Division of Radiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Fei Han
- Division of Radiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - James Engel
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California, USA
| | - Peng Zhao
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California, USA
| | - Peng Hu
- Division of Radiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Murray Kwon
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - David A Elliott
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California, USA
| |
Collapse
|
43
|
Rammal H, Harmouch C, Lataillade JJ, Laurent-Maquin D, Labrude P, Menu P, Kerdjoudj H. Stem cells: a promising source for vascular regenerative medicine. Stem Cells Dev 2015; 23:2931-49. [PMID: 25167472 DOI: 10.1089/scd.2014.0132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rising and diversity of many human vascular diseases pose urgent needs for the development of novel therapeutics. Stem cell therapy represents a challenge in the medicine of the twenty-first century, an area where tissue engineering and regenerative medicine gather to provide promising treatments for a wide variety of diseases. Indeed, with their extensive regeneration potential and functional multilineage differentiation capacity, stem cells are now highlighted as promising cell sources for regenerative medicine. Their multilineage differentiation involves environmental factors such as biochemical, extracellular matrix coating, oxygen tension, and mechanical forces. In this review, we will focus on human stem cell sources and their applications in vascular regeneration. We will also discuss the different strategies used for their differentiation into both mature and functional smooth muscle and endothelial cells.
Collapse
Affiliation(s)
- Hassan Rammal
- 1 UMR 7365, Biopôle, Faculté de Médecine, CNRS-Université de Lorraine , Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Chen W, Fu L, Chen X. Improving cell-based therapies by nanomodification. J Control Release 2015; 219:560-575. [PMID: 26423238 DOI: 10.1016/j.jconrel.2015.09.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023]
Abstract
Cell-based therapies are emerging as a promising approach for various diseases. Their therapeutic efficacy depends on rational control and regulation of the functions and behaviors of cells during their treatments. Different from conventional regulatory strategy by chemical adjuvants or genetic engineering, which is restricted by limited synergistic regulatory efficiency or uncertain safety problems, a novel approach based on nanoscale artificial materials can be applied to modify living cells to endow them with novel functions and unique properties. Inspired by natural "nano shell" and "nano compass" structures, cell nanomodification can be developed through both external and internal pathways. In this review, some novel cell surface engineering and intracellular nanoconjugation strategies are summarized. Their potential applications are also discussed, including cell protection, cell labeling, targeted delivery and in situ regulation. It is believed that these novel cell-material complexes can have great potentials for biomedical applications.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| |
Collapse
|
45
|
Lost signature: progress and failures in in vivo tracking of implanted stem cells. Appl Microbiol Biotechnol 2015; 99:9907-22. [DOI: 10.1007/s00253-015-6965-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023]
|
46
|
Dash R, Kim PJ, Matsuura Y, Ikeno F, Metzler S, Huang NF, Lyons JK, Nguyen PK, Ge X, Foo CWP, McConnell MV, Wu JC, Yeung AC, Harnish P, Yang PC. Manganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia-Reperfusion Model. J Am Heart Assoc 2015. [PMID: 26215972 PMCID: PMC4608088 DOI: 10.1161/jaha.115.002044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging [MEMRI]), myocardial scar (delayed gadolinium enhancement MRI), and transplanted stem cell engraftment (positron emission tomography reporter gene) in the injured porcine hearts. Methods and Results Twelve adult swine underwent ischemia–reperfusion injury. Digital subtraction of MEMRI-negative myocardium (intrainfarct region) from delayed gadolinium enhancement MRI–positive myocardium (PIR and intrainfarct region) clearly delineated the PIR in which the MEMRI-positive signal reflected PIR viability. Human amniotic mesenchymal stem cells (hAMSCs) represent a unique population of immunomodulatory mesodermal stem cells that restored the murine PIR. Immediately following hAMSC delivery, MEMRI demonstrated an increased PIR viability signal compared with control. Direct PIR viability remained higher in hAMSC-treated hearts for >6 weeks. Increased PIR viability correlated with improved regional contractility, left ventricular ejection fraction, infarct size, and hAMSC engraftment, as confirmed by immunocytochemistry. Increased MEMRI and positron emission tomography reporter gene signal in the intrainfarct region and the PIR correlated with sustained functional augmentation (global and regional) within the hAMSC group (mean change, left ventricular ejection fraction: hAMSC 85±60%, control 8±10%; P<0.05) and reduced chamber dilatation (left ventricular end-diastole volume increase: hAMSC 24±8%, control 110±30%; P<0.05). Conclusions The positron emission tomography reporter gene signal of hAMSC engraftment correlates with the improved MEMRI signal in the PIR. The increased MEMRI signal represents PIR viability and the restorative potential of the injured heart. This in vivo multimodality imaging platform represents a novel, real-time method of tracking PIR viability and stem cell engraftment while providing a mechanistic explanation of the therapeutic efficacy of cardiovascular stem cells.
Collapse
Affiliation(s)
- Rajesh Dash
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.) Stanford Cardiovascular Institute, Stanford University, Stanford, CA (R.D., N.F.H., P.K.N., M.V.M.C., J.C.W., P.C.Y.)
| | - Paul J Kim
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.)
| | - Yuka Matsuura
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.)
| | - Fumiaki Ikeno
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.)
| | - Scott Metzler
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.)
| | - Ngan F Huang
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.) Stanford Cardiovascular Institute, Stanford University, Stanford, CA (R.D., N.F.H., P.K.N., M.V.M.C., J.C.W., P.C.Y.)
| | - Jennifer K Lyons
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.)
| | - Patricia K Nguyen
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.) Stanford Cardiovascular Institute, Stanford University, Stanford, CA (R.D., N.F.H., P.K.N., M.V.M.C., J.C.W., P.C.Y.)
| | - Xiaohu Ge
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.)
| | | | - Michael V McConnell
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.) Department of Electrical Engineering, Stanford University, Stanford, CA (M.V.M.C.) Stanford Cardiovascular Institute, Stanford University, Stanford, CA (R.D., N.F.H., P.K.N., M.V.M.C., J.C.W., P.C.Y.)
| | - Joseph C Wu
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.) Stanford Cardiovascular Institute, Stanford University, Stanford, CA (R.D., N.F.H., P.K.N., M.V.M.C., J.C.W., P.C.Y.)
| | - Alan C Yeung
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.)
| | | | - Phillip C Yang
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA (R.D., P.J.K., Y.M., F.I., S.M., N.F.H., J.K.L., P.K.N., X.G., M.V.M.C., J.C.W., A.C.Y., P.C.Y.) Stanford Cardiovascular Institute, Stanford University, Stanford, CA (R.D., N.F.H., P.K.N., M.V.M.C., J.C.W., P.C.Y.)
| |
Collapse
|
47
|
Abstract
The use of human pluripotent stem cells for in vitro disease modelling and clinical applications requires protocols that convert these cells into relevant adult cell types. Here, we report the rapid and efficient differentiation of human pluripotent stem cells into vascular endothelial and smooth muscle cells. We found that GSK3 inhibition and BMP4 treatment rapidly committed pluripotent cells to a mesodermal fate and subsequent exposure to VEGF-A or PDGF-BB resulted in the differentiation of either endothelial or vascular smooth muscle cells, respectively. Both protocols produced mature cells with efficiencies exceeding 80% within six days. On purification to 99% via surface markers, endothelial cells maintained their identity, as assessed by marker gene expression, and showed relevant in vitro and in vivo functionality. Global transcriptional and metabolomic analyses confirmed that the cells closely resembled their in vivo counterparts. Our results suggest that these cells could be used to faithfully model human disease.
Collapse
|
48
|
Neofytou E, O'Brien CG, Couture LA, Wu JC. Hurdles to clinical translation of human induced pluripotent stem cells. J Clin Invest 2015; 125:2551-7. [PMID: 26132109 DOI: 10.1172/jci80575] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss potential solutions that could help overcome them. Furthermore, we discuss the use of allogeneic versus autologous stem cell products, including a review of their respective advantages and disadvantages, major clinical requirements, quality standards, time lines, and costs of clinical grade development.
Collapse
|
49
|
Du W, Tao H, Zhao S, He ZX, Li Z. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy. Biochimie 2015; 116:43-51. [PMID: 26134715 DOI: 10.1016/j.biochi.2015.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/25/2015] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Molecular imaging techniques provide valuable information at cellular and molecular level, as opposed to anatomical and structural layers acquired from traditional imaging modalities. More specifically, molecular imaging employs imaging probes which interact with specific molecular targets and therefore makes it possible to visualize biological processes in vivo. Molecular imaging technology is now progressing towards preclinical and clinical application that gives an integral and comprehensive guidance for the investigation of cardiovascular disease. In addition, cardiac stem cell therapy holds great promise for clinical translation. Undoubtedly, combining stem cell therapy with molecular imaging technology will bring a broad prospect for the study and treatment of cardiac disease. This review will focus on the progresses of molecular imaging strategies in cardiovascular disease and cardiac stem cell therapy. Furthermore, the perspective on the future role of molecular imaging in clinical translation and potential strategies in defining safety and efficacy of cardiac stem cell therapies will be discussed.
Collapse
Affiliation(s)
- Wei Du
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongyan Tao
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China
| | - Shihua Zhao
- Department of Radiology, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Zuo-Xiang He
- Department of Nuclear Imaging, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Zongjin Li
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
50
|
Extracellular Matrix can Recover the Downregulation of Adhesion Molecules after Cell Detachment and Enhance Endothelial Cell Engraftment. Sci Rep 2015; 5:10902. [PMID: 26039874 PMCID: PMC4454140 DOI: 10.1038/srep10902] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/05/2015] [Indexed: 12/13/2022] Open
Abstract
The low cell engraftment after transplantation limits the successful application of stem cell therapy and the exact pathway leading to acute donor cell death following transplantation is still unknown. Here we investigated if processes involved in cell preparation could initiate downregulation of adhesion-related survival signals, and further affect cell engraftment after transplantation. Human embryonic stem cell-derived endothelial cells (hESC-ECs) were suspended in PBS or Matrigel and kept at 4 °C. Quantitative RT-PCR analysis was used to test the adhesion and apoptosis genes’ expression of hESC-ECs. We demonstrated that cell detachment can cause downregulation of cell adhesion and extracellular matrix (ECM) molecules, but no obvious cell anoikis, a form of apoptosis after cell detachment, was observed. The downregulation of adhesion and ECM molecules could be regained in the presence of Matrigel. Finally, we transplanted hESC-ECs into a mouse myocardial ischemia model. When transplanted with Matrigel, the long-term engraftment of hESC-ECs was increased through promoting angiogenesis and inhibiting apoptosis, and this was confirmed by bioluminescence imaging. In conclusion, ECM could rescue the functional genes expression after cell detached from culture dish, and this finding highlights the importance of increasing stem cell engraftment by mimicking stem cell niches through ECM application.
Collapse
|