1
|
Li H, Ma L, Zhu N, Liang X, Tian X, Liu K, Fu X, Wang X, Zhang H, Chen H, Liu Q, Yang J. Mesenchymal stromal cells surface engineering for efficient hematopoietic reconstitution. Biomaterials 2025; 314:122882. [PMID: 39423513 DOI: 10.1016/j.biomaterials.2024.122882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Mesenchymal stromal cells (MSCs) are believed to migrate to injury sites, release chemical attractants, and either recruit local stem cells or modulate the immune system positively. Although MSCs are highly desired for their potential to reduce inflammation and promote tissue regeneration, their limited lifespan restricts their applications. This study presents a simple approach for protecting MSCs with epigallocatechin-3-gallate (EGCG) and magnesium (Mg) based metal-organic framework coatings (E-Mg@MSC). The layer strengthens MSCs resistant to harmful stresses and creates a favorable microenvironment for repair by providing Mg to facilitate MSCs' osteogenic differentiation and using EGCG to neutralize excessive reactive oxygen species (ROS). E-Mg@MSC serves as a treatment for hematopoietic injury induced by ionizing radiation (IR). Coated MSCs exhibit sustained secretion of hematopoietic growth factors and precise homing to radiation-sensitive tissues. In vivo studies show substantial enhancement in hematopoietic system recovery and multi-organ protection. Mechanistic investigations suggest that E-Mg@MSC mitigates IR-induced ROS, cell apoptosis, and ferroptosis, contributing to reduced radiation damage. The system represents a versatile and compelling strategy for cell-surface engineering with functional materials to advance MSCs therapy.
Collapse
Affiliation(s)
- Huiyang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Lifei Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ni Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoyu Liang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xinxin Tian
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Kaijing Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xue Fu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoli Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Hailing Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
| | - Houzao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China.
| | - Jing Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
2
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Venkatakrishnan J, Yuan Y, Zhang J, Yu Y, Hu YC, Kao WWY. Self-complementary AAV vector therapy for treating corneal cloudiness of mucopolysaccharidosis type VII (MPS VII). Ocul Surf 2024; 32:39-47. [PMID: 38218582 DOI: 10.1016/j.jtos.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/26/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
PURPOSE To design a novel efficacious scAAV-Gusb viral vector for treating Mucopolysaccharidosis Type VII (MPS VII) caused by a mutation in the β-Glu gene (Gusb allele). METHODS β-Glu expression of single-stranded AAV-Gusb (ssAAV-Gusb) and self-complementary AAV (scAAV-Gusb) vectors are tested with cultured murine Gusb fibroblasts. The scAAV-Gusb vector was chosen in further studies to prolong the life span and treat corneal pathology of Gusb mice via intrahepatic injection of neonates and intrastromal injection in adults, respectively. Corneal pathology was studied using HRT2 in vivo confocal microscope and histochemistry in mice corneas. RESULTS Both ssAAV-Gusb and scAAV-Gusb vectors expressed murine β-Glu in cultured Gusb fibroblasts. The scAAV-Gusb vector had higher transduction efficiency than the ssAAV-Gusb vector. To prolong the life span of Gusb mice, neonates (3 days old) were administered with scAAV-Gusb virus via intrahepatic injection. The treatment improves the survival rate of Gusb mice, prolonging the median survival rate from 22.5 weeks (untreated) to 50 weeks (treated). Thereafter, we determined the efficacy of the scAAV-Gusb virus in ameliorating corneal cloudiness observed in aged Gusb mice. Both corneal cloudiness and stroma thickness decreased, and there was the presence of β-Glu enzyme activity in the Gusb corneas receiving scAAV-Gusb virus associated with morphology change of amoeboid stromal cells in untreated to characteristic dendritic keratocytes morphology after 4-12 weeks of scAAV-Gusb virus injection. CONCLUSION Intrahepatic injection of scAAV-Gusb is efficacious in prolonging the life span of Gusb mice, and intrastromal injection can ameliorate corneal phenotypes. Both strategies can be adapted for treating other MPS.
Collapse
Affiliation(s)
- Jhuwala Venkatakrishnan
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, OH, USA
| | - Yong Yuan
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Jianhua Zhang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Yang Yu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, OH, USA
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Li X, Shen L, Deng Z, Huang Z. New treatment for osteoarthr: pbad014itis: Gene therapy. PRECISION CLINICAL MEDICINE 2023; 6:pbad014. [PMID: 37333626 PMCID: PMC10273835 DOI: 10.1093/pcmedi/pbad014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Osteoarthritis is a complex degenerative disease that affects the entire joint tissue. Currently, non-surgical treatments for osteoarthritis focus on relieving pain. While end-stage osteoarthritis can be treated with arthroplasty, the health and financial costs associated with surgery have forced the search for alternative non-surgical treatments to delay the progression of osteoarthritis and promote cartilage repair. Unlike traditional treatment, the gene therapy approach allows for long-lasting expression of therapeutic proteins at specific sites. In this review, we summarize the history of gene therapy in osteoarthritis, outlining the common expression vectors (non-viral, viral), the genes delivered (transcription factors, growth factors, inflammation-associated cytokines, non-coding RNAs) and the mode of gene delivery (direct delivery, indirect delivery). We highlight the application and development prospects of the gene editing technology CRISPR/Cas9 in osteoarthritis. Finally, we identify the current problems and possible solutions in the clinical translation of gene therapy for osteoarthritis.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Leyao Shen
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
5
|
Poletto E, Silva AO, Weinlich R, Martin PKM, Torres DC, Giugliani R, Baldo G. Ex vivo gene therapy for lysosomal storage disorders: future perspectives. Expert Opin Biol Ther 2023; 23:353-364. [PMID: 36920351 DOI: 10.1080/14712598.2023.2192348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Lysosomal storage disorders (LSD) are a group of monogenic rare diseases caused by pathogenic variants in genes that encode proteins related to lysosomal function. These disorders are good candidates for gene therapy for different reasons: they are monogenic, most of lysosomal proteins are enzymes that can be secreted and cross-correct neighboring cells, and small quantities of these proteins are able to produce clinical benefits in many cases. Ex vivo gene therapy allows for autologous transplant of modified cells from different sources, including stem cells and hematopoietic precursors. AREAS COVERED Here, we summarize the main gene therapy and genome editing strategies that are currently being used as ex vivo gene therapy approaches for lysosomal disorders, highlighting important characteristics, such as vectors used, strategies, types of cells that are modified and main results in different disorders. EXPERT OPINION Clinical trials are already ongoing, and soon approved therapies for LSD based on ex vivo gene therapy approaches should reach the market.
Collapse
Affiliation(s)
- Edina Poletto
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Andrew Oliveira Silva
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Ricardo Weinlich
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Davi Coe Torres
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Roberto Giugliani
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Guilherme Baldo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
6
|
MPSI Manifestations and Treatment Outcome: Skeletal Focus. Int J Mol Sci 2022; 23:ijms231911168. [PMID: 36232472 PMCID: PMC9569890 DOI: 10.3390/ijms231911168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients’ quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.
Collapse
|
7
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
8
|
Shan SW, Do CW, Lam TC, Li HL, Stamer WD, To CH. Thrombospondin-1 mediates Rho-kinase inhibitor-induced increase in outflow-facility. J Cell Physiol 2021; 236:8226-8238. [PMID: 34180057 PMCID: PMC9292191 DOI: 10.1002/jcp.30492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Rho‐kinase (ROCK) inhibitors, a novel class of anti‐glaucoma agents, act by increasing the aqueous humor outflow through the conventional trabecular meshwork pathway. However, the downstream signaling consequences of the ROCK inhibitor are not completely understood. Our data show that Y39983, a selective ROCK inhibitor, could induce filamentous actin remodeling, reduced cell motility (as measured by cell migration), and transepithelial resistance in primary human TM (hTM) cells. After 2 days Y39983 treatment of hTM cells, a proteomic study identified 20 proteins whose expression was significantly altered. Pathway analysis of those proteins revealed the involvement of the p53 pathway, integrin signaling pathway, and cytoskeletal pathway regulation by Rho GTPase. Thrombospondin‐1 (TSP1), a matricellular protein that is increased in glaucoma patients, was downregulated fivefold following Y39983 treatment. More importantly, both TSP1 antagonist leucine–serine–lysine–leucine (LSKL) and small interfering RNA (siRNA) reduced TSP1 gene and protein expressions as well as hTM cell migration. In the presence of Y39983, no further inhibition of cell migration resulted after LSKL and TSP1 siRNA knockdown. Likewise, LSKL triggered a dose‐dependent increase in outflow facility in ex vivo mouse eyes, to a similar extent as Y39983 (83.8% increase by Y39983 vs. 71.2% increase by LSKL at 50 µM). There were no additive effects with simultaneous treatment with LSKL and Y39983, supporting the notion that the effects of ROCK inhibition were mediated by TSP1.
Collapse
Affiliation(s)
- Sze-Wan Shan
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-Wai Do
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.,Centre for Eye and Vision Research, Hong Kong, China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.,Centre for Eye and Vision Research, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Hoi-Lam Li
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Chi-Ho To
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.,Centre for Eye and Vision Research, Hong Kong, China
| |
Collapse
|
9
|
Babajani A, Hosseini-Monfared P, Abbaspour S, Jamshidi E, Niknejad H. Targeted Mitochondrial Therapy With Over-Expressed MAVS Protein From Mesenchymal Stem Cells: A New Therapeutic Approach for COVID-19. Front Cell Dev Biol 2021; 9:695362. [PMID: 34179022 PMCID: PMC8226075 DOI: 10.3389/fcell.2021.695362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2, the virus that causes COVID-19, has infected millions of people worldwide. The symptoms of this disease are primarily due to pulmonary involvement, uncontrolled tissue inflammation, and inadequate immune response against the invader virus. Impaired interferon (IFN) production is one of the leading causes of the immune system's inability to control the replication of the SARS-CoV-2. Mitochondria play an essential role in developing and maintaining innate cellular immunity and IFN production. Mitochondrial function is impaired during cellular stress, affecting cell bioenergy and innate immune responses. The mitochondrial antiviral-signaling protein (MAVS), located in the outer membrane of mitochondria, is one of the key elements in engaging the innate immune system and interferon production. Transferring healthy mitochondria to the damaged cells by mesenchymal stem cells (MSCs) is a proposed option for regenerative medicine and a viable treatment approach to many diseases. In addition to mitochondrial transport, these cells can regulate inflammation, repair the damaged tissue, and control the pathogenesis of COVID-19. The immune regulatory nature of MSCs dramatically reduces the probability of an immune rejection. In order to induce an appropriate immune response against the SARS-CoV-2, we hypothesize to donate mitochondria to the host cells of the virus. We consider MSCs as an appropriate biological carrier for mitochondria. Besides, enhancing the expression of MAVS protein in MSCs and promoting the expression of SARS-CoV-2 viral spike protein as a specific ligand for ACE2+ cells will improve IFN production and innate immune responses in a targeted manner.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Hosseini-Monfared
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Abbaspour
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Varkouhi AK, Monteiro APT, Tsoporis JN, Mei SHJ, Stewart DJ, Dos Santos CC. Genetically Modified Mesenchymal Stromal/Stem Cells: Application in Critical Illness. Stem Cell Rev Rep 2021; 16:812-827. [PMID: 32671645 PMCID: PMC7363458 DOI: 10.1007/s12015-020-10000-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Critical illnesses including sepsis, acute respiratory distress syndromes, ischemic cardiovascular disorders and acute organ injuries are associated with high mortality, morbidity as well as significant health care system expenses. While these diverse conditions require different specific therapeutic approaches, mesenchymal stem/stromal cell (MSCs) are multipotent cells capable of self-renewal, tri-lineage differentiation with a broad range regenerative and immunomodulatory activities, making them attractive for the treatment of critical illness. The therapeutic effects of MSCs have been extensively investigated in several pre-clinical models of critical illness as well as in phase I and II clinical cell therapy trials with mixed results. Whilst these studies have demonstrated the therapeutic potential for MSC therapy in critical illness, optimization for clinical use is an ongoing challenge. MSCs can be readily genetically modified by application of different techniques and tools leading to overexpress or inhibit genes related to their immunomodulatory or regenerative functions. Here we will review recent approaches designed to enhance the therapeutic potential of MSCs with an emphasis on the technology used to generate genetically modified cells, target genes, target diseases and the implication of genetically modified MSCs in cell therapy for critical illness.
Collapse
Affiliation(s)
- Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology (NJIT), Newark, NJ, 07102, USA
| | - Ana Paula Teixeira Monteiro
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James N Tsoporis
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada
| | - Shirley H J Mei
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Claudia C Dos Santos
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada. .,Interdepartmental Division of Critical Care, St. Michael's Hospital/University of Toronto, 30 Bond Street, Room 4-008, Toronto, ON, M5B 1WB, Canada.
| |
Collapse
|
11
|
Köse S, Aerts-Kaya F, Uçkan Çetinkaya D, Korkusuz P. Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:135-162. [PMID: 33977438 DOI: 10.1007/5584_2021_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment. However, some of the LSDs still lack a durable and curative treatment. Therefore, a variety of novel treatments for LSD patients has been developed in the past few years. However, despite significant progress, the efficacy of some of these treatments remains limited because these therapies are often initiated after irreversible organ damage has occurred.Here, we provide an overview of the known effects of LSDs on stem cell function, as well as a synopsis of available stem cell-based cell and gene therapies that have been/are being developed for the treatment of LSDs. We discuss the advantages and disadvantages of use of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and induced pluripotent stem cell (iPSC)-related (gene) therapies. An overview of current research data indicates that when stem cell and/or gene therapy applications are used in combination with existing therapies such as ERT, SRT, and chaperone therapies, promising results can be achieved, showing that these treatments may result in alleviation of existing symptoms and/or prevention of progression of the disease. All together, these studies offer some insight in LSD stem cell biology and provide a hopeful perspective for the use of stem cells. Further development and improvement of these stem cell (gene) combination therapies may greatly improve the current treatment options and outcomes of patients with a LSD.
Collapse
Affiliation(s)
- Sevil Köse
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.,Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Hematology, Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
12
|
Eslami A, Dehbashi M, Ashja-Arvan M, Salehi H, Azimzadeh M, Ganjalikhani-Hakemi M. Assessment of ability of human adipose derived stem cells for long term overexpression of IL-11 and IL-13 as therapeutic cytokines. Cytotechnology 2020; 72:773-784. [PMID: 32935166 PMCID: PMC7547926 DOI: 10.1007/s10616-020-00421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells with the therapeutic effects that make them one of the best sources for cell therapy. In this study, we aimed to assess the ability of human ADSCs for constant expression of IL-11 and IL-13, simultaneously. In this study, the characterized hADSCs were transduced with a lentiviral vector (PCDH-513B) containing IL-11 and IL-13 genes, and the ability of long-term expression of the transgenes was evaluated by ELISA technique on days 15, 45 and 75 after transduction. Our results indicated a high rate of transduction (more than 90%) in the isolated hADSCs. Our data showed the highest rate of expression on days 75 after transduction which was 242.67 pg/ml for IL-11 and 303.6 pg/ml for IL-13 compared with 35.2 pg/ml and 35.6 pg/ml in untreated cells, respectively (p = 0.001). Besides, MTT assay showed transduction of hADSCs with lentiviral viruses containing IL-11 and IL-13 had no adverse effect on hADSCs proliferation (p-value = 0.89). Finally, we successfully constructed a hADSC population stably overexpressing IL-11 as the neurotrophic cytokine and IL-13 as the anti-inflammatory cytokine and this transduced cells can be used for further studies in EAE mice model.
Collapse
Affiliation(s)
- Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology, Faculty of Biological Sciences and Technologies, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Mehnoosh Ashja-Arvan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Azimzadeh
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
13
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
14
|
Saeedi P, Halabian R, Imani Fooladi AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig 2019; 6:34. [PMID: 31620481 DOI: 10.21037/sci.2019.08.11] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Multipotent mesenchymal stem cells (MSCs) have been considerably inspected as effective tool for cell-based therapy of inflammatory, immune-mediated, and degenerative diseases, attributed to their immunomodulatory, immunosuppressive, and regenerative potentials. In the present review, we focus on recent research findings of the clinical applications and therapeutic potential of this cell type, MSCs' mechanisms of therapy, strategies to improve their therapeutic potentials such as manipulations and preconditioning, and potential/unexpected risks which should be considered as a prerequisite step before clinical use. The potential risks would probably include undesirable immune responses, tumor formation and the transmission of incidental agents. Then, we also review some of the milestones in the field, briefly discuss challenges and highlight the new guideline suggested for future directions and perspectives.
Collapse
Affiliation(s)
- Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ex Vivo Expansion of Murine MSC Impairs Transcription Factor-Induced Differentiation into Pancreatic β-Cells. Stem Cells Int 2019; 2019:1395301. [PMID: 30956666 PMCID: PMC6431458 DOI: 10.1155/2019/1395301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Combinatorial gene and cell therapy as a means of generating surrogate β-cells has been investigated for the treatment of type 1 diabetes (T1D) for a number of years with varying success. One of the limitations of current cell therapies for T1D is the inability to generate sufficient quantities of functional transplantable insulin-producing cells. Due to their impressive immunomodulatory properties, in addition to their ease of expansion and genetic modification ex vivo, mesenchymal stem cells (MSCs) are an attractive alternative source of adult stem cells for regenerative medicine. To overcome the aforementioned limitation of current therapies, we assessed the utility of ex vivo expanded bone marrow-derived murine MSCs for their persistence in immune-competent and immune-deficient animal models and their ability to differentiate into surrogate β-cells. CD45−/Ly6+ murine MSCs were isolated from the bone marrow of nonobese diabetic (NOD) mice and nucleofected to express the bioluminescent protein, Firefly luciferase (Luc2). The persistence of a subcutaneous (s.c.) transplant of Luc2-expressing MSCs was assessed in immune-competent (NOD) (n = 4) and immune-deficient (NOD/Scid) (n = 4) animal models of diabetes. Luc2-expressing MSCs persisted for 2 and 12 weeks, respectively, in NOD and NOD/Scid mice. Ex vivo expanded MSCs were transduced with the HMD lentiviral vector (MOI = 10) to express furin-cleavable human insulin (INS-FUR) and murine NeuroD1 and Pdx1. This was followed by the characterization of pancreatic transdifferentiation via reverse transcriptase polymerase chain reaction (RT-PCR) and static and glucose-stimulated insulin secretion (GSIS). INS-FUR-expressing MSCs were assessed for their ability to reverse diabetes after transplantation into streptozotocin- (STZ-) diabetic NOD/Scid mice (n = 5). Transduced MSCs did not undergo pancreatic transdifferentiation, as determined by RT-PCR analyses, lacked glucose responsiveness, and upon transplantation did not reverse diabetes. The data suggest that ex vivo expanded MSCs lose their multipotent differentiation potential and may be more useful as gene therapy targets prior to expansion.
Collapse
|
16
|
β-Glucuronidase and Its Relationship With Clinical Parameters and Biomarkers of Pesticide Exposure. J Occup Environ Med 2018; 60:e602-e609. [DOI: 10.1097/jom.0000000000001460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Hamilton AM, Foster PJ, Ronald JA. Evaluating Nonintegrating Lentiviruses as Safe Vectors for Noninvasive Reporter-Based Molecular Imaging of Multipotent Mesenchymal Stem Cells. Hum Gene Ther 2018; 29:1213-1225. [DOI: 10.1089/hum.2018.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Amanda M. Hamilton
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
| | - John A. Ronald
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
- Lawson Health Research Institute, London, Canada
| |
Collapse
|
18
|
Barberini DJ, Aleman M, Aristizabal F, Spriet M, Clark KC, Walker NJ, Galuppo LD, Amorim RM, Woolard KD, Borjesson DL. Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses. Stem Cell Res Ther 2018; 9:96. [PMID: 29631634 PMCID: PMC5891950 DOI: 10.1186/s13287-018-0849-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Background It is currently unknown if the intrathecal administration of a high dose of allogeneic mesenchymal stem cells (MSCs) is safe, how MSCs migrate throughout the vertebral canal after intrathecal administration, and whether MSCs are able to home to a site of injury. The aims of the study were: 1) to evaluate the safety of intrathecal injection of 100 million allogeneic adipose-derived MSCs (ASCs); 2) to assess the distribution of ASCs after atlanto-occipital (AO) and lumbosacral (LS) injection in healthy horses; and 3) to determine if ASCs homed to the site of injury in neurologically diseased horses. Methods Six healthy horses received 100 × 106 allogeneic ASCs via AO (n = 3) or LS injection (n = 3). For two of these horses, ASCs were radiolabeled with technetium and injected AO (n = 1) or LS (n = 1). Neurological examinations were performed daily, and blood and cerebrospinal fluid (CSF) were evaluated prior to and at 30 days after injection. Scintigraphic images were obtained immediately postinjection and at 30 mins, 1 h, 5 h, and 24 h after injection. Three horses with cervical vertebral compressive myelopathy (CVCM) received 100 × 106 allogeneic ASCs labeled with green fluorescent protein (GFP) via AO injection and were euthanized 1–2 weeks after injection for a full nervous system necropsy. CSF parameters were compared using a paired student’s t test. Results There were no significant alterations in blood, CSF, or neurological examinations at any point after either AO or LS ASC injections into healthy horses. The radioactive signal could be identified all the way to the lumbar area after AO ASC injection. After LS injection, the signal extended caudally but only a minimal radioactive signal extended further cranially. GFP-labeled ASCs were not present at the site of disease at either 1 or 2 weeks following intrathecal administration. Conclusions The intrathecal injection of allogeneic ASCs was safe and easy to perform in horses. The AO administration of ASCs resulted in better distribution within the entire subarachnoid space in healthy horses. ASCs could not be found after 7 or 15 days of injection at the site of injury in horses with CVCM. Electronic supplementary material The online version of this article (10.1186/s13287-018-0849-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle Jaqueta Barberini
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA
| | - Monica Aleman
- Department of Medicine & Epidemiology, University of California, Davis, USA
| | - Fabio Aristizabal
- Department of Surgical & Radiological Sciences, University of California, Davis, USA
| | - Mathieu Spriet
- Department of Surgical & Radiological Sciences, University of California, Davis, USA
| | - Kaitlin C Clark
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA
| | - Naomi J Walker
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA
| | - Larry D Galuppo
- Department of Surgical & Radiological Sciences, University of California, Davis, USA
| | - Rogério Martins Amorim
- Department of Veterinary Clinics, São Paulo State University "Julio de Mesquita Filho" - UNESP, Botucatu, SP, Brazil
| | - Kevin D Woolard
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA
| | - Dori L Borjesson
- Veterinary Institute for Regenerative Cures and the Department of Pathology, Microbiology & Immunology, University of California, Davis, USA.
| |
Collapse
|
19
|
Wilson JJ, Foyle KL, Foeng J, Norton T, McKenzie DR, Payne N, Bernard CC, McColl SR, Comerford I. Redirecting adult mesenchymal stromal cells to the brain: a new approach for treating CNS autoimmunity and neuroinflammation? Immunol Cell Biol 2018; 96:347-357. [PMID: 29377354 DOI: 10.1111/imcb.12014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cells or stem cells (MSCs) have been shown to participate in tissue repair and are immunomodulatory in neuropathological settings. Given this, their potential use in developing a new generation of personalized therapies for autoimmune and inflammatory diseases of the central nervous system (CNS) will be explored. To effectively exert these effector functions, MSCs must first gain entry into damaged neural tissues, a process that has been demonstrated to be a limiting factor in their therapeutic efficacy. In this review, we discuss approaches to maximize the therapeutic efficacy of MSCs by altering their intrinsic trafficking programs to effectively enter neuropathological sites. To this end, we explore the significant role of chemokine receptors and adhesion molecules in directing cellular traffic to the inflamed CNS and the capacity of MSCs to adopt these molecular mechanisms to gain entry to this site. We postulate that understanding and exploiting these migratory mechanisms may be key to the development of cell-based therapies tailored to respond to the migratory cues unique to the nature and stage of progression of individual CNS disorders.
Collapse
Affiliation(s)
- Jasmine J Wilson
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kerrie L Foyle
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jade Foeng
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Todd Norton
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Duncan R McKenzie
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Natalie Payne
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Claude C Bernard
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
20
|
Gabner S, Hlavaty J, Velde K, Renner M, Jenner F, Egerbacher M. Inflammation-induced transgene expression in genetically engineered equine mesenchymal stem cells. J Gene Med 2018; 18:154-64. [PMID: 27272202 DOI: 10.1002/jgm.2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Osteoarthritis, a chronic and progressive degenerative joint disorder, ranks amongst the top five causes of disability. Given the high incidence, associated socioeconomic costs and the absence of effective disease-modifying therapies of osteoarthritis, cell-based treatments offer a promising new approach. Owing to their paracrine, differentiation and self-renewal abilities, mesenchymal stem cells (MSCs) have great potential for regenerative medicine, which might be further enhanced by targeted gene therapy. Hence, the development of systems allowing transgene expression, particularly when regulated by natural disease-dependent occuring substances, is of high interest. METHODS Bone marrow-isolated equine MSCs were stably transduced with an HIV-1 based lentiviral vector expressing the luciferase gene under control of an inducible nuclear factor κB (NFκB)-responsive promoter. Marker gene expression was analysed by determining luciferase activity in transduced cells stimulated with different concentrations of interleukin (IL)-1β or tumour necrosis factor (TNF)α. RESULTS A dose-dependent increase in luciferase expression was observed in transduced MSCs upon cytokine stimulation. The induction effect was more potent in cells treated with TNFα compared to those treated with IL-1β. Maximum transgene expression was obtained after 48 h of stimulation and the same time was necessary to return to baseline luciferase expression levels after withdrawal of the stimulus. Repeated cycles of induction allowed on-off modulation of transgene expression without becoming refractory to induction. The NFκB-responsive promoter retained its inducibility also in chondrogenically differentiated MSC/Luc cells. CONCLUSIONS The results of the present study demonstrate that on demand transgene expression from the NFκB-responsive promoter using naturally occurring inflammatory cytokines can be induced in undifferentiated and chondrogenically differentiated equine MSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simone Gabner
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Juraj Hlavaty
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karsten Velde
- Equine University Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Matthias Renner
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Florien Jenner
- Equine University Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
21
|
Liew LC, Katsuda T, Gailhouste L, Nakagama H, Ochiya T. Mesenchymal stem cell-derived extracellular vesicles: a glimmer of hope in treating Alzheimer’s disease. Int Immunol 2017; 29:11-19. [DOI: 10.1093/intimm/dxx002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lee Chuen Liew
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-0033, Japan
| | - Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Nakagama
- Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-0033, Japan
- National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
22
|
Ondrésik M, Azevedo Maia FR, da Silva Morais A, Gertrudes AC, Dias Bacelar AH, Correia C, Gonçalves C, Radhouani H, Amandi Sousa R, Oliveira JM, Reis RL. Management of knee osteoarthritis. Current status and future trends. Biotechnol Bioeng 2016; 114:717-739. [DOI: 10.1002/bit.26182] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/13/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Ondrésik
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Fatima R. Azevedo Maia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Alain da Silva Morais
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Ana C. Gertrudes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Ana H. Dias Bacelar
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Cristina Correia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Cristiana Gonçalves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Hajer Radhouani
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Rui Amandi Sousa
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimaraes Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Rui L. Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; Universidade do Minho, Headquarters of the European Institute Regenerative Medicine; AvePark 4806-909, Caldas das Taipas Guimaraes Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| |
Collapse
|
23
|
Quaranta P, Focosi D, Freer G, Pistello M. Tweaking Mesenchymal Stem/Progenitor Cell Immunomodulatory Properties with Viral Vectors Delivering Cytokines. Stem Cells Dev 2016; 25:1321-41. [PMID: 27476883 DOI: 10.1089/scd.2016.0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) can be found in various body sites. Their main role is to differentiate into cartilage, bone, muscle, and fat cells to allow tissue maintenance and repair. During inflammation, MSCs exhibit important immunomodulatory properties that are not constitutive, but require activation, upon which they may exert immunosuppressive functions. MSCs are defined as "sensors of inflammation" since they modulate their ability of interfering with the immune system both in vitro and in vivo upon interaction with different factors. MSCs may influence immune responses through different mechanisms, such as direct cell-to-cell contact, release of soluble factors, and through the induction of anergy and apoptosis. Human MSCs are defined as plastic-adherent cells expressing specific surface molecules. Lack of MHC class II antigens makes them appealing as allogeneic tools for the therapy of both autoimmune diseases and cancer. MSC therapeutic potential could be highly enhanced by the expression of exogenous cytokines provided by transduction with viral vectors. In this review, we attempt to summarize the results of a great number of in vitro and in vivo studies aimed at improving the ability of MSCs as immunomodulators in the therapy of autoimmune, degenerative diseases and cancer. We will also compare results obtained with different vectors to deliver heterologous genes to these cells.
Collapse
Affiliation(s)
- Paola Quaranta
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy
| | - Daniele Focosi
- 2 North-Western Tuscany Blood Bank, Pisa University Hospital , Pisa, Italy
| | - Giulia Freer
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| | - Mauro Pistello
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| |
Collapse
|
24
|
Deng P, Anderson JD, Yu AS, Annett G, Fink KD, Nolta JA. Engineered BDNF producing cells as a potential treatment for neurologic disease. Expert Opin Biol Ther 2016; 16:1025-33. [PMID: 27159050 DOI: 10.1080/14712598.2016.1183641] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) has been implicated in wide range of neurological diseases and injury. This neurotrophic factor is vital for neuronal health, survival, and synaptic connectivity. Many therapies focus on the restoration or enhancement of BDNF following injury or disease progression. AREAS COVERED The present review will focus on the mechanisms in which BDNF exerts its beneficial functioning, current BDNF therapies, issues and potential solutions for delivery of neurotrophic factors to the central nervous system, and other disease indications that may benefit from overexpression or restoration of BDNF. EXPERT OPINION Due to the role of BDNF in neuronal development, maturation, and health, BDNF is implicated in numerous neurological diseases making it a prime therapeutic agent. Numerous studies have shown the therapeutic potential of BDNF in a number of neurodegenerative disease models and in acute CNS injury, however clinical translation has fallen short due to issues in delivering this molecule. The use of MSC as a delivery platform for BDNF holds great promise for clinical advancement of neurotrophic factor restoration. The ease with which MSC can be engineered opens the door to the possibility of using this cell-based delivery system to advance a BDNF therapy to the clinic.
Collapse
Affiliation(s)
- Peter Deng
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA.,b Genome Center, MIND Institute, and Biochemistry and Molecular Medicine , University of California , Davis , CA , USA
| | - Johnathon D Anderson
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA
| | - Abigail S Yu
- b Genome Center, MIND Institute, and Biochemistry and Molecular Medicine , University of California , Davis , CA , USA
| | - Geralyn Annett
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA
| | - Kyle D Fink
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA
| | - Jan A Nolta
- a Stem Cell Program and Institute for Regenerative Cures , University of California Davis Health Systems , Sacramento , CA , USA
| |
Collapse
|
25
|
Tomatsu S, Azario I, Sawamoto K, Pievani AS, Biondi A, Serafini M. Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better? J Inherit Metab Dis 2016; 39:189-202. [PMID: 26578156 PMCID: PMC4754332 DOI: 10.1007/s10545-015-9900-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/03/2022]
Abstract
Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs). The increasing interest in newborn screening procedures for LSDs underlines the need for alternative cellular and gene therapy approaches to be developed during the perinatal period, supporting the treatment of MPS patients before the onset of clinical signs and symptoms. The rationale for considering these early therapies results from the clinical experience in the treatment of MPSs and other genetic disorders. The normal or gene-corrected hematopoiesis transplanted in patients can produce the missing protein at levels sufficient to improve and/or halt the disease-related abnormalities. However, these current therapies are only partially successful, probably due to the limited efficacy of the protein provided through the hematopoiesis. An alternative explanation is that the time at which the cellular or gene therapy procedures are performed could be too late to prevent pre-existing or progressive organ damage. Considering these aspects, in the last several years, novel cellular and gene therapy approaches have been tested in different animal models at birth, a highly early stage, showing that precocious treatment is critical to prevent long-term pathological consequences. This review provides insights into the state-of-art accomplishments made with neonatal cellular and gene-based therapies and the major barriers that need to be overcome before they can be implemented in the medical community.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Biomedical Research, Alfred I. duPont Institute Hospital for Children, Wilmington, DE, USA.
- Skeletal Dysplasia Lab, Department of Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE, 19899-0269, USA.
| | - Isabella Azario
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy
| | - Kazuki Sawamoto
- Department of Biomedical Research, Alfred I. duPont Institute Hospital for Children, Wilmington, DE, USA
| | - Alice Silvia Pievani
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy
| | - Andrea Biondi
- Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, Via Pergolesi, 33, Monza, 20900, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy.
| |
Collapse
|
26
|
Madry H, Cucchiarini M. Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opin Biol Ther 2015; 16:331-46. [PMID: 26593049 DOI: 10.1517/14712598.2016.1124084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is the most prevalent chronic joint disease. Its key feature is a progressive articular cartilage loss. Gene therapy for OA aims at delivering gene-based therapeutic agents to the osteoarthritic cartilage, resulting in a controlled, site-specific, long-term presence to rebuild the damaged cartilage. AREAS COVERED An overview is provided of the principles of gene therapy for OA based on a PubMed literature search. Gene transfer to normal and osteoarthritic cartilage in vitro and in animal models in vivo is reviewed. Results from recent clinical gene therapy trials for OA are discussed and placed into perspective. EXPERT OPINION Recombinant adeno-associated viral (rAAV) vectors enable to directly transfer candidate sequences in human articular chondrocytes in situ, providing a potent tool to modulate the structure of osteoarthritic cartilage. However, few preclinical animal studies in OA models have been performed thus far. Noteworthy, several gene therapy clinical trials have been carried out in patients with end-stage knee OA based on the intraarticular injection of human juvenile allogeneic chondrocytes overexpressing a cDNA encoding transforming growth factor-beta-1 via retroviral vectors. In a recent placebo-controlled randomized trial, clinical scores were improved compared with placebo. These translational results provide sufficient reason to proceed with further clinical testing of gene transfer protocols for the treatment of OA.
Collapse
Affiliation(s)
- Henning Madry
- a Center of Experimental Orthopaedics , Saarland University , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Center of Experimental Orthopaedics , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
27
|
Nakamura K, Mieda T, Suto N, Matsuura S, Hirai H. Mesenchymal stem cells as a potential therapeutic tool for spinocerebellar ataxia. THE CEREBELLUM 2015; 14:165-70. [PMID: 25280585 DOI: 10.1007/s12311-014-0604-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxia (SCA) is a devastating progressive neurodegenerative disorder, for which no effective treatments have been developed. However, some studies have shown that an intracerebellar or intrathecal injection of mesenchymal stem cells (MSCs) was partially effective in some genetic mouse models of cerebellar ataxia such as SCA1 and Lurcher mutant. MSCs likely exert their therapeutic efficacy by secreting innate factors to induce neuronal growth and synaptic connection and reduce apoptosis. In this review, we introduce the therapeutic influence of MSCs on each mouse model for cerebellar ataxia and the possible mechanisms underlying the action of MSCs. We also introduce studies on the safety and effectiveness of umbilical cord MSCs for patients with SCA.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Neurophysiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | | | |
Collapse
|
28
|
Jackson M, Derrick Roberts A, Martin E, Rout-Pitt N, Gronthos S, Byers S. Mucopolysaccharidosis enzyme production by bone marrow and dental pulp derived human mesenchymal stem cells. Mol Genet Metab 2015; 114:584-93. [PMID: 25748347 DOI: 10.1016/j.ymgme.2015.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/25/2022]
Abstract
Mucopolysaccharidoses (MPS) are inherited metabolic disorders that arise from a complete loss or a reduction in one of eleven specific lysosomal enzymes. MPS children display pathology in multiple cell types leading to tissue and organ failure and early death. Mesenchymal stem cells (MSCs) give rise to many of the cell types affected in MPS, including those that are refractory to current treatment protocols such as hematopoietic stem cell (HSC) based therapy. In this study we compared multiple MPS enzyme production by bone marrow derived (hBM) and dental pulp derived (hDP) MSCs to enzyme production by HSCs. hBM MSCs produce significantly higher levels of MPS I, II, IIIA, IVA, VI and VII enzyme than HSCs, while hDP MSCs produce significantly higher levels of MPS I, IIIA, IVA, VI and VII enzymes. Higher transfection efficiency was observed in MSCs (89%) compared to HSCs (23%) using a lentiviral vector. Over-expression of four different lysosomal enzymes resulted in up to 9303-fold and up to 5559-fold greater levels in MSC cell layer and media respectively. Stable, persistent transduction of MSCs and sustained over-expression of MPS VII enzyme was observed in vitro. Transduction of MSCs did not affect the ability of the cells to differentiate down osteogenic, adipogenic or chondrogenic lineages, but did partially delay differentiation down the non-mesodermal neurogenic lineage.
Collapse
Affiliation(s)
- Matilda Jackson
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Genetics, The University of Adelaide, South Australia, Australia
| | - Ainslie Derrick Roberts
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ellenore Martin
- Department of Genetics, The University of Adelaide, South Australia, Australia
| | - Nathan Rout-Pitt
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia; Department of Genetics, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
29
|
|
30
|
Yao W, Lane NE. Targeted delivery of mesenchymal stem cells to the bone. Bone 2015; 70:62-5. [PMID: 25173607 PMCID: PMC4268265 DOI: 10.1016/j.bone.2014.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/26/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a disease of excess skeletal fragility that results from estrogen loss and aging. Age related bone loss has been attributed to both elevated bone resorption and insufficient bone formation. We developed a hybrid compound, LLP2A-Ale in which LLP2A has high affinity for the α4β1 integrin on mesenchymal stem cells (MSCs) and alendronate has high affinity for bone. When LLP2A-Ale was injected into mice, the compound directed MSCs to both trabecular and cortical bone surfaces and increased bone mass and bone strength. Additional studies are underway to further characterize this hybrid compound, LLP2A-Ale, and how it can be utilized for the treatment of bone loss resulting from hormone deficiency, aging, and inflammation and to augment bone fracture healing. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Wei Yao
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
31
|
Amari A, Ebtekar M, Moazzeni SM, Soleimani M, Amirabad LM, Tahoori MT, Massumi M. Investigation of immunomodulatory properties of human Wharton's Jelly-derived mesenchymal stem cells after lentiviral transduction. Cell Immunol 2014; 293:59-66. [PMID: 25569483 DOI: 10.1016/j.cellimm.2014.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/26/2014] [Accepted: 12/12/2014] [Indexed: 12/29/2022]
Abstract
Human Wharton's Jelly-derived Mesenchymal Stem Cells (hWJ-MSCs) are considered as an alternative for bone-marrow-derived MSCs. These cells have immunosuppressive properties. It was unclear whether the WJ-MSCs would sustain their immunomodulatory characteristics after lentiviral transduction or not. In this study, we evaluated immunomodulatory properties of WJ-MSCs after lentiviral transduction. HWJ-MSCs were transduced with lentiviral particles. Expression of transduced and un-transduced hWJ-MSCs surface molecules and secretion of IL-10, HGF, VEGF and TGF-β was analyzed. Cell proliferation and frequency of CD4(+)CD25(+) CD127(low/neg) Foxp3(+) T regulatory cells was measured. There was no difference between the surface markers and secretion of IL-10, HGF, VEGF and TGF-β in transduced and un-transduced hWJ-MSCs. Both cells inhibited the proliferation of PHA stimulated PBMCs, and improved the frequency of T regulatory cells. These findings suggest that lentiviral transduction does not alter the immunomodulatory function of hWJ-MSCs. However, lentiviral transduction may have a wide range of applications in gene therapy.
Collapse
Affiliation(s)
- Afshin Amari
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Massoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran; Stem Cells Biology Department, Stem Cell Technology Research Center, Tehran, Iran
| | - Leila Mohammadi Amirabad
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Massumi
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Stem Cells Biology Department, Stem Cell Technology Research Center, Tehran, Iran.
| |
Collapse
|
32
|
Del Fattore A, Luciano R, Saracino R, Battafarano G, Rizzo C, Pascucci L, Alessandri G, Pessina A, Perrotta A, Fierabracci A, Muraca M. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin Biol Ther 2014; 15:495-504. [PMID: 25539575 DOI: 10.1517/14712598.2015.997706] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Malignant glial tumors, including glioblastoma multiforme, account for 15 - 20% of pediatric CNS malignancies. They are most resistant to therapy and are associated with a poor prognosis. OBJECTIVE Given the ability of mesenchymal stem cells (MSCs) to affect glioma growth, we investigated the effects of extracellular vesicles (EVs) derived from MSCs on U87MG glioblastoma cells line. METHODS EVs were isolated from culture media of MSCs from different sources, including bone marrow (BM), umbilical cord (UC) and adipose tissue (AT) and added to U87MG culture. The internalization and the effects of BM-, UC- and AT-MSC-EVs on proliferation and apoptosis of tumor cells were evaluated. RESULTS Both confocal microscopy and FACS analysis showed internalization of EVs into tumor cells. BM- and UC-MSC-EVs decreased cell proliferation, while an opposite effect was observed with AT-MSC-EVs. Moreover, both BM- and UC-MSC-EVs induced apoptosis of glioblastoma cells, while AT-MSC-EVs had no effect. Loading UC-MSC-EVs with Vincristine further increased cytotoxicity when compared both to the free drug and to untreated EVs. CONCLUSIONS Different effects of MSC-EVs on cancer cells were observed depending on their tissue of origin. Moreover, MSC-EVs can deliver antiblastic drugs to glioblastoma cells.
Collapse
Affiliation(s)
- Andrea Del Fattore
- Bambino Gesù Children's Hospital, Regenerative Medicine Unit, IRCCS , Piazza Sant'Onofrio 4, Rome 00165 , Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Porada CD, Rodman C, Ignacio G, Atala A, Almeida-Porada G. Hemophilia A: an ideal disease to correct in utero. Front Pharmacol 2014; 5:276. [PMID: 25566073 PMCID: PMC4263089 DOI: 10.3389/fphar.2014.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/27/2014] [Indexed: 01/13/2023] Open
Abstract
Hemophilia A (HA) is the most frequent inheritable defect of the coagulation proteins. The current standard of care for patients with HA is prophylactic factor infusion, which is comprised of regular (2-3 times per week) intravenous infusions of recombinant or plasma-derived FVIII to maintain hemostasis. While this treatment has greatly increased the quality of life and lengthened the life expectancy for many HA patients, its high cost, the need for lifelong infusions, and the fact that it is unavailable to roughly 75% of the world's HA patients make this type of treatment far from ideal. In addition, this lifesaving therapy suffers from a high risk of treatment failure due to immune response to the infused FVIII. There is thus a need for novel treatments, such as those using stem cells and/or gene therapy, which have the potential to mediate long-term correction or permanent cure following a single intervention. In the present review, we discuss the clinical feasibility and unique advantages that an in utero approach to treating HA could offer, placing special emphasis on a new sheep model of HA we have developed and on the use of mesenchymal stromal cells (MSC) as cellular vehicles for delivering the FVIII gene.
Collapse
Affiliation(s)
| | | | | | | | - Graça Almeida-Porada
- Regenerative Medicine, Wake Forest Institute for Regenerative MedicineWinston-Salem, NC, USA
| |
Collapse
|
34
|
Mesenchymal stem cells as cellular vehicles for prodrug gene therapy against tumors. Biochimie 2014; 105:4-11. [DOI: 10.1016/j.biochi.2014.06.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
|
35
|
Martínez-González I, Cruz MJ, Moreno R, Morell F, Muñoz X, Aran JM. Human mesenchymal stem cells resolve airway inflammation, hyperreactivity, and histopathology in a mouse model of occupational asthma. Stem Cells Dev 2014; 23:2352-63. [PMID: 24798370 DOI: 10.1089/scd.2013.0616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1 × 10(6) cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA.
Collapse
|
36
|
Madry H, Cucchiarini M. Advances and challenges in gene-based approaches for osteoarthritis. J Gene Med 2014; 15:343-55. [PMID: 24006099 DOI: 10.1002/jgm.2741] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/06/2013] [Accepted: 08/30/2013] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA), a paramount cause of physical disability for which there is no definitive cure, is mainly characterized by the gradual loss of the articular cartilage. Current nonsurgical and reconstructive surgical therapies have not met success in reversing the OA phenotype so far. Gene transfer approaches allow for a long-term and site-specific presence of a therapeutic agent to re-equilibrate the metabolic balance in OA cartilage and may consequently be suited to treat this slow and irreversible disorder. The distinct stages of OA need to be respected in individual gene therapy strategies. In this context, molecular therapy appears to be most effective for early OA. A critical step forward has been made by directly transferring candidate sequences into human articular chondrocytes embedded within their native extracellular matrix via recombinant adeno-associated viral vectors. Although extensive studies in vitro attest to a growing interest in this approach, data from animal models of OA are sparse. A phase I dose-escalating trial was recently performed in patients with advanced knee OA to examine the safety and activity of chondrocytes modified to produce the transforming growth factor β1 via intra-articular injection, showing a dose-dependent trend toward efficacy. Proof-of-concept studies in patients prior to undergoing total knee replacement may be privileged in the future to identify the best mode of translating this approach to clinical application, followed by randomized controlled trials.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Saarland University, Homburg, Saar, Germany
| | | |
Collapse
|
37
|
Hughes SM, Hope KM, Xu JB, Mitchell NL, Palmer DN. Inhibition of storage pathology in prenatal CLN5-deficient sheep neural cultures by lentiviral gene therapy. Neurobiol Dis 2014; 62:543-50. [PMID: 24269732 DOI: 10.1016/j.nbd.2013.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/01/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are inherited neurodegenerative lysosomal storage diseases caused by mutations in several different genes. Mutations in CLN5 cause a variant late-infantile human disease and some cases of juvenile and adult clinical disease. NCLs also occur in animals, and a flock of New Zealand Borderdale sheep with a CLN5 splice-site mutation has been developed for model studies. Dissociated mixed neural cells from CLN5-deficient foetal sheep brains contained no obvious storage bodies at plating but these accumulated rapidly in culture, mainly in microglial cells and also in neurons and astrocytes. Accumulation was very obvious after a week, as monitored by fluorescent microscopy and immunostaining for subunit c of mitochondrial ATP synthase. Photography at intervals revealed the dynamic nature of the cultures and a flow of storage bodies between cells, specifically the phagocytosis of storage-body containing cells by microglia and incorporation of the storage bodies into the host cells. No storage was observed in cultured control cells. Transduction of cell cultures with a lentiviral vector expressing a C-terminal Myc tagged CLN5 resulted in secretion of post-translationally glycosylated and processed CLN5. Transduction of CLN5-deficient cultures with this construct rapidly reversed storage body accumulation, to less than half in only six days. These results show that storage body accumulation is reversible with enzyme correction and support the use of these cultures for testing of therapeutics prior to whole animal studies.
Collapse
Affiliation(s)
- Stephanie M Hughes
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 54, Dunedin 9054, New Zealand; Brain Health Research Centre, University of Otago, PO Box 54, Dunedin 9054, New Zealand.
| | - Katie M Hope
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 54, Dunedin 9054, New Zealand.
| | - Janet Boyu Xu
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand.
| | - Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand.
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
38
|
Pang P, Wu C, Shen M, Gong F, Zhu K, Jiang Z, Guan S, Shan H, Shuai X. An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells. PLoS One 2013; 8:e76612. [PMID: 24116127 PMCID: PMC3792021 DOI: 10.1371/journal.pone.0076612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/26/2013] [Indexed: 01/14/2023] Open
Abstract
The neural ganglioside GD2 has recently been reported to be a novel surface marker that is only expressed on human bone marrow mesenchymal stem cells within normal marrow. In this study, an MRI-visible, targeted, non-viral vector for effective gene delivery to human bone marrow mesenchymal stem cells was first synthesized by attaching a targeting ligand, the GD2 single chain antibody (scAbGD2), to the distal ends of PEG-g-PEI-SPION. The targeted vector was then used to condense plasmid DNA to form nanoparticles showing stable small size, low cytotoxicity, and good biocompatibility. Based on a reporter gene assay, the transfection efficiency of targeting complex reached the highest value at 59.6% ± 4.5% in human bone marrow mesenchymal stem cells, which was higher than those obtained using nontargeting complex and lipofectamine/pDNA (17.7% ± 2.9% and 34.9% ± 3.6%, respectively) (P<0.01). Consequently, compared with the nontargeting group, more in vivo gene expression was observed in the fibrotic rat livers of the targeting group. Furthermore, the targeting capacity of scAbGD2-PEG-g-PEI-SPION was successfully verified in vitro by confocal laser scanning microscopy, Prussian blue staining, and magnetic resonance imaging. Our results indicate that scAbGD2-PEG-g-PEI-SPION is a promising MRI-visible non-viral vector for targeted gene delivery to human bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Pengfei Pang
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chun Wu
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Shen
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Faming Gong
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kangshun Zhu
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zaibo Jiang
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shouhai Guan
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Shan
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (HS) (XS)
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HS) (XS)
| |
Collapse
|
39
|
Lathuilière A, Cosson S, Lutolf MP, Schneider BL, Aebischer P. A high-capacity cell macroencapsulation system supporting the long-term survival of genetically engineered allogeneic cells. Biomaterials 2013; 35:779-91. [PMID: 24103654 DOI: 10.1016/j.biomaterials.2013.09.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/20/2013] [Indexed: 11/27/2022]
Abstract
The rapid increase in the number of approved therapeutic proteins, including recombinant antibodies, for diseases necessitating chronic treatments raises the question of the overall costs imposed on healthcare systems. It is therefore important to investigate alternative methods for recombinant protein administration. The implantation of genetically engineered cells is an attractive strategy for the chronic long-term delivery of recombinant proteins. Here, we have developed a high-capacity cell encapsulation system for the implantation of allogeneic myoblasts, which survive at high density for at least one year. This flat sheet device is based on permeable polypropylene membranes sealed to a mechanically resistant frame which confine cells seeded in a tailored biomimetic poly(ethylene glycol) (PEG)-based hydrogel matrix. In order to quantitate the number of cells surviving in the device and optimize initial conditions leading to high-density survival, we implant devices containing C2C12 mouse myoblasts expressing a luciferase reporter in the mouse subcutaneous tissue. We show that initial cell load, hydrogel stiffness and permeable membrane porosity are critical parameters to achieve long-term implant survival and efficacy. Optimization of these parameters leads to the survival of encapsulated myogenic cells at high density for several months, with minimal inflammatory response and dense neovascularization in the adjacent host tissue. Therefore, this encapsulation system is an effective platform for the implantation of genetically engineered cells in allogeneic conditions, which could be adapted to the chronic administration of recombinant proteins.
Collapse
Affiliation(s)
- Aurélien Lathuilière
- Neurodegenerative Studies Laboratory, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Sands MS. Considerations for the treatment of infantile neuronal ceroid lipofuscinosis (infantile Batten disease). J Child Neurol 2013; 28:1151-8. [PMID: 24014510 PMCID: PMC3983784 DOI: 10.1177/0883073813495960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The infantile form of neuronal ceroid lipofuscinosis (ie, infantile Batten disease) is the most rapidly progressing type and is caused by an inherited deficiency in the lysosomal enzyme palmitoyl protein thioesterase 1. The absence of enzyme activity leads to progressive accumulation of autofluorescent material in many cell types, particularly neurons of the central nervous system. Clinical signs of infantile neuronal ceroid lipofuscinosis appear between 6 months and 1 year of age and include vision loss, cognitive decline, motor deficits, seizures, and premature death, typically by 3 to 5 years of age. There is currently no effective treatment. However, preclinical experiments in the murine model of infantile neuronal ceroid lipofuscinosis have shown that gene therapy, enzyme replacement, stem cell transplantation, and small-molecule drugs, alone or in combination, can significantly slow disease progression. A more thorough understanding of the underlying pathogenesis of infantile neuronal ceroid lipofuscinosis will identify new therapeutic targets.
Collapse
Affiliation(s)
- Mark S. Sands
- Departments of Internal Medicine and Genetics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
41
|
Nan Z, Shekels L, Ryabinin O, Evavold C, Nelson MS, Khan SA, Deans RJ, Mays RW, Low WC, Gupta P. Intracerebroventricular transplantation of human bone marrow-derived multipotent progenitor cells in an immunodeficient mouse model of mucopolysaccharidosis type I (MPS-I). Cell Transplant 2013; 21:1577-93. [PMID: 22472595 DOI: 10.3727/096368912x636894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS-I; Hurler syndrome) is an inborn error of metabolism caused by lack of the functional lysosomal glycosaminoglycan (GAG)-degrading enzyme α-L-iduronidase (IDUA). Without treatment, the resulting GAG accumulation causes multisystem dysfunction and death within the first decade. Current treatments include allogeneic hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy. HSCT ameliorates clinical features and extends life but is not available to all patients, and inadequately corrects the most devastating features of the disease including mental retardation and skeletal deformities. Recent developments suggest that stem cells can be used to deliver needed enzymes to the central nervous system. To test this concept, we transplanted bone marrow-derived normal adult human MultiStem® cells into the cerebral lateral ventricles of immunodeficient MPS-I neonatal mice. Transplanted cells and human-specific DNA were detected in the hippocampal formation, striatum, and other areas of the central nervous system. Brain tissue assays revealed significant long-term decrease in GAG levels in the hippocampus and striatum. Sensorimotor testing 6 months after transplantation demonstrated significantly improved rotarod performance of transplanted mice in comparison to nontransplanted and sham-transplanted control animals. These results suggest that a single injection of MultiStem cells into the cerebral ventricles of neonatal MPS-I mice induces sustained reduction in GAG accumulation within the brain, and modest long-term improvement in sensorimotor function.
Collapse
Affiliation(s)
- Zhenhong Nan
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Devarajan K, Forrest ML, Detamore MS, Staecker H. Adenovector-mediated gene delivery to human umbilical cord mesenchymal stromal cells induces inner ear cell phenotype. Cell Reprogram 2013; 15:43-54. [PMID: 23379581 DOI: 10.1089/cell.2011.0097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hearing is one of our main sensory systems and having a hearing disorder can have a significant impact in an individual's quality of life. Sensory neural hearing loss (SNHL) is the most common form of hearing loss; it results from the degeneration of inner ear sensory hair cells and auditory neurons in the cochlea, cells that are terminally differentiated. Stem cell-and gene delivery-based strategies provide an opportunity for the replacement of these cells. In recent years, there has been an increasing interest in gene delivery to mesenchymal stem cells. In this study, we evaluated the potential of human umbilical cord mesenchymal stromal cells (hUCMSCs) as a possible source for regenerating inner ear hair cells. The expression of Atoh1 induced the differentiation of hUCMSCs into cells that resembled inner ear hair cells morphologically and immunocytochemically, evidenced by the expression of hair cell-specific markers. The results demonstrated for the first time that hUCMSCs can differentiate into hair cell-like cells, thus introducing a new potential tissue engineering and cell transplantation approach for the treatment of hearing loss.
Collapse
|
43
|
Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 2013; 65:391-7. [PMID: 22921840 DOI: 10.1016/j.addr.2012.08.008] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 12/11/2022]
Abstract
Using oligonucleotide-based drugs to modulate gene expression has opened a new avenue for drug discovery. In particular small interfering RNAs (siRNAs) are being rapidly recognized as promising therapeutic tools, but their poor bioavailability limits the full realization of their clinical potential. In recent years, cumulating evidence has emerged for the role of membrane vesicles, secreted by most cells and found in all body fluids, as key mediators of information transmission between cells. Importantly, a sub-group of these termed exosomes, have recently been shown to contain various RNA species and to mediate their horizontal transfer to neighbouring- or distant recipient cells. Here, we provide a brief overview on membrane vesicles and their role in exchange of genetic information. We also describe how these natural carriers of genetic material can be harnessed to overcome the obstacle of poor delivery and allow efficient systemic delivery of exogenous siRNA across biological barriers such as the blood-brain barrier.
Collapse
|
44
|
Porada CD, Almeida-Porada G. Treatment of Hemophilia A in Utero and Postnatally using Sheep as a Model for Cell and Gene Delivery. ACTA ACUST UNITED AC 2013; S1. [PMID: 23264887 DOI: 10.4172/2157-7412.s1-011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemophilia A represents the most common inheritable deficiency of the coagulation proteins. Current state-of- the-art treatment consists of frequent prophylactic infusions of plasma-derived or recombinant FVIII protein to maintain hemostasis, and has greatly increased life expectancy and quality of life for many hemophilia A patients. This treatment approach is, however, far from ideal, due to the need for lifelong intravenous infusions, the high treatment cost, and the fact that it is unavailable to a large percentage of the world's hemophiliacs. There is thus a need for novel treatments that can promise long-term or permanent correction. In contrast to existing protein based therapeutics, gene therapy offers to provide a permanent cure following few, or even a single, treatment. In the present paper, we review ongoing work towards this end, focusing on studies we have performed in a large animal model. Some of the key topics covered in this review include the unique opportunities sheep offer as a model system, the re-establishment and clinical and molecular characterization of a line of sheep with severe hemophilia A, the advantages and feasibility of treating a disease like hemophilia A in utero, and the use of Mesenchymal Stem Cells (MSC) as cellular delivery vehicles for the FVIII gene. The review finishes with a brief discussion of our recent success correcting ovine hemophilia A with a postnatal transplant with gene-modified MSC, and the limitations of this approach that remain to be overcome.
Collapse
|
45
|
Annett G, Bauer G, Nolta JA. Mesenchymal stem cells for trinucleotide repeat disorders. Methods Mol Biol 2013; 1010:79-91. [PMID: 23754220 DOI: 10.1007/978-1-62703-411-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells/marrow stromal cells (MSCs) are ideally suited for cellular therapy due to their ease of isolation, manipulation, and strong safety profile in the clinic. They can be expanded from normal qualified human donors in large quantities and can be infused without tissue matching, since they shield themselves from the immune system. The ability to be transplanted without tissue matching has allowed large multicenter trials to be conducted with direct comparison of the same batches of MSCs, without adverse events or rejection reactions. MSCs are now approved as drugs in several countries outside of the USA. MSCs can be genetically modified to provide sustained and long-term delivery of growth factors at supraphysiological levels. Gene-modified MSCs are in clinical trials for the treatment of stroke and are under consideration for the treatment of neurodegenerative disorders such as Huntington's disease.
Collapse
Affiliation(s)
- Geralyn Annett
- Stem Cell Program, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA
| | | | | |
Collapse
|
46
|
Scruggs BA, Bowles AC, Zhang X, Semon JA, Kyzar EJ, Myers L, Kalueff AV, Bunnell BA. High-throughput screening of stem cell therapy for globoid cell leukodystrophy using automated neurophenotyping of twitcher mice. Behav Brain Res 2012; 236:35-47. [PMID: 22951180 DOI: 10.1016/j.bbr.2012.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/11/2012] [Accepted: 08/14/2012] [Indexed: 01/01/2023]
Abstract
Globoid cell leukodystrophy (Krabbe's disease) is an autosomal recessive neurodegenerative disorder that results from the deficiency of galactosylceramidase, a lysosomal enzyme involved in active myelination. Due to the progressive, lethal nature of this disease and the limited treatment options available, multiple laboratories are currently exploring novel therapies using the mouse model of globoid cell leukodystrophy. In order to establish a protocol for motor function assessment of the twitcher mouse, this study tested the capability of an automated system to detect phenotypic differences across mouse genotypes and/or treatment groups. The sensitivity of this system as a screening tool for the assessment of therapeutic interventions was determined by the administration of murine bone marrow-derived stem cells into twitcher mice via intraperitoneal injection. Animal behavior was analyzed using the Noldus EthoVision XT7 software. Novel biomarkers, including abnormal locomotion (e.g., velocity, moving duration, distance traveled, turn angle) and observed behaviors (e.g., rearing activity, number of defecation boli), were established for the twitcher mouse. These parameters were monitored across all mouse groups, and the automated system detected improved locomotion in the treated twitcher mice based on the correction of angular velocity, turn angle, moving duration, and exploratory behavior, such as thigmotaxis. Further supporting these findings, the treated mice showed improved lifespan, gait, wire hang ability, twitching severity and frequency, and sciatic nerve histopathology. Taken together, these data demonstrate the utility of computer-based neurophenotyping for motor function assessment of twitcher mice and support its utility for detecting the efficacy of stem cell-based therapy for neurodegenerative disorders.
Collapse
Affiliation(s)
- Brittni A Scruggs
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA; Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA
| | - Annie C Bowles
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA 70118, USA
| | - Xiujuan Zhang
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Julie A Semon
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Evan J Kyzar
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA
| | - Leann Myers
- Department of Biostatistics & Bioinformatics, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2001, New Orleans, LA 70112, USA
| | - Allan V Kalueff
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA; Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA.
| |
Collapse
|
47
|
Payne NL, Dantanarayana A, Sun G, Moussa L, Caine S, McDonald C, Herszfeld D, Bernard CC, Siatskas C. Early intervention with gene-modified mesenchymal stem cells overexpressing interleukin-4 enhances anti-inflammatory responses and functional recovery in experimental autoimmune demyelination. Cell Adh Migr 2012; 6:179-89. [PMID: 22568986 PMCID: PMC3427232 DOI: 10.4161/cam.20341] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) can be isolated from most adult tissues and hold considerable promise for tissue regenerative therapies. Some of the potential advantages that MSCs have over other adult stem cell types include: (1) their relative ease of isolation, culture and expansion; (2) their immunomodulatory properties; (3) they can provide trophic support to injured tissues; (4) they can be transduced by retroviral vectors at a high efficiency; (5) they have an ability to home to sites of inflammation and injury. Collectively these characteristics suggest that MSCs are attractive vehicles for cell and gene therapy applications. In the current study, we investigated whether transplantation of human adipose-derived MSCs (Ad-MSCs) engineered to overexpress the anti-inflammatory cytokine interleukin (IL)-4 was efficacious in experimental autoimmune encephalomyelitis (EAE). Ad-MSCs transduced with a bicistronic lentiviral vector encoding mouse IL-4 and enhanced green fluorescent protein (Ad-IL4-MSCs) stably expressed, relatively high levels of both transgenes. Importantly the phenotypic and functional attributes of Ad-IL4-MSCs, such as the expression of homing molecules and differentiation capacity, was not altered by the transduction process. Notably, the early administration of Ad-IL4-MSCs in mice with EAE at the time of T-cell priming attenuated clinical disease. This protective effect was associated with a reduction in peripheral MOG-specific T-cell responses and a shift from a pro- to an anti-inflammatory cytokine response. These data suggest that the delivery of Ad-MSCs genetically engineered to express anti-inflammatory cytokines may provide a rational approach to promote immunomodulation and tissue protection in a number of inflammatory and degenerative diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Natalie L. Payne
- Monash Immunology and Stem Cell Laboratories; Monash University; Clayton, VIC Australia
| | - Ashanti Dantanarayana
- Monash Immunology and Stem Cell Laboratories; Monash University; Clayton, VIC Australia
| | - Guizhi Sun
- Monash Immunology and Stem Cell Laboratories; Monash University; Clayton, VIC Australia
| | - Leon Moussa
- Monash Immunology and Stem Cell Laboratories; Monash University; Clayton, VIC Australia
| | - Sally Caine
- Monash Immunology and Stem Cell Laboratories; Monash University; Clayton, VIC Australia
| | - Courtney McDonald
- Monash Immunology and Stem Cell Laboratories; Monash University; Clayton, VIC Australia
| | - Daniella Herszfeld
- Monash Immunology and Stem Cell Laboratories; Monash University; Clayton, VIC Australia
| | - Claude C.A. Bernard
- Monash Immunology and Stem Cell Laboratories; Monash University; Clayton, VIC Australia
| | - Christopher Siatskas
- Monash Immunology and Stem Cell Laboratories; Monash University; Clayton, VIC Australia
| |
Collapse
|
48
|
Jung Y, Bauer G, Nolta JA. Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 2012; 30:42-7. [PMID: 21898694 DOI: 10.1002/stem.727] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult stem cell therapies have provided success for more than 50 years, through reconstitution of the hematopoietic system using bone marrow, umbilical cord blood, and mobilized peripheral blood transplantation. Mesenchymal stem cell (MSC)-mediated therapy is a fast-growing field that has proven safe and effective in the treatment of various degenerative diseases and tissue injuries. Since the first derivation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), there has been impressive progress toward developing safe clinical applications from PSCs. Recent successes in transgene-free iPSC reprogramming have brought attention to the potential of clinical applications of these pluripotent cells, but key hurdles must be overcome, which are discussed in this review. Looking to the future, it could be advantageous to derive MSC from iPSC or human ESC in cases where genetic engineering is needed, since in the PSCs, clones with "safe harbor" vector integration could be selected, expanded, and differentiated. Here, we describe the status of the progress of the use of MSC and PSCs in clinical trials and analyze the challenges that should be overcome before iPSC-derived MSC therapy can be used widely in the clinic.
Collapse
Affiliation(s)
- Yunjoon Jung
- Department of Biomedical Engineering, University of California, Davis, Sacramento, California 95817, USA
| | | | | |
Collapse
|
49
|
Roubelakis MG, Bitsika V, Zagoura D, Trohatou O, Pappa KI, Makridakis M, Antsaklis A, Vlahou A, Anagnou NP. In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. J Cell Mol Med 2012; 15:1896-913. [PMID: 21166769 PMCID: PMC3918046 DOI: 10.1111/j.1582-4934.2010.01180.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human mesenchymal progenitor cells (MPCs) are considered to be of great promise for use in tissue repair and regenerative medicine. MPCs represent multipotent adherent cells, able to give rise to multiple mesenchymal lineages such as osteoblasts, adipocytes or chondrocytes. Recently, we identified and characterized human second trimester amniotic fluid (AF) as a novel source of MPCs. Herein, we found that early colonies of AF-MPCs consisted of two morphologically distinct adherent cell types, termed as spindle-shaped (SS) and round-shaped (RS). A detailed analysis of these two populations showed that SS-AF-MPCs expressed CD90 antigen in a higher level and exhibited a greater proliferation and differentiation potential. To characterize better the molecular identity of these two populations, we have generated a comparative proteomic map of SS-AF-MPCs and RS-AF-MPCs, identifying 25 differentially expressed proteins and 10 proteins uniquely expressed in RS-AF-MPCs. Furthermore, SS-AF-MPCs exhibited significantly higher migration ability on extracellular matrices, such as fibronectin and laminin in vitro, compared to RS-AF-MPCs and thus we further evaluated SS-AF-MPCs for potential use as therapeutic tools in vivo. Therefore, we tested whether GFP-lentiviral transduced SS-AF-MPCs retained their stem cell identity, proliferation and differentiation potential. GFP-SS-AF-MPCs were then successfully delivered into immunosuppressed mice, distributed in different tissues and survived longterm in vivo. In summary, these results demonstrated that AF-MPCs consisted of at least two different MPC populations. In addition, SS-AF-MPCs, isolated based on their colony morphology and CD90 expression, represented the only MPC population that can be expanded easily in culture and used as an efficient tool for future in vivo therapeutic applications.
Collapse
Affiliation(s)
- Maria G Roubelakis
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease. Mol Neurobiol 2011; 45:87-98. [PMID: 22161544 PMCID: PMC3259334 DOI: 10.1007/s12035-011-8219-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 11/09/2011] [Indexed: 12/14/2022]
Abstract
There is much interest in the use of mesenchymal stem cells/marrow stromal cells (MSC) to treat neurodegenerative disorders, in particular those that are fatal and difficult to treat, such as Huntington's disease. MSC present a promising tool for cell therapy and are currently being tested in FDA-approved phase I-III clinical trials for many disorders. In preclinical studies of neurodegenerative disorders, MSC have demonstrated efficacy, when used as delivery vehicles for neural growth factors. A number of investigators have examined the potential benefits of innate MSC-secreted trophic support and augmented growth factors to support injured neurons. These include overexpression of brain-derived neurotrophic factor and glial-derived neurotrophic factor, using genetically engineered MSC as a vehicle to deliver the cytokines directly into the microenvironment. Proposed regenerative approaches to neurological diseases using MSC include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation, MSC in the brain promote endogenous neuronal growth, encourage synaptic connection from damaged neurons, decrease apoptosis, reduce levels of free radicals, and regulate inflammation. These abilities are primarily modulated through paracrine actions. Clinical trials for MSC injection into the central nervous system to treat amyotrophic lateral sclerosis, traumatic brain injury, and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of Huntington's disease is discussed.
Collapse
|