1
|
Mondaza-Hernandez JL, Hindi N, Fernandez-Serra A, Ramos R, Gonzalez-Cámpora R, Gómez-Mateo MC, Martinez-Trufero J, Lavernia J, Lopez-Pousa A, Laínez N, Martinez-Garcia J, Valverde C, Vaz-Salgado MÁ, Garcia-Plaza G, Marin-Borrero I, Carrillo-Garcia J, Martin-Ruiz M, Romero P, Gutierrez A, López-Guerrero JA, Moura DS, Martin-Broto J. Exploratory analysis of immunomodulatory factors identifies L1CAM as a prognostic marker in alveolar soft-part sarcoma. Ther Adv Med Oncol 2024; 16:17588359241293951. [PMID: 39502403 PMCID: PMC11536517 DOI: 10.1177/17588359241293951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Background Alveolar soft-part sarcoma (ASPS) is a rare tumor driven by the ASPSCR1-TFE3 fusion protein, with a propensity for metastasis. Prognostic factors remain poorly understood, and traditional chemotherapies are largely ineffective. Recent interest lies in immune checkpoint inhibitors (ICIs), yet predictive biomarkers for treatment response are lacking. Previous studies have shown promising results with ICIs in ASPS, indicating a need for further investigation into biomarkers associated with immune response. Objectives To identify prognostic biomarkers in ASPS and to explore the role of immune-related markers, particularly L1CAM, in predicting patient outcomes. Design A retrospective cohort study of 19 ASPS patients registered in the GEIS database. The study involved the collection of clinical and histopathological data, followed by an analysis of immune markers and gene expression profiles to identify potential prognostic indicators. Methods Clinical and histopathological data were retrospectively collected from the GEIS-26 study cohort of 19 ASPS patients. Immunohistochemistry was performed to evaluate immune markers programmed death-1 ligand (PD-L1), programmed death-1, FAS, FASL, CD8, CD3, and CD4. An HTG ImmunOncology panel was conducted on formalin-fixed paraffin-embedded samples to explore gene expression. Effects of differentially expressed genes on survival were explored by Kaplan-Meier. Results PD-L1 positivity was widely observed (63%) in tumors, and CD8+ lymphocytic infiltration was common. High CD8 density correlated with greater overall survival (OS) while not statistically significant. No associations were found for other immune markers. L1CAM was identified as differentially expressed in patients with low CD8 infiltration and correlated negatively with OS. Conclusion High L1CAM expression correlated with poorer OS, highlighting its potential as a prognostic marker and therapeutic target in ASPS. Immunomodulatory interventions may hold promise, as evidenced by PD-L1 expression and CD8+ infiltration. Further research, including larger cohorts and international collaborations, is needed to validate these findings and explore therapeutic strategies targeting L1CAM in ASPS.
Collapse
Affiliation(s)
- José L. Mondaza-Hernandez
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain
| | - Nadia Hindi
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | - Rafael Ramos
- Pathology Department, University Hospital Son Espases, Mallorca, Spain
| | | | | | | | - Javier Lavernia
- Medical Oncology Department, Fundación Instituto Valenciano de Oncologia, Valencia, Spain
| | | | - Nuria Laínez
- Department of Medical Oncology, Complejo Hospitalario de Navarra Pamplona, Spain
| | | | - Claudia Valverde
- Medical Oncology Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - María Ángeles Vaz-Salgado
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBERONC, Madrid, Spain
| | - Gabriel Garcia-Plaza
- Department of Surgery, Hospital Universitario Insular, Las Palmas de Gran Canaria, Spain
| | - Isabel Marin-Borrero
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Jaime Carrillo-Garcia
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain
| | - Marta Martin-Ruiz
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain
| | - Pablo Romero
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain
| | - Antonio Gutierrez
- Hematology Department, Hospital Son Espases/IdISBa, Palma de Mallorca, Spain
| | - Jose A. López-Guerrero
- Molecular Biology Department, Fundación Instituto Valenciano de Oncologia, Valencia, Spain
| | - David S. Moura
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Javier Martin-Broto
- Health Research Institute Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Reyes Católicos 2, Madrid 28040, Spain
- University Hospital General de Villalba, Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| |
Collapse
|
2
|
Hu X, Chai J, Zhang B, Hu C. Primary pulmonary alveolar soft part sarcoma with ASPSCR1-TFE3 gene fusion: Case report and literature review. Medicine (Baltimore) 2024; 103:e40249. [PMID: 39495972 PMCID: PMC11537591 DOI: 10.1097/md.0000000000040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024] Open
Abstract
RATIONALE Primary pulmonary alveolar soft part sarcoma (ASPS) is an extremely rare disease characterized by a specific genetic abnormality - the ASPSCR1-TFE3 gene fusion. PATIENT CONCERNS This study presented a 27-year-old male patient who experienced persistent chest tightness for over 6 months. DIAGNOSES The computed tomography (CT) scan and enhanced CT scan revealed a mass in the medial segment of the right middle lobe of his lung. The patients then underwent further diagnosis. Pathological examination showed the tumor to be consisting of polygonal cells with abundant eosinophilic or transparent cytoplasm arranged in nests. Next-generation sequencing reported ASPSCR1-TFE3 gene fusion, confirming the final diagnosis of primary pulmonary ASPS. Regular follow-ups of 12 months showed no signs of tumor recurrence. INTERVENTIONS The patients underwent the medial segment resection of the right middle lobe for treatment. OUTCOMES A CT examination 3 months after the operation showed that the patient had improved. The last review showed no recurrence or metastasis. LESSONS This case report highlights the importance of detailed diagnosis, prompt treatment, and close monitoring of patients with ASPS.
Collapse
Affiliation(s)
- Xijian Hu
- Graduate School, Shanxi Medical University, Taiyuan, China
| | - Jing Chai
- Graduate School, Shanxi Medical University, Taiyuan, China
| | - Bin Zhang
- Graduate School, Shanxi Medical University, Taiyuan, China
| | - Chengguang Hu
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, China
| |
Collapse
|
3
|
Radaelli S, Merlini A, Khan M, Gronchi A. Progress in histology specific treatments in soft tissue sarcoma. Expert Rev Anticancer Ther 2024; 24:845-868. [PMID: 39099398 DOI: 10.1080/14737140.2024.2384584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Soft tissue sarcomas (STS) represent a heterogenous group of rare tumors, primarily treated with surgery. Preoperative radiotherapy is often recommended for extremity high-risk STS. Neoadjuvant chemotherapy, typically based on doxorubicin with ifosfamide, has shown efficacy in limbs and trunk wall STS. Second-line chemotherapy, commonly utilized in the metastatic setting, is mostly histology-driven. Molecular targeted agents are used across various histologies, and although the use of immunotherapy in STS is still in its early stages, there is increasing interest in exploring its potential. AREAS COVERED This article involved an extensive recent search on PubMed. It explored the current treatment landscape for localized and metastatic STS, focusing on the combined use of radiotherapy and chemotherapy for both extremity and retroperitoneal tumors, and with a particular emphasis on the most innovative histopathology driven therapeutic approaches. Additionally, ongoing clinical trials identified via clinicaltrials.gov are included. EXPERT OPINION Recently there have been advancements in the treatment of STS, largely driven by the outcomes of clinical trials. However further research is imperative to comprehend the effect of chemotherapy, targeted therapy and immunotherapy in various STS, as well as to identify biomarkers able to predict which patients are most likely to benefit from these treatments.
Collapse
Affiliation(s)
- Stefano Radaelli
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, Orbassano, Italy
- Department of Oncology, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Misbah Khan
- Surgery, East Sussex NHS Healthcare, East Sussex, UK
| | - Alessandro Gronchi
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
4
|
Yuan X, Zhou B, Zhong J. Prognostic factors of alveolar soft part sarcoma in children and adolescents: A population-based study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101852. [PMID: 38570254 DOI: 10.1016/j.jormas.2024.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE Alveolar Soft Part Sarcoma (ASPS) is an exceedingly rare and aggressive cancer in children. Our objective was to conduct a population-based cohort study to forecast overall survival (OS) in pediatric ASPS patients. METHODS We utilized the Surveillance, Epidemiology, and End Results (SEER) database to identify all pediatric ASPS patients diagnosed between 1975 and 2019. Kaplan-Meier estimations were employed to construct survival curves based on various criteria. Survival curves were compared using the log-rank test. Cox proportional-hazards regression was utilized to determine variables associated with OS. Additionally, we constructed a nomogram to predict overall survival in pediatric ASPS patients. RESULTS A total of 103 pediatric ASPS patients were identified. Predominantly, the tumors affected females (62.2 %), and most of them located in the extremities (53.4 %). The majority of patients underwent surgery (83.5 %). Survival rates declined with increasing tumor size, and patients with localized tumors exhibited significantly better prognoses than those with distant tumors. Surgery conferred superior survival outcomes compared to no surgery. Cox proportional hazard regression analysis identified SEER stage and surgery as important independent predictors of survival. CONCLUSIONS Our study highlights SEER stage and surgery as key predictors of OS in pediatric ASPS, offering crucial epidemiological insights for clinical management.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Nursing, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, PR China
| | - Bi Zhou
- Department of Pediatrics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, PR China
| | - Juhong Zhong
- Department of Operating Room, Hangzhou Children's Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
5
|
Bergsma EJ, Elgawly M, Mancuso D, Orr R, Vuskovich T, Seligson ND. Atezolizumab as the First Systemic Therapy Approved for Alveolar Soft Part Sarcoma. Ann Pharmacother 2024; 58:407-415. [PMID: 37466080 DOI: 10.1177/10600280231187421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE The objective was to review the pharmacology, efficacy, and safety of atezolizumab (Tecentriq) for the treatment of adult and pediatric patients aged 2 years and older with unresectable or metastatic alveolar soft part sarcoma (ASPS). DATA SOURCES A literature search was conducted using PubMed and MEDLINE databases, published abstracts, and ongoing studies from ClinicalTrials.gov between January 1, 1981, and May 31, 2023. Keywords included atezolizumab, Tecentriq, MPDL3280, immunotherapy, PD-L1, PD-1, pediatrics, sarcoma, and ASPS. STUDY SELECTION AND DATA EXTRACTION All English-language studies involving atezolizumab for ASPS were included and discussed. DATA SYNTHESIS Atezolizumab is an anti-programmed death-ligand 1 (PD-L1) monoclonal antibody designed to block the interaction between PD-L1 and the programmed cell death protein 1 (PD-1) receptor. Atezolizumab was granted approval by the FDA specifically for ASPS based on a phase II clinical trial in adult and pediatric patients (n = 49), which reported an overall response rate of 24% and a durable response rate at 6 and 12 months of 67% and 42%, respectively. Common grade 3/4 adverse reactions include musculoskeletal pain (8%), followed by hypertension (6%), weight gain (6%), headache (4%), and dizziness (4%). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON WITH EXISTING DRUGS Advanced ASPS is a high-risk disease with limited treatment options. Atezolizumab appears to be a viable treatment option in ASPS demonstrating clinical efficacy and a manageable toxicity profile. CONCLUSIONS With no other treatments that are FDA approved specifically for ASPS, and few demonstrating efficacy in the advanced setting, the approval of atezolizumab, including the first approval for pediatric patients, represents a landmark improvement to the therapeutic arsenal against this rare disease.
Collapse
Affiliation(s)
- Emilie J Bergsma
- Department of Pharmacy, University of Florida Health Shands Hospital, Gainesville, FL, USA
| | - Mariam Elgawly
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
| | - David Mancuso
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
| | - Roger Orr
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
| | - Theresa Vuskovich
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
| | - Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Jacksonville, FL, USA
- Precision Medicine, Nemours Children's Health, Jacksonville, FL, USA
| |
Collapse
|
6
|
Fontebasso AM, Rytlewski JD, Blay JY, Gladdy RA, Wilky BA. Precision Oncology in Soft Tissue Sarcomas and Gastrointestinal Stromal Tumors. Surg Oncol Clin N Am 2024; 33:387-408. [PMID: 38401916 DOI: 10.1016/j.soc.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Soft tissue sarcomas (STSs), including gastrointestinal stromal tumors (GISTs), are mesenchymal neoplasms with heterogeneous clinical behavior and represent broad categories comprising multiple distinct biologic entities. Multidisciplinary management of these rare tumors is critical. To date, multiple studies have outlined the importance of biological characterization of mesenchymal tumors and have identified key molecular alterations which drive tumor biology. GIST has represented a flagship for targeted therapy in solid tumors with the advent of imatinib which has revolutionized the way we treat this malignancy. Herein, the authors discuss the importance of biological and molecular diagnostics in managing STS and GIST patients.
Collapse
Affiliation(s)
- Adam M Fontebasso
- Division of Surgical Oncology, Department of Surgery, University of Toronto, 700 University Avenue, 7th Floor, Ontario Power Generation Building, Toronto, Ontario, Canada; Department of Surgery, Mount Sinai Hospital, Sinai Health Systems, 600 University Avenue Room 6-445.10 Surgery, Toronto, Ontario M5G 1X5, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey D Rytlewski
- University of Colorado School of Medicine, 12801 East 17th Avenue, Mailstop 8117, Aurora, CO 80045, USA
| | - Jean-Yves Blay
- Centre Léon Bérard, 28, rue Laennec, 69373 cedex 08. Lyon, France
| | - Rebecca A Gladdy
- Division of Surgical Oncology, Department of Surgery, University of Toronto, 700 University Avenue, 7th Floor, Ontario Power Generation Building, Toronto, Ontario, Canada; Department of Surgery, Mount Sinai Hospital, Sinai Health Systems, 600 University Avenue Room 6-445.10 Surgery, Toronto, Ontario M5G 1X5, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Breelyn A Wilky
- University of Colorado School of Medicine, 12801 East 17th Avenue, Mailstop 8117, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Kumar S, Nayak B, Bharati V, Kaushal S, Sharma MC. Metastatic alveolar soft part sarcoma of the kidney in a young female. Indian J Urol 2024; 40:65-67. [PMID: 38314073 PMCID: PMC10836450 DOI: 10.4103/iju.iju_340_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024] Open
Abstract
A 19-year-old female presented with left flank discomfort and swelling. Imaging revealed a large mass arising from the left kidney, and radical nephrectomy confirmed the diagnosis of alveolar soft part sarcoma (ASPS) based on histopathological and ultrastructural examination. Postoperatively, positron emission tomography-computerized tomography showed lung metastasis and renal bed recurrence. Sunitinib was initiated for metastatic ASPS. This case underscores challenges in diagnosing and managing ASPS, highlighting the role of tyrosine kinase inhibitors. Multidisciplinary care and vigilant follow-up are crucial for rare tumors such as ASPS.
Collapse
Affiliation(s)
- Shritosh Kumar
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Brusabhanu Nayak
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Vandna Bharati
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kaushal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Hindi N, Razak A, Rosenbaum E, Jonczak E, Hamacher R, Rutkowski P, Bhadri VA, Skryd A, Brahmi M, Alshibany A, Jagodzinska-Mucha P, Bauer S, Connolly E, Gelderblom H, Boye K, Henon C, Bae S, Bogefors K, Vincenzi B, Martinez-Trufero J, Lopez-Martin JA, Redondo A, Valverde C, Blay JY, Moura DS, Gutierrez A, Tap W, Martin-Broto J. Efficacy of immune checkpoint inhibitors in alveolar soft-part sarcoma: results from a retrospective worldwide registry. ESMO Open 2023; 8:102045. [PMID: 38016251 PMCID: PMC10698259 DOI: 10.1016/j.esmoop.2023.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Conventional cytotoxic drugs are not effective in alveolar soft-part sarcoma (ASPS). Immune checkpoint (programmed cell death protein 1/programmed death-ligand 1) inhibitors (ICIs) are promising drugs in ASPS. A worldwide registry explored the efficacy of ICI in ASPS. MATERIALS AND METHODS Data from adult patients diagnosed with ASPS and treated with ICI for advanced disease in expert sarcoma centers from Europe, Australia and North America were retrospectively collected, including demographics and data related to treatments and outcome. RESULTS Seventy-six ASPS patients, with a median age at diagnosis of 25 years (range 3-61 years), were registered. All patients received ICI for metastatic disease. Immunotherapy regimens consisted of monotherapy in 38 patients (50%) and combination in 38 (50%) (23 with a tyrosine kinase inhibitor). Among the 68 assessable patients, there were 3 complete responses and 34 partial responses, translating into an overall response rate of 54.4%. After a median follow-up of 36 months [95% confidence interval (CI) 32-40 months] since the start of immunotherapy, 45 (59%) patients have progressed on ICI, with a median progression-free survival (PFS) of 16.3 months (95% CI 8-25 months). Receiving ICI in first line (P = 0.042) and achieving an objective response (P = 0.043) correlated with a better PFS. Median estimated overall survival (OS) from ICI initiation has not been reached. The 12-month and 24-month OS rates were 94% and 81%, respectively. CONCLUSIONS This registry constitutes the largest available series of ASPS treated with ICI. Our results suggest that the ICI treatment provides long-lasting disease control and prolonged OS in patients with advanced ASPS, an ultra-rare entity with limited active therapeutic options.
Collapse
Affiliation(s)
- N Hindi
- Medical Oncology Department, Fundacion Jimenez Diaz University Hospital and Hospital General de Villalba, Madrid; Instituto de Investigación Sanitaria-Fundación Jimenez Díaz-UAM (IIS-FJD-UAM), Madrid, Spain.
| | - A Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - E Rosenbaum
- Memorial Sloan Kettering Cancer Center, New York
| | - E Jonczak
- Department of Hematology Oncology, Miami University, Miami, USA
| | - R Hamacher
- Medical Oncology Department, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - P Rutkowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - V A Bhadri
- Medical Oncology Department, Chris O Brien Lifehouse, Sydney, Australia
| | - A Skryd
- Miller School of Medicine, University of Miami, Miami, USA
| | - M Brahmi
- Centre Leon Berard & University Claude Bernard Lyon 1, Lyon, France
| | - A Alshibany
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - P Jagodzinska-Mucha
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - S Bauer
- Medical Oncology Department, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - E Connolly
- Medical Oncology Department, Chris O Brien Lifehouse, Sydney, Australia
| | - H Gelderblom
- Medical Oncology Department, Leiden University Medical Center, Leiden, The Netherlands
| | - K Boye
- Institute for Cancer Research, Oslo University Hospital, Oslo; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - C Henon
- Medical Oncology Department, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - S Bae
- Medical Oncology Department, Peter Mac Callum Center, Melbourne, Australia
| | - K Bogefors
- Department of Oncology, Skåne University Hospital and Lund University, Lund, Sweden
| | - B Vincenzi
- Medical Oncology Department, University Campus Bio-Medico, Rome, Italy
| | - J Martinez-Trufero
- Medical Oncology Department, Hospital Universitario Miguel Servet, Zaragoza
| | - J A Lopez-Martin
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Translational Oncology Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid
| | - A Redondo
- Medical Oncology Department, Hospital Universitario La Paz-IdiPAZ, Madrid
| | - C Valverde
- Medical Oncology Department, Hospital Universitario Vall d'Hebron, Barcelona
| | - J-Y Blay
- Centre Leon Berard & University Claude Bernard Lyon 1, Lyon, France
| | - D S Moura
- Instituto de Investigación Sanitaria-Fundación Jimenez Díaz-UAM (IIS-FJD-UAM), Madrid, Spain
| | - A Gutierrez
- Hematology Department, Hospital Universitario Son Espases, Palma, Spain
| | - W Tap
- Memorial Sloan Kettering Cancer Center, New York
| | - J Martin-Broto
- Medical Oncology Department, Fundacion Jimenez Diaz University Hospital and Hospital General de Villalba, Madrid; Instituto de Investigación Sanitaria-Fundación Jimenez Díaz-UAM (IIS-FJD-UAM), Madrid, Spain
| |
Collapse
|
9
|
Fujiwara T, Kunisada T, Nakata E, Nishida K, Yanai H, Nakamura T, Tanaka K, Ozaki T. Advances in treatment of alveolar soft part sarcoma: an updated review. Jpn J Clin Oncol 2023; 53:1009-1018. [PMID: 37626447 PMCID: PMC10632598 DOI: 10.1093/jjco/hyad102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Alveolar soft part sarcoma is a rare neoplasm of uncertain histogenesis that belongs to a newly defined category of ultra-rare sarcomas. The neoplasm is characterized by a specific chromosomal translocation, der (17) t(X; 17)(p11.2;q25), that results in ASPSCR1-TFE3 gene fusion. The natural history of alveolar soft part sarcoma describes indolent behaviour with slow progression in deep soft tissues of the extremities, trunk and head/neck in adolescents and young adults. A high rate of detection of distant metastasis at presentation has been reported, and the most common metastatic sites in decreasing order of frequency are the lung, bone and brain. Complete surgical resection remains the standard treatment strategy, whereas radiotherapy is indicated for patients with inadequate surgical margins or unresectable tumours. Although alveolar soft part sarcoma is refractory to conventional doxorubicin-based chemotherapy, monotherapy or combination therapy using tyrosine kinase inhibitors and immune checkpoint inhibitors have provided antitumor activity and emerged as new treatment strategies. This article provides an overview of the current understanding of this ultra-rare sarcoma and recent advancements in treatments according to the clinical stage of alveolar soft part sarcoma.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Nishida
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University, Tsu, Japan
| | - Kazuhiro Tanaka
- Department of Advanced Medical Sciences, Oita University, Yufu, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
10
|
Chen AP, Sharon E, O'Sullivan-Coyne G, Moore N, Foster JC, Hu JS, Van Tine BA, Conley AP, Read WL, Riedel RF, Burgess MA, Glod J, Davis EJ, Merriam P, Naqash AR, Fino KK, Miller BL, Wilsker DF, Begum A, Ferry-Galow KV, Deshpande HA, Schwartz GK, Ladle BH, Okuno SH, Beck JC, Chen JL, Takebe N, Fogli LK, Rosenberger CL, Parchment RE, Doroshow JH. Atezolizumab for Advanced Alveolar Soft Part Sarcoma. N Engl J Med 2023; 389:911-921. [PMID: 37672694 PMCID: PMC10729808 DOI: 10.1056/nejmoa2303383] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
BACKGROUND Alveolar soft part sarcoma (ASPS) is a rare soft-tissue sarcoma with a poor prognosis and no established therapy. Recently, encouraging responses to immune checkpoint inhibitors have been reported. METHODS We conducted an investigator-initiated, multicenter, single-group, phase 2 study of the anti-programmed death ligand 1 (PD-L1) agent atezolizumab in adult and pediatric patients with advanced ASPS. Atezolizumab was administered intravenously at a dose of 1200 mg (in patients ≥18 years of age) or 15 mg per kilogram of body weight with a 1200-mg cap (in patients <18 years of age) once every 21 days. Study end points included objective response, duration of response, and progression-free survival according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, as well as pharmacodynamic biomarkers of multistep drug action. RESULTS A total of 52 patients were evaluated. An objective response was observed in 19 of 52 patients (37%), with 1 complete response and 18 partial responses. The median time to response was 3.6 months (range, 2.1 to 19.1), the median duration of response was 24.7 months (range, 4.1 to 55.8), and the median progression-free survival was 20.8 months. Seven patients took a treatment break after 2 years of treatment, and their responses were maintained through the data-cutoff date. No treatment-related grade 4 or 5 adverse events were recorded. Responses were noted despite variable baseline expression of programmed death 1 and PD-L1. CONCLUSIONS Atezolizumab was effective at inducing sustained responses in approximately one third of patients with advanced ASPS. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT03141684.).
Collapse
Affiliation(s)
- Alice P Chen
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Elad Sharon
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Geraldine O'Sullivan-Coyne
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Nancy Moore
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Jared C Foster
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - James S Hu
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Brian A Van Tine
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Anthony P Conley
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - William L Read
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Richard F Riedel
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Melissa A Burgess
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - John Glod
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Elizabeth J Davis
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Priscilla Merriam
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Abdul R Naqash
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Kristin K Fino
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Brandon L Miller
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Deborah F Wilsker
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Asma Begum
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Katherine V Ferry-Galow
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Hari A Deshpande
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Gary K Schwartz
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Brian H Ladle
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Scott H Okuno
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Jill C Beck
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - James L Chen
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Naoko Takebe
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Laura K Fogli
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Christina L Rosenberger
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - Ralph E Parchment
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| | - James H Doroshow
- From the Division of Cancer Treatment and Diagnosis (A.P. Chen, E.S., G.O.-C., N.M., J.C.F., A.R.N., N.T., L.K.F., C.L.R., J.H.D.) and the Center for Cancer Research (J.G., J.H.D.), National Cancer Institute, Bethesda, the Clinical Pharmacodynamics Biomarker Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick (K.K.F., B.L.M., D.F.W., A.B., K.V.F.-G., R.E.P.), and the Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore (B.H.L.) - all in Maryland; the Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles (J.S.H.); the Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis (B.A.V.T.); the University of Texas M.D. Anderson Cancer Center, Houston (A.P. Conley); Emory University, Atlanta (W.L.R.); Duke Cancer Institute, Duke University Medical Center, Durham, NC (R.F.R.); University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh (M.A.B.); the Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville (E.J.D.); the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston (P.M.); the Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT (H.A.D.); the Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York (G.K.S.); Mayo Clinic, Rochester, MN (S.H.O.); the Division of Pediatric Hematology-Oncology, University of Nebraska Medical Center, Omaha (J.C.B.); the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus (J.L.C.); and Stephenson Cancer Center at the University of Oklahoma, Oklahoma City (A.R.N.)
| |
Collapse
|
11
|
Kobayashi K, Hanai N, Yoshimoto S, Saito Y, Homma A. Current topics and management of head and neck sarcomas. Jpn J Clin Oncol 2023; 53:743-756. [PMID: 37309253 PMCID: PMC10533342 DOI: 10.1093/jjco/hyad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
Given the low incidence, variety of histological types, and heterogeneous biological features of head and neck sarcomas, there is limited high-quality evidence available to head and neck oncologists. For resectable sarcomas, surgical resection followed by radiotherapy is the principle of local treatment, and perioperative chemotherapy is considered for chemotherapy-sensitive sarcomas. They often originate in anatomical border areas such as the skull base and mediastinum, and they require a multidisciplinary treatment approach considering functional and cosmetic impairment. Moreover, head and neck sarcomas may exhibit different behaviour and characteristics than sarcomas of other areas. In recent years, the molecular biological features of sarcomas have been used for the pathological diagnosis and development of novel agents. This review describes the historical background and recent topics that head and neck oncologists should know about this rare tumour from the following five perspectives: (i) epidemiology and general characteristics of head and neck sarcomas; (ii) changes in histopathological diagnosis in the genomic era; (iii) current standard treatment by histological type and clinical questions specific to head and neck; (iv) new drugs for advanced and metastatic soft tissue sarcomas; and (v) proton and carbon ion radiotherapy for head and neck sarcomas.
Collapse
Affiliation(s)
- Kenya Kobayashi
- Department of Otolaryngology–Head and Neck Surgery, University of Tokyo, Tokyo
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo
| | - Yuki Saito
- Department of Otolaryngology–Head and Neck Surgery, University of Tokyo, Tokyo
| | - Akihiro Homma
- Department of Otolaryngology–Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Ahn WK, Hahn SM, Yoon HI, Kim SH, Kim SK, Lyu CJ, Han JW. Sustained deep partial response with axitinib and pembrolizumab in a patient with alveolar soft-part sarcoma: A case report and review of the literature. Pediatr Blood Cancer 2023:e30491. [PMID: 37335266 DOI: 10.1002/pbc.30491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Won Kee Ahn
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
- Department of Pediatric Hemato-Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | - Seung Min Hahn
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
- Department of Pediatric Hemato-Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Seung Hyun Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Chuhl Joo Lyu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
- Department of Pediatric Hemato-Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | - Jung Woo Han
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
- Department of Pediatric Hemato-Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| |
Collapse
|
13
|
Tanaka M, Chuaychob S, Homme M, Yamazaki Y, Lyu R, Yamashita K, Ae K, Matsumoto S, Kumegawa K, Maruyama R, Qu W, Miyagi Y, Yokokawa R, Nakamura T. ASPSCR1::TFE3 orchestrates the angiogenic program of alveolar soft part sarcoma. Nat Commun 2023; 14:1957. [PMID: 37029109 PMCID: PMC10082046 DOI: 10.1038/s41467-023-37049-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2023] [Indexed: 04/09/2023] Open
Abstract
Alveolar soft part sarcoma (ASPS) is a soft part malignancy affecting adolescents and young adults. ASPS is characterized by a highly integrated vascular network, and its high metastatic potential indicates the importance of ASPS's prominent angiogenic activity. Here, we find that the expression of ASPSCR1::TFE3, the fusion transcription factor causatively associated with ASPS, is dispensable for in vitro tumor maintenance; however, it is required for in vivo tumor development via angiogenesis. ASPSCR1::TFE3 is frequently associated with super-enhancers (SEs) upon its DNA binding, and the loss of its expression induces SE-distribution dynamic modification related to genes belonging to the angiogenesis pathway. Using epigenomic CRISPR/dCas9 screening, we identify Pdgfb, Rab27a, Sytl2, and Vwf as critical targets associated with reduced enhancer activities due to the ASPSCR1::TFE3 loss. Upregulation of Rab27a and Sytl2 promotes angiogenic factor-trafficking to facilitate ASPS vascular network construction. ASPSCR1::TFE3 thus orchestrates higher ordered angiogenesis via modulating the SE activity.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Surachada Chuaychob
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Mizuki Homme
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Cell Biology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yukari Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ruyin Lyu
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kyoko Yamashita
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keisuke Ae
- Department of Orthopedic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Matsumoto
- Department of Orthopedic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Wei Qu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
14
|
Pena-Burgos EM, Pozo-Kreilinger JJ, Tapia-Viñe M, Redondo A, Mendiola-Sabio M, Ortiz-Cruz EJ. Primary intraosseous alveolar soft part sarcoma: Report of two cases with radiologic-pathologic correlation. Ann Diagn Pathol 2023; 62:152078. [PMID: 36543620 DOI: 10.1016/j.anndiagpath.2022.152078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Alveolar soft part sarcoma (ASPS) accounts for less than 1 % of all soft tissue sarcomas. ASPS presents a poor prognosis and develops frequent metastases, especially in the lungs, brain and bones. Current therapies, such as surgery, radiotherapy and chemotherapy, are not fully effective and other alternative treatments are currently being studied. ASPS is predominantly found in the deep soft tissues of the lower extremities. To our knowledge, only thirteen primary intraosseous ASPS have been reported in the literature. In this study, we report two new cases of this exceedingly rare entity. Both cases already had multiple metastases since diagnosis; one of them represents the first case of a primary bone ASPS in the ulna and is also the primary intraosseous ASPS with the longest reported case of survival, after having maintained long periods of stabilization despite not having received any systemic treatment.
Collapse
Affiliation(s)
| | | | - M Tapia-Viñe
- La Paz University Hospital, Radiology Department, Spain
| | - A Redondo
- La Paz University Hospital, Medical Oncology Department, Spain
| | - M Mendiola-Sabio
- La Paz University Hospital, Molecular Pathology and Therapeutic Targets Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), Spain
| | - E J Ortiz-Cruz
- La Paz University Hospital, Orthopaedics and Traumatology Department, Spain
| |
Collapse
|
15
|
Philip DSJ, Bajpai J. How I Treat Alveolar Soft Part Sarcoma? The Therapeutic Journey from Nihilism to Cautious Optimism…. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1758540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Affiliation(s)
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
| |
Collapse
|
16
|
Cojocaru E, Napolitano A, Fisher C, Huang P, Jones RL, Thway K. What's the latest with investigational drugs for soft tissue sarcoma? Expert Opin Investig Drugs 2022; 31:1239-1253. [PMID: 36424693 DOI: 10.1080/13543784.2022.2152324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Despite extensive research undertaken in the past 20-30 years, the treatment for soft tissue sarcoma (STS) has remained largely the same, with anthracycline-based chemotherapy remaining the first choice for treating advanced or metastatic STS. AREAS COVERED This review focuses on newly approved drugs for STS and current research directions, including recent results of late-phase trials in patients with STS. We cover several different histological subtypes, and we discuss the role of adoptive cell transfer (ACT) therapies for the treatment of synovial and myxoid/round cell (high-grade myxoid) liposarcoma, one of the most promising areas of treatment development to date. We searched clinicaltrials.gov and pubmed.ncbi.nih.gov, as well as recent year proceedings from the annual conferences of the American Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), and Connective Tissue Oncology Society (CTOS). EXPERT OPINION Immune-oncology drugs (IOs) show promise in certain subtypes of STS, but it is recognized that PD-1/PD-L1 axis inhibition is not enough on its own. Better trial stratifications based on the molecular categorization of different subtypes of STS are needed, and more evidence suggests that 'one size fits all' treatment is no longer sustainable in this heterogeneous and aggressive group of tumors.
Collapse
Affiliation(s)
- Elena Cojocaru
- Cancer Genetic Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK.,Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK
| | - Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK
| | - Cyril Fisher
- Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Paul Huang
- Protein Networks Team, Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, UK
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK.,Protein Networks Team, Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, UK
| | - Khin Thway
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK.,Protein Networks Team, Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, UK
| |
Collapse
|
17
|
Stacchiotti S, Maria Frezza A, Demetri GD, Blay JY, Bajpai J, Baldi GG, Baldini EH, Benjamin RS, Bonvalot S, Bovée JVMG, Callegaro D, Casali PG, D'Angelo SP, Davis EJ, Dei Tos AP, Demicco EG, Desai J, Dileo P, Eriksson M, Gelderblom H, George S, Gladdy RA, Gounder MM, Gupta AA, Haas R, Hayes A, Hohenberger P, Jones KB, Jones RL, Kasper B, Kawai A, Kirsch DG, Kleinerman ES, Le Cesne A, Maestro R, Martin Broto J, Maki RG, Miah AB, Palmerini E, Patel SR, Raut CP, Razak ARA, Reed DR, Rutkowski P, Sanfilippo RG, Sbaraglia M, Schaefer IM, Strauss DC, Strauss SJ, Tap WD, Thomas DM, Trama A, Trent JC, van der Graaf WTA, van Houdt WJ, von Mehren M, Wilky BA, Fletcher CDM, Gronchi A, Miceli R, Wagner AJ. Retrospective observational studies in ultra-rare sarcomas: A consensus paper from the Connective Tissue Oncology Society (CTOS) community of experts on the minimum requirements for the evaluation of activity of systemic treatments. Cancer Treat Rev 2022; 110:102455. [PMID: 36031697 DOI: 10.1016/j.ctrv.2022.102455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND In ultra-rare sarcomas (URS) the conduction of prospective, randomized trials is challenging. Data from retrospective observational studies (ROS) may represent the best evidence available. ROS implicit limitations led to poor acceptance by the scientific community and regulatory authorities. In this context, an expert panel from the Connective Tissue Oncology Society (CTOS), agreed on the need to establish a set of minimum requirements for conducting high-quality ROS on the activity of systemic therapies in URS. METHODS Representatives from > 25 worldwide sarcoma reference centres met in November 2020 and identified a list of topics summarizing the main issues encountered in ROS on URS. An online survey on these topics was distributed to the panel; results were summarized by descriptive statistics and discussed during a second meeting (November 2021). RESULTS Topics identified by the panel included the use of ROS results as external control data, the criteria for contributing centers selection, modalities for ensuring a correct pathological diagnosis and radiologic assessment, consistency of surveillance policies across centers, study end-points, risk of data duplication, results publication. Based on the answers to the survey (55 of 62 invited experts) and discussion the panel agreed on 18 statements summarizing principles of recommended practice. CONCLUSIONS These recommendations will be disseminated by CTOS across the sarcoma community and incorporated in future ROS on URS, to maximize their quality and favor their use as control data when results from prospective studies are unavailable. These recommendations could help the optimal conduction of ROS also in other rare tumors.
Collapse
Affiliation(s)
- Silvia Stacchiotti
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale Tumori (INT), 20133 Milan, Italy.
| | - Anna Maria Frezza
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale Tumori (INT), 20133 Milan, Italy
| | - George D Demetri
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jean-Yves Blay
- Department of Medicine, Centre Léon Bérard, Université Claude Bernard Lyon I, Unicancer, 69008 Lyon, France
| | - Jyoti Bajpai
- Medical Oncology Department, Tata Memorial Centre, Homi Bhabha National Institute, 400012 Mumbai, India
| | - Giacomo G Baldi
- Department of Medical Oncology, Ospedale Santo Stefano, 59100, Prato, Italy
| | - Elizabeth H Baldini
- Department of Radiation Oncology, Dana-Farber Cancer Institute/ Brigham and Women's Hospital, Boston 02215, MA, USA
| | - Robert S Benjamin
- Department of Sarcoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, TX, USA
| | - Sylvie Bonvalot
- Department of Surgical Oncology, Institut Curie, Université Paris Sciences et Lettres, 75005, France
| | - Judith V M G Bovée
- Departmen of Pathology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | | | - Paolo G Casali
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale Tumori (INT), 20133 Milan, Italy
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 10065, New York, NY, USA
| | - Elizabeth J Davis
- Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Angelo P Dei Tos
- Department of Pathology, Azienda Ospedaliera Università Padova, 35129, Padova, Italy
| | - Elizabeth G Demicco
- Department of Laboratory Medicine and Pathobiology, University of Toronto & Pathology and Laboratory Medicine Mount Sinai Hospital, ON M5G 1X5, Toronto, Canada
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia
| | - Palma Dileo
- Soft tissue and bone sarcoma service, University College Hospital, UCLH NHS Trust, NW1 2BU, London, United Kingdom
| | - Mikael Eriksson
- Department of Oncology, Skåne University Hospital, and Lund University, 222 42, Lund, Sweden
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Suzanne George
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca A Gladdy
- Mount Sinai Hospital, Princess Margaret Hospital, University of Toronto, ON M5G 1X5, Toronto, ON, Canada
| | - Mrinal M Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 10065, New York, NY, USA
| | - Abha A Gupta
- The Hospital for Sick Children and Princess Margaret Cancer Center, University of Toronto, ON M5G 2C1, Toronto, Canada
| | - Rick Haas
- Department of Radiotherapy, the Netherlands Cancer Institute, 1066 CX, Amsterdam and the Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Andrea Hayes
- Department of Surgery, the Royal Marsden NHS Foundation Trust, SW3 6JJ, London, United Kingdom
| | - Peter Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, Mannheim University Medical Center, Medical Faculty Mannheim, University of Heidelberg, 69117 Heidelberg, Germany
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, UT 84112, Salt Lake City, USA
| | - Robin L Jones
- Sarcoma Unit, the Royal Marsden NHS Foundation Trust and Institute of Cancer Research, SW3 6JJ, London, United Kingdom
| | - Bernd Kasper
- Sarcoma Unit, Mannheim Cancer Center (MCC), Mannheim University Medical Center, University of Heidelberg, 68167 Mannheim, Germany
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, NC 27710 Durham, USA
| | - Eugenie S Kleinerman
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, 77030 Huston, TX, USA
| | - Axel Le Cesne
- Medical Oncology, Insitut Gustave Roussy, 94805 Villejuif, Ile-de-France, France
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, 33081 Aviano, Italy
| | - Javier Martin Broto
- Medical Oncology Department, University Hospital Fundacion Jimenez Diaz, University Hospital General de Villalba and Instituto de Investigacion Sanitaria FJD, 28040 Madrid, Spain
| | - Robert G Maki
- Abramson Cancer Center, University of Pennsylvania, 19104 Philadelphia, PA, USA
| | - Aisha B Miah
- Department of Radiation Therapy, the Royal Marsden NHS Foundation Trust, SW3 6JJ, London, United Kingdom
| | - Emanuela Palmerini
- Osteoncology, Soft Tissue and Bone Sarcoma and Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Shreaskumar R Patel
- Department of Sarcoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, TX, USA
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Center for Sarcoma and Bone Oncology, DFCC, Harvard Medical School, Boston 02215, MA, USA
| | | | - Damon R Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, FL 33612, Tampa, FL, USA
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001, Warsaw, Poland
| | - Roberta G Sanfilippo
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale Tumori (INT), 20133 Milan, Italy
| | - Marta Sbaraglia
- Department of Pathology, Azienda Ospedaliera Università Padova, 35129, Padova, Italy
| | - Inga-Marie Schaefer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, MA 02215, Boston, MA, USA
| | - Dirk C Strauss
- Department of Surgery, The Royal Marsden Hospital and The Institute of Cancer Research, SW3 6JJ, London, the United Kingdom of Great Britain and Northern Ireland
| | - Sandra J Strauss
- Soft tissue and bone sarcoma service, University College Hospital, UCLH NHS Trust, NW1 2BU, London, United Kingdom
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 10065, New York, NY, USA
| | - David M Thomas
- Garvan Institute of Medical Research, NSW 2010, Sydney, Australia
| | - Annalisa Trama
- Department of Research, Evaluative Epidemiology Unit, INT, 20133 Milan, Italy
| | - Jonathan C Trent
- Sylvester Comprehensive Cancer Center, University of Miami, 33136 Miami, FL, USA
| | | | - Winan J van Houdt
- Department of Surgical Oncology, the Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Margaret von Mehren
- Department of Hematology and Oncology, Fox Chase Cancer Center, 19111 Philadelphia, PA, USA
| | - Breelyn A Wilky
- Department of Medical Oncology, University of Colorado Cancer Center, 80045 Aurora, CO, USA
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, MA 02215, Boston, MA, USA
| | | | - Rosalba Miceli
- Unit of Clinical Epidemiology and Trial Organization, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Andrew J Wagner
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
18
|
Fujiwara T, Nakata E, Kunisada T, Ozaki T, Kawai A. Alveolar soft part sarcoma: progress toward improvement in survival? A population-based study. BMC Cancer 2022; 22:891. [PMID: 35971085 PMCID: PMC9377116 DOI: 10.1186/s12885-022-09968-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Alveolar soft part sarcoma (ASPS) is a rare histological subtype of soft-tissue sarcoma, which remains refractory to conventional cytotoxic chemotherapy. We aimed to characterize ASPS and investigate whether the oncological outcome has improved over the past decade. Methods One hundred and twenty patients with newly diagnosed ASPS from 2006 to 2017, identified from the Bone and Soft-Tissue Tumor Registry in Japan, were analyzed retrospectively. Results The study cohort comprised 34 (28%) patients with localized ASPS and 86 (72%) with metastatic disease at presentation. The 5-year disease-specific survival (DSS) was 68% for all patients and 86% and 62% for localized and metastatic disease, respectively (p = 0.019). Metastasis at presentation was the only adverse prognostic factor for DSS (hazard ratio [HR]: 7.65; p = 0.048). Patients who were > 25 years (80%; p = 0.023), had deep-seated tumors (75%; p = 0.002), and tumors > 5 cm (5–10 cm, 81%; > 10 cm, 81%; p < 0.001) were more likely to have metastases at presentation. In patients with localized ASPS, adjuvant chemotherapy or radiotherapy did not affect survival, and 13 patients (45%) developed distant metastases in the lung (n = 12, 92%) and brain (n = 2, 15%). In patients with metastatic ASPS (lung, n = 85 [99%]; bone, n = 12 [14%]; and brain n = 9 [11%]), surgery for the primary or metastatic site did not affect survival. Prolonged survival was seen in patients who received pazopanib treatment (p = 0.045), but not in those who received doxorubicin-based cytotoxic chemotherapy. Overall, improved DSS for metastatic ASPS has been observed since 2012 (5-year DSS, from 58 to 65%) when pazopanib was approved for advanced diseases, although without a statistically significant difference (p = 0.117). Conclusion The national study confirmed a unique feature of ASPS with frequent metastasis to the lung and brain but an indolent clinical course. An overall trend toward prolonged survival after the introduction of targeted therapy encourages continuous efforts to develop novel therapeutic options for this therapeutically resistant soft-tissue sarcoma.
Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09968-5.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| |
Collapse
|
19
|
von Mehren M, Kane JM, Agulnik M, Bui MM, Carr-Ascher J, Choy E, Connelly M, Dry S, Ganjoo KN, Gonzalez RJ, Holder A, Homsi J, Keedy V, Kelly CM, Kim E, Liebner D, McCarter M, McGarry SV, Mesko NW, Meyer C, Pappo AS, Parkes AM, Petersen IA, Pollack SM, Poppe M, Riedel RF, Schuetze S, Shabason J, Sicklick JK, Spraker MB, Zimel M, Hang LE, Sundar H, Bergman MA. Soft Tissue Sarcoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022; 20:815-833. [PMID: 35830886 PMCID: PMC10186762 DOI: 10.6004/jnccn.2022.0035] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Soft tissue sarcomas (STS) are rare malignancies of mesenchymal cell origin that display a heterogenous mix of clinical and pathologic characteristics. STS can develop from fat, muscle, nerves, blood vessels, and other connective tissues. The evaluation and treatment of patients with STS requires a multidisciplinary team with demonstrated expertise in the management of these tumors. The complete NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Soft Tissue Sarcoma provide recommendations for the diagnosis, evaluation, and treatment of extremity/superficial trunk/head and neck STS, as well as retroperitoneal/intra-abdominal STS, desmoid tumors, and rhabdomyosarcoma. This portion of the NCCN Guidelines discusses general principles for the diagnosis and treatment of retroperitoneal/intra-abdominal STS, outlines treatment recommendations, and reviews the evidence to support the guidelines recommendations.
Collapse
Affiliation(s)
| | | | | | | | | | - Edwin Choy
- Massachusetts General Hospital Cancer Center
| | - Mary Connelly
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Sarah Dry
- UCLA Jonsson Comprehensive Cancer Center
| | | | | | | | - Jade Homsi
- UT Southwestern Simmons Comprehensive Cancer Center
| | | | | | - Edward Kim
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - David Liebner
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | - Nathan W Mesko
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Christian Meyer
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Alberto S Pappo
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | | | | | - Seth M Pollack
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | - Jacob Shabason
- Abramson Cancer Center at the University of Pennsylvania
| | | | - Matthew B Spraker
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | - Melissa Zimel
- UCSF Helen Diller Family Comprehensive Cancer Center; and
| | | | | | | |
Collapse
|
20
|
Li Y, Liu Y, Qu Y, Chen X, Qu X, Ye Y, Du X, Cheng Y, Xu M, Zhang H. Case Report: Two Cases of Soft-Tissue Sarcomas: High TMB as a Potential Predictive Biomarker for Anlotinib Combined With Toripalimab Therapy. Front Immunol 2022; 13:832593. [PMID: 35603147 PMCID: PMC9120574 DOI: 10.3389/fimmu.2022.832593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Soft-tissue sarcomas (STS), with over 100 different histologic subtypes, are rare tumors that account for 1% of all adult malignancies. Immune checkpoint inhibitors (ICIs) display certain benefits in some subtypes, especially in undifferentiated pleomorphic sarcoma (UPS), alveolar soft part sarcoma (ASPS), and leiomyosarcoma (LMS). However, efficacy is difficult to predict. High tumor mutational burden (TMB-H) and programmed death-ligand 1 (PD-L1) expression are the strongest features associated with the efficacy of immunotherapy, although they are rarely found in STS patients. Until now, whether or not PD-L1 expression and TMB are related to the efficacy of immunotherapy has not been determined. In this study, we report data obtained from two STS patients, one ASPS and one UPS with a high TMB, that benefited from anlotinib combined with toripalimab following resistance to anlotinib monotherapy. A 26 year-old female patient was diagnosed with ASPS. PD-L1 was negative. Next generation sequencing (NSG) revealed ASPSCR1-TFE3 fusion and TMB-H. Following eight months of anlotinib monotherapy, the patient’s disease progressed but continued to benefit from subsequent use of anlotinib combined with toripalimab for 19 months. Another 63 year-old male patient was diagnosed with UPS. PD-L1 was positive and NGS revealed TMB-H. Following 19 months of anlotinib monotherapy, the patient’s disease progressed but continued to benefit from subsequent use of anlotinib combined with toripalimab. DFS is 23 months to follow-up time. The results presented are the first to report the relationship between TMB and the efficacy of immunotherapy in STS. Based on our results, we hypothesis that anlotinib combined with toripalimab is effective for the treatment of some advanced ASPS or UPS. TMB may be a potential predictive biomarker for ICI treatment and deserves additional study.
Collapse
Affiliation(s)
- Yong Li
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Yong Li, ; Haibo Zhang,
| | - Yihong Liu
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanchun Qu
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xian Chen
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xin Qu
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yongsong Ye
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaohua Du
- Department of Pathology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ying Cheng
- Department of Medical, Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Mian Xu
- Department of Medical, Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Haibo Zhang
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Yong Li, ; Haibo Zhang,
| |
Collapse
|
21
|
Blay JY, Hindi N, Bollard J, Aguiar S, Angel M, Araya B, Badilla R, Bernabeu D, Campos F, Caro-Sánchez CHS, Carvajal B, Carvajal Montoya A, Casavilca-Zambrano S, Castro-Oliden V, Chacón M, Clara M, Collini P, Correa Genoroso R, Costa FD, Cuellar M, Dei Tos AP, Dominguez Malagon HR, Donati D, Dufresne A, Eriksson M, Farias-Loza M, Fernandez P, Frezza AM, Frisoni T, Garcia-Ortega DY, Gelderblom H, Gouin F, Gómez-Mateo MC, Gronchi A, Haro J, Huanca L, Jimenez N, Karanian M, Kasper B, Lopes David BB, Lopez-Pousa A, Lutter G, Martinez-Said H, Martinez-Tlahuel J, Mello CA, Morales Pérez JM, Moura David S, Nascimento AG, Ortiz-Cruz EJ, Palmerini E, Patel S, Pfluger Y, Provenzano S, Righi A, Rodriguez A, Salas R, Santos TTG, Scotlandi K, Soule T, Stacchiotti S, Valverde C, Waisberg F, Zamora Estrada E, Martin-Broto J. SELNET clinical practice guidelines for soft tissue sarcoma and GIST. Cancer Treat Rev 2022; 102:102312. [PMID: 34798363 DOI: 10.1016/j.ctrv.2021.102312] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022]
Affiliation(s)
- J Y Blay
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France.
| | - N Hindi
- Research Health Institute Fundacion Jimenez Diaz (IIS/FJD), 28015 Madrid, Spain; Hospital Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain; General de Villalba University Hospital, 28400 Madrid, Spain
| | - J Bollard
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - S Aguiar
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo - SP 01509-010, Brazil
| | - M Angel
- Instituto Alexander Fleming. Av. Cramer 1180. CP C1426ANZ, Buenos Aires, Argentina
| | - B Araya
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - R Badilla
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - D Bernabeu
- Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - F Campos
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo - SP 01509-010, Brazil
| | - C H S Caro-Sánchez
- Instituto Nacional de Cancerologia. Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP 14080, Tlalpan Mexico
| | - B Carvajal
- Fundación GIST México, Altadena 59, Nápoles, Benito Juárez, 03810 Ciudad de Mexico, CDMX, Mexico
| | - A Carvajal Montoya
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - S Casavilca-Zambrano
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima 34, Peru
| | - V Castro-Oliden
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima 34, Peru
| | - M Chacón
- Instituto Alexander Fleming. Av. Cramer 1180. CP C1426ANZ, Buenos Aires, Argentina
| | - M Clara
- Instituto Nacional de Cancerologia. Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP 14080, Tlalpan Mexico
| | - P Collini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - R Correa Genoroso
- Hospital Clínico Universitario Virgen de la Victoria, Campus Universitario de Teatinos s/n, 29010 Malaga, Spain
| | - F D Costa
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo - SP 01509-010, Brazil
| | - M Cuellar
- Fundación GIST México, Altadena 59, Nápoles, Benito Juárez, 03810 Ciudad de Mexico, CDMX, Mexico
| | - A P Dei Tos
- Treviso General Hospital Treviso, University of Padua, Padova, Italy
| | - H R Dominguez Malagon
- Instituto Nacional de Cancerologia. Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP 14080, Tlalpan Mexico
| | - D Donati
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136 Bologna, Italy
| | - A Dufresne
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - M Eriksson
- Skane University Hospital and Lund University, Lund, Sweden
| | - M Farias-Loza
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima 34, Peru
| | | | - A M Frezza
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - T Frisoni
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136 Bologna, Italy
| | - D Y Garcia-Ortega
- Instituto Nacional de Cancerologia. Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP 14080, Tlalpan Mexico
| | - H Gelderblom
- Leiden University Medical Center, Leiden, the Netherlands
| | - F Gouin
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - M C Gómez-Mateo
- Hospital Universitario Miguel Servet, Paseo Isabel la Católica, 1-3, 50009 Zaragoza, Spain
| | - A Gronchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - J Haro
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima 34, Peru
| | - L Huanca
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima 34, Peru
| | - N Jimenez
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - M Karanian
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - B Kasper
- University of Heidelberg, Mannheim Cancer Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - B B Lopes David
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - A Lopez-Pousa
- Hospital de la Santa Creu i Sant Pau, Carrer de Sant Quintí, 89, 08041 Barcelona, Espagne
| | - G Lutter
- Instituto Alexander Fleming. Av. Cramer 1180. CP C1426ANZ, Buenos Aires, Argentina
| | - H Martinez-Said
- Centro Oncologico Integral, Hospital Medica Sur, Planta Baja Torre III - Cons. 305, Col. Toriello Guerra, Deleg. Tlalpan. C.P. 14050, Mexico, D.F
| | - J Martinez-Tlahuel
- Instituto Nacional de Cancerologia. Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP 14080, Tlalpan Mexico
| | - C A Mello
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo - SP 01509-010, Brazil
| | - J M Morales Pérez
- Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain
| | - S Moura David
- Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain
| | - A G Nascimento
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo - SP 01509-010, Brazil
| | - E J Ortiz-Cruz
- Hospital Universitario La Paz, MD Anderson Cancer Center, Calle de Arturo Soria, 270 28033 Madrid, Spain
| | - E Palmerini
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136 Bologna, Italy
| | - S Patel
- UT MD Anderson Cancer Center, Houston, TX, USA
| | - Y Pfluger
- Instituto Alexander Fleming. Av. Cramer 1180. CP C1426ANZ, Buenos Aires, Argentina
| | - S Provenzano
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - A Righi
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136 Bologna, Italy
| | - A Rodriguez
- Instituto Alexander Fleming. Av. Cramer 1180. CP C1426ANZ, Buenos Aires, Argentina
| | - R Salas
- Fundación GIST México, Altadena 59, Nápoles, Benito Juárez, 03810 Ciudad de Mexico, CDMX, Mexico
| | - T T G Santos
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo - SP 01509-010, Brazil
| | - K Scotlandi
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136 Bologna, Italy
| | - T Soule
- Instituto Alexander Fleming. Av. Cramer 1180. CP C1426ANZ, Buenos Aires, Argentina
| | - S Stacchiotti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - C Valverde
- Vall d́Hebrón University Hospital, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain
| | - F Waisberg
- Instituto Alexander Fleming. Av. Cramer 1180. CP C1426ANZ, Buenos Aires, Argentina
| | - E Zamora Estrada
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - J Martin-Broto
- Research Health Institute Fundacion Jimenez Diaz (IIS/FJD), 28015 Madrid, Spain; Hospital Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain; General de Villalba University Hospital, 28400 Madrid, Spain
| |
Collapse
|
22
|
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front Immunol 2021; 12:775761. [PMID: 34925348 PMCID: PMC8678134 DOI: 10.3389/fimmu.2021.775761] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Elise F. Nassif
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- Département d’Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
23
|
Kataria B, Sharma A, Biswas B, Bakhshi S, Pushpam D. Pazopanib in rare histologies of metastatic soft tissue sarcoma. Ecancermedicalscience 2021; 15:1281. [PMID: 34824604 PMCID: PMC8580588 DOI: 10.3332/ecancer.2021.1281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 01/20/2023] Open
Abstract
Background Uncommon histopathological subtypes account for less than 5% cases of soft tissue sarcoma (STS) and unclassified STSs comprise another 16%, these are often chemotherapy-resistant, with a dismal outcome in unresectable/metastatic disease. Prospective studies on the use of pazopanib in this cohort of patients are lacking in the literature. Here, we describe the safety and efficacy of pazopanib in rare histologies of advanced STS. Materials and methods We conducted a retrospective study at two tertiary cancer centres in India, evaluating 33 cases of rare subtypes of STS, who received pazopanib as per institutional protocol between January 2013 and December 2019. Patients who received pazopanib for unresectable/metastatic disease were enrolled in this study for clinicopathologic features, treatment outcome and evaluation of prognostic factors. Results Out of 33 patients, there were seven cases of undifferentiated pleomorphic sarcoma, four cases each of myxofibrosarcoma, epithelioid sarcoma and malignant peripheral nerve sheath tumour, three cases each of haemangiopericytoma and spindle cell sarcoma, two cases of haemangioendothelioma and a case each of clear cell sarcoma, retroperitoneal sarcoma, angiosarcoma and pleomorphic rhabdomyosarcoma-adult type. The objective response rate was 27%. Most of the patients (67%) received pazopanib in second or subsequent lines of therapy. The majority (70%) were started at a lower dose of 400/600 mg and only 43% of these (10/23) could be escalated to a full dose of 800 mg based on tolerance. On univariate analysis, pazopanib’s starting dose didn’t predict progression-free survival (PFS)/overall survival (OS)/response rate. At a median duration of follow-up of 18.8 months (range 1.9–150.4 months), the median PFS and median OS were 10.3 months (95% confidence interval (CI): 5.9–14.8) and 17.8 months (95% CI: 10.7–29.3), respectively. 27% of the patients experienced grade ¾ toxicities, 12% required dose modification of pazopanib and 21% needed permanent discontinuation due to toxicity. Conclusion Our study shows that pazopanib is active in rare subtypes of STS.
Collapse
Affiliation(s)
- Babita Kataria
- Department of Medical Oncology, National Cancer Institute, Badsa, Jhajjar, Haryana, 124105, India
| | - Aparna Sharma
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India.,Equally contributed to this work
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, DH Block(Newtown),Action area I, Kolkata, West Bengal, 700160, India
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India
| | - Deepam Pushpam
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India
| |
Collapse
|
24
|
Janczak D, Szydełko T, Janczak D. Nine-Year Follow-Up of a Huge Retroperitoneal Alveolar Soft-Part Sarcoma: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e932514. [PMID: 34669689 PMCID: PMC8544168 DOI: 10.12659/ajcr.932514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alveolar soft-part sarcoma is an uncommon mesenchymal tumor accounting for approximately 0.7% of soft tissue sarcomas in adults. It mainly affects young adults, with a peak incidence between 15 and 35 years old. Available data indicate that surgical resection with adjuvant therapy using tyrosine kinase inhibitor may be considered the standard treatment. The rarity of the disease and resultant data scarcity makes it difficult to establish treatment guidelines. CASE REPORT We present the 9-year follow-up of a 24-year-old patient with an initially advanced (stage IV), huge, 21-cm alveolar soft-part sarcoma of the retroperitoneum. During the observation period, the patient developed pulmonary, brain, and bone metastases. In the course of treatment, she underwent excision of the main tumor, excision of satellite tumors, and brain metastasectomies, and was treated with sunitinib, pazopanib, and radiotherapy. No similar case reports were found in the PubMed database. CONCLUSIONS Our multimodal approach resulted in a long period of stable disease. Late progression may occur; therefore, frequent and thorough imaging evaluation of such patients is crucial. Our case is one of the largest ASPS tumors reported, and her long-term successful treatment makes this report valuable, considering the scarcity of data regarding treatment of ASPS. Further large-cohort, multi-center studies are necessary to establish the best treatment.
Collapse
Affiliation(s)
- Dawid Janczak
- Division of Oncology and Palliative Care, Faculty of Health Science, Wrocław Medical University, Wrocław, Poland
| | - Tomasz Szydełko
- Division of Oncology and Palliative Care, Faculty of Health Science, Wrocław Medical University, Wrocław, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
25
|
Chang X, Li Y, Xue X, Zhou H, Hou L. The current management of alveolar soft part sarcomas. Medicine (Baltimore) 2021; 100:e26805. [PMID: 34397835 PMCID: PMC8341245 DOI: 10.1097/md.0000000000026805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Alveolar soft part sarcomas (ASPS) which has high potential ability of metastasis, is a rare and slowly growing malignant tumor, and mainly primary localized in limbs. To date, little is known about the best treatment of ASPS. This study aims to review the current management and advance of ASPS. METHODS WANFANG MED ONLINE, CNKI, and NCBI PUBMED were used to search literature spanning from 1963 to 2020, and all cases of ASPS about "ASPS, diagnosis, treatment, surgery, radiotherapy, chemotherapy, target therapy or immune therapy" with detailed data were included. RESULTS Complete surgical resection remained the standard management strategy, radiotherapy was reported to be used for the patients of micro- or macroscopical incomplete residue or the surgical margin was questionable. Chemotherapy was controversial. Some target drugs and immune checkpoint inhibitors had produced antitumor activity. CONCLUSION Complete surgical resection is the cure treatment for ASPS, and adjuvant chemotherapy is not recommended excepted clinical trials. For the patients with micro- or macroscopical incomplete residue, radiotherapy should be appreciated. Furthermore, for recurrence, distant metastasis, and refractory of ASPS, combination therapy, especially combination with multiple target agents and/or immune checkpoint inhibitors may prolong survival time.
Collapse
Affiliation(s)
- Xiaojing Chang
- Department of Radiotherapy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuehong Li
- Department of Pathology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Radiotherapy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
26
|
Uncommon and peculiar soft tissue sarcomas: Multidisciplinary review and practical recommendations. Spanish Group for Sarcoma research (GEIS -GROUP). Part II. Cancer Treat Rev 2021; 99:102260. [PMID: 34340159 DOI: 10.1016/j.ctrv.2021.102260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Among all Soft Tissue sarcomas there are some subtypes with low incidence and/or peculiar clinical behaviour, that need to be consider separately. Most of them are orphan diseases, whose biological characteristics imply a clearly different diagnostic and therapeutic approach from other more common sarcoma tumors. We present a brief and updated multidiciplinary review, focused on practical issues, aimed at helping clinicians in decision making. In this second part we review these subtypes: Alveolar Soft Part Sarcoma, Epithelioid Sarcoma, Clear Cell Sarcoma, Desmoplastic Small Round Cell Tumor, Rhabdoid Tumor, Phyllodes Tumor, Tenosynovial Giant Cell Tumors, Myoepithelial Tumor, Perivascular Epithelioid Cell Neoplasms (PEComas), Extraskeletal Myxoid Chondrosarcoma, NTRK-fusions Sarcomas. Most of them present their own radiological and histopathological feautures, that are essential to know in order to achieve early diagnosis. In some of them, molecular diagnosis is mandatory, not only in the diagnosis, but also to plan the treatment. On the other hand, and despite the low incidence, a great scientific research effort has been made to achieve new treatment opportunities for these patients even with approved indications. These include new treatments with targeted therapies and immunotherapy, which today represent possible therapeutic options. It is especially important to be attentive to new and potential avenues of research, and to promote the conduct of specific clinical trials for rare sarcomas.
Collapse
|
27
|
Su H, Yu C, Ma X, Song Q. Combined immunotherapy and targeted treatment for primary alveolar soft part sarcoma of the lung: case report and literature review. Invest New Drugs 2021; 39:1411-1418. [PMID: 33765213 DOI: 10.1007/s10637-021-01105-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Primary acinar soft part sarcoma of the lung (ASPS) is a rare malignancy with unique cellular structure and clinical and genetic characteristics. Most patients do not exhibit clear clinical symptoms, with only a few developing respiratory symptoms. The typical histological characteristics are acinoid or organ-like structures. Immunofluorescence in situ hybridization suggests a rearrangement of the transcription factor E3 gene. Patients respond poorly to chemotherapy and are, thus, primarily treated with surgery and targeted therapy. We report herein a unique case of primary alveolar soft part sarcoma of the lung. The patient was a 24-year-old man with metastases to multiple organs, such as the brain, lungs, pancreas, and liver. The craniocerebral lesions attained partial remission after whole-brain radiotherapy and targeted combined immunotherapy, and other distant metastases completely disappeared after targeted combined immunotherapy (anlotinib and camrelizumab), indicating significant treatment efficacy. Anlotinib is an oral multi-target tyrosine kinase inhibitor (TKI) that exerts its anti-tumor effects by acting on various kinases. Camrelizumab is a humanized immunoglobulin G4 monoclonal antibody that can target PD-1 to block the interaction between PD-L1 and programmed death ligand 2, ultimately causing an anti-tumor effect. This is the first report of successful use of anlotinib combined with camrelizumab in the treatment of advanced primary ASPS. The treatment benefit provides preliminary evidence that targeted therapy, combined with immunotherapy, may be a safe and effective approach to treat primary pulmonary ASPS patients, thus warranting further investigation.
Collapse
Affiliation(s)
- Hui Su
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China.,Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Chao Yu
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qingcui Song
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China.
| |
Collapse
|
28
|
Liu J, Deng YT, Wu X, Jiang Y. Rechallenge with Multi-Targeted Tyrosine Kinase Inhibitors in Patients with Advanced Soft Tissue Sarcoma: A Single-Center Experience. Cancer Manag Res 2021; 13:2595-2601. [PMID: 33776477 PMCID: PMC7987272 DOI: 10.2147/cmar.s300430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Chemotherapy and multi-targeted tyrosine kinase inhibitors (TKI) are important treatments for advanced soft tissue sarcomas, but the following treatment remains unclear after the failure of these drugs. This retrospective study investigated the efficacy and safety of multi-targeted TKI rechallenge in patients with advanced soft tissue sarcoma after the failure of previous TKI treatment. Patients and Methods Gastrointestinal stromal tumors, dermatofibrosarcoma protuberans and anaplastic lymphoma kinase translocation-positive inflammatory myofibroblastic tumor were excluded. Eligible patients included those diagnosed with advanced soft tissue sarcoma, progressed after the initial TKI treatment, and received the same or other TKI therapies. Treatment response, adverse events, median progression-free survival and overall survival were analyzed. Results Twenty-six eligible patients were included. Nineteen patients had previously received chemotherapy, and all patients had received at least 1.5 months of initial TKI treatment. During the TKI rechallenge, patients were treated with anlotinib (n =16), lenvatinib (n =3), apatinib (n =2), pazopanib (n =2), axitinib (n =2) or regorafenib (n =1). No patients achieved responses. Nine (34.6%) patients had stable disease confirmed by a second imaging scan, and 5 (19.2%) patients had stable disease that was not confirmed by a second scan. The estimated median progression-free survival and overall survival were 3.3 months and 11.7 months, respectively. Grade 3/4 adverse events occurred in 6 (23.1%) patients and were manageable. Conclusion Our findings suggest that multi-targeted TKI rechallenge may provide potential clinical benefits for patients with advanced soft tissue sarcoma after their previous TKI treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yao-Tiao Deng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xin Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
29
|
Siozopoulou V, Domen A, Zwaenepoel K, Van Beeck A, Smits E, Pauwels P, Marcq E. Immune Checkpoint Inhibitory Therapy in Sarcomas: Is There Light at the End of the Tunnel? Cancers (Basel) 2021; 13:360. [PMID: 33478080 PMCID: PMC7835811 DOI: 10.3390/cancers13020360] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Soft tissue and bone sarcomas are a very heterogeneous group of tumors with many subtypes for which diagnosis and treatment remains a very challenging task. On top of that, the treatment choices are limited, and the prognosis of aggressive sarcomas remains poor. Immune checkpoint inhibitors (ICIs) have drawn a lot of attention last years because of their promising response rates and their durable effects. ICIs are currently widely used in the daily routine practice for the treatment of a different malignancies, such as melanoma, Hodgkin lymphoma, and non-small cell lung carcinoma. Still, ICIs are not included in the standard treatment protocols of the different sarcoma types. However, a plethora of clinical trials investigates the clinical benefit of ICIs in sarcomas. There is clear need to develop predictive biomarkers to determine which sarcoma patients are most likely to benefit from immune checkpoint blockade. This review will focus on (i) the clinical trial results on the use of ICIs in different sarcoma types; and on (ii) possible biomarkers predictive for the effectiveness of these drugs in sarcomas.
Collapse
Affiliation(s)
- Vasiliki Siozopoulou
- Department of Pathology, Antwerp University Hospital, 2650 Edegem, Belgium; (K.Z.); (P.P.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
| | - Andreas Domen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, 2650 Edegem, Belgium; (K.Z.); (P.P.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
| | - Annelies Van Beeck
- Department of Orthopedics, Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Patrick Pauwels
- Department of Pathology, Antwerp University Hospital, 2650 Edegem, Belgium; (K.Z.); (P.P.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (A.D.); (E.S.); (E.M.)
| |
Collapse
|
30
|
Burdett N, Bae S, Hamilton A, Desai J. The Role of Systemic Therapies in the Management of Soft Tissue Sarcoma. Sarcoma 2021. [DOI: 10.1007/978-981-15-9414-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Liu J, Fan Z, Li S, Gao T, Xue R, Bai C, Zhang L, Tan Z, Fang Z. Target therapy for metastatic alveolar soft part sarcoma: a retrospective study with 47 cases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1493. [PMID: 33313238 PMCID: PMC7729354 DOI: 10.21037/atm-20-6377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Alveolar soft part sarcoma (ASPS) is a translocation-associated soft-tissue tumor resistant to conventional cytotoxic agents. This report aims to compare the efficacy of anlotinib versus pazopanib as targeted monotherapy in metastatic ASPS and to determine the impact of drug dosage reduction on disease control. Methods Sixteen and 31 patients with metastatic ASPS were respectively treated with anlotinib and pazopanib monotherapy at a single institution. Objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were retrieved and compared between both therapeutic arms. Adverse events (AEs) within each group were recorded. Kaplan-Meier survivorship curves computed the impact of drug dosage reduction on PFS. Results The anlotinib group showed an ORR of 31.2%, compared to 35.5% in the pazopanib arm (P=0.772). Median PFS was 23.6 months [95% confidence interval (CI), 16.2-31.0 months] in patients treated with anlotinib, but dropped to 13.7 months (95% CI, 10.8-16.7 months) in those managed with pazopanib (P=0.023). One (6.3%) patient on anlotinib and 11 (35.5%) on pazopanib developed AEs requiring drug dosage reduction (P=0.029), which significantly reduced patients' PFS in the latter setting (10.5 vs. 15.8 months, P=0.012). In patients without dosage reduction, anlotinib showed a bordering advantage than pazopanib on median PFS (24.5 vs. 15.8 months, P=0.112). Conclusions Compared to pazopanib, anlotinib yielded longer PFS and lower incidence of AEs in ASPS patients. Drug dosage reduction was more frequently encountered with the former agent and affected the disease control.
Collapse
Affiliation(s)
- Jiayong Liu
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Zhengfu Fan
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Shu Li
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Tian Gao
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Ruifeng Xue
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Chujie Bai
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Lu Zhang
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Zhichao Tan
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| | - Zhiwei Fang
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
32
|
Shi Y, Cai Q, Jiang Y, Huang G, Bi M, Wang B, Zhou Y, Wang G, Ying H, Tao Z, Shi C, Guo Q, Gao C. Activity and Safety of Geptanolimab (GB226) for Patients with Unresectable, Recurrent, or Metastatic Alveolar Soft Part Sarcoma: A Phase II, Single-arm Study. Clin Cancer Res 2020; 26:6445-6452. [PMID: 33046518 DOI: 10.1158/1078-0432.ccr-20-2819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Yuankai Shi
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| | - Qiqing Cai
- Department of Orthopaedics, The Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou, China
| | - Yu Jiang
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Huang
- Department of Bone and Soft Tissue, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Minghong Bi
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Baocheng Wang
- Department of Oncology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Yuhong Zhou
- Department of Oncology, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Guowen Wang
- Department of Bone and Soft Tissue Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongyan Ying
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiwei Tao
- Department of Bone and Soft Tissue Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Chunmei Shi
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qian Guo
- Department of Medical Science, Genor Biopharma Co, Ltd, Shanghai, China
| | - Chao Gao
- Department of Medical Science, Genor Biopharma Co, Ltd, Shanghai, China
| |
Collapse
|
33
|
Urakawa H, Kawai A, Goto T, Hiraga H, Ozaki T, Tsuchiya H, Nakayama R, Naka N, Matsumoto Y, Kobayashi E, Okuma T, Kunisada T, Ando M, Ueda T, Nishida Y. Phase II trial of pazopanib in patients with metastatic or unresectable chemoresistant sarcomas: A Japanese Musculoskeletal Oncology Group study. Cancer Sci 2020; 111:3303-3312. [PMID: 32579783 PMCID: PMC7469808 DOI: 10.1111/cas.14542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 12/16/2022] Open
Abstract
Alveolar soft part sarcoma (ASPS), epithelioid sarcoma (ES), and clear cell sarcoma (CCS) are known to be chemoresistant tumors. The aim of this study was to investigate the effect of pazopanib on these chemoresistant tumors. This study is designed as a single‐arm, multicenter, investigator‐initiated phase II trial. Patient enrollment was undertaken between July 2016 and August 2018 at 10 hospitals participating in the Japanese Musculoskeletal Oncology Group. The primary end‐point is the CBR (CBR, including complete or partial response and stable disease) at 12 weeks after treatment with pazopanib according to RECIST. Eight patients were enrolled within the period. The histological subtypes were 5 ASPS, 2 ES, and 1 CCS. The median follow‐up period was 22.2 (range, 4.9‐24.9) months. All patients initially received pazopanib 800 mg once daily. The CBRs were 87.5% (7 of 8) and 75.0% (6 of 8) according to RECIST and Choi criteria at 12 weeks after pazopanib treatment, respectively. The CBRs at 12 weeks according to RECIST were 80.0%, 100.0%, and 100.0% in ASPS, ES, and CCS, respectively. Partial response was observed in 1 ASPS according to RECIST and 3 ASPS and 1 ES according to Choi criteria at 12 weeks after pazopanib treatment. This study documented antitumor activity of pazopanib, especially in ASPS. These results support the frontline use of pazopanib for ASPS. Prospective data collection is desired using both RECIST and Choi criteria for these rare chemoresistant tumors.
Collapse
Affiliation(s)
- Hiroshi Urakawa
- Department of Orthopaedic Surgery, Nagoya University, Nagoya, Japan.,Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center, Tokyo, Japan
| | - Takahiro Goto
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hiroaki Hiraga
- Department of Orthopaedic Surgery, Hokkaido Cancer Center, Sapporo, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Robert Nakayama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Norifumi Naka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | | | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center, Tokyo, Japan
| | - Tomotake Okuma
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Takafumi Ueda
- Department of Orthopaedic Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yoshihiro Nishida
- Department of Orthopaedic Surgery, Nagoya University, Nagoya, Japan.,Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
34
|
Yoshimatsu Y, Noguchi R, Tsuchiya R, Sei A, Sugaya J, Fukushima S, Yoshida A, Kawai A, Kondo T. Establishment and characterization of NCC-ASPS1-C1: a novel patient-derived cell line of alveolar soft-part sarcoma. Hum Cell 2020; 33:1302-1310. [PMID: 32648033 DOI: 10.1007/s13577-020-00382-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Alveolar soft-part sarcoma is a mesenchymal malignancy characterized by the rearrangement of ASPSCR1 and TFE3 and a histologically distinctive pseudoalveolar pattern. Although alveolar soft-part sarcoma takes an indolent course, its long-term prognosis is poor because of late distant metastases. Currently, curative treatments have not been found for alveolar soft-part sarcoma, and hence, a novel therapeutic strategy has long been required. Patient-derived cell lines comprise an important tool for basic and preclinical research. However, few cell lines from alveolar soft-part sarcoma have been reported in the literature because it is an extremely rare malignancy, accounting for less than 1% of all soft-tissue sarcomas. This study aimed to establish a novel alveolar soft-part sarcoma cell line. Using surgically-resected tumor tissue of alveolar soft-part sarcoma, we successfully established a cell line and named it NCC-ASPS1-C1. The NCC-ASPS1-C1 cells harbored an ASPSCR1-TFE3 fusion gene and exhibited slow growth, and spheroid formation. On the other hand, NCC-ASPS1-C1 did not show the capability of invasion. We screened the antiproliferative effects of 195 anticancer agents, including Food and Drug Administration-approved anticancer drugs. We found that the MET inhibitor tivantinib and multi-kinase inhibitor orantinib inhibited the proliferation of NCC-ASPS1-C1 cells. The clinical utility and molecular mechanisms of antitumor effects of these drugs are worth investigating in the further studies, and NCC-ASPS1-C1 cells will be a useful tool for the in vitro study of alveolar soft-part sarcoma.
Collapse
Affiliation(s)
- Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Suguru Fukushima
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
35
|
Real-World Outcomes of Pazopanib Treatment in Korean Patients with Advanced Soft Tissue Sarcoma: A Multicenter Retrospective Cohort Study. Target Oncol 2020; 15:485-493. [PMID: 32607656 DOI: 10.1007/s11523-020-00731-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pazopanib is the only tyrosine kinase inhibitor approved for the treatment of patients with advanced soft tissue sarcoma (STS) who have received prior chemotherapy, but there have been limited real-world data on pazopanib for the treatment of advanced STS. OBJECTIVE We aimed to evaluate clinical outcomes of pazopanib in patients with multiple histologic STS types in real-world settings. PATIENTS AND METHODS We retrospectively analyzed clinical data of Korean patients with advanced STS treated with pazopanib between 2008 and 2019. Outcomes of interest included treatment response, survival according to histologic subtypes, and adverse events. RESULTS The analysis included 347 STS patients. The disease control rate for all pazopanib-treated patients was 54.8% (95% confidence interval (CI) 49.5-60.0); 54 patients (15.6%) achieved a partial response and 136 (39.2%) had stable disease. Patients with alveolar soft-part sarcoma (ASPS; 90%), solitary fibrous tumor (SFT; 88.2%), synovial sarcoma (66.7%), leiomyosarcoma (61.1%), and undifferentiated pleomorphic sarcoma (59.6%) showed higher disease control rates than those with other STS subtypes. Overall, median progression-free survival (PFS) and overall survival (OS) were 5.3 months (95% CI 4.5-6.0) and 12 months (95% CI 10-14), respectively. Noticeable survival outcomes occurred in patients with ASPS and SFT, with a median PFS of 24.5 (95% CI 2.5-30.0) and 13.0 (95% CI 3.0-21.3) months, respectively. The median OS of patients with ASPS and SFT was 48 (95% CI 17-52) and 32 (95% CI 19-66) months, respectively. Adverse drug reactions occurred in 170 patients (49.0%) but were not life-threatening. CONCLUSIONS This real-world data analysis showed acceptable efficacy and tolerability of pazopanib in patients pretreated with cytotoxic chemotherapy for advanced STS, with favorable treatment outcomes for ASPS and SFT.
Collapse
|
36
|
Novel therapeutic options for alveolar soft part sarcoma: antiangiogenic therapy, immunotherapy and beyond. Curr Opin Oncol 2020; 32:295-300. [PMID: 32541316 DOI: 10.1097/cco.0000000000000652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Alveolar soft part sarcoma (ASPS) represent 0.5% of sarcomas, defining a rarest among rare malignancies. It affects young adults, displaying slow-growing mass of the thigh, head and neck, and trunk. Although quite indolent, a majority of cases displays an advanced disease with lung bone or central nervous system metastasis. Complete surgery is the cornerstone of localized ASPS, and advanced diseases poorly respond to chemotherapy. Here discuss recent progress in molecular characterization of ASPS and future prospects of therapeutic approaches. RECENT FINDINGS ASPS is characterized by a specific oncogenic translocation ASPSCR1-TFE3 that induce hepatocyte growth factor receptor (MET) overexpression, angiogenesis, and immunosuppression in the tumor microenvironment. These specific biological features have encouraged the successful exploration of MET inhibitors, antiangiogenic drugs, and immunotherapy. We reviewed the main tracks of ASPS biology and recent insights from targeted therapies is ASPS mainly driven tyrosine kinase inhibitors (especially antiangiogenics), immune-checkpoint inhibitors, and their combinations. SUMMARY Overall, antiangiogenics and anti Programmed cell death 1/Programmed cell death ligand 1 therapies showed a significant activity in ASPS that warrants additional investigation through randomized trials to validate those results and through ancillary biological studies to better understand resistance mechanisms and biomarkers of response.
Collapse
|
37
|
Wainsztein VE, Chen TW. When Molecular-Targeted Agents Meet Immunotherapy: The Opportunities for Soft Tissue Sarcoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:69-82. [PMID: 36751522 PMCID: PMC9179404 DOI: 10.36401/jipo-19-37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/25/2020] [Indexed: 01/02/2023]
Abstract
Soft tissue sarcomas (STS) account for less than 1% of adult cancers with a median overall survival of 12 months in the metastatic setting. Although chemotherapy remains the standard of treatment for advanced disease, molecular targeted agents (MTAs) and immunotherapies are under intensive investigation in STS. The success of MTAs comes mainly from antiangiogenic agents in various STS subtypes, from colony-stimulating factor-1 receptor inhibitor in tenosynovial giant cell tumor and neurotrophic tropomyocin receptor kinase (NTRK) inhibitors while others, such as cyclin-dependent kinase (CDK)-4 inhibitors, remain under evaluation. In advanced STS the activity of single-agent immunotherapy was not paradigm-changing as in other tumor types. A better understanding of tumor microenvironment, the immunogenic properties of MTAs, and finding an optimal treatment combination to improve patients outcomes became a central topic of research and discussion. Furthermore, the development and incorporation of transcriptomic profiling-based classification will allow identification, refined patient selection, and guided-treatment assignment. This article reviewed recent advances in STS treatment in MTAs and immunotherapy, strategies to overcome resistance, and outcomes of combination treatments in different STS subtypes. Promising preliminary results from combination strategies have shed light on STS treatment. The increasing understanding of this heterogeneous group of tumors and its microenvironment biology may help develop and guide treatment strategies with MTA and immunotherapies, alone or in combination, in a tailored way based on predictive and validated biomarkers and tumor molecular profiling in this new coming era.
Collapse
Affiliation(s)
| | - Tom W. Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
,National Taiwan University Cancer Center, Taipei, Taiwan
,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
38
|
Martín-Broto J, Reichardt P, Jones RL, Stacchiotti S. Different approaches to advanced soft tissue sarcomas depending on treatment line, goal of therapy and histological subtype. Expert Rev Anticancer Ther 2020; 20:15-28. [PMID: 32349558 DOI: 10.1080/14737140.2020.1753510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: Although rapid evolution over the past few years in advanced soft tissue sarcoma (STS) management has not been without its challenges, it has brought clarity in several areas.Areas covered: This article summarizes the proceedings of the third edition of the Soft Tissue Sarcoma: Evidence and Experience symposium held March 2019 in Madrid, Spain. An update is provided of current approaches to advanced STS management. Case studies illustrate the role of trabectedin in advanced STS management.Expert opinion: First-line treatment of advanced STS requires distinct therapeutic strategies depending on goal: tumor shrinkage or tumor control. Since all sarcoma patients benefit from active treatment irrespective of age or line of therapy, oncologists have a duty to offer active systemic therapies unless the patient is unfit for treatment or chooses to end active treatment. Beyond the first line, histology becomes increasingly relevant for treatment selection. Agents with activity in specific sarcoma subtypes have been identified. Rare tumors represent a substantial medical need requiring strong international collaboration between research groups, pharmaceutical companies, regulatory agencies, and patients to identify active drugs per subtype. Multidisciplinary care in an expert sarcoma center is the primary means of reducing morbidity and mortality in patients with sarcoma.
Collapse
Affiliation(s)
- Javier Martín-Broto
- Medical Oncology Department in University Hospital Virgen del Rocio and Institute of Biomedicine of Sevilla (IBIS), (HUVR, CSIC, University of Sevilla), Sevilla, Spain
| | - Peter Reichardt
- Department of Oncology, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Robin L Jones
- Royal Marsden Hospital, Institute of Cancer Research, London, UK
| | - Silvia Stacchiotti
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
39
|
Stacchiotti S, Ferrari S, Redondo A, Hindi N, Palmerini E, Vaz Salgado MA, Frezza AM, Casali PG, Gutierrez A, Lopez-Pousa A, Grignani G, Italiano A, LeCesne A, Dumont S, Blay JY, Penel N, Bernabeu D, de Alava E, Karanian M, Morosi C, Brich S, Dagrada GP, Vallacchi V, Castelli C, Brenca M, Racanelli D, Maestro R, Collini P, Cruz J, Martin-Broto J. Pazopanib for treatment of advanced extraskeletal myxoid chondrosarcoma: a multicentre, single-arm, phase 2 trial. Lancet Oncol 2019; 20:1252-1262. [DOI: 10.1016/s1470-2045(19)30319-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
|
40
|
Pasquali S, Stacchiotti S. Cediranib for alveolar soft part sarcoma: a randomised study in relation to clinical practice. Lancet Oncol 2019; 20:901-903. [PMID: 31160250 DOI: 10.1016/s1470-2045(19)30324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Sandro Pasquali
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy.
| | - Silvia Stacchiotti
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, Italy
| |
Collapse
|
41
|
Penel N, Robin YM, Blay JY. Personalised management of alveolar soft part sarcoma: a promising phase 2 study. Lancet Oncol 2019; 20:750-752. [PMID: 31078464 DOI: 10.1016/s1470-2045(19)30286-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret Lille, 59020 France; Lille University, Lille, France.
| | | | - Jean-Yves Blay
- Department of Medical Oncology and University Claude Bernard, Léon Bérard Cancer Center, Lyon, France
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Nonrhabdomyosarcoma soft tissue sarcoma (NRSTS) is a rare subgroup of malignancy in childhood that is composed of a variety of soft tissue and bony tumors. Prognosis for resectable localized disease is usually good and improved with systemic treatment. However, survival from locally advanced and metastatic disease remains poor. There have been numerous preclinical and clinical studies to define histopathology, biology, and genetic alteration of sarcomas. The purpose of this review is to clarify the progress in the management of NRSTS. RECENT FINDINGS Genomic analysis, including the use of next-generation sequencing, has revealed fusion transcripts or specific genetic alterations which provide diagnostic biomarkers and potential targets for novel therapies. SUMMARY Most cases are sporadic, but some are associated with genetic predispositions. Most present as a painless mass and diagnosis is frequently delayed because of a low index of suspicion. There is a wide array of histopathological subtypes. Investigations usually involve core, incisional or excisional biopsy for tissue diagnosis, and cross-sectional and nuclear imaging for staging. Management of pediatric sarcoma is largely dependent on the patient's histopathological diagnosis, age, disease stage, and co-morbidities but usually involves a combination of systemic and local therapies. Preclinical studies and phase I/II trials of newer targeted therapies are ongoing.
Collapse
|
43
|
Judson I, Morden JP, Kilburn L, Leahy M, Benson C, Bhadri V, Campbell-Hewson Q, Cubedo R, Dangoor A, Fox L, Hennig I, Jarman K, Joubert W, Kernaghan S, López Pousa A, McNeil C, Seddon B, Snowdon C, Tattersall M, Toms C, Martinez Trufero J, Bliss JM. Cediranib in patients with alveolar soft-part sarcoma (CASPS): a double-blind, placebo-controlled, randomised, phase 2 trial. Lancet Oncol 2019; 20:1023-1034. [PMID: 31160249 PMCID: PMC6602919 DOI: 10.1016/s1470-2045(19)30215-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Background Alveolar soft-part sarcoma (ASPS) is a rare soft-tissue sarcoma that is unresponsive to chemotherapy. Cediranib, a tyrosine-kinase inhibitor, has shown substantial activity in ASPS in non-randomised studies. The Cediranib in Alveolar Soft Part Sarcoma (CASPS) study was designed to discriminate the effect of cediranib from the intrinsically indolent nature of ASPS. Methods In this double-blind, placebo-controlled, randomised, phase 2 trial, we recruited participants from 12 hospitals in the UK (n=7), Spain (n=3), and Australia (n=2). Patients were eligible if they were aged 16 years or older; metastatic ASPS that had progressed in the previous 6 months; had an ECOG performance status of 0–1; life expectancy of more than 12 weeks; and adequate bone marrow, hepatic, and renal function. Participants had to have no anti-cancer treatment within 4 weeks before trial entry, with exception of palliative radiotherapy. Participants were randomly assigned (2:1), with allocation by use of computer-generated random permuted blocks of six, to either cediranib (30 mg orally, once daily) or matching placebo tablets for 24 weeks. Treatment was supplied in number-coded bottles, masking participants and clinicians to assignment. Participants were unblinded at week 24 or sooner if they had progression defined by Response Evaluation Criteria in Solid Tumors (version 1.1); those on placebo crossed over to cediranib and all participants continued on treatment until progression or death. The primary endpoint was percentage change in sum of target marker lesion diameters between baseline and week 24 or progression if sooner, assessed in the evaluable population (all randomly assigned participants who had a scan at week 24 [or sooner if they progressed] with target marker lesions measured). Safety was assessed in all participants who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT01337401; the European Clinical Trials database, number EudraCT2010-021163-33; and the ISRCTN registry, number ISRCTN63733470 recruitment is complete and follow-up is ongoing. Findings Between July 15, 2011, and July 29, 2016, of 48 participants recruited, all were randomly assigned to cediranib (n=32) or placebo (n=16). 23 (48%) were female and the median age was 31 years (IQR 27–45). Median follow-up was 34·3 months (IQR 23·7–55·6) at the time of data cutoff for these analyses (April 11, 2018). Four participants in the cediranib group were not evaluable for the primary endpoint (one did not start treatment, and three did not have their scan at 24 weeks). Median percentage change in sum of target marker lesion diameters for the evaluable population was −8·3% (IQR −26·5 to 5·9) with cediranib versus 13·4% (IQR 1·1 to 21·3) with placebo (one-sided p=0·0010). The most common grade 3 adverse events on (blinded) cediranib were hypertension (six [19%] of 31) and diarrhoea (two [6%]). 15 serious adverse reactions in 12 patients were reported; 12 of these reactions occurred on open-label cediranib, and the most common symptoms were dehydration (n=2), vomiting (n=2), and proteinuria (n=2). One probable treatment-related death (intracranial haemorrhage) occurred 41 days after starting open-label cediranib in a patient who was assigned to placebo in the masked phase. Interpretation Given the high incidence of metastatic disease and poor long-term prognosis of ASPS, together with the lack of efficacy of conventional chemotherapy, our finding of significant clinical activity with cediranib in this disease is an important step towards the goal of long-term disease control for these young patients. Future clinical trials in ASPS are also likely to involve immune checkpoint inhibitors. Funding Cancer Research UK and AstraZeneca.
Collapse
Affiliation(s)
- Ian Judson
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - James P Morden
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Lucy Kilburn
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Adam Dangoor
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Lisa Fox
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Ivo Hennig
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Katy Jarman
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | - Sarah Kernaghan
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | | | - Beatrice Seddon
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Claire Snowdon
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | - Christy Toms
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | - Judith M Bliss
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| |
Collapse
|
44
|
Dufresne A, Brahmi M, Karanian M, Blay JY. Using biology to guide the treatment of sarcomas and aggressive connective-tissue tumours. Nat Rev Clin Oncol 2019; 15:443-458. [PMID: 29666441 DOI: 10.1038/s41571-018-0012-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sarcomas are a heterogeneous group of malignancies that arise from cells of a mesenchymal origin. Surgery forms the mainstay of the treatment of most patients with localized sarcoma and might be followed or preceded by chemotherapy and/or radiotherapy. In the metastatic setting, systemic treatments tend to improve survival and control symptoms. However, the adverse events and sometimes disappointing outcomes associated with these empirical approaches to treatment indicate a need for new approaches. The advent of next-generation sequencing (NGS) has enabled more targeted treatment of many malignancies based on the presence of specific alterations. NGS analyses of sarcomas have revealed the presence of many alterations that can be targeted using therapies that are already used in patients with other forms of cancer. In this Review, we describe the genomic alterations considered to define specific nosological subgroups of sarcoma and whose contribution to oncogenesis provides a biological rationale for the use of a specific targeted therapy. We also report several less successful examples that should guide researchers and clinicians to better define the extent to which the identification of driver molecular alterations should influence the development of novel treatments.
Collapse
Affiliation(s)
- Armelle Dufresne
- Department of Medical Oncology, Centre Leon Berard, Lyon, France.
| | - Mehdi Brahmi
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | - Marie Karanian
- Department of Pathology, Centre Leon Berard, Lyon, France
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| |
Collapse
|
45
|
Lee ATJ, Jones RL, Huang PH. Pazopanib in advanced soft tissue sarcomas. Signal Transduct Target Ther 2019; 4:16. [PMID: 31123606 PMCID: PMC6522548 DOI: 10.1038/s41392-019-0049-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Pazopanib is the first and only tyrosine kinase inhibitor currently approved for the treatment of multiple histological subtypes of soft tissue sarcoma (STS). Initially developed as a small molecule inhibitor of vascular endothelial growth factor receptors, preclinical work indicates that pazopanib exerts an anticancer effect through the inhibition of both angiogenic and oncogenic signaling pathways. Following the establishment of optimal dosing and safety profiles in early phase studies and approval for the treatment of advanced renal cell carcinoma, pazopanib was investigated in STS. A landmark phase III randomized study demonstrated improved progression-free survival with pazopanib compared to that with placebo in pretreated patients with STS of various subtypes. The efficacy of pazopanib in specific STS subtypes has been further described in real-world-based case series in both mixed and subtype-specific STS cohorts. At present, there are no clinically validated predictive biomarkers for use in selecting patients with advanced STS for pazopanib therapy, limiting the clinical effectiveness and cost-effectiveness of the drug. In this review, we summarize the preclinical and clinical data for pazopanib, outline the evidence base for its effect in STS and explore reported studies that have investigated putative biomarkers.
Collapse
Affiliation(s)
- Alex T. J. Lee
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, Institute of Cancer Research, London, UK
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
46
|
Wilky BA, Trucco MM, Subhawong TK, Florou V, Park W, Kwon D, Wieder ED, Kolonias D, Rosenberg AE, Kerr DA, Sfakianaki E, Foley M, Merchan JR, Komanduri KV, Trent JC. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: a single-centre, single-arm, phase 2 trial. Lancet Oncol 2019; 20:837-848. [PMID: 31078463 DOI: 10.1016/s1470-2045(19)30153-6] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND VEGF promotes an immunosuppressive microenvironment and contributes to immune checkpoint inhibitor resistance in cancer. We aimed to assess the activity of the VEGF receptor tyrosine-kinase inhibitor axitinib plus the anti-PD-1 immune checkpoint inhibitor pembrolizumab in patients with sarcoma. METHODS This single-centre, single-arm, phase 2 trial was undertaken at a tertiary care academic medical centre in Miami, FL, USA, and participants were recruited from all over the USA and internationally. Patients were eligible if they were aged 16 years or older, and had histologically confirmed advanced or metastatic sarcomas, including alveolar soft-part sarcoma (ASPS); measurable disease with one site amenable to repeated biopsies; an ECOG performance status of 0-1; and progressive disease after previous treatment with at least one line of systemic therapy (unless no standard treatment existed or the patient declined therapy). The first five patients were enrolled in a lead-in cohort and were given axitinib 5 mg orally twice daily and pembrolizumab 200 mg intravenously for 30 min on day 8 and every 3 weeks for cycles of 6 weeks for up to 2 years. Thereafter, patients received escalating doses of axitinib (2-10 mg) plus flat dose pembrolizumab according to the schedule above. The primary endpoint was 3-month progression-free survival. All patients were evaluable for survival and safety analyses. This study is registered with ClinicalTrials.gov, number NCT02636725, and is closed to accrual. FINDINGS Between April 19, 2016, and Feb 7, 2018, of 36 patients assessed for eligibility, 33 (92%) were enrolled and given study treatment (intention-to-treat population and safety population), 12 (36%) of whom had ASPS. With a median follow-up of 14·7 months (IQR 10·1-19·1), 3-month progression-free survival for all evaluable patients was 65·6% (95% CI 46·6-79·3). For patients with ASPS, 3-month progression-free survival was 72·7% (95% CI 37·1-90·3). The most common grade 3 or 4 treatment-related adverse events included hypertension (five [15%] of 33 patients), autoimmune toxicities (five [15%]), nausea or vomiting (two [6%]), and seizures (two [6%]). Serious treatment-related adverse events occurred in seven (21%) patients, including autoimmune colitis, transaminitis, pneumothorax, haemoptysis, seizures, and hypertriglyceridemia. There were no treatment-related deaths. INTERPRETATION Axitinib plus pembrolizumab has manageable toxicity and preliminary activity in patients with advanced sarcomas, particularly patients with ASPS, warranting further investigation in randomised controlled trials. FUNDING Merck, Pfizer, American Cancer Society, and Sylvester Comprehensive Cancer Center.
Collapse
Affiliation(s)
- Breelyn A Wilky
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Matteo M Trucco
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Ty K Subhawong
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vaia Florou
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wungki Park
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deukwoo Kwon
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Eric D Wieder
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Despina Kolonias
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Andrew E Rosenberg
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Darcy A Kerr
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Efrosyni Sfakianaki
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark Foley
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jaime R Merchan
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Krishna V Komanduri
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jonathan C Trent
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
47
|
Wang Y, Min L, Zhou Y, Tang F, Luo Y, Zhang W, Duan H, Tu C. The efficacy and safety of apatinib in metastatic alveolar soft part sarcoma: a case series of six patients in one institution. Cancer Manag Res 2019; 11:3583-3591. [PMID: 31118781 PMCID: PMC6499141 DOI: 10.2147/cmar.s198429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/22/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Evidence suggests that advanced or metastatic alveolar soft part sarcoma (ASPS) with high metastatic potential is chemo-resistant. However, the benefits of tyrosine kinase inhibitors have been demonstrated for the treatment of ASPS. Purpose: This study aimed to investigate the efficacy and safety of apatinib, aspecific VEGFR-2 inhibitor, in ASPS patients. This retrospective analysis involved six patients with metastatic ASPS not amenable to curative treatment. Patients and methods: Apatinib was administered at a dose of 500mg per day. Tumor responses were assessed according to the Response Evaluation Criteria in Solid Tumors (RECIST 1.1) guidelines. Survival analysis was performed using the Kaplan–Meier test, and a safety profile was recorded. Results: The mean age of patients was 26.5 (range, 17–32) years. The median progression-free survival (PFS) was 18.53 months (95% CI, 12.23-NE). However, median overall survival (OS) has not been reached. Twenty-four month PFS and OS rates were 50.0% and 100.0%, respectively. One patient achieved a complete response, and the remaining patients achieved partial responses, with an objective response rate of 100%. Median follow-up was 20.6 (range, 12.43–34.13) months. The most common adverse events included gastrointestinal discomfort (4/6[66.7%]), hair hypopigmentation (4/6[66.7%]) and hand-foot skin reaction (3/6[50.0%]). Conclusion: Apatinib shows beneficial activity in metastatic ASPS patients, and further studies are warranted with more cases and longer follow-up periods to fully characterize clinical efficacy and safety of apatinib in ASPS.
Collapse
Affiliation(s)
- Yitian Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Li Min
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Fan Tang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yi Luo
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Hong Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
48
|
Paoluzzi L, Maki RG. Diagnosis, Prognosis, and Treatment of Alveolar Soft-Part Sarcoma. JAMA Oncol 2019; 5:254-260. [DOI: 10.1001/jamaoncol.2018.4490] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luca Paoluzzi
- Department of Medicine, New York University Langone Medical Center, New York
| | - Robert G. Maki
- Northwell Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, Cold Spring Harbor Laboratory, Long Island, New York
| |
Collapse
|
49
|
Pediatric Primary Alveolar Soft Part Sarcoma of the Bladder. Case Rep Urol 2019; 2018:1284756. [PMID: 30687558 PMCID: PMC6327260 DOI: 10.1155/2018/1284756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
A 9-year-old girl was diagnosed with primary alveolar soft part sarcoma of the bladder after imaging examinations and transurethral resection (TUR) of the bladder tumor. As a positive surgical margin of the TUR indicated residual tumor cells, we performed a cystourethrectomy to remove the tumor. A continent urinary reservoir for self-catheterization was constructed using the Mainz pouch technique, and an abdominal (umbilical) continent catheterizable stoma using the appendix was performed. For 2.5 years postoperatively, the patient remained free of local recurrence and distant metastasis. The patient's clinical course has been favorable, with good management of clean intermittent self-catheterization.
Collapse
|
50
|
Malouf GG, Beinse G, Adam J, Mir O, Chamseddine AN, Terrier P, Honore C, Spano JP, Italiano A, Kurtz JE, Coindre JM, Blay JY, Le Cesne A. Brain Metastases and Place of Antiangiogenic Therapies in Alveolar Soft Part Sarcoma: A Retrospective Analysis of the French Sarcoma Group. Oncologist 2019; 24:980-988. [PMID: 30626710 DOI: 10.1634/theoncologist.2018-0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Alveolar soft part sarcoma (ASPS) is a rare sarcoma characterized by a slow evolution, brain metastasis (BM), and resistance to doxorubicin. Antiangiogenic therapies (AAT) have shown clinical activity, but little is known about the optimal therapeutic strategy, specifically considering BM. SUBJECTS, MATERIALS, AND METHODS We performed a retrospective analysis of all patients with ASPS treated in three referral centers of the French Sarcoma Group. We aimed to describe factors associated with overall survival (OS) and the impact of BM on outcome of patients treated by AAT. RESULTS We identified 75 patients between 1971 and 2012 (median age = 23, range: 5-96 years). Median follow-up was 74 months. Patients with localized (n = 44, 59%) and metastatic (n = 31, 41%) diseases had a 10-year OS of 69% and 25%, respectively. Only surgical incomplete resection was associated with shorter OS in localized disease (hazard ratio [HR] = 5.2, 95% confidence interval [CI] 1.2-22.4, p = .02). Fifty-two (69%) patients developed lung metastasis (LM; baseline: n = 31, [41%]; de novo: n = 21, [28%]). Thirteen patients developed BM, all occurring after LM. Tumor size ≥5 cm was associated with poorer BM-free survival (HR = 8.4, 95% CI 2.1-33.9, p = .002). Median OS post-BM was 17 months (95% CI 15 to not assessable). Overall, 12 patients were treated with AAT (sunitinib n = 10): 5 patients had BM and achieved poor outcomes compared with patients without, with median progression-free-survivals of 2 versus 11 months, respectively. CONCLUSION Baseline larger tumors were associated with increased risk of brain metastasis in patients with ASPS. Patients with BM seem to have little benefit from AAT, suggesting the need to develop antineoplastic agents with high central nervous system penetrance in this setting. IMPLICATIONS FOR PRACTICE Alveolar soft part sarcoma (ASPS) is an extremely rare subtype of sarcoma that is particularly resistant to conventional therapies. Antiangiogenic therapies (AAT) have shown promising results. However, patients with ASPS still die of tumor evolution. This study highlights the prognostic shift induced by brain metastasis (BM), identifying this event as a major contributor to the death of patients with ASPS, and observes a striking lack of effectiveness of AAT in patients who had previously developed BM. This observation is of interest for the therapeutic development in ASPS, highlighting the need to develop strategies dedicated to BM, such as radiosurgery or high-central nervous system penetrance tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Gabriel G Malouf
- Department of Medical Oncology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Guillaume Beinse
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Julien Adam
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Olivier Mir
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ali N Chamseddine
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Philippe Terrier
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charles Honore
- Department of Surgical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jean-Philippe Spano
- Department of Medical Oncology, Pitie-Salpêtrière Hospital, Paris, France
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, INSERM 1136, Paris, France
| | - Antoine Italiano
- Early Phase Trials and Sarcoma Units, Institut Bergonié, Bordeaux, France
| | - Jean-Emmanuel Kurtz
- Department of Medical Oncology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Jean-Yves Blay
- Department of Adult Medical Oncology, Centre Leon Berard, Lyon, France
| | - Axel Le Cesne
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|