1
|
Ferrari D, Rausa E, Lauricella S, Brignola C, Zaccara A, Signoroni S, Ricci MT. Factors influencing the colorectal surveillance adherence in Lynch Syndrome: A retrospective monocentric study. TUMORI JOURNAL 2024:3008916241308119. [PMID: 39726074 DOI: 10.1177/03008916241308119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
BACKGROUND Lynch syndrome (LS), an autosomal dominant disorder resulting from germline pathogenic variants in DNA mismatch repair genes, poses an elevated risk of developing different types of cancer, particularly colorectal and endometrial. Early identification of LS individuals is vital for implementing preventive measures. This study aims to assess the adherence rate of LS individuals to colorectal surveillance and identify influencing factors. METHODS Data from the Hereditary Digestive Tumors Registry at Fondazione IRCCS Istituto Nazionale dei Tumori of Milan from 1995 to 2018 were analyzed. The study included 397 LS patients, as categorized based on adherence to surveillance. Statistical analyses, including multivariable logistic regression, were employed to identify factors influencing adherence. RESULTS Out of 397 LS patients, 305 (76.8%) completed surveillance, and 92 (23.2%) were lost during surveillance. Fifty-two patients developed colorectal cancer during the surveillance: 34 among patients who completed the surveillance and 18 among those who did not (p<0.036). Factors positively influencing adherence included genetic counseling and higher education, while the distance from the referral center had a negative impact. The survival rate was 83.5% at 240-months. CONCLUSIONS This study emphasizes the importance of adhering to a regular colorectal surveillance program for LS individuals. Genetic counseling and higher education emerged as a crucial factor positively affecting adherence. The negative impact was observed for geographical distance from the referral center.
Collapse
Affiliation(s)
- Davide Ferrari
- Hereditary Digestive Tract Tumors Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Colorectal Surgery Division, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Rausa
- Hereditary Digestive Tract Tumors Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Lauricella
- Hereditary Digestive Tract Tumors Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Clorinda Brignola
- Hereditary Digestive Tract Tumors Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonio Zaccara
- Hereditary Digestive Tract Tumors Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Signoroni
- Hereditary Digestive Tract Tumors Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Teresa Ricci
- Hereditary Digestive Tract Tumors Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
2
|
Moini K, Seery T, Nangia C, MacDiarmid J, Brahmbhatt H, Spilman P, Sender L, Soon-Shiong P. Recurrent pancreatic cancer treated with N-803 and PD-L1 t-haNK followed by an EGFR-targeted nanocell drug conjugate. Oncologist 2024:oyae267. [PMID: 39373598 DOI: 10.1093/oncolo/oyae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Multimodal temporal therapy orchestrated to leverage immunotherapy, tumor-targeted chemotherapy, and natural killer (NK) cell therapy may provide an opportunity to induce immunogenic cell death for tumor response and increased survival in patients with recurrent cancer. The interleukin-15 (IL-15) superagonist N-803, an enhancer of NK cells, CD4 + T cells, cytotoxic CD8 + T cells, and memory T-cell activity, combined with off-the-shelf PD-L1-targeted high-affinity NK (PD-L1 t-haNK) cells represent novel immunotherapies designed to overcome an immunosuppressive tumor microenvironment (TME). The epidermal growth factor receptor-targeted antibody-nanocell conjugate E-EDV-D682 provides tumor-targeted chemotherapy in the form of its anthracycline metabolite PNU159682 (nemorubicin) cargo and is currently being studied in combination with immunomodulatory EDVs delivering the adjuvant α-galactosyl ceramide (GC). Here, we report the compassionate use treatment of this combination in a patient with recurrent, metastatic pancreatic cancer (mPC) after 3 lines of therapy. Under the initial single-patient Investigational New Drug (spIND) protocol, the patient received N-803, PD-L1 t-haNK cells, and the albumin doxorubicin conjugate aldoxorubicin for ~27 months. The patient's disease became stable on this regimen, and a transient complete response was observed by ~14 months of therapy. Due to progression, a second spIND protocol was designed whereby the patient received E-EDV-D682 plus EDV-GC for more than 24 months, which resulted in stable disease and the patient's continued survival at the time this report was written. The patient's extended survival despite the dire prognosis associated with recurrent mPC points to the merits of this temporal combination regimen in overcoming immuno-chemo resistance with enhanced immune activity required for tumor response and extended survival.
Collapse
Affiliation(s)
- Katayoun Moini
- Chan Soon-Shiong Institute for Medicine (CSSIFM), El Segundo, CA 90245, United States
| | - Tara Seery
- Chan Soon-Shiong Institute for Medicine (CSSIFM), El Segundo, CA 90245, United States
| | - Chaitali Nangia
- Chan Soon-Shiong Institute for Medicine (CSSIFM), El Segundo, CA 90245, United States
| | | | | | | | - Lennie Sender
- ImmunityBio, Inc., Culver City, CA 90232, United States
| | | |
Collapse
|
3
|
Bowen CM, Sinha KM, Vilar E. Current Trends in Vaccine Development for Hereditary Colorectal Cancer Syndromes. Clin Colon Rectal Surg 2024; 37:146-156. [PMID: 38606044 PMCID: PMC11006444 DOI: 10.1055/s-0043-1770383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The coming of age for cancer treatment has experienced exponential growth in the last decade with the addition of immunotherapy as the fourth pillar to the fundamentals of cancer treatment-chemotherapy, surgery, and radiation-taking oncology to an astounding new frontier. In this time, rapid developments in computational biology coupled with immunology have led to the exploration of priming the host immune system through vaccination to prevent and treat certain subsets of cancer such as melanoma and hereditary colorectal cancer. By targeting the immune system through tumor-specific antigens-namely, neoantigens (neoAgs)-the future of cancer prevention may lie within arm's reach by employing neoAg vaccines as an immune-preventive modality for hereditary cancer syndromes like Lynch syndrome. In this review, we discuss the history, current trends, utilization, and future direction of neoAg-based vaccines in the setting of hereditary colorectal cancer.
Collapse
Affiliation(s)
- Charles M. Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Zeng M, Zhang W, Li Y, Yu L. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res 2024; 12:36. [PMID: 38528632 DOI: 10.1186/s40364-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.
Collapse
Affiliation(s)
- Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd. No, 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
5
|
Stanton SE, Castle PE, Finn OJ, Sei S, Emens LA. Advances and challenges in cancer immunoprevention and immune interception. J Immunother Cancer 2024; 12:e007815. [PMID: 38519057 PMCID: PMC10961508 DOI: 10.1136/jitc-2023-007815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/24/2024] Open
Abstract
Invasive cancers typically evade immune surveillance through profound local and systemic immunosuppression, preventing their elimination or control. Targeting immune interventions to prevent or intercept premalignant lesions, before significant immune dysregulation has occurred, may be a more successful strategy. The field of cancer immune interception and prevention is nascent, and the scientific community has been slow to embrace this potentially most rational approach to reducing the global burden of cancer. This may change due to recent promising advances in cancer immunoprevention including the use of vaccines for the prevention of viral cancers, the use of cancer-associated antigen vaccines in the setting of precancers, and the development of cancer-preventative vaccines for high-risk individuals who are healthy but carry cancer-associated heritable genetic mutations. Furthermore, there is increasing recognition of the importance of cancer prevention and interception by national cancer organizations. The National Cancer Institute (NCI) recently released the National Cancer Plan, which includes cancer prevention among the top priorities of the institute. The NCI's Division of Cancer Prevention has been introducing new funding opportunities for scientists with an interest in the field of cancer prevention: The Cancer Prevention-Interception Targeted Agent Discovery Program and The Cancer Immunoprevention Network. Moreover, the Human Tumor Atlas Network is spearheading the development of a precancer atlas to better understand the biology of pre-invasive changes, including the tissue microenvironment and the underlying genetics that drive carcinogenesis. These data will inform the development of novel immunoprevention/immuno-interception strategies. International cancer foundations have also started recognizing immunoprevention and immune interception with the American Association for Cancer Research, Cancer Research UK and the Society for Immunotherapy of Cancer each implementing programming focused on this area. This review will present recent advances, opportunities, and challenges in the emerging field of cancer immune prevention and immune interception.
Collapse
Affiliation(s)
- Sasha E Stanton
- Cancer Immunoprevention Laboratory, Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Philip E Castle
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | | |
Collapse
|
6
|
Chen X, Sandrine IK, Yang M, Tu J, Yuan X. MUC1 and MUC16: critical for immune modulation in cancer therapeutics. Front Immunol 2024; 15:1356913. [PMID: 38361923 PMCID: PMC10867145 DOI: 10.3389/fimmu.2024.1356913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Coffman-D'Annibale K, Myojin Y, Monge C, Xie C, Hrones DM, Wood BJ, Levy EB, Kleiner D, Figg WD, Steinberg SM, Redd B, Greten TF. VB-111 (ofranergene obadenovec) in combination with nivolumab in patients with microsatellite stable colorectal liver metastases: a single center, single arm, phase II trial. J Immunother Cancer 2024; 12:e008079. [PMID: 38184304 PMCID: PMC10773432 DOI: 10.1136/jitc-2023-008079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Microsatellite stable colorectal liver metastases (MSS CLM) maintain an immunosuppressive tumor microenvironment (TME). Historically, immune-based approaches have been ineffective. VB-111 (ofranergene obadenovec) is a genetically-modified adenoviral vector targeting the TME; its unique dual mechanism induces an immune response and disrupts neovascularization. Checkpoint inhibition may synergize the immune response induced by viral-mediated anti-angiogenic gene therapy. We aimed to examine the safety and antitumor activity of VB-111 and nivolumab in patients with refractory MSS CLM and to characterize immunological treatment-response. METHODS This was a phase II study of adult patients with histologically-confirmed MSS CLM who progressed on prior therapy. A priming dose of VB-111 1×1013 viral particles was given intravenously 2 weeks prior to starting biweekly nivolumab 240 mg and continued every 6 weeks. The combination continued until disease progression or unacceptable toxicity. The primary objectives were overall response rate and safety/tolerability. Secondary objectives included median overall survival and progression-free survival. Correlative studies were performed on paired tumor biopsies and blood. RESULTS Between August 2020 and December 2021, 14 patients were enrolled with median age 50.5 years (40-75), and 14% were women. Median follow-up was 5.5 months. Of the 10 evaluable patients, the combination of VB-111 and nivolumab failed to demonstrate radiographic responses; at best, 2 patients had stable disease. Median overall survival was 5.5 months (95% CI: 2.3 to 10.8), and median progression-free survival was 1.8 months (95% CI: 1.4 to 1.9). The most common grade 3-4 treatment-related adverse events were fever/chills, influenza-like symptoms, and lymphopenia. No treatment-related deaths were reported. Qualitative analysis of immunohistochemical staining of paired tumor biopsies did not demonstrate significant immune infiltration after treatment, except for one patient who had exceptional survival (26.0 months). Immune analysis of peripheral blood mononuclear cells showed an increase of PD-1highKi67highCD8+ T cells and HLA-DRhigh T cells after VB-111 priming dose. Plasma cytokines interleukin-10 and tumor necrosis factor-α increased after treatment with both drugs. CONCLUSION In patients with MSS CLM, VB-111 and nivolumab did not improve overall response rate or survival but were tolerated with minimal toxicities. While challenging to distinguish between antiviral or antitumor, correlative studies demonstrated an immune response with activation and proliferation of CD8+ T cells systemically that was poorly sustained. TRIAL REGISTRATION NUMBER NCT04166383.
Collapse
Affiliation(s)
- Kelley Coffman-D'Annibale
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuta Myojin
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecilia Monge
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Changqing Xie
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donna Mabry Hrones
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center & Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Elliot B Levy
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center & Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - David Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William Douglas Figg
- Molecular Pharmacology Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bernadette Redd
- Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tim F Greten
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Fantini M, Tsang KY, Arlen PM. Generation of the therapeutic monoclonal antibody NEO-201, derived from a cancer vaccine, which targets human malignancies and immune suppressor cells. Expert Rev Vaccines 2024; 23:812-829. [PMID: 39186325 DOI: 10.1080/14760584.2024.2397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cancer vaccines stimulate the activation of specific humoral and cellular adaptive responses against cancer cells.Antibodies generated post vaccination can be isolated and further selected to develop highly specific and potent monoclonal antibodies (mAbs) against tumor-associated antigens. AREAS COVERED This review describes different types of cancer vaccines, the process of the generation of the mAb NEO-201 from the Hollinshead cancer vaccine platform, the characterization of the antigen recognized by NEO-201, the ability of NEO-201 to bind and mediate the killing of cancer cells and immunosuppressive cells (gMDSCs and Tregs) through ADCC and CDC, NEO-201 preclinical and clinical toxicity and efficacy. EXPERT OPINION To overcome the problem of poor clinical efficacy of cancer vaccines, due to the activity of immunosuppressive cells, cancer vaccines could be combined with other immunotherapeutics able to deplete immunosuppressive cells. Results from clinical trials, employing NEO-201 alone or in combination with pembrolizumab, showed that durable stabilization of disease after treatment was due to the ability of NEO-201 to target and reduce the percentage of circulating Tregs and gMDSCs.These findings provide compelling support to combine NEO-201 with cancer vaccines to reintegrate their ability to elicit a robust and durable immune adaptive response against cancer.
Collapse
|
9
|
Bhagat A, Lyerly HK, Morse MA, Hartman ZC. CEA vaccines. Hum Vaccin Immunother 2023; 19:2291857. [PMID: 38087989 PMCID: PMC10732609 DOI: 10.1080/21645515.2023.2291857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Carcinoembryonic antigen (CEA) is a glycosylated cell surface oncofetal protein involved in adhesion, proliferation, and migration that is highly upregulated in multiple carcinomas and has long been a promising target for cancer vaccination. This review summarizes the progress to date in the development of CEA vaccines, examining both pre-clinical and clinical studies across a variety of vaccine platforms that in aggregate, begin to reveal some critical insights. These studies demonstrate the ability of CEA vaccines to break immunologic tolerance and elicit CEA-specific immunity, which associates with improved clinical outcomes in select individuals. Approaches that have combined replicating viral vectors, with heterologous boosting and different adjuvant strategies have been particularly promising but, these early clinical trial results will require confirmatory studies. Collectively, these studies suggest that clinical efficacy likely depends upon harnessing a potent vaccine combination in an appropriate clinical setting to fully realize the potential of CEA vaccination.
Collapse
Affiliation(s)
- Anchit Bhagat
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Herbert K. Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Michael A. Morse
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Zachary C. Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Jin W, Zhang M, Dong C, Huang L, Luo Q. The multifaceted role of MUC1 in tumor therapy resistance. Clin Exp Med 2023; 23:1441-1474. [PMID: 36564679 DOI: 10.1007/s10238-022-00978-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Tumor therapeutic resistances are frequently linked to the recurrence and poor prognosis of cancers and have been a key bottleneck in clinical tumor treatment. Mucin1 (MUC1), a heterodimeric transmembrane glycoprotein, exhibits abnormally overexpression in a variety of human tumors and has been confirmed to be related to the formation of therapeutic resistance. In this review, the multifaceted roles of MUC1 in tumor therapy resistance are summarized from aspects of pan-cancer principles shared among therapies and individual mechanisms dependent on different therapies. Concretely, the common mechanisms of therapy resistance across cancers include interfering with gene expression, promoting genome instability, modifying tumor microenvironment, enhancing cancer heterogeneity and stemness, and activating evasion and metastasis. Moreover, the individual mechanisms of therapy resistance in chemotherapy, radiotherapy, and biotherapy are introduced. Last but not least, MUC1-involved therapy resistance in different types of cancers and MUC1-related clinical trials are summarized.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengwei Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Changzi Dong
- Department of Bioengineering, School of Engineering and Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
11
|
Wang R, Zhu T, Hou B, Huang X. An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma. Mol Ther 2023; 31:2376-2390. [PMID: 37312452 PMCID: PMC10422017 DOI: 10.1016/j.ymthe.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) express a broad spectrum of tumor-associated antigens and exert prophylactic effects on various tumors. However, some problems remain, such as potential tumorigenicity, challenges in transport to the lymph nodes and spleen, and limited antitumor effects. Thus, designing a safe and effective iPSC-based tumor vaccine is necessary. We prepared iPSC-derived exosomes and incubated them with DCs (dendritic cells) for pulsing to explore their antitumor effects in murine melanoma models. The antitumor immune response induced by the DC vaccine pulsed with iPSC exosomes (DC + EXO) was assessed in vitro and in vivo. After DC + EXO vaccination, extracted spleen T cells effectively killed a variety of tumor cells (melanoma, lung cancer, breast cancer, and colorectal cancer) in vitro. In addition, DC + EXO vaccination significantly inhibited melanoma growth and lung metastasis in mouse models. Furthermore, DC + EXO vaccination induced long-term T cell responses and prevented melanoma rechallenge. Finally, biocompatibility studies showed that the DC vaccine did not significantly alter the viability of normal cells and mouse viscera. Hence, our research may provide a prospective strategy of a safe and effective iPSC-based tumor vaccine for clinical use.
Collapse
Affiliation(s)
- Ronghao Wang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Tianchuan Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Bingzong Hou
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, Guangdong, China.
| |
Collapse
|
12
|
Lu L, Zeng Y, Yu Z, Chen S, Xie J, Rao B, Yang B, Qiu F, Lu J, Yang L. EIF4a3-regulated circRABL2B regulates cell stemness and drug sensitivity of lung cancer via YBX1-dependent downregulation of MUC5AC expression. Int J Biol Sci 2023; 19:2725-2739. [PMID: 37324942 PMCID: PMC10266078 DOI: 10.7150/ijbs.78588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Identification of mucin modulators is of remarkable significance to facilitate mucin-based antineoplastic therapy. However, little is known about circular RNAs (circRNAs) on regulating mucins. Dysregulated mucins and circRNAs were identified via high-throughput sequencing and their relationships with lung cancer survival were analyzed in tumor samples of 141 patients. The biological functions of circRABL2B were determined via gain- and loss-of-function experiments and exosome-packaged circRABL2B treatment in cells, patient-derived lung cancer organoids and nude mice. We identified that circRABL2B was negatively correlated with MUC5AC. Patients with low circRABL2B and high MUC5AC displayed the poorest survival (HR=2.00; 95% CI=1.12-3.57). Overexpressed circRABL2B significantly inhibited cell malignant phenotypes, while it knock-down exerted opposite effects. CircRABL2B interacted with YBX1 to inhibit MUC5AC, and subsequently suppressed integrin β4/pSrc/p53 signaling and impoverished cell stemness, and promoted erlotinib sensitivity. Exosome-packaged circRABL2B exerted significant anti-cancer actions in cells, patient-derived lung cancer organoids and nude mice. Meanwhile, circRABL2B in plasma exosomes could distinguish early-stage lung cancer patients from healthy controls. Finally, we found circRABL2B was downregulated at the transcriptional level, and EIF4a3 involved the formation of circRABL2B. In conclusion, our data suggest that circRABL2B counteracts lung cancer progression via MUC5AC/integrin β4/pSrc/p53 axis, which provides a rationale to enhance the efficacy of anti-MUCs treatment in lung cancer.
Collapse
Affiliation(s)
- Liming Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuyuan Zeng
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Ziqi Yu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Shizhen Chen
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianjiang Xie
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510080, China
| | - Boqi Rao
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Binyao Yang
- Innovation center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510735, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
- The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
13
|
Tumor antigens and vaccines in colorectal cancer. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Szlasa W, Janicka N, Sauer N, Michel O, Nowak B, Saczko J, Kulbacka J. Chemotherapy and Physical Therapeutics Modulate Antigens on Cancer Cells. Front Immunol 2022; 13:889950. [PMID: 35874714 PMCID: PMC9299262 DOI: 10.3389/fimmu.2022.889950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells possess specific properties, such as multidrug resistance or unlimited proliferation potential, due to the presence of specific proteins on their cell membranes. The release of proliferation-related proteins from the membrane can evoke a loss of adaptive ability in cancer cells and thus enhance the effects of anticancer therapy. The upregulation of cancer-specific membrane antigens results in a better outcome of immunotherapy. Moreover, cytotoxic T-cells may also become more effective when stimulated ex-vivo toward the anticancer response. Therefore, the modulation of membrane proteins may serve as an interesting attempt in anticancer therapy. The presence of membrane antigens relies on various physical factors such as temperature, exposure to radiation, or drugs. Therefore, changing the tumor microenvironment conditions may lead to cancer cells becoming sensitized to subsequent therapy. This paper focuses on the therapeutic approaches modulating membrane antigens and enzymes in anticancer therapy. It aims to analyze the possible methods for modulating the antigens, such as pharmacological treatment, electric field treatment, photodynamic reaction, treatment with magnetic field or X-ray radiation. Besides, an overview of the effects of chemotherapy and immunotherapy on the immunophenotype of cancer cells is presented. Finally, the authors review the clinical trials that involved the modulation of cell immunophenotype in anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Janicka
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Bernadetta Nowak
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
15
|
Abstract
Cancer is one of the leading causes of death in the world, which is the second after heart diseases. Adenoviruses (Ads) have become the promise of new therapeutic strategy for cancer treatment. The objective of this review is to discuss current advances in the applications of adenoviral vectors in cancer therapy. Adenoviral vectors can be engineered in different ways so as to change the tumor microenvironment from cold tumor to hot tumor, including; 1. by modifying Ads to deliver transgenes that codes for tumor suppressor gene (p53) and other proteins whose expression result in cell cycle arrest 2. Ads can also be modified to express tumor specific antigens, cytokines, and other immune-modulatory molecules. The other strategy to use Ads in cancer therapy is to use oncolytic adenoviruses, which directly kills tumor cells. Gendicine and Advexin are replication-defective recombinant human p53 adenoviral vectors that have been shown to be effective against several types of cancer. Gendicine was approved for treatment of squamous cell carcinoma of the head and neck by the Chinese Food and Drug Administration (FDA) agency in 2003 as a first-ever gene therapy product. Oncorine and ONYX-015 are oncolytic adenoviral vectors that have been shown to be effective against some types of cancer. The Chiness FDA agency has also approved Oncorin for the treatment of head and neck cancer. Ads that were engineered to express immune-stimulatory cytokines and other immune-modulatory molecules such as TNF-α, IL-2, BiTE, CD40L, 4-1BBL, GM-CSF, and IFN have shown promising outcome in treatment of cancer. Ads can also improve therapeutic efficacy of immune checkpoint inhibitors and adoptive cell therapy (Chimeric Antigen Receptor T Cells). In addition, different replication-deficient adenoviral vectors (Ad5-CEA, Ad5-PSA, Ad-E6E7, ChAdOx1-MVA and Ad-transduced Dendritic cells) that were tested as anticancer vaccines have been demonstrated to induce strong antitumor immune response. However, the use of adenoviral vectors in gene therapy is limited by several factors such as pre-existing immunity to adenoviral vectors and high immunogenicity of the viruses. Thus, innovative strategies must be continually developed so as to overcome the obstacles of using adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Sintayehu Tsegaye Tseha
- Lecturer of Biomedical Sciences, Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
17
|
Niu G, Hao J, Sheng S, Wen F. Role of T-box genes in cancer, epithelial-mesenchymal transition, and cancer stem cells. J Cell Biochem 2021; 123:215-230. [PMID: 34897787 DOI: 10.1002/jcb.30188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Sharing a common DNA binding motif called T-box, transcription factor T-box gene family controls embryonic development and is also involved in cancer progression and metastasis. Cancer metastasis shows therapy resistance and involves complex processes. Among them, epithelial-mesenchymal transition (EMT) triggers cancer cell invasiveness and the acquisition of stemness of cancer cells, called cancer stem cells (CSCs). CSCs are a small fraction of tumor bulk and are capable of self-renewal and tumorsphere formation. Recent progress has highlighted the critical roles of T-box genes in cancer progression, EMT, and CSC function, and such regulatory functions of T-box genes have emerged as potential therapeutic candidates for cancer. Herein we summarize the current understanding of the regulatory mechanisms of T-box genes in cancer, EMT, and CSCs, and discuss the implications of targeting T-box genes as anticancer therapeutics.
Collapse
Affiliation(s)
- Gengle Niu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jin Hao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Wen
- Department of Outpatient, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
18
|
Lee DH, Choi S, Park Y, Jin HS. Mucin1 and Mucin16: Therapeutic Targets for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14101053. [PMID: 34681277 PMCID: PMC8537522 DOI: 10.3390/ph14101053] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/18/2023] Open
Abstract
The mucin (MUC) family is a group of highly glycosylated macromolecules that are abundantly expressed in mammalian epithelial cells. MUC proteins contribute to the formation of the mucus barrier and thus have protective functions against infection. Interestingly, some MUC proteins are aberrantly expressed in cancer cells and are involved in cancer development and progression, including cell growth, proliferation, the inhibition of apoptosis, chemoresistance, metabolic reprogramming, and immune evasion. With their unique biological and structural features, MUC proteins have been considered promising therapeutic targets and also biomarkers for human cancer. In this review, we discuss the biological roles of the transmembrane mucins MUC1 and MUC16 in the context of hallmarks of cancer and current efforts to develop MUC1- and MUC16-targeted therapies.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Seunghyun Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Yoon Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Correspondence: (Y.P.); (H.-s.J.)
| | - Hyung-seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: (Y.P.); (H.-s.J.)
| |
Collapse
|
19
|
Gabitzsch E, Safrit JT, Verma M, Rice A, Sieling P, Zakin L, Shin A, Morimoto B, Adisetiyo H, Wong R, Bezawada A, Dinkins K, Balint J, Peykov V, Garban H, Liu P, Bacon A, Bone P, Drew J, Sanford DC, Spilman P, Sender L, Rabizadeh S, Niazi K, Soon-Shiong P. Dual-Antigen COVID-19 Vaccine Subcutaneous Prime Delivery With Oral Boosts Protects NHP Against SARS-CoV-2 Challenge. Front Immunol 2021; 12:729837. [PMID: 34603305 PMCID: PMC8481919 DOI: 10.3389/fimmu.2021.729837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
We have developed a dual-antigen COVID-19 vaccine incorporating genes for a modified SARS-CoV-2 spike protein (S-Fusion) and the viral nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) to increase the potential for MHC class II responses. The vaccine antigens are delivered by a human adenovirus serotype 5 platform, hAd5 [E1-, E2b-, E3-], previously demonstrated to be effective in the presence of Ad immunity. Vaccination of rhesus macaques with the hAd5 S-Fusion + N-ETSD vaccine by subcutaneous prime injection followed by two oral boosts elicited neutralizing anti-S IgG and T helper cell 1-biased T-cell responses to both S and N that protected the upper and lower respiratory tracts from high titer (1 x 106 TCID50) SARS-CoV-2 challenge. Notably, viral replication was inhibited within 24 hours of challenge in both lung and nasal passages, becoming undetectable within 7 days post-challenge.
Collapse
Affiliation(s)
| | | | - Mohit Verma
- ImmunityBio, Inc., Culver City, CA, United States
| | - Adrian Rice
- ImmunityBio, Inc., Culver City, CA, United States
| | | | - Lise Zakin
- ImmunityBio, Inc., Culver City, CA, United States
| | - Annie Shin
- ImmunityBio, Inc., Culver City, CA, United States
| | | | | | - Raymond Wong
- ImmunityBio, Inc., Culver City, CA, United States
| | | | - Kyle Dinkins
- ImmunityBio, Inc., Culver City, CA, United States
| | | | | | | | - Philip Liu
- ImmunityBio, Inc., Culver City, CA, United States
| | | | - Pete Bone
- IosBio, Burgess Hill, United Kingdom
| | - Jeff Drew
- IosBio, Burgess Hill, United Kingdom
| | | | | | | | | | - Kayvan Niazi
- ImmunityBio, Inc., Culver City, CA, United States
| | | |
Collapse
|
20
|
Zhao Y, Liu Z, Li L, Wu J, Zhang H, Zhang H, Lei T, Xu B. Oncolytic Adenovirus: Prospects for Cancer Immunotherapy. Front Microbiol 2021; 12:707290. [PMID: 34367111 PMCID: PMC8334181 DOI: 10.3389/fmicb.2021.707290] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy has moved to the forefront of modern oncologic treatment in the past few decades. Various forms of immunotherapy currently are emerging, including oncolytic viruses. In this therapy, viruses are engineered to selectively propagate in tumor cells and reduce toxicity for non-neoplastic tissues. Adenovirus is one of the most frequently employed oncolytic viruses because of its capacity in tumor cell lysis and immune response stimulation. Upregulation of immunostimulatory signals induced by oncolytic adenoviruses (OAds) might significantly remove local immune suppression and amplify antitumor immune responses. Existing genetic engineering technology allows us to design OAds with increasingly better tumor tropism, selectivity, and antitumor efficacy. Several promising strategies to modify the genome of OAds have been applied: capsid modifications, small deletions in the pivotal viral genes, insertion of tumor-specific promoters, and addition of immunostimulatory transgenes. OAds armed with tumor-associated antigen (TAA) transgenes as cancer vaccines provide additional therapeutic strategies to trigger tumor-specific immunity. Furthermore, the combination of OAds and immune checkpoint inhibitors (ICIs) increases clinical benefit as evidence shown in completed and ongoing clinical trials, especially in the combination of OAds with antiprogrammed death 1/programed death ligand 1 (PD-1/PD-L1) therapy. Despite remarkable antitumor potency, oncolytic adenovirus immunotherapy is confronted with tough challenges such as antiviral immune response and obstruction of tumor microenvironment (TME). In this review, we focus on genomic modification strategies of oncolytic adenoviruses and applications of OAds in cancer immunotherapy.
Collapse
Affiliation(s)
- Yaqi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Rice A, Verma M, Shin A, Zakin L, Sieling P, Tanaka S, Balint J, Dinkins K, Adisetiyo H, Morimoto B, Higashide W, Anders Olson C, Mody S, Spilman P, Gabitzsch E, Safrit JT, Rabizadeh S, Niazi K, Soon-Shiong P. Intranasal plus subcutaneous prime vaccination with a dual antigen COVID-19 vaccine elicits T-cell and antibody responses in mice. Sci Rep 2021; 11:14917. [PMID: 34290317 PMCID: PMC8295250 DOI: 10.1038/s41598-021-94364-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
We have developed a COVID-19 vaccine, hAd5 S-Fusion + N-ETSD, that expresses SARS-CoV-2 spike (S) and nucleocapsid (N) proteins with modifications to increase immune responses delivered using a human adenovirus serotype 5 (hAd5) platform. Here, we demonstrate subcutaneous (SC) prime and SC boost vaccination of CD-1 mice with this dual-antigen vaccine elicits T-helper cell 1 (Th1) biased T-cell and humoral responses to both S and N that are greater than those seen with hAd5 S wild type delivering only unmodified S. We then compared SC to intranasal (IN) prime vaccination with SC or IN boosts and show that an IN prime with an IN boost is as effective at generating Th1 biased humoral responses as the other combinations tested, but an SC prime with an IN or SC boost elicits greater T cell responses. Finally, we used a combined SC plus IN (SC + IN) prime with or without a boost and found the SC + IN prime alone to be as effective in generating humoral and T-cell responses as the SC + IN prime with a boost. The finding that SC + IN prime-only delivery has the potential to provide broad immunity-including mucosal immunity-against SARS-CoV-2 supports further testing of this vaccine and delivery approach in animal models of viral challenge.
Collapse
Affiliation(s)
- Adrian Rice
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Mohit Verma
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Annie Shin
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Lise Zakin
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Peter Sieling
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Shiho Tanaka
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Joseph Balint
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Kyle Dinkins
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Helty Adisetiyo
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Brett Morimoto
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Wendy Higashide
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - C Anders Olson
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Shivani Mody
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Patricia Spilman
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | | | - Jeffrey T Safrit
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | | | - Kayvan Niazi
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Patients with Lynch syndrome have a high probability of developing colorectal and other carcinomas. This review provides a comprehensive assessment of the immunologic aspects of Lynch syndrome pathogenesis and provides an overview of potential immune interventions for patients with Lynch syndrome polyps and Lynch syndrome-associated carcinomas. RECENT FINDINGS Immunogenic properties of the majority of Lynch syndrome polyps and associated cancers include microsatellite instability leading to a high mutational burden and the development of novel frameshift peptides, i.e., neoantigens. In addition, patients with Lynch syndrome develop T cell responses in the periphery and in the tumor microenvironment (TME) to tumor-associated antigens, and a proinflammatory cytokine TME has also been identified. However, Lynch syndrome lesions also possess immunosuppressive entities such as alterations in MHC class I antigen presentation, TGFβ receptor mutations, regulatory T cells, and upregulation of PD-L1 on tumor-associated lymphocytes. The rich immune microenvironment of Lynch syndrome polyps and associated carcinomas provides an opportunity to employ the spectrum of immune-mediating agents now available to induce and enhance host immune responses and/or to also reduce immunosuppressive entities. These agents can be employed in the so-called prevention trials for the treatment of patients with Lynch syndrome polyps and for trials in patients with Lynch syndrome-associated cancers.
Collapse
Affiliation(s)
- Danielle M Pastor
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Hematology Oncology Fellowship Program, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Almasmoum H. The Roles of Transmembrane Mucins Located on Chromosome 7q22.1 in Colorectal Cancer. Cancer Manag Res 2021; 13:3271-3280. [PMID: 33883940 PMCID: PMC8053700 DOI: 10.2147/cmar.s299089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancers. It is associated with a poor prognosis and high mortality. The role of mucins (MUCs) in colon tumorigenesis is unclear, but it might be significant in the progression of malignancy. Some mucins, such as MUC1 and MUC13, act as oncogenes, whereas others, such as MUC2 and MUC6, are tumor suppressors. However, there are still mucins with unidentified roles in CRC. In this review, we discuss the reported roles of mucins in CRC. Moreover, we review the capability of the mucin family to serve as a sensitive and specific histopathological marker for the early diagnosis of CRC. Lastly, the role of mucin genes clustered on chromosome 7q22 in CRC and other cancers is also discussed.
Collapse
Affiliation(s)
- Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah, 7607, Saudi Arabia
| |
Collapse
|
24
|
Bilusic M, McMahon S, Madan RA, Karzai F, Tsai YT, Donahue RN, Palena C, Jochems C, Marté JL, Floudas C, Strauss J, Redman J, Abdul Sater H, Rabizadeh S, Soon-Shiong P, Schlom J, Gulley JL. Phase I study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC). J Immunother Cancer 2021; 9:jitc-2021-002374. [PMID: 33762322 PMCID: PMC7993215 DOI: 10.1136/jitc-2021-002374] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background Antitumor vaccines targeting tumor-associated antigens (TAAs) can generate antitumor immune response. A novel vaccine platform using adenovirus 5 (Ad5) vectors [E1–, E2b–] targeting three TAAs—prostate-specific antigen (PSA), brachyury, and MUC-1—has been developed. Both brachyury and the C-terminus of MUC-1 are overexpressed in metastatic castration-resistant prostate cancer (mCRPC) and have been shown to play an important role in resistance to chemotherapy, epithelial–mesenchymal transition, and metastasis. The transgenes for PSA, brachyury, and MUC-1 all contain epitope modifications for the expression of CD8+ T-cell enhancer agonist epitopes. We report here the first-in-human trial of this vaccine platform. Methods Patients with mCRPC were given concurrently three vaccines targeting PSA, brachyury, and MUC-1 at 5×1011 viral particles (VP) each, subcutaneously every 3 weeks for a maximum of three doses (dose de-escalation cohort), followed by a booster vaccine every 8 weeks for 1 year (dose-expansion cohort only). The primary objective was to determine the safety and the recommended phase II dose. Immune assays and clinical responses were evaluated. Results Eighteen patients with mCRPC were enrolled between July 2018 and September 2019 and received at least one vaccination. Median PSA was 25.58 ng/mL (range, 0.65–1006 ng/mL). The vaccine was tolerable and safe, and no grade >3 treatment-related adverse events or dose-limiting toxicities (DLTs) were observed. One patient had a partial response, while five patients had confirmed PSA decline and five had stable disease for >6 months. Median progression-free survival was 22 weeks (95% CI: 19.1 to 34). Seventeen (100%) of 17 patients mounted T-cell responses to at least one TAA, whereras 8 (47%) of 17 patients mounted immune responses to all three TAAs. Multifunctional T-cell responses to PSA, MUC-1, and brachyury were also detected after vaccination in the majority of the patients. Conclusions Ad5 PSA/MUC-1/brachyury vaccine is well tolerated. The primary end points were met and there were no DLTs. The recommended phase II dose is 5×1011 VP. The vaccine demonstrated clinical activity, including one partial response and confirmed PSA responses in five patients. Three patients with prolonged PSA responses received palliative radiation therapy. Further research is needed to evaluate the clinical benefit and immunogenicity of this vaccine in combination with other immuno-oncology agents and/or palliative radiation therapy. Trial registration number NCT03481816.
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Sheri McMahon
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Ravi A Madan
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Fatima Karzai
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jennifer L Marté
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Charalampos Floudas
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Redman
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Houssein Abdul Sater
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov 2021; 20:217-243. [PMID: 33462432 PMCID: PMC7812346 DOI: 10.1038/s41573-020-00093-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/31/2023]
Abstract
Carbohydrates - namely glycans - decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas - selectins, Siglecs and glycan-targeted antibodies - this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Benjamin A H Smith
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
26
|
Horn LA, Fousek K, Hamilton DH, Hodge JW, Zebala JA, Maeda DY, Schlom J, Palena C. Vaccine Increases the Diversity and Activation of Intratumoral T Cells in the Context of Combination Immunotherapy. Cancers (Basel) 2021; 13:cancers13050968. [PMID: 33669155 PMCID: PMC7956439 DOI: 10.3390/cancers13050968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022] Open
Abstract
Resistance to immune checkpoint blockade therapy has spurred the development of novel combinations of drugs tailored to specific cancer types, including non-inflamed tumors with low T-cell infiltration. Cancer vaccines can potentially be utilized as part of these combination immunotherapies to enhance antitumor efficacy through the expansion of tumor-reactive T cells. Utilizing murine models of colon and mammary carcinoma, here we investigated the effect of adding a recombinant adenovirus-based vaccine targeting tumor-associated antigens with an IL-15 super agonist adjuvant to a multimodal regimen consisting of a bifunctional anti-PD-L1/TGF-βRII agent along with a CXCR1/2 inhibitor. We demonstrate that the addition of vaccine induced a greater tumor infiltration with T cells highly positive for markers of proliferation and cytotoxicity. In addition to this enhancement of cytotoxic T cells, combination therapy showed a restructured tumor microenvironment with reduced Tregs and CD11b+Ly6G+ myeloid cells. Tumor-infiltrating immune cells exhibited an upregulation of gene signatures characteristic of a Th1 response and presented with a more diverse T-cell receptor (TCR) repertoire. These results provide the rationale for the addition of vaccine-to-immune checkpoint blockade-based therapies being tested in the clinic.
Collapse
Affiliation(s)
- Lucas A. Horn
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Kristen Fousek
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Duane H. Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - John A. Zebala
- Syntrix Pharmaceuticals, Auburn, WA 98001, USA; (J.A.Z.); (D.Y.M.)
| | - Dean Y. Maeda
- Syntrix Pharmaceuticals, Auburn, WA 98001, USA; (J.A.Z.); (D.Y.M.)
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
- Correspondence: ; Tel.: +1-240-858-3475; Fax: +1-240-541-4558
| |
Collapse
|
27
|
Ramamoorthi G, Kodumudi K, Gallen C, Zachariah NN, Basu A, Albert G, Beyer A, Snyder C, Wiener D, Costa RLB, Czerniecki BJ. Disseminated cancer cells in breast cancer: Mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. Semin Cancer Biol 2021; 78:78-89. [PMID: 33626407 DOI: 10.1016/j.semcancer.2021.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Metastatic spread in breast cancer patients is the major driver of cancer-related deaths. A unique subset of cells disseminated from pre-invasive or primary tumor lesions are recognized as the main seeds for metastatic outgrowth. Disseminated cancer cells (DCCs) can migrate to distant organs and settle in a dormant state for a prolonged period until they emerge to overt metastases. Understanding the biology of breast cancer cells dissemination, dormancy and reactivation to form overt metastases has become an important focus. In this review, we discuss the recent advancements of molecular pathways involving breast cancer cell dissemination, role of chemokine-chemokine receptor networks in DCCs migration, DCCs phenotypic heterogeneity and unique genes signatures in tumor dormancy, microenvironmental regulation and specific niches that favors DCCs homing and dormancy. In addition, we also discuss recent findings relating to the role of immune response on DCC dissemination and dormancy. With recent advances in the field of immunotherapy/targeted therapy and its beneficial effects in cancer treatment, this review will focus on their impact on DCCs, reversal of stemness, tumor dormancy and metastatic relapse.
Collapse
Affiliation(s)
- Ganesan Ramamoorthi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Corey Gallen
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Nadia Nocera Zachariah
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Amrita Basu
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Gabriella Albert
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Amber Beyer
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Colin Snyder
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Doris Wiener
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Ricardo L B Costa
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States.
| |
Collapse
|
28
|
Pinto F, Costa ÂM, Andrade RP, Reis RM. Brachyury Is Associated with Glioma Differentiation and Response to Temozolomide. Neurotherapeutics 2020; 17:2015-2027. [PMID: 32785847 PMCID: PMC7851232 DOI: 10.1007/s13311-020-00911-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioblastomas (GBMs) are the most aggressive tumor type of the central nervous system, mainly due to their high invasiveness and innate resistance to radiotherapy and chemotherapy, with temozolomide (TMZ) being the current standard therapy. Recently, brachyury was described as a novel tumor suppressor gene in gliomas, and its loss was associated with increased gliomagenesis. Here, we aimed to explore the role of brachyury as a suppressor of glioma invasion, stem cell features, and resistance to TMZ. Using gene-edited glioma cells to overexpress brachyury, we found that brachyury-positive cells exhibit reduced invasive and migratory capabilities and stem cell features. Importantly, these brachyury-expressing cells have increased expression of differentiation markers, which corroborates the results from human glioma samples and in vivo tumors. Glioma cells treated with retinoic acid increased the differentiation status with concomitant increased expression of brachyury. We then selected TMZ-resistant (SNB-19) and TMZ-responsive (A172 and U373) cell lines to evaluate the role of brachyury in the response to TMZ treatment. We observed that both exogenous and endogenous brachyury activation, through overexpression and retinoic acid treatment, are associated with TMZ sensitization in glioma-resistant cell lines. In this study, we demonstrate that brachyury expression can impair aggressive glioma features associated with treatment resistance. Finally, we provide the first evidence that brachyury can be a potential therapeutic target in GBM patients who do not respond to conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Filipe Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, 4200-135, Porto, Portugal
| | - Ângela M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135, Porto, Portugal
| | - Raquel P Andrade
- Centre for Biomedical Research - CBMR, University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Ala Norte, 8005-139, Faro, Portugal
- Department of Medicine and Biomedical Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil.
| |
Collapse
|
29
|
Schlom J, Donahue RN. The Importance of Cellular Immunity in the Development of Vaccines and Therapeutics for COVID-19. J Infect Dis 2020; 222:1435-1438. [PMID: 32651586 PMCID: PMC7454733 DOI: 10.1093/infdis/jiaa415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/06/2020] [Indexed: 11/12/2022] Open
Abstract
It is important to develop vaccines that can also mediate T-cell responses to SARS-CoV-2 to limit severity of infections, and to analyze the cellular immunome in the use of anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Zhou H, Zhang Z, Liu G, Jiang M, Wang J, Liu Y, Tai G. The Effect of Different Immunization Cycles of a Recombinant Mucin1-Maltose-Binding Protein Vaccine on T Cell Responses to B16-MUC1 Melanoma in Mice. Int J Mol Sci 2020; 21:ijms21165810. [PMID: 32823603 PMCID: PMC7460843 DOI: 10.3390/ijms21165810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
We explored the effect of a recombinant mucin1-maltose-binding protein vaccine, including immunization cycles of recombinant mucin1-maltose-binding protein (MUC1-MBP) and CpG 2006 on T cell responses to human MUC1-overexpressing mouse melanoma B16 cells (B16-MUC1) melanoma in mice. We found that the vaccine had a significant antitumor effect, with the most obvious tumor-suppressive effect being observed in mice immunized five times. After more than five immunizations, the tumor inhibition rate decreased from 81.67% (five immunizations) to 43.67% (eight immunizations). To study the possible mechanism, Mucin-1(MUC1)-specific antibodies, IFN-γ secretion by lymphocytes, and cytotoxic T lymphocyte (CTL) cytotoxicity were measured by enzyme-linked immunosorbent assay (ELISA) and a real-time cell analyzer (RTCA). T cell subsets and immunosuppressive cells in the mouse spleen and tumor microenvironment were analyzed by FACS. These results showed that five immunizations activated MUC1-specific Th1 and CTL and reduced the ratio of myeloid-derived suppressor cells (MDSCs) and Th17 in mice more significantly than eight immunizations, indicating that excessive frequency of the immune cycle leads to the increased numbers of immunosuppressive cells and decreased numbers of immunostimulatory cells, thereby inhibiting antitumor immune activity. This data provide an experimental foundation for the clinical application of a recombinant MUC1-MBP vaccine.
Collapse
|
31
|
Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and Immunotherapy: Advancing Cancer Treatment by Combination. Cancers (Basel) 2020; 12:cancers12051295. [PMID: 32455560 PMCID: PMC7281656 DOI: 10.3390/cancers12051295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023] Open
Abstract
Gene therapy with viral vectors has significantly advanced in the past few decades, with adenovirus being one of the most commonly employed vectors for cancer gene therapy. Adenovirus vectors can be divided into 2 groups: (1) replication-deficient viruses; and (2) replication-competent, oncolytic (OVs) viruses. Replication-deficient adenoviruses have been explored as vaccine carriers and gene therapy vectors. Oncolytic adenoviruses are designed to selectively target, replicate, and directly destroy cancer cells. Additionally, virus-mediated cell lysis releases tumor antigens and induces local inflammation (e.g., immunogenic cell death), which contributes significantly to the reversal of local immune suppression and development of antitumor immune responses ("cold" tumor into "hot" tumor). There is a growing body of evidence suggesting that the host immune response may provide a critical boost for the efficacy of oncolytic virotherapy. Additionally, genetic engineering of oncolytic viruses allows local expression of immune therapeutics, thereby reducing related toxicities. Therefore, the combination of oncolytic virus and immunotherapy is an attractive therapeutic strategy for cancer treatment. In this review, we focus on adenovirus-based vectors and discuss recent progress in combination therapy of adenoviruses with immunotherapy in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mizuho Sato-Dahlman
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher J. LaRocca
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Surgical Oncology, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chikako Yanagiba
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Surgical Oncology, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-624-9131
| |
Collapse
|
32
|
Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for Conventional and in Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers (Basel) 2020; 12:cancers12051121. [PMID: 32365838 PMCID: PMC7281593 DOI: 10.3390/cancers12051121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Survival of gastrointestinal cancer remains dismal, especially for metastasized disease. For various cancers, especially melanoma and lung cancer, immunotherapy has been proven to confer survival benefits, but results for gastrointestinal cancer have been disappointing. Hence, there is substantial interest in exploring the usefulness of adaptive immune system education with respect to anti-cancer responses though vaccination. Encouragingly, even fairly non-specific approaches to vaccination and immune system stimulation, involving for instance influenza vaccines, have shown promising results, eliciting hopes that selection of specific antigens for vaccination may prove useful for at least a subset of gastrointestinal cancers. It is widely recognized that immune recognition and initiation of responses are hampered by a lack of T cell help, or by suppressive cancer-associated factors. In this review we will discuss the hurdles that limit efficacy of conventional cancer therapeutic vaccination methods (e.g., peptide vaccines, dendritic cell vaccination). In addition, we will outline other forms of treatment (e.g., radiotherapy, chemotherapy, oncolytic viruses) that also cause the release of antigens through immunogenic tumor cell death and can thus be considered unconventional vaccination methods (i.e., in situ vaccination). Finally, we focus on the potential additive value that vaccination strategies may have for improving the effect immunotherapy. Overall, a picture will emerge that although the field has made substantial progress, successful immunotherapy through the combination with cancer antigen vaccination, including that for gastrointestinal cancers, is still in its infancy, prompting further intensification of the research effort in this respect.
Collapse
|
33
|
Horn LA, Fousek K, Palena C. Tumor Plasticity and Resistance to Immunotherapy. Trends Cancer 2020; 6:432-441. [PMID: 32348738 DOI: 10.1016/j.trecan.2020.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
Abstract
Tumor cell plasticity exhibited as an epithelial-mesenchymal transition (EMT) has been identified as a major obstacle for the effective treatment of many cancers. This process, which involves the dedifferentiation of epithelial tumor cells towards a motile, metastatic, and mesenchymal tumor phenotype, mediates resistance to conventional therapies and small-molecule targeted therapies. In this review, we highlight current research correlating the role of tumor plasticity with resistance to current immunotherapy approaches and discuss future and ongoing combination immunotherapy strategies to reduce tumor cell plasticity-driven resistance in cancer.
Collapse
Affiliation(s)
- Lucas A Horn
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen Fousek
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|