1
|
Zhang S, Deng Z, Qiu Y, Lu G, Wu J, Huang H. FGIN-1-27 Mitigates Radiation-induced Mitochondrial Hyperfunction and Cellular Hyperactivation in Cultured Astrocytes. Neuroscience 2023; 535:23-35. [PMID: 37913861 DOI: 10.1016/j.neuroscience.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Radiation-induced brain injury (RBI) poses a significant challenge in the context of radiotherapy for intracranial tumors, necessitating a comprehensive understanding of the cellular and molecular mechanisms involved. While prior investigations have underscored the role of astrocyte activation and excessive vascular endothelial growth factor production in microvascular damage associated with RBI, there remains a scarcity of studies examining the impact of radiation on astrocytes, particularly regarding organelles such as mitochondria. Thus, our study aimed to elucidate alterations in astrocyte and mitochondrial functionality following radiation exposure, with a specific focus on evaluating the potential ameliorative effects of translocator protein 18 kDa(TSPO) ligands. In this study, cultured astrocytes were subjected to X-ray irradiation, and their cellular states and mitochondrial functions were examined and compared to control cells. Our findings revealed that radiation-induced astrocytic hyperactivation, transforming them into the neurotoxic A1-type, concomitant with reduced cell proliferation. Additionally, radiation triggered mitochondrial hyperfunction, heightened the mitochondrial membrane potential, and increased oxidative metabolite production. However, following treatment with FGIN-1-27, a TSPO ligand, we observed a restoration of mitochondrial function and a reduction in oxidative metabolite production. Moreover, this intervention mitigated astrocyte hyperactivity, decreased the number of A1-type astrocytes, and restored cell proliferative capacity. In conclusion, our study has unveiled additional manifestations of radiation-induced astrocyte dysfunction and validated that TSPO ligands may serve as a promising therapeutic strategy to mitigate this dysfunction. It has potential clinical implications for the treatment of RBI.
Collapse
Affiliation(s)
- Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
2
|
Gulli F, Geddes TJ, Pruetz BL, Wilson GD. Investigation of the physiological response of radiation-induced cystitis patients using hyperbaric oxygen. Clin Transl Radiat Oncol 2022; 38:104-110. [DOI: 10.1016/j.ctro.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
|
3
|
Nogueira-Pedro A, Segreto HRC, Held KD, Ferreira Junior AFG, Dias CC, Hastreiter AA, Makiyama EN, Paredes-Gamero EJ, Borelli P, Fock RA. Direct ionizing radiation and bystander effect in mouse mesenchymal stem cells. Int J Radiat Biol 2022; 98:1-11. [PMID: 35394402 DOI: 10.1080/09553002.2022.2063960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Purpose: This study aimed to evaluate the radiation-induced direct and bystander (BYS) responses of mesenchymal stem cells (MSCs) and to characterize these cells radiobiologically.Methods and materials: MSCs were irradiated (IR) and parameters related to DNA damage and cellular signaling were verified in a dose range from 0.5 to 15 Gy; also a transwell insert co-culture system was used to study medium-mediated BYS effects.Results: The main effects on directly IR cells were seen at doses higher than 6 Gy: induction of cell death, cell cycle arrest, upregulation of p21, and alteration of redox status. Irrespective of a specific dose, induction of micronuclei formation, H2AX phosphorylation, and decreased Akt expression also occurred. Thus, mTOR expression, cell senescence, nitric oxide generation, and calcium levels, in general were not significantly modulated by radiation. Data from the linear-quadratic model showed a high alpha/beta ratio, which is consistent with a more exponential survival curve. BYS effects from the unirradiated MSCs placed into companion wells with the directly IR cells, were not observed.Conclusions: The results can be interpreted as a positive outcome, meaning that the radiation damage is restricted to the directed IR MSCs not leading to off-target cell responses.
Collapse
Affiliation(s)
- Amanda Nogueira-Pedro
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Helena Regina Comodo Segreto
- Department of Clinical and Experimental Oncology, Paulista School of Medicine, Federal University of São Paulo, Sao Paulo, Brazil
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, National Council on Radiation Protection and Measurements, Bethesda, MD, USA
| | | | - Carolina Carvalho Dias
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Araceli Aparecida Hastreiter
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Edgar Julian Paredes-Gamero
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Vorhees CV, Vatner RE, Williams MT. Review of Conventional and High Dose Rate Brain Radiation (FLASH): Neurobehavioural, Neurocognitive and Assessment Issues in Rodent Models. Clin Oncol (R Coll Radiol) 2021; 33:e482-e491. [PMID: 34548203 PMCID: PMC10114147 DOI: 10.1016/j.clon.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Ionising radiation causes secondary tumours and/or enduring cognitive deficits, especially in children. Proton radiotherapy reduces exposure of the developing brain in children but may still cause some lasting effects. Recent observations show that ultra-high dose rate radiation treatment (≥40 Gy/s), called the FLASH effect, is equally effective at tumour control but less damaging to surrounding tissue compared with conventional dose rate protons (0.03-3 Gy/s). Most studies on the FLASH effect in brain and other tissues with different radiation modalities (electron and photon radiation), show FLASH benefits in these preclinical rodent models, but the data are limited, especially for proton FLASH, including for dose, dose rate and neurochemical and neurobehavioural outcomes. Tests of neurocognitive outcomes have been limited despite clinical evidence that this is the area of greatest concern. The FLASH effect in the context of proton exposure is promising, but a more systematic and comprehensive approach to outcomes is needed.
Collapse
Affiliation(s)
- C V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati Children's/University of Cincinnati Proton Therapy and Research Center, Cincinnati, Ohio, USA.
| | - R E Vatner
- Cincinnati Children's/University of Cincinnati Proton Therapy and Research Center, Cincinnati, Ohio, USA; Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - M T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati Children's/University of Cincinnati Proton Therapy and Research Center, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Sishc BJ, Ding L, Nam TK, Heer CD, Rodman SN, Schoenfeld JD, Fath MA, Saha D, Pulliam CF, Langen B, Beardsley RA, Riley DP, Keene JL, Spitz DR, Story MD. Avasopasem manganese synergizes with hypofractionated radiation to ablate tumors through the generation of hydrogen peroxide. Sci Transl Med 2021; 13:eabb3768. [PMID: 33980575 PMCID: PMC8314936 DOI: 10.1126/scitranslmed.abb3768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Avasopasem manganese (AVA or GC4419), a selective superoxide dismutase mimetic, is in a phase 3 clinical trial (NCT03689712) as a mitigator of radiation-induced mucositis in head and neck cancer based on its superoxide scavenging activity. We tested whether AVA synergized with radiation via the generation of hydrogen peroxide, the product of superoxide dismutation, to target tumor cells in preclinical xenograft models of non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma, and pancreatic ductal adenocarcinoma. Treatment synergy with AVA and high dose per fraction radiation occurred when mice were given AVA once before tumor irradiation and further increased when AVA was given before and for 4 days after radiation, supporting a role for oxidative metabolism. This synergy was abrogated by conditional overexpression of catalase in the tumors. In addition, in vitro NSCLC and mammary adenocarcinoma models showed that AVA increased intracellular hydrogen peroxide concentrations and buthionine sulfoximine- and auranofin-induced inhibition of glutathione- and thioredoxin-dependent hydrogen peroxide metabolism selectively enhanced AVA-induced killing of cancer cells compared to normal cells. Gene expression in irradiated tumors treated with AVA suggested that increased inflammatory, TNFα, and apoptosis signaling also contributed to treatment synergy. These results support the hypothesis that AVA, although reducing radiotherapy damage to normal tissues, acts synergistically only with high dose per fraction radiation regimens analogous to stereotactic ablative body radiotherapy against tumors by a hydrogen peroxide-dependent mechanism. This tumoricidal synergy is now being tested in a phase I-II clinical trial in humans (NCT03340974).
Collapse
Affiliation(s)
- Brock J Sishc
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lianghao Ding
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taek-Keun Nam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Collin D Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel N Rodman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Melissa A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Debabrata Saha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Casey F Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Britta Langen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert A Beardsley
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA
| | - Dennis P Riley
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA
| | - Jeffery L Keene
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA
| | - Douglas R Spitz
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA.
| | - Michael D Story
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
X-rays Activate Telomeric Homologous Recombination Mediated Repair in Primary Cells. Cells 2019; 8:cells8070708. [PMID: 31336873 PMCID: PMC6678842 DOI: 10.3390/cells8070708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer cells need to acquire telomere maintenance mechanisms in order to counteract progressive telomere shortening due to multiple rounds of replication. Most human tumors maintain their telomeres expressing telomerase whereas the remaining 15%–20% utilize the alternative lengthening of telomeres (ALT) pathway. Previous studies have demonstrated that ionizing radiations (IR) are able to modulate telomere lengths and to transiently induce some of the ALT-pathway hallmarks in normal primary fibroblasts. In the present study, we investigated the telomere length modulation kinetics, telomeric DNA damage induction, and the principal hallmarks of ALT over a period of 13 days in X-ray-exposed primary cells. Our results show that X-ray-treated cells primarily display telomere shortening and telomeric damage caused by persistent IR-induced oxidative stress. After initial telomere erosion, we observed a telomere elongation that was associated to the transient activation of a homologous recombination (HR) based mechanism, sharing several features with the ALT pathway observed in cancer cells. Data indicate that telomeric damage activates telomeric HR-mediated repair in primary cells. The characterization of HR-mediated telomere repair in normal cells may contribute to the understanding of the ALT pathway and to the identification of novel strategies in the treatment of ALT-positive cancers.
Collapse
|
7
|
Cao Q, Liu W, Wang J, Cao J, Yang H. A single low dose of Fe ions can cause long-term biological responses in NL20 human bronchial epithelial cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:31-40. [PMID: 29127482 DOI: 10.1007/s00411-017-0719-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Space radiation cancer risk may be a potential obstacle for long-duration spaceflight. Among all types of cancer space radiation may induce, lung cancer has been estimated to be the largest potential risk. Although previous animal study has shown that Fe ions, the most important contributor to the total dose equivalent of space radiation, induced a higher incidence of lung tumorigenesis per dose than X-rays, the underlying mechanisms at cellular level remained unclear. Therefore, in the present study, we investigated long-term biological changes in NL20 human bronchial epithelial cells after exposure to Fe ion or X-ray irradiation. We found that compared with sham control, the progeny of NL20 cells irradiated with 0.1 Gy of Fe ions showed slightly increased micronucleus formation, significantly decreased cell proliferation, disturbed cell cycle distribution, and obviously elevated intracellular ROS levels accompanied by reduced SOD1 and SOD2 expression, but the progeny of NL20 cells irradiated with 0.9 Gy of X-rays did not show any significant changes. More importantly, Fe ion exposure caused much greater soft-agar colony formation than X-rays did in the progeny of irradiated NL20 cells, clearly suggesting higher cell transformation potential of Fe ions compared with X-rays. These data may shed the light on the potential lung tumorigenesis risk from Fe ion exposure. In addition, ATM inhibition by Ku55933 reversed some of the changes in the progeny of Fe ion-irradiated cells but not others such as soft-agar colony formation, suggesting complex processes from DNA damage to carcinogenesis. These data indicate that even a single low dose of Fe ions can induce long-term biological responses such as cell transformation, etc., suggesting unignorable health risk from space radiation to astronauts.
Collapse
Affiliation(s)
- Qianlin Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wei Liu
- Department of Radiotherapy and Oncology, Second Affiliated Hospital, Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Jingdong Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Zhou T, Lu L, Wu S, Zuo L. Effects of Ionizing Irradiation on Mouse Diaphragmatic Skeletal Muscle. Front Physiol 2017; 8:506. [PMID: 28790924 PMCID: PMC5524972 DOI: 10.3389/fphys.2017.00506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Undesirable exposure of diaphragm to radiation during thoracic radiation therapy has not been fully considered over the past decades. Our study aims to examine the potential biological effects on diaphragm induced by radiation. One-time ionizing irradiation of 10 Gy was applied either to the diaphragmatic region of mice or to the cultured C2C12 myocytes. Each sample was then assayed for muscle function, oxidative stress, or cell viability on days 1, 3, 5, and 7 after irradiation. Our mouse model shows that radiation significantly reduced muscle function on the 5th and 7th days and increased reactive oxygen species (ROS) formation in the diaphragm tissue from days 3 to 7. Similarly, the myocytes exhibited markedly decreased viability and elevated oxidative stress from days 5 to 7 after radiation. These data together suggested that a single dose of 10-Gy radiation is sufficient to cause acute adverse effects on diaphragmatic muscle function, redox balance, and myocyte survival. Furthermore, using the collected data, we developed a physical model to formularize the correlation between diaphragmatic ROS release and time after irradiation, which can be used to predict the biological effects of radiation with a specific dosage. Our findings highlight the importance of developing protective strategies to attenuate oxidative stress and prevent diaphragm injury during radiotherapy.
Collapse
Affiliation(s)
- Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, United States.,Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, United States
| | - Lanchun Lu
- Department of Radiation Oncology, The Ohio State University James Cancer HospitalColumbus, OH, United States
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio UniversityAthens, OH, United States.,Molecular and Cellular Biology Program, Department of Chemistry and Biochemistry, Ohio UniversityAthens, OH, United States
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, United States.,Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, United States
| |
Collapse
|
9
|
Sridharan DM, Asaithamby A, Bailey SM, Costes SV, Doetsch PW, Dynan WS, Kronenberg A, Rithidech KN, Saha J, Snijders AM, Werner E, Wiese C, Cucinotta FA, Pluth JM. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation. Radiat Res 2015; 183:1-26. [PMID: 25564719 DOI: 10.1667/rr13804.1] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.
Collapse
Affiliation(s)
- D M Sridharan
- a Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dettmering T, Zahnreich S, Colindres-Rojas M, Durante M, Taucher-Scholz G, Fournier C. Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts. JOURNAL OF RADIATION RESEARCH 2015; 56:67-76. [PMID: 25304329 PMCID: PMC4572590 DOI: 10.1093/jrr/rru083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 05/25/2023]
Abstract
The production of reactive oxygen species (ROS), especially superoxide anions (O2 (·-)), is enhanced in many normal and tumor cell types in response to ionizing radiation. The influence of ionizing radiation on the regulation of ROS production is considered as an important factor in the long-term effects of irradiation (such as genomic instability) that might contribute to the development of secondary cancers. In view of the increasing application of carbon ions in radiation therapy, we aimed to study the potential impact of ionizing density on the intracellular production of ROS, comparing photons (X-rays) with carbon ions. For this purpose, we used normal human cells as a model for irradiated tissue surrounding a tumor. By quantifying the oxidization of Dihydroethidium (DHE), a fluorescent probe sensitive to superoxide anions, we assessed the intracellular ROS status after radiation exposure in normal human fibroblasts, which do not show radiation-induced chromosomal instability. After 3-5 days post exposure to X-rays and carbon ions, the level of ROS increased to a maximum that was dose dependent. The maximum ROS level reached after irradiation was specific for the fibroblast type. However, carbon ions induced this maximum level at a lower dose compared with X-rays. Within ∼1 week, ROS decreased to control levels. The time-course of decreasing ROS coincides with an increase in cell number and decreasing p21 protein levels, indicating a release from radiation-induced growth arrest. Interestingly, radiation did not act as a trigger for chronically enhanced levels of ROS months after radiation exposure.
Collapse
Affiliation(s)
- Till Dettmering
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Sebastian Zahnreich
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Miriam Colindres-Rojas
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstraße 6-8, 64289 Darmstadt, Germany
| | - Gisela Taucher-Scholz
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Claudia Fournier
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| |
Collapse
|
11
|
Werner E, Wang H, Doetsch PW. Opposite roles for p38MAPK-driven responses and reactive oxygen species in the persistence and resolution of radiation-induced genomic instability. PLoS One 2014; 9:e108234. [PMID: 25271419 PMCID: PMC4182705 DOI: 10.1371/journal.pone.0108234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/27/2014] [Indexed: 01/26/2023] Open
Abstract
We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization.
Collapse
Affiliation(s)
- Erica Werner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (PWD); (EW)
| | - Huichen Wang
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Paul W. Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Hematology and Medical Oncology Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (PWD); (EW)
| |
Collapse
|
12
|
Nieri D, Berardinelli F, Sgura A, Cherubini R, De Nadal V, Gerardi S, Tanzarella C, Antoccia A. Cyogenetics effects in AG01522 human primary fibroblasts exposed to low doses of radiations with different quality. Int J Radiat Biol 2013; 89:698-707. [DOI: 10.3109/09553002.2013.797126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Kalpana KB, Vishwanathan P, Thayalan K, Menon VP. Protective effect of dendrodoine analog, an aminothiazole derivative against X-radiation induced hepatocellular damage in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:832-840. [PMID: 23127424 DOI: 10.1016/j.etap.2012.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/31/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
This study evaluated the radioprotective effect of dendrodoine analog (DA) against radiation-induced damage in the liver of mice. The study was divided into two phases; in the first phase, the effective concentration of DA was fixed by performing a survival study. In the second phase, the fixed effective concentration of DA was orally administered to mice to evaluate its radioprotective efficacy by performing various assays. The results indicated that the radiation-induced decrease in the activities of antioxidant enzymes, increase in thiobarbituric acid reactive substances (TBARS) and comet parameters were altered by pre-administration with the effective concentration of DA which restored the antioxidant status to near normal and decreased the level of the TBARS and comet parameters. The histopathological examinations further confirmed the hepatoprotective effect of DA in mice. Thus, the current study showed DA to be an effective radioprotector against radiation induced damage in the liver of mice.
Collapse
Affiliation(s)
- K B Kalpana
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | | | | | | |
Collapse
|
14
|
Chiba M. Radiation-responsive transcriptome analysis in human lymphoid cells. RADIATION PROTECTION DOSIMETRY 2012; 152:164-167. [PMID: 22923243 DOI: 10.1093/rpd/ncs216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ionising radiation (IR) causes DNA (deoxyribonucleic acid) injury and activates intracellular signal pathways including the regulation of DNA repair and cell cycle. However, the further knowledge of molecular events involved in radiation exposure is essential to more comprehensively understand the effects of irradiation. Therefore, the gene expressions of mRNA (messenger ribonucleic acid) by X-ray irradiation in human B lymphoblast cell line (IM-9) using a microarray were investigated. The mRNA expressions of 65 genes were shown to be up-regulated at >2.0-fold in irradiated cells (4 Gy) when compared with non-irradiated cells (0 Gy) by microarray analysis. Among 65 genes, a large number of genes were up-regulated with an X-ray dose-dependent change. These results indicate that the up-regulation of their mRNAs is the effects of irradiation and may be due to biological dosimetric markers for the evaluation of radiation exposure in the future.
Collapse
Affiliation(s)
- M Chiba
- Division of Medical Life Sciences, Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| |
Collapse
|
15
|
Faria FP, Dickman R, Moreira CHC. Models of the radiation-induced bystander effect. Int J Radiat Biol 2012; 88:592-9. [DOI: 10.3109/09553002.2012.692568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Beasley DE, Bonisoli-Alquati A, Welch SM, Møller AP, Mousseau TA. Effects of parental radiation exposure on developmental instability in grasshoppers. J Evol Biol 2012; 25:1149-62. [PMID: 22507690 PMCID: PMC3964017 DOI: 10.1111/j.1420-9101.2012.02502.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutagenic and epigenetic effects of environmental stressors and their transgenerational consequences are of interest to evolutionary biologists because they can amplify natural genetic variation. We studied the effect of parental exposure to radioactive contamination on offspring development in lesser marsh grasshopper Chorthippus albomarginatus. We used a geometric morphometric approach to measure fluctuating asymmetry (FA), wing shape and wing size. We measured time to sexual maturity to check whether parental exposure to radiation influenced offspring developmental trajectory and tested effects of radiation on hatching success and parental fecundity. Wings were larger in early maturing individuals born to parents from high radiation sites compared to early maturing individuals from low radiation sites. As time to sexual maturity increased, wing size decreased but more sharply in individuals from high radiation sites. Radiation exposure did not significantly affect FA or shape in wings nor did it significantly affect hatching success and fecundity. Overall, parental radiation exposure can adversely affect offspring development and fitness depending on developmental trajectories although the cause of this effect remains unclear. We suggest more direct measures of fitness and the inclusion of replication in future studies to help further our understanding of the relationship between developmental instability, fitness and environmental stress.
Collapse
Affiliation(s)
- D E Beasley
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
17
|
Yang H, Magpayo N, Held KD. Targeted and non-targeted effects from combinations of low doses of energetic protons and iron ions in human fibroblasts. Int J Radiat Biol 2010; 87:311-9. [PMID: 21158498 DOI: 10.3109/09553002.2010.537431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In space, astronauts are exposed to mixed radiation fields consisting of energetic protons and high atomic number, high energy (HZE) particles at low dose rates. Therefore, it is critical to understand effects of combinations of low doses of different radiation types at the cellular level. MATERIALS AND METHODS AG01522 normal human skin fibroblasts and a transwell insert co-culture system were used. Irradiations used were 1 GeV/amu (gigaelectron volt/atomic mass unit) protons and 1 GeV/amu iron (Fe) ions. DNA damage was measured as micronucleus (MN) formation and p53 binding protein 1 (53BP1) foci induction. RESULTS The same magnitude of DNA damage was induced in cells sequentially exposed to 1 cGy protons and 1 cGy Fe ions as in cells irradiated with either protons or Fe ions alone. The same magnitude of DNA damage was also observed in non-irradiated bystander cells sharing medium with cells irradiated with either 1 cGy protons or iron ions or protons plus iron ions. However, when the 'bystander' cells were exposed to 1 cGy protons up to 3 h before co-culture with Fe ion-irradiated cells, no DNA damage in the 'bystander' cells was observed. CONCLUSIONS These data provide the first evidence of interactions between targeted and non-targeted DNA damage caused by dual exposure to low doses of energetic protons and iron ions.
Collapse
Affiliation(s)
- Hongying Yang
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
18
|
Jovanović B, Nikezić D. Probability of bystander effect induced by alpha-particles emitted by radon progeny using the analytical model of tracheobronchial tree. RADIATION PROTECTION DOSIMETRY 2010; 142:168-173. [PMID: 20956282 DOI: 10.1093/rpd/ncq277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Radiation-induced biological bystander effects have become a phenomenon associated with the interaction of radiation with cells. There is a need to include the influence of biological effects in the dosimetry of the human lung. With this aim, the purpose of this work is to calculate the probability of bystander effect induced by alpha-particle radiation on sensitive cells of the human lung. Probability was calculated by applying the analytical model cylinder bifurcation, which was created to simulate the geometry of the human lung with the geometric distribution of cell nuclei in the airway wall of the tracheobronchial tree. This analytical model of the human tracheobronchial tree represents the extension of the ICRP 66 model, and follows it as much as possible. Reported probabilities are calculated for various targets and alpha-particle energies. Probability of bystander effect has been calculated for alpha particles with 6 and 7.69 MeV energies, which are emitted in the (222)Rn chain. The application of these results may enhance current dose risk estimation approaches in the sense of the inclusion of the influence of the biological effects.
Collapse
Affiliation(s)
- B Jovanović
- Faculty of Science, University of Kragujevac, R. Domanović 12, 34000 Kragujevac, Serbia
| | | |
Collapse
|
19
|
Shuryak I, Brenner DJ. A model of interactions between radiation-induced oxidative stress, protein and DNA damage in Deinococcus radiodurans. J Theor Biol 2009; 261:305-17. [PMID: 19679136 DOI: 10.1016/j.jtbi.2009.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/26/2009] [Accepted: 08/02/2009] [Indexed: 02/08/2023]
Abstract
Ionizing radiation triggers oxidative stress, which can have a variety of subtle and profound biological effects. Here we focus on mathematical modeling of potential synergistic interactions between radiation damage to DNA and oxidative stress-induced damage to proteins involved in DNA repair/replication. When sensitive sites on these proteins are attacked by radiation-induced radicals, correct repair of dangerous DNA lesions such as double strand breaks (DSBs) can be compromised. In contrast, if oxidation of important proteins is prevented by strong antioxidant defenses, DNA repair may function more efficiently. These processes probably occur to some extent even at low doses of radiation/oxidative stress, but they are easiest to investigate at high doses, where both DNA and protein damage are extensive. As an example, we use data on survival of Deinococcus radiodurans after high doses (thousands of Gy) of acute and chronic irradiation. Our model of radiogenic oxidative stress is consistent with these data and can potentially be generalized to other organisms and lower radiation doses.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA.
| | | |
Collapse
|
20
|
Abstract
PURPOSE To develop a model for the initiation of human tumourigenesis that is consistent with various observations that are difficult to reconcile with current models. CONCLUSIONS A novel model of tumourigenesis was developed that includes three basic postulates: (1) tumourigenesis is initiated by recombinogenic DNA lesions, (2) potentially recombinogenic DNA lesions in transcribed regions of the genome can be converted into chromosomal rearrangements and (3) chromosomal rearrangements alone are insufficient for tumourigenesis but can initiate a mutator/recombinator phenotype.
Collapse
Affiliation(s)
- I R Radford
- Radiation Oncology Division, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia.
| |
Collapse
|
21
|
Chandrasekharan DK, Kagiya TV, Nair CKK. Radiation protection by 6-palmitoyl ascorbic acid-2-glucoside: studies on DNA damage in vitro, ex vivo, in vivo and oxidative stress in vivo. JOURNAL OF RADIATION RESEARCH 2009; 50:203-212. [PMID: 19384055 DOI: 10.1269/jrr.08090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A palmitoyl derivative of ascorbic acid 2-glucoside, 6-palmitoyl ascorbic acid-2-glucoside (PAsAG), which possess good antioxidant properties, is examined for radioprotection in vitro, ex vivo and in vivo models. PAsAG protected plasmid DNA from gamma-radiation induced damages under in vitro conditions. Presence of 1.6 mM PAsAG inhibited the disappearance of ccc (covalently closed circular) form of plasmid pBR322 with a dose modifying factor of 1.5. Comet assay studies on mouse spleen cells exposed to 6 Gy gamma-radiation (ex vivo) in presence and absence of PAsAG revealed that cellular DNA was effectively protected by this compound from radiation induced damages. Oral administration of 80 mg/kg body weight of PAsAG to mice 1 hour prior to 6 Gy whole body gamma-radiation exposure, efficiently protected cellular DNA in tissues such as spleen, bone marrow and blood, from radiation induced damages as indicated by alkaline comet assay. Oxidative stress in tissues such as liver and brain of mice, following whole body exposure to various doses of gamma-radiation (2-8 Gy), monitored as levels of GSH and peroxidation of lipids, were found considerably reduced when PAsAG was orally administered (80 mg/kg body weight) to the mice one hour prior to the radiation exposure. PAsAG administration improved the per cent survival of mice following exposure to 10 Gy whole body gamma-radiation. Thus PAsAG could act as a radioprotector under in vitro, ex vivo and in vivo conditions of ionizing-radiation exposure.
Collapse
|
22
|
Cheng IC, Lee HJ, Wang TC. Multiple factors conferring high radioresistance in insect Sf9 cells. Mutagenesis 2009; 24:259-69. [PMID: 19264841 DOI: 10.1093/mutage/gep005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sf9, a lepidopteran cell line isolated from the fall armyworm, Spodoptera frugiperda, was shown to be significantly more resistant to growth inhibition and apoptosis induction effects of x-ray irradiation than several human cell lines of different origins. The single-cell electrophoresis technique revealed that Sf9 cells showed lower x-ray irradiation-induced DNA damage as well as better efficiency at repairing these damages. In addition, Sf9 cells were lower in both background and x-ray irradiation-induced intracellular oxidative stress, in which the higher intracellular level of reduced glutathione seemed to play a major role. The significance of oxidative stress in determining the radioresistance of Sf9 cells was confirmed by their being more resistant to hydrogen peroxide while equally susceptible to other non-reactive oxygen species of N-nitroso alkylating agents when compared with a human cell line. Although the Sf9 and human cell lines were equally susceptible to the lethal effects of N-nitroso alkylating agents, the components of DNA damage-induced and the repair enzymes involved significantly differ. This phenomenon is also discussed in this report.
Collapse
Affiliation(s)
- I-Cheng Cheng
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
23
|
Miller JH, Jin S, Morgan WF, Yang A, Wan Y, Aypar U, Peters JS, Springer DL. Profiling Mitochondrial Proteins in Radiation-Induced Genome-Unstable Cell Lines with Persistent Oxidative Stress by Mass Spectrometry. Radiat Res 2008; 169:700-6. [DOI: 10.1667/rr1186.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 02/15/2008] [Indexed: 11/03/2022]
|
24
|
Shuryak I, Sachs RK, Brenner DJ. Biophysical Models of Radiation Bystander Effects: 1. Spatial Effects in Three-Dimensional Tissues. Radiat Res 2007; 168:741-9. [DOI: 10.1667/rr1117.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 08/28/2007] [Indexed: 11/03/2022]
|
25
|
Liu Y, Zhang H, Zhang L, Zhou Q, Wang X, Long J, Dong T, Zhao W. Antioxidant N-acetylcysteine attenuates the acute liver injury caused by X-ray in mice. Eur J Pharmacol 2007; 575:142-8. [PMID: 17825281 DOI: 10.1016/j.ejphar.2007.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 07/05/2007] [Accepted: 07/16/2007] [Indexed: 01/28/2023]
Abstract
The aim of this study was to evaluate the protective effects of different doses and administration modes of N-acetylcysteine (NAC) against X-ray -induced liver damage in mice. Kun-Ming mice were divided into four groups, each composed of six animals: two control groups and two NAC-treated groups. An acute study was carried out to determine alterations in lipid peroxidation (determined by measuring malondiadehyde (MDA) level), glutathione (GSH) content and superoxide dismutase (SOD) activity (assayed by colorimetric method), and DNA damage (characterized by DNA-single strand break using with comet assay) as well as cell apoptosis (measured by flow cytometry) at 12 h after irradiation. The results showed that there were dose-related decreases in MDA level, DNA damage and cell apoptosis, and dose-dependent increases in GSH content and SOD activity in all NAC-treated groups compared to control groups, indicating that pre-treatment or post-treatment with NAC significantly attenuates the acute liver damage caused by X-ray. In addition, significant positive correlations were observed between MDA level and DNA damage or cell apoptosis, implying that lipid peroxidation plays a major role in X-ray-induced liver injury. The data suggest that NAC exerts its radioprotective effect by counteracting accumulated reactive oxygen species in the liver through its properties as a direct antioxidant and a GSH precursor, when administered before or after X-ray irradiation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medical Physics, Institute of Modern physics, Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang H, Anzenberg V, Held KD. The Time Dependence of Bystander Responses Induced by Iron-Ion Radiation in Normal Human Skin Fibroblasts. Radiat Res 2007; 168:292-8. [PMID: 17705636 DOI: 10.1667/rr0864.1] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 04/10/2007] [Indexed: 11/03/2022]
Abstract
Although bystander effects have been shown for some high-LET radiations, few studies have been done on bystander effects induced by heavy-ion radiation. In this study, using a Transwell insert co-culture system, we have demonstrated that irradiation with 1 GeV/nucleon iron ions can induce medium-mediated bystander effects in normal AG01522 human fibroblasts. When irradiated and unirradiated bystander cells were combined in shared medium immediately after irradiation, a two- to threefold increase in the percentage of bystander cells with gamma-H2AX foci occurred as early as 1 h after irradiation and lasted at least 24 h. There was a twofold increase in the formation of micronuclei in bystander cells when they were co-cultured with irradiated cells immediately or 1 or 3 h after irradiation, but there was no bystander effect when the cells were co-cultured 6 h or later after irradiation. In addition, bystander micronucleus formation was observed even when the bystander cells were co-cultured with irradiated cells for only 1 h. This indicates that the crucial signaling to bystander cells from irradiated cells occurs shortly after irradiation. Moreover, both gamma-H2AX focus formation and micronucleus formation in bystander cells were inhibited by the ROS scavengers SOD or catalase or the NO scavenger PTIO. This suggests that ROS and NO play important roles in the initiation of bystander effects. The results with iron ions were similar to those with X rays, suggesting that the bystander responses in this system are independent of LET.
Collapse
Affiliation(s)
- Hongying Yang
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|
27
|
Chater S, Amara S, Moussata D, Bozec A, Omezzine A, Romestaing P, Chapet O, Gerard JP, Mornex F, Benahmed M, Mauduit C. Differential effects of ionizing radiation and platinum-derivative chemotherapy on apoptotic pathways in testicular germ cells. Int J Radiat Biol 2007; 83:269-78. [PMID: 17575954 DOI: 10.1080/09553000701227573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The purpose here was to identify whether ionizing radiation and oxaliplatin triggered testicular germ cells apoptosis through different executionary pathways. MATERIALS AND METHODS Adult male mice are treated with oxaliplatin (0.5 mg/kg, Ox) 4 h before being locally irradiated (0.5 Gy, IR, considered as time 0 h). RESULTS The number of apoptotic germ cells was significantly higher for IR (p < 0.008), Ox (p < 0.0001) and Ox + IR (p < 0.0001) groups compared to the untreated mice group. Similarly, the different treatments induced an increase of p53 expression. Downstream p53, IR and Ox used different pathways. Indeed, IR increased effector caspase-3 expression in terms of mRNA (p < 0.002), pro-enzyme p < 0.0001) and active (3.7-fold, p < 0.003) protein levels but not the inhibitors of apoptosis proteins (IAP) including cIAP1, cIAP2 and XIAP. In contrast, while oxaliplatin treatment had no apparent effect on caspase-3 expression, it significantly decreased the cIAP1 (p < 0.005), cIAP2 (p < 0.008) and XIAP (p < 0.02) proteins levels. Finally, the combination of both treatments decreased IAP expression but did not modify caspase-3 levels while it increased the AIF (apoptosis-inducing factor) protein levels (5.5-fold, p < 0.003). No modification of AIF levels was observed with OX or IR alone. CONCLUSIONS Together, these results indicate that the platinum analogue oxaliplatin and the ionizing radiations trigger apoptosis in the testicular germ cells, probably through different pathways.
Collapse
|
28
|
Rabbani ZN, Batinic-Haberle I, Anscher MS, Huang J, Day BJ, Alexander E, Dewhirst MW, Vujaskovic Z. Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Phys 2007; 67:573-80. [PMID: 17236973 PMCID: PMC1819401 DOI: 10.1016/j.ijrobp.2006.09.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/13/2006] [Accepted: 09/27/2006] [Indexed: 11/21/2022]
Abstract
PURPOSE To determine whether administration of a catalytic antioxidant, Mn(III) tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin, AEOL 10150, with superoxide dismutase (SOD) mimetic properties, reduces the severity of radiation-induced injury to the lung from single-dose irradiation (RT) of 28 Gy. METHODS AND MATERIALS Rats were randomly divided into four different dose groups (0, 1, 10, and 30 mg/kg/day of AEOL 10150), receiving either short-term (1 week) or long-term (10 weeks) drug administration via osmotic pumps. Rats received single-dose irradiation (RT) of 28 Gy to the right hemithorax. Breathing rates, body weights, blood samples, histopathology, and immunohistochemistry were used to assess lung damage. RESULTS There was no significant difference in any of the study endpoints between the irradiated controls and the three groups receiving RT and short-term administration of AEOL 10150. For the long-term administration, functional determinants of lung damage 20 weeks postradiation were significantly worse for RT + phosphate-buffered saline (PBS) and RT + 1 mg/kg/day of AEOL 10150 as compared with the irradiated groups treated with higher doses of AEOL 10150 (10 or 30 mg/kg/day). Lung histology at 20 weeks revealed a significant decrease in structural damage and collagen deposition in rats receiving 10 or 30 mg/kg/day after radiation in comparison to the RT + PBS and 1 mg/kg/day groups. Immunohistochemistry demonstrated a significant reduction in macrophage accumulation, oxidative stress, and hypoxia in rats receiving AEOL 10150 (10 or 30 mg/kg/day) after lung irradiation compared with the RT + PBS and 1 mg/kg/day groups. CONCLUSIONS The chronic administration of a novel catalytic antioxidant, AEOL 10150, demonstrates a significant protective effect from radiation-induced lung injury. AEOL 10150 has its primary impact on the cascade of events after irradiation, and adding the drug before irradiation and its short-term administration have no significant additional benefits.
Collapse
Affiliation(s)
- Zahid N. Rabbani
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mitchell S. Anscher
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jie Huang
- Department of Medicine, National Jewish Medical & Research Center, Denver, CO, USA
| | - Brian J. Day
- Department of Medicine, National Jewish Medical & Research Center, Denver, CO, USA
| | | | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- *Corresponding Author: Box 3455, DUMC, Durham, NC 27710 Tel: (919) 681-1675 FAX. (919) 684-8718 E-mail:
| |
Collapse
|
29
|
Moeller BJ, Batinic-Haberle I, Spasojevic I, Rabbani ZN, Anscher MS, Vujaskovic Z, Dewhirst MW. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness. Int J Radiat Oncol Biol Phys 2005; 63:545-52. [PMID: 16168847 DOI: 10.1016/j.ijrobp.2005.05.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 01/06/2023]
Abstract
PURPOSE To determine the effect of the superoxide dismutase mimetic Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) on tumor radioresponsiveness. METHODS AND MATERIALS Various rodent tumor (4T1, R3230, B16) and endothelial (SVEC) cell lines were exposed to MnTE-2-PyP(5+) and assayed for viability and radiosensitivity in vitro. Next, tumors were treated with radiation and MnTE-2-PyP(5+)in vivo, and the effects on tumor growth and vascularity were monitored. RESULTS In vitro, MnTE-2-PyP(5+) was not significantly cytotoxic. However, at concentrations as low as 2 mumol/L it caused 100% inhibition of secretion by tumor cells of cytokines protective of irradiated endothelial cells. In vivo, combined treatment with radiation and MnTE-2-PyP(5+) achieved synergistic tumor devascularization, reducing vascular density by 78.7% within 72 h of radiotherapy (p < 0.05 vs. radiation or drug alone). Co-treatment of tumors also resulted in synergistic antitumor effects, extending tumor growth delay by 9 days (p < 0.01). CONCLUSIONS These studies support the conclusion that MnTE-2-PyP(5+), which has been shown to protect normal tissues from radiation injury, can also improve tumor control through augmenting radiation-induced damage to the tumor vasculature.
Collapse
Affiliation(s)
- Benjamin J Moeller
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Giedzinski E, Rola R, Fike JR, Limoli CL. Efficient Production of Reactive Oxygen Species in Neural Precursor Cells after Exposure to 250 MeV Protons. Radiat Res 2005; 164:540-4. [PMID: 16187784 DOI: 10.1667/rr3369.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The space radiation environment is composed of highly energetic ions, dominated by protons, that pose a range of potential health risks to astronauts. Traversals of these particles through certain tissues may compromise the viability and/or function of sensitive cells, including neural precursors found within the dentate subgranular zone of the hippocampus. Irradiation has been shown to deplete these cells in vivo, and reductions of these critical cells are believed to impair neurogenesis and cognition. To more fully understand the mechanisms underlying the behavior of these precursor cells after irradiation, we have developed an in vitro neural precursor cell system and used it to assess acute (0-48 h) changes in ROS and mitochondrial end points after exposure to Bragg-peak protons of 250 MeV. Relative ROS levels were increased at nearly all doses (1-10 Gy) and postirradiation times (6-24 h) compared to unirradiated controls. The increase in ROS after proton irradiation was more rapid than that observed with X rays and showed a well-defined dose response at 6 and 24 h, increasing approximately 10% and 3% per gray, respectively. However, by 48 h postirradiation, ROS levels fell below controls and coincided with minor reductions in mitochondrial content. Use of the antioxidant alpha-lipoic acid (before or after irradiation) was shown to eliminate the radiation-induced rise in ROS levels. Our results corroborate earlier studies using X rays and provide further evidence that elevated ROS are integral to the radioresponse of neural precursor cells.
Collapse
Affiliation(s)
- Erich Giedzinski
- Department of Radiation Oncology, University of California, San Francisco, California 94103-0806, USA
| | | | | | | |
Collapse
|
31
|
Mendonca MS, Mayhugh BM, McDowell B, Chin-Sinex H, Smith ML, Dynlacht JR, Spandau DF, Lewis DA. A Radiation-Induced Acute Apoptosis Involving TP53 and BAX Precedes the Delayed Apoptosis and Neoplastic Transformation of CGL1 Human Hybrid Cells. Radiat Res 2005; 163:614-22. [PMID: 15913393 DOI: 10.1667/rr3387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposing CGL1 (HeLa x fibroblast) hybrid cells to 7 Gy of X rays results in the onset of a delayed apoptosis in the progeny of the cells 10 to 12 cell divisions postirradiation that correlates with the emergence of neoplastically transformed foci. The delayed apoptosis begins around day 8 postirradiation and lasts for 11 days. We now demonstrate that the delayed apoptosis is also characterized by the appearance of approximately 50-kb apoptotic DNA fragments and caspase 3 activation postirradiation. In addition, we confirm that stabilization of TP53 and transactivation of pro-apoptosis BAX also occurs during the delayed apoptosis and show that anti-apoptosis BCL-X(L) is down-regulated. To test whether the delayed apoptosis was due to a nonfunctional acute TP53 damage response in CGL1 cells, studies of acute apoptosis were completed. After irradiation, CGL1 cells underwent an acute wave of apoptosis that involves TP53 stabilization, transactivation of BAX gene expression, and a rapid caspase activation that ends by 96 h postirradiation. In addition, the acute onset of apoptosis correlates with transactivation of a standard wild-type TP53-responsive reporter (pG13-CAT) in CGL1 cells after radiation exposure. We propose that the onset of the delayed apoptosis is not the result of a nonfunctional acute TP53 damage response pathway but rather is a consequence of X-ray-induced genomic instability arising in the distant progeny of the irradiated cells.
Collapse
Affiliation(s)
- Marc S Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratory, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
Exposure to ionizing radiation can induce a heritable change in the unirradiated progeny of irradiated cells. This non-targeted effect of ionizing radiation manifests as genomic instability, and although there is some debate as to the role of genomic instability in the carcinogenic process, it is thought by some to be an early step in radiation carcinogenesis. Although the mechanism of induction of genomic instability is not clearly understood, evidence suggests that secreted factors from irradiated cells may be involved. We have previously identified another non-targeted effect of ionizing radiation, the death-inducing effect. Exposure of unirradiated GM10115 cells to medium from chromosomally unstable clones was generally found to be cytotoxic. However, occasionally cells will survive in medium from unstable clones and can be clonally expanded. The absolute yield of survivors is independent of the initial number of cells plated when cell densities reached 5,000 or more cells/dish. After cytogenetic analysis of the surviving colonies, we found chromosomal instability in three of 40 clones analyzed, while some clones exhibited increased micronucleus frequency and HPRT mutation frequency. These data suggest that our chromosomally unstable GM10115 cells secrete factors that are cytotoxic to the majority of stable, parental cells but are also capable of inducing a heritable change in some of the survivors that can manifest as delayed genomic instability. These results suggest a mechanism whereby instability can be perpetuated through the influences of potentially cytotoxic factors produced by genomically unstable clones.
Collapse
Affiliation(s)
- Shruti Nagar
- Radiation Oncology Research Laboratory, University of Maryland, Baltimore, MD 21201-1559, USA
| | | |
Collapse
|
34
|
Yang H, Asaad N, Held KD. Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene 2005; 24:2096-103. [PMID: 15688009 DOI: 10.1038/sj.onc.1208439] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although radiation-induced bystander effects have been demonstrated in a number of cell types, the studies have largely been performed using high linear energy transfer (LET) radiation, such as alpha-particles. The literature is contradictory on whether fibroblasts show bystander responses, especially after low LET radiation such as X- or gamma-rays and whether the same signal transmission pathways are involved. Herein, a novel transwell insert culture dish method is used to show that X-irradiation induces medium-mediated bystander effects in AGO1522 normal human fibroblasts. The frequency of micronuclei formation in unirradiated bystander cells increases from a background of about 6.5% to about 9-13% at all doses from 0.1 to 10 Gy to the irradiated cells. Induction of p21Waf1 protein and foci of gamma-H2AX in bystander cells is also independent of dose to the irradiated cells above 0.1 Gy. In addition, levels of reactive oxygen species (ROS) were increased persistently in directly irradiated cells up to 60 h after irradiation and in bystander cells for 30 h. Adding Cu-Zn superoxide dismutase (SOD) and catalase to the medium decreases the formation of micronuclei and induction of p21Waf1 and gamma-H2AX foci in bystander cells, suggesting oxidative metabolism plays a role in the signaling pathways in bystander cells. The results of clonogenic assay of bystander cells showed that survival of bystander cells decreases from 0 to 0.5 Gy, and then is independent of the dose to irradiated cells from 0.5 to 10 Gy. Unlike the response with p21Waf1 expression, gamma-H2AX foci and micronuclei, adding SOD and catalase has no effect on the survival of bystander cells. The data suggest that irradiated cells release toxic factors other than ROS into the medium.
Collapse
Affiliation(s)
- Hongying Yang
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, COX 302, Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
35
|
Bourguignon MH, Gisone PA, Perez MR, Michelin S, Dubner D, Giorgio MD, Carosella ED. Genetic and epigenetic features in radiation sensitivity. Eur J Nucl Med Mol Imaging 2005; 32:229-46. [PMID: 15657757 DOI: 10.1007/s00259-004-1730-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent progress especially in the field of gene identification and expression has attracted greater attention to genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. It has been proposed that the occurrence and severity of the adverse reactions to radiation therapy are also influenced by such genetic susceptibility. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation offering a better likelihood of cure for malignant tumours. This paper, the first of two parts, reviews the main mechanisms involved in cell response to ionising radiation. DNA repair machinery and cell signalling pathways are considered and their role in radiosensitivity is analysed. The implication of non-targeted and delayed effects in radiosensitivity is also discussed.
Collapse
Affiliation(s)
- Michel H Bourguignon
- Direction Générale de la Sûreté Nucléaire et de la Radioprotection (DGSNR), 6 Place du Colonel Bourgoin, 75572, Paris Cedex 12, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
A number of phenotypes persist in the progeny of irradiated cells for many generations including delayed reproductive death, cell transformation, genomic instability, and mutations. It appears likely that persistent phenotypes are inherited by an epigenetic mechanism, although very little is known about the nature of such a mechanism or how it is established. One hypothesis is that radiation causes a heritable increase in oxy-radical activity. In the present study, intracellular levels of reactive oxygen species (ROS) in human lymphoblast clones derived from individually X-irradiated cells were monitored for about 55 generations after exposure. A number of clones derived from irradiated cells had an increase in dichlorofluorescein (DCF) fluorescence at various times. Cells with abrogated TP53 expression had a decreased oxidant response. Flow cytometry analysis of clones with increased fluorescence did not detect increases in the sub-G(1) fraction or decreased cell viability compared to nonirradiated clones, indicating that increased levels of apoptosis and cell death were not present. The oxidative stress response protein heme oxygenase 1 (HO1) was induced in some cultures derived from X-irradiated cells but not in cultures derived from unirradiated cells. The expression of the dual specificity mitogen-activated protein (MAP) kinase phosphatase (MPK1/CL100), which is inducible by oxidative stress and has a role in modulating ERK signaling pathways, was also increased in the progeny of some irradiated cells. Finally, there was an increase in the phosphorylated tyrosine content of a prominent protein band of about 45 kDa. These results support the hypothesis that increased oxy-radical activity is a persistent effect in X-irradiated mammalian cells and further suggest that this may lead to changes in the expression of proteins involved in signal transduction.
Collapse
Affiliation(s)
- Rebecca E Rugo
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
37
|
Waldren CA, Vannais DB, Ueno AM. A role for long-lived radicals (LLR) in radiation-induced mutation and persistent chromosomal instability: counteraction by ascorbate and RibCys but not DMSO. Mutat Res 2004; 551:255-65. [PMID: 15225598 DOI: 10.1016/j.mrfmmm.2004.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/07/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
Miazaki, Watanabe, Kumagai and their colleagues reported that induction of HPRT(-) mutants by X-rays in cultured human cells was prevented by ascorbate added 30min after irradiation. They attributed extinction of induced mutation to neutralization by ascorbate of radiation-induced long-lived mutagenic radicals (LLR), found using spectroscopy to have half-lives of minutes or hours. We find that post-irradiation treatment with ascorbate reduces, but does not eliminate, induction of CD59(-) mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon-ions (LET of 100KeV/microm). A(L) cells contain a standard set of Chinese hamster ovary (CHO) chromosomes and a single copy of human chromosome 11 containing the CD59 gene which encodes the CD59 cell surface antigen, a convenient marker for mutation. RibCys [2(R, S)-D-ribo-(1',2',3',4'-tetrahydroxybutyl)thiazolidine-4(R)-carboxylic acid] a 'prodrug' of l-cysteine which also scavenges LLR, had a similar but lesser effect on induced mutation. DMSO, which scavenges classical radicals like H* and OH* but not LLR, also reduced mutation, but only when it was present during irradiation. The lethality of carbon-ions was not altered by ascorbate, RibCys no matter when added. Post-radiation addition of ascorbate and RibCys also affected the quality of CD59(-) mutations induced by carbon-ions. The major change in mutant spectra was a reduction in the prevalence of small, intragenic mutations (mutations not detected by PCR) and in the prevalence of unstable, complicated mutants, which display high levels of persistent chromosomal instability. Thus, ascorbate and RibCys may suppress some kinds of mutations induced by ionizing radiation including those displaying aspects of radiation-induced genomic instability. Countering the effects of both classical radicals and LLR may be important in preventing genetic diseases.
Collapse
Affiliation(s)
- Charles A Waldren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins CO 80523, USA.
| | | | | |
Collapse
|
38
|
Suzuki G, Shimada Y, Hayashi T, Akashi M, Hirama T, Kusunoki Y. An association between oxidative stress and radiation-induced lymphomagenesis. Radiat Res 2004; 161:642-7. [PMID: 15161356 DOI: 10.1667/rr3188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is generally thought that reactive oxygen species (ROS) play an important role in carcinogenesis. However, direct evidence supporting this idea is still lacking. In the present study, we measured ROS in thymocytes at the thymic prelymphoma stage in C57BL/6 mice. Mice (n = 20) were irradiated at 1.6 Gy/week for 4 consecutive weeks and the levels of ROS were measured 8 to 11 weeks later by dehydrorhodamine 123, which accumulated in mitochondria and became fluorescent dye upon oxidation. Unirradiated littermates (n = 17) served as controls. Thymic prelymphoma cells were diagnosed by the aberrant CD4/CD8 staining profile and monoclonal or oligoclonal T-cell receptor gene rearrangement. A significant fraction of mice (11/13) bearing thymic prelymphoma cells exhibited elevated levels of ROS in thymocytes (P < 0.001). The result is consistent with the hypothesis that ROS may play an important role in radiation carcinogenesis.
Collapse
Affiliation(s)
- Gen Suzuki
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Coleman CN. International Conference on Translational Research ICTR 2003 Conference Summary: marshalling resources in a complex time. Int J Radiat Oncol Biol Phys 2004; 58:307-19. [PMID: 14751498 DOI: 10.1016/j.ijrobp.2003.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The knowledge, tools, and environment for the practice of radiation oncology are changing rapidly. The National Cancer Institute has articulated the need for a balanced portfolio, including the interrelated components of discovery, development, and delivery. Underpinning practice is the emerging knowledge from molecular, cellular, and tumor biology that is the engine of discovery. The use of high-throughput technologies to analyze biochemical and molecular profiles will ultimately enable the individualization of cancer treatment requiring the appropriate integration of radiation with a range of systemic therapies, including chemotherapy, biologic therapy, and immunotherapy. Technological advances in treatment delivery using photons, brachytherapy, particle therapy, radioisotopes, and other forms of energy require an improved ability to localize the tumor and critical subregions and to ensure necessary tissue immobilization and/or real-time target adjustment. Functional imaging is helping to define tumor characteristics and response to treatment. The development of appropriate radiation oncology treatment requires a wide range of expertise, a multimodality approach, and multi-institutional collaboration to provide improved and cost-effective outcome. The delivery of appropriate cancer care to those who need it requires biology and technology but also reaching the underserved populations worldwide. ICTR 2003 demonstrated substantial progress in translational radiation oncology. Faced with financial constraints for research and patient care, the broad field of radiation oncology must continually examine and balance its research and development portfolio and invest in its future leaders to enable it be an important contributor to the future of cancer care.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Oncology Sciences Program, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute/NIH, Bldg. 10, B3-B69, Bethesda, MD 20892-1002, USA.
| |
Collapse
|
40
|
Arab A, Grumann T, Guttenberger R, Bode C, Hehrlein C. Reoxygenation of hypoxic coronary smooth muscle cells amplifies growth-retarding effects of ionizing irradiation. Circulation 2004; 109:1036-40. [PMID: 14967723 DOI: 10.1161/01.cir.0000117404.65853.af] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypoxic human coronary smooth muscle cells (HCSMCs) are possible targets for brachytherapy to prevent restenosis after percutaneous transluminal coronary angiography. It is unclear whether growth kinetics and gene expression of these cells undergoing gamma-irradiation are changed by reoxygenation. METHODS AND RESULTS Hypoxic (H) and hypoxia-reoxygenated (H-R) HCSMCs were irradiated with gamma-radiation at single doses of 4, 8, and 16 Gy using a 60Co-source. Vascular endothelial growth factor gene expression of HCSMCs was dramatically suppressed in H-R versus H cells independent of the radiation dose (15+/-7% versus 2183+/-2023%, P<0.01, H-R versus H cells). An oxygen enhancement ratio of 1.8 was calculated after irradiation from the retarded growth of H-R versus hypoxic HCSMCs. Production of reactive oxygen species by HCSMCs after irradiation increased by 15+/-2% in H-R cells versus 7+/-1% in H cells (P<0.05). CONCLUSIONS Reoxygenation of hypoxic HCSMCs markedly amplifies growth-retarding effects of ionizing irradiation. On the basis of these findings, oxygenating radiosensitizers should be analyzed with regard to suitability for coronary brachytherapy to prevent restenosis.
Collapse
MESH Headings
- Brachytherapy
- Cell Division/radiation effects
- Cell Hypoxia
- Cells, Cultured/metabolism
- Cells, Cultured/radiation effects
- Coronary Vessels/metabolism
- Coronary Vessels/radiation effects
- Dose-Response Relationship, Radiation
- Gamma Rays
- Gene Expression Regulation/radiation effects
- Humans
- Muscle Cells/metabolism
- Muscle Cells/radiation effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/radiation effects
- Oxygen/metabolism
- RNA, Messenger/biosynthesis
- RNA, Ribosomal, 28S/biosynthesis
- RNA, Ribosomal, 28S/genetics
- Radiation Tolerance
- Reactive Oxygen Species
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- Amina Arab
- Department of Cardiology, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
41
|
Epperly MW, Osipov AN, Martin I, Kawai KK, Borisenko GG, Tyurina YY, Jefferson M, Bernarding M, Greenberger JS, Kagan VE. Ascorbate as a “redox sensor” and protector against irradiation-induced oxidative stress in 32D CL 3 hematopoietic cells and subclones overexpressing human manganese superoxide dismutase. Int J Radiat Oncol Biol Phys 2004; 58:851-61. [PMID: 14967442 DOI: 10.1016/j.ijrobp.2003.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 10/06/2003] [Accepted: 10/15/2003] [Indexed: 12/01/2022]
Abstract
PURPOSE To determine whether increased expression of manganese superoxide dismutase (MnSOD) protects cells from irradiation by preventing the production of reactive oxygen species (ROS), a new approach to detecting free radical intermediates using ascorbate as an endogenous spin trap was used. MATERIALS AND METHODS Cells from the 32D cl 3 hematopoietic cell line or a subclone overexpressing MnSOD (2C6) were incubated with dehydroascorbate for 30 min and irradiated to doses from 0 to 50 Gy. Radical intermediates reacting with spin traps or ascorbate were measured by electron spin resonance spectroscopy. Results were compared to irradiation-induced changes in thiol levels, irradiation survival curves, and accumulation of 8-OHdG as a measurement of DNA oxidative damage. RESULTS Manganese superoxide dismutase-overexpressing 2C6 cells maintained higher levels of ascorbate (5.4 +/- 0.5 and 2.6 +/- 0.5 nmol/10(6) cells, respectively) and thiols (14.0 +/- 0.1 and 11.1 +/- 0.2 nmol/10(6) cells) compared to 32D cl 3 parent cells. Cells overexpressing MnSOD produced lower levels of ROS than did the parental 32D cl 3 cells, as evidenced by lower expenditure of ascorbate and GSH after irradiation. Increased ascorbate levels protected both 32D cl 3 and 2C6 cells from irradiation killing, as demonstrated by an increased shoulder on survival curves and decreased DNA 8-OHdG accumulation. CONCLUSIONS Manganese superoxide dismutase overexpression protects 2C6 cells from irradiation damage by scavenging ROS that readily interact with major endogenous antioxidants--ascorbate and GSH--in nontransfected hematopoietic 32D cl 3 cells.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Limoli CL, Giedzinski E, Rola R, Otsuka S, Palmer TD, Fike JR. Radiation Response of Neural Precursor Cells: Linking Cellular Sensitivity to Cell Cycle Checkpoints, Apoptosis and Oxidative Stress. Radiat Res 2004; 161:17-27. [PMID: 14680400 DOI: 10.1667/rr3112] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Therapeutic irradiation of the brain can cause a progressive cognitive dysfunction that may involve defects in neurogenesis. In an effort to understand the mechanisms underlying radiation-induced stem cell dysfunction, neural precursor cells isolated from the adult rat hippocampus were analyzed for acute (0-24 h) and chronic (3-33 days) changes in apoptosis and reactive oxygen species (ROS) after exposure to X rays. Irradiated neural precursor cells exhibited an acute dose-dependent apoptosis accompanied by an increase in ROS that persisted over a 3-4-week period. The radiation effects included the activation of cell cycle checkpoints that were associated with increased Trp53 phosphorylation and Trp53 and p21 (Cdkn1a) protein levels. In vivo, neural precursor cells within the hippocampal dentate subgranular zone exhibited significant sensitivity to radiation. Proliferating precursor cells and their progeny (i.e. immature neurons) exhibited dose-dependent reductions in cell number. These reductions were less severe in Trp53-null mice, possibly due to the disruption of apoptosis. These data suggest that the apoptotic and ROS responses may be tied to Trp53-dependent regulation of cell cycle control and stress-activated pathways. The temporal coincidence between in vitro and in vivo measurements of apoptosis suggests that oxidative stress may provide a mechanistic explanation for radiation-induced inhibition of neurogenesis in the development of cognitive impairment.
Collapse
Affiliation(s)
- Charles L Limoli
- Department of Radiation Oncology, University of California, San Francisco, California 94103-0806, USA.
| | | | | | | | | | | |
Collapse
|
43
|
El-Assaad W, Kozhaya L, Araysi S, Panjarian S, Bitar FF, Baz E, El-Sabban ME, Dbaibo GS. Ceramide and glutathione define two independently regulated pathways of cell death initiated by p53 in Molt-4 leukaemia cells. Biochem J 2003; 376:725-32. [PMID: 12967322 PMCID: PMC1223811 DOI: 10.1042/bj20030888] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 09/03/2003] [Accepted: 09/11/2003] [Indexed: 01/15/2023]
Abstract
The tumour suppressor p53 induces cell death by launching several pathways that are either dependent on or independent of gene transcription. Accumulation of the sphingolipid ceramide and reactive oxygen species are among these pathways. Crossregulation of these two pathways is possible owing to the demonstrated inhibition of neutral sphingomyelinase by glutathione, the predominant cellular antioxidant, and has been observed in some cytokine-dependent cell-death models. In a model of irradiation-induced cell death of Molt-4 leukaemia cells, it was found that ceramide accumulation and glutathione depletion were dependent on p53 up-regulation. The loss of p53 owing to expression of the papilloma virus E6 protein inhibited both pathways after irradiation. However, in this model, these two pathways appeared to be independently regulated on the basis of the following observations: (1) glutathione supplementation or depletion did not alter irradiation-induced ceramide accumulation, (2) exogenous ceramide treatment did not induce glutathione depletion, (3) glutathione depletion was dependent on new protein synthesis, whereas ceramide accumulation was independent of it and (4) caspase activation was required for ceramide accumulation but not for glutathione depletion. Furthermore, caspase 9 activation, which is dependent on the release of mitochondrial cytochrome c, was not required for ceramide accumulation. This suggested that a caspase, other than caspase 9, was necessary for ceramide accumulation. Interestingly, Bcl-2 expression inhibited these pathways, indicating a possible role for mitochondria in regulating both pathways. These findings indicate that these two pathways exhibit cross-regulation in cytokine-dependent, but not in p53-dependent, cell-death models.
Collapse
Affiliation(s)
- Wissal El-Assaad
- Department of Biochemistry, American University of Beirut, P.O. Box 113/6044, Beirut, Lebanon
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Morgan WF. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation? Oncogene 2003; 22:7094-9. [PMID: 14557815 DOI: 10.1038/sj.onc.1206992] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.
Collapse
Affiliation(s)
- William F Morgan
- Radiation Oncology Research Laboratory & Greenebaum Cancer Center, Department of Radiation Oncology, University of Maryland, 655 W. Baltimore St., BRB 7-011, Baltimore, MD 21201-5525, USA.
| |
Collapse
|
45
|
Coleman CN. Linking radiation oncology and imaging through molecular biology (or now that therapy and diagnosis have separated, it's time to get together again!). Radiology 2003; 228:29-35. [PMID: 12832573 DOI: 10.1148/radiol.2281021567] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Among the areas defined by the National Cancer Institute as "Extraordinary Opportunities for Research Investment" that are highly relevant to the technology-oriented disciplines within the broad field of radiology are cancer imaging, defining the signatures (ie, underlying molecular features) of cancer cells, and molecular targets of prevention and treatment. In molecular target credentialing, a specific molecular target is imaged, the molecular signature is defined, a treatment is given, and the effect of the intervention on the image findings and the signature is then evaluated. Such an approach is used to validate the proposed target as a legitimate one for cancer therapy or prevention and to provide the opportunity to ultimately individualize therapy on the basis of both the initial characteristics of the tumor and the tumor's response to an intervention. Therapeutic radiation is focused biology (ie, radiation produces molecular events in the irradiated tissue). Radiation can (a) kill cancer cells by itself, (b) be combined with cytotoxic or cytostatic drugs, and (c) serve to initiate radiation-inducible molecular targets that are amenable to treatment with drugs and/or biologic therapies. Focused biology can be anatomically confined with various types of external beams and with brachytherapy, and it can be used systemically with targeted radioisotopes. These new paradigms link diagnostic imaging, radiation therapy, and nuclear medicine in unique ways by way of basic biology. It is timely to develop new collaborative research, training, and education agendas by building on one another's expertise and adopting new fields of microtechnology, nanotechnology, and mathematical analysis and optimization.
Collapse
Affiliation(s)
- C Norman Coleman
- National Cancer Institute, Radiation Oncology Branch, Bldg 10, B3-B69, National Institutes of Health, Bethesda, MD 20892-1002, USA.
| |
Collapse
|
46
|
Schwartz JL, Jordan R, Evans HH, Lenarczyk M, Liber H. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells. Radiat Res 2003; 159:730-6. [PMID: 12751955 DOI: 10.1667/rr3005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.
Collapse
Affiliation(s)
- Jeffrey L Schwartz
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6069, USA.
| | | | | | | | | |
Collapse
|