1
|
Lu H, Wise SS, Speer RM, Croom-Perez TJ, Toyoda JH, Meaza I, Williams A, Wise JP, Kouokam JC, Young Wise J, Hoyle GW, Zhu C, Ali AM, Wise JP. Acute particulate hexavalent chromium exposure induces DNA double-strand breaks and activates homologous recombination repair in rat lung tissue. Toxicol Sci 2024; 201:1-13. [PMID: 38867691 PMCID: PMC11347773 DOI: 10.1093/toxsci/kfae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Hexavalent chromium [Cr(VI)] is an established human lung carcinogen, but the carcinogenesis mechanism is poorly understood. Chromosome instability, a hallmark of lung cancer, is considered a major driver of Cr(VI)-induced lung cancer. Unrepaired DNA double-strand breaks are the underlying cause, and homologous recombination repair is the primary mechanism preventing Cr(VI)-induced DNA breaks from causing chromosome instability. Cell culture studies show acute Cr(VI) exposure causes DNA double-strand breaks and increases homologous recombination repair activity. However, the ability of Cr(VI)-induced DNA breaks and repair impact has only been reported in cell culture studies. Therefore, we investigated whether acute Cr(VI) exposure could induce breaks and homologous recombination repair in rat lungs. Male and female Wistar rats were acutely exposed to either zinc chromate particles in a saline solution or saline alone by oropharyngeal aspiration. This exposure route resulted in increased Cr levels in each lobe of the lung. We found Cr(VI) induced DNA double-strand breaks in a concentration-dependent manner, with females being more susceptible than males, and induced homologous recombination repair at similar levels in both sexes. Thus, these data show this driving mechanism discovered in cell culture indeed translates to lung tissue in vivo.
Collapse
Affiliation(s)
- Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Aggie Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - John Pierce Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Pediatric Research Institute, University of Louisville, Louisville, KY 40292, United States
| | - J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Jamie Young Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Gary W Hoyle
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40292, United States
| | - Cairong Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Abdul-Mehdi Ali
- Earth and Planetary Sciences Department, The University of New Mexico, Albuquerque, NM 87131, United States
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| |
Collapse
|
2
|
Martin OA, Sykes PJ, Lavin M, Engels E, Martin RF. What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics. Radiat Res 2024; 202:309-327. [PMID: 38966925 DOI: 10.1667/rade-24-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024]
Abstract
Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.
Collapse
Affiliation(s)
- Olga A Martin
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Pamela J Sykes
- College of Medicine and Public Health, Flinders University and Medical Centre, Bedford Park, SA, Australia
| | - Martin Lavin
- Centre for Clinical Research, University of Queensland, QSL, Brisbane, Australia
| | - Elette Engels
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Clayton, VIC, Australia
| | - Roger F Martin
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Unverricht-Yeboah M, Von Ameln M, Kriehuber R. Induction of Chromosomal Aberrations after Exposure to the Auger Electron Emitter Iodine-125, the β--emitter Tritium and Cesium-137 γ rays. Radiat Res 2024; 201:479-486. [PMID: 38407403 DOI: 10.1667/rade-23-00158.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
High-LET-type cell survival curves have been observed in cells that were allowed to incorporate 125I-UdR into their DNA. Incorporation of tritiated thymidine into the DNA of cells has also been shown to result in an increase in relative biological effectiveness in cell survival experiments, but the increase is smaller than observed after incorporation of 125I-UdR. These findings are explained in the literature by the overall complexity of the induced DNA damage resulting from energies of the ejected electron(s) during the decay of 3H and 125I. Chromosomal aberrations (CA) are defined as morphological or structural changes of one or more chromosomes, and can be induced by ionizing radiation. Whether the number of CA is associated with the linear energy transfer (LET) of the radiation and/or the actual complexity of the induced DNA double-strand breaks (DSB) remains elusive. In this study, we investigated whether DNA lesions induced at different cell cycle stages and by different radiation types [Auger-electrons (125I), β- particles (3H), or γ radiation (137Cs)] have an impact on the number of CA induced after induction of the same number of DSB as determined by the γ-H2AX foci assay. Cells were synchronized and pulse-labeled in S phase with low activities of 125I-UdR or tritiated thymidine. For decay accumulation, cells were cryopreserved either after pulse-labeling in S phase or after progression to G2/M or G1 phase. Experiments with γ irradiation (137Cs) were performed with synchronized and cryopreserved cells in S, G2/M or G1 phase. After thawing, a CA assay was performed. All experiments were performed after a similar number of DSB were induced. CA induction after 125I-UdR was incorporated was 2.9-fold and 1.7-fold greater compared to exposure to γ radiation and radiation from incorporated tritiated thymidine, respectively, when measured in G2/M cells. In addition, measurement of CA in G2/M cells after incorporation of 125I-UdR was 2.5-fold greater when compared to cells in G1 phase. In contrast, no differences were observed between the three radiation qualities with respect to exposure after cryopreservation in S or G1 phase. The data indicate that the 3D organization of replicated DNA in G2/M cells seems to be more sensitive to induction of more complex DNA lesions compared to the DNA architecture in S or G1 cells. Whether this is due to the DNA organization itself or differences in DNA repair capability remains unclear.
Collapse
Affiliation(s)
- M Unverricht-Yeboah
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - M Von Ameln
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - R Kriehuber
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| |
Collapse
|
4
|
O’Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Unraveling the genetics of arsenic toxicity with cellular morphology QTL. PLoS Genet 2024; 20:e1011248. [PMID: 38662777 PMCID: PMC11075906 DOI: 10.1371/journal.pgen.1011248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/07/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O’Connor
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- RTI International, Research Triangle Park, Durham, North Carolina, United States of America
| | - Whitney Martin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Timothy Stodola
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Brian R. Hoffman
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Peng K, Cui K, Li P, Liu X, Du Y, Xu H, Yang X, Lu S, Liang X. Mogroside V alleviates the heat stress-induced disruption of the porcine oocyte in vitro maturation. Theriogenology 2024; 217:37-50. [PMID: 38244353 DOI: 10.1016/j.theriogenology.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Heat stress (HS) is a stressor that negatively affect female reproduction. Specially, oocytes are very sensitive to HS. It has been demonstrated that some active compounds can protect oocyte from HS. We previously found that Mogroside V (MV), extracted from Siraitia grosvenorii (Luo Han Guo), can protect oocyte from many kinds of stresses. However, how MV alleviates HS-induced disruption of oocyte maturation remains unknown. In this study, we treated the HS-induced porcine oocytes with MV to examine their maturation and quality. Our findings demonstrate that MV can effectively alleviate HS-induced porcine oocyte abnormal cumulus cell expansion, decrease of first polar body extrusion rate, spindle assembly and chromosome separation abnormalities, indicating MV attenuates oocyte mature defects. We further observed that MV can effectively alleviate HS-induced cortical granule distribution abnormality and decrease of blastocyst formation rate after parthenogenesis activation. In addition, MV treatment reversed mitochondrial dysfunction and lipid droplet content decrease, reduced reactive oxygen species levels, early apoptosis and DNA damage in porcine oocytes after HS. Collectively, this study suggests that MV can effectively protect porcine oocytes from HS.
Collapse
Affiliation(s)
- Ke Peng
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Kexin Cui
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Pan Li
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Du
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Huiyan Xu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaogan Yang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Shengsheng Lu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
6
|
Kines KJ, Sokolowski M, DeFreece C, Shareef A, deHaro DL, Belancio VP. Large Deletions, Cleavage of the Telomeric Repeat Sequence, and Reverse Transcriptase-Mediated DNA Damage Response Associated with Long Interspersed Element-1 ORF2p Enzymatic Activities. Genes (Basel) 2024; 15:143. [PMID: 38397133 PMCID: PMC10887698 DOI: 10.3390/genes15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
L1 elements can cause DNA damage and genomic variation via retrotransposition and the generation of endonuclease-dependent DNA breaks. These processes require L1 ORF2p protein that contains an endonuclease domain, which cuts genomic DNA, and a reverse transcriptase domain, which synthesizes cDNA. The complete impact of L1 enzymatic activities on genome stability and cellular function remains understudied, and the spectrum of L1-induced mutations, other than L1 insertions, is mostly unknown. Using an inducible system, we demonstrate that an ORF2p containing functional reverse transcriptase is sufficient to elicit DNA damage response even in the absence of the functional endonuclease. Using a TK/Neo reporter system that captures misrepaired DNA breaks, we demonstrate that L1 expression results in large genomic deletions that lack any signatures of L1 involvement. Using an in vitro cleavage assay, we demonstrate that L1 endonuclease efficiently cuts telomeric repeat sequences. These findings support that L1 could be an unrecognized source of disease-promoting genomic deletions, telomere dysfunction, and an underappreciated source of chronic RT-mediated DNA damage response in mammalian cells. Our findings expand the spectrum of biological processes that can be triggered by functional and nonfunctional L1s, which have impactful evolutionary- and health-relevant consequences.
Collapse
Affiliation(s)
- Kristine J. Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Cecily DeFreece
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Afzaal Shareef
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Dawn L. deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Scherthan H, Geiger B, Ridinger D, Müller J, Riccobono D, Bestvater F, Port M, Hausmann M. Nano-Architecture of Persistent Focal DNA Damage Regions in the Minipig Epidermis Weeks after Acute γ-Irradiation. Biomolecules 2023; 13:1518. [PMID: 37892200 PMCID: PMC10605239 DOI: 10.3390/biom13101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Exposure to high acute doses of ionizing radiation (IR) can induce cutaneous radiation syndrome. Weeks after such radiation insults, keratinocyte nuclei of the epidermis exhibit persisting genomic lesions that present as focal accumulations of DNA double-strand break (DSB) damage marker proteins. Knowledge about the nanostructure of these genomic lesions is scarce. Here, we compared the chromatin nano-architecture with respect to DNA damage response (DDR) factors in persistent genomic DNA damage regions and healthy chromatin in epidermis sections of two minipigs 28 days after lumbar irradiation with ~50 Gy γ-rays, using single-molecule localization microscopy (SMLM) combined with geometric and topological mathematical analyses. SMLM analysis of fluorochrome-stained paraffin sections revealed, within keratinocyte nuclei with perisitent DNA damage, the nano-arrangements of pATM, 53BP1 and Mre11 DDR proteins in γ-H2AX-positive focal chromatin areas (termed macro-foci). It was found that persistent macro-foci contained on average ~70% of 53BP1, ~23% of MRE11 and ~25% of pATM single molecule signals of a nucleus. MRE11 and pATM fluorescent tags were organized in focal nanoclusters peaking at about 40 nm diameter, while 53BP1 tags formed nanoclusters that made up super-foci of about 300 nm in size. Relative to undamaged nuclear chromatin, the enrichment of DDR protein signal tags in γ-H2AX macro-foci was on average 8.7-fold (±3) for 53BP1, 3.4-fold (±1.3) for MRE11 and 3.6-fold (±1.8) for pATM. The persistent macro-foci of minipig epidermis displayed a ~2-fold enrichment of DDR proteins, relative to DSB foci of lymphoblastoid control cells 30 min after 0.5 Gy X-ray exposure. A lasting accumulation of damage signaling and sensing molecules such as pATM and 53BP1, as well as the DSB end-processing protein MRE11 in the persistent macro-foci suggests the presence of diverse DNA damages which pose an insurmountable problem for DSB repair.
Collapse
Affiliation(s)
- Harry Scherthan
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Beatrice Geiger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - David Ridinger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - Jessica Müller
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Diane Riccobono
- Département des Effets Biologiques des Rayonnements, French Armed Forces Biomedical Research Institute, UMR 1296, BP 73, 91223 Brétigny-sur-Orge, France;
| | - Felix Bestvater
- Core Facility Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany;
| | - Matthias Port
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| |
Collapse
|
8
|
Knoblochova L, Duricek T, Vaskovicova M, Zorzompokou C, Rayova D, Ferencova I, Baran V, Schultz RM, Hoffmann ER, Drutovic D. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep 2023; 24:e56530. [PMID: 37694680 PMCID: PMC10561370 DOI: 10.15252/embr.202256530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
Collapse
Affiliation(s)
- Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tomas Duricek
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Chrysoula Zorzompokou
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Diana Rayova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Vladimir Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of SciencesKosiceSlovakia
| | - Richard M Schultz
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCAUSA
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
9
|
Rasti G, Becker M, Vazquez BN, Espinosa-Alcantud M, Fernández-Duran I, Gámez-García A, Ianni A, Gonzalez J, Bosch-Presegué L, Marazuela-Duque A, Guitart-Solanes A, Segura-Bayona S, Bech-Serra JJ, Scher M, Serrano L, Shankavaram U, Erdjument-Bromage H, Tempst P, Reinberg D, Olivella M, Stracker T, de la Torre C, Vaquero A. SIRT1 regulates DNA damage signaling through the PP4 phosphatase complex. Nucleic Acids Res 2023; 51:6754-6769. [PMID: 37309898 PMCID: PMC10359614 DOI: 10.1093/nar/gkad504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
The Sirtuin family of NAD+-dependent enzymes plays an important role in maintaining genome stability upon stress. Several mammalian Sirtuins have been linked directly or indirectly to the regulation of DNA damage during replication through Homologous recombination (HR). The role of one of them, SIRT1, is intriguing as it seems to have a general regulatory role in the DNA damage response (DDR) that has not yet been addressed. SIRT1-deficient cells show impaired DDR reflected in a decrease in repair capacity, increased genome instability and decreased levels of γH2AX. Here we unveil a close functional antagonism between SIRT1 and the PP4 phosphatase multiprotein complex in the regulation of the DDR. Upon DNA damage, SIRT1 interacts specifically with the catalytical subunit PP4c and promotes its inhibition by deacetylating the WH1 domain of the regulatory subunits PP4R3α/β. This in turn regulates γH2AX and RPA2 phosphorylation, two key events in the signaling of DNA damage and repair by HR. We propose a mechanism whereby during stress, SIRT1 signaling ensures a global control of DNA damage signaling through PP4.
Collapse
Affiliation(s)
- George Rasti
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Maximilian Becker
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Berta N Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Espinosa-Alcantud
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Irene Fernández-Duran
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231Bad Nauheim, Germany
| | - Jessica Gonzalez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Laia Bosch-Presegué
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IrisCC). Experimental Sciences and Methodology Department. Faculty of Health Sciences and Welfare (FCSB), University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Guitart-Solanes
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Current affiliation: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joan-Josep Bech-Serra
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain
| | - Michael Scher
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, NJ08854, USA
| | - Lourdes Serrano
- Department of Science, BMCC, The City University of New York (CUNY), 199 Chambers Street N699P, New Yirk, NY10007, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD20892, USA
| | - Hediye Erdjument-Bromage
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY10016, USA
| | - Paul Tempst
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, NJ08854, USA
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, NY10016, USA
| | - Mireia Olivella
- Bioinfomatics and Medical Statistics Group, Faculty of Science, Technology and Engineering. University of Vic-Central University of Catalonia, Vic, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD20892, USA
| | - Carolina de la Torre
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
10
|
Frerker B, Bock F, Cappel ML, Kriesen S, Klautke G, Hildebrandt G, Manda K. Radiosensitizing Effects of Irinotecan versus Oxaliplatin Alone and in Combination with 5-Fluorouracil on Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:10385. [PMID: 37373535 DOI: 10.3390/ijms241210385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
To date, oxaliplatin and irinotecan are used in combination with 5-flourouracil (5-FU) for metastatic colorectal cancer. In this study it was tested whether oxaliplatin and irinotecan and their combinations with 5-FU have an enhanced effect when treated simultaneously with ionizing radiation. In addition, it should be compared whether one combination therapy is more effective than the other. Colorectal cancer cells (HT-29) were treated with irinotecan or oxaliplatin, both alone and in combination with 5-FU, and subsequently irradiated. The cell growth, metabolic activity and proliferation of cells were investigated, and the clonogenic survival was determined. Furthermore, the assessment of radiation-induced DNA damage and the influence of the drugs and their combinations on DNA damage repair was investigated. Treatment with irinotecan or oxaliplatin in combination with 5-FU inhibited proliferation and metabolic activity as well as clonogenic survival and the DNA damage repair capacity of the tumor cells. The comparison of oxaliplatin and irinotecan with simultaneous irradiation showed the same effect of both drugs. When oxaliplatin or irinotecan was combined with 5-FU, tumor cell survival was significantly lower than with monotherapy; however, there was no superiority of either combination regimen. Our results have shown that the combination of 5-FU and irinotecan is as effective as the combination of 5-FU with oxaliplatin. Therefore, our data support the use of FOLFIRI as a radiosensitizer.
Collapse
Affiliation(s)
- Bernd Frerker
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Felix Bock
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Marie-Louise Cappel
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Stephan Kriesen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Gunther Klautke
- Department of Radiation Oncology, Hospital Chemnitz, Bürgerstrasse 2, 09113 Chemnitz, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| |
Collapse
|
11
|
Svetlova M, Solovjeva L, Kropotov A, Nikiforov A. The Impact of NAD Bioavailability on DNA Double-Strand Break Repair Capacity in Human Dermal Fibroblasts after Ionizing Radiation. Cells 2023; 12:1518. [PMID: 37296639 PMCID: PMC10252650 DOI: 10.3390/cells12111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) serves as a substrate for protein deacetylases sirtuins and poly(ADP-ribose) polymerases, which are involved in the regulation of DNA double-strand break (DSB) repair molecular machinery by various mechanisms. However, the impact of NAD bioavailability on DSB repair remains poorly characterized. Herein, using immunocytochemical analysis of γH2AX, a marker for DSB, we investigated the effect of the pharmacological modulation of NAD levels on DSB repair capacity in human dermal fibroblasts exposed to moderate doses of ionizing radiation (IR). We demonstrated that NAD boosting with nicotinamide riboside did not affect the efficiency of DSB elimination after the exposure of cells to IR at 1 Gy. Moreover, even after irradiation at 5 Gy, we did not observe any decrease in intracellular NAD content. We also showed that, when the NAD pool was almost completely depleted by inhibition of its biosynthesis from nicotinamide, cells were still able to eliminate IR-induced DSB, though the activation of ATM kinase, its colocalization with γH2AX and DSB repair capacity were reduced in comparison to cells with normal NAD levels. Our results suggest that NAD-dependent processes, such as protein deacetylation and ADP-ribosylation, are important but not indispensable for DSB repair induced by moderate doses of IR.
Collapse
Affiliation(s)
- Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (L.S.); (A.K.)
| | | | | | - Andrey Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (L.S.); (A.K.)
| |
Collapse
|
12
|
Alharbi B, Qanash H, Binsaleh NK, Alharthi S, Elasbali AM, Gharekhan CH, Mahmoud M, Lioudakis E, O'Leary JJ, Doherty DG, Mohamed BM, Gray SG. Proof of concept nanotechnological approach to in vitro targeting of malignant melanoma for enhanced immune checkpoint inhibition. Sci Rep 2023; 13:7462. [PMID: 37156818 PMCID: PMC10167246 DOI: 10.1038/s41598-023-34638-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Immunotherapies, including immune checkpoint inhibitors, have limitations in their effective treatment of malignancies. The immunosuppressive environment associated with the tumor microenvironment may prevent the achievement of optimal outcomes for immune checkpoint inhibitors alone, and nanotechnology-based platforms for delivery of immunotherapeutic agents are increasingly being investigated for their potential to improve the efficacy of immune checkpoint blockade therapy. In this manuscript, nanoparticles were designed with appropriate size and surface characteristics to enhance their retention of payload so that they can transmit their loaded drugs to the tumor. We aimed to enhance immune cell stimulation by a small molecule inhibitor of PD-1/PD-L1 (BMS202) using nanodiamonds (ND). Melanoma cells with different disease stages were exposed to bare NDs, BMS202-NDs or BMS202 alone for 6 h. Following this, melanoma cells were co-cultured with freshly isolated human peripheral blood mononuclear cells (hPBMCs). The effects of this treatment combination on melanoma cells were examined on several biological parameters including cell viability, cell membrane damage, lysosomal mass/pH changes and expression of γHA2X, and caspase 3. Exposing melanoma cells to BMS202-NDs led to a stronger than normal interaction between the hPBMCs and the melanoma cells, with significant anti-proliferative effects. We therefore conclude that melanoma therapy has the potential to be enhanced by non-classical T-cell Immune responses via immune checkpoint inhibitors delivered by nanodiamonds-based nanoparticles.
Collapse
Affiliation(s)
- Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, 55476, Saudi Arabia
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, 55476, Saudi Arabia.
| | - Naif K Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, 55476, Saudi Arabia
| | - Salem Alharthi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, 55461, Saudi Arabia
| | - Abdulbaset M Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka, 42421, Saudi Arabia
| | - Chandranil H Gharekhan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Cochin, India
| | | | - Emmanouil Lioudakis
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin, Ireland
- Trinity St James's Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - Derek G Doherty
- Trinity St James's Cancer Institute, Dublin, Ireland
- Department of Immunology, Trinity College Dublin, Dublin, Ireland
| | - Bashir M Mohamed
- Trinity St James's Cancer Institute, Dublin, Ireland.
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland.
- Department of Immunology, Trinity College Dublin, Dublin, Ireland.
| | - Steven G Gray
- Trinity St James's Cancer Institute, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Rishi JK, Timme K, White HE, Kerns KC, Keating AF. Obesity partially potentiates dimethylbenz[a]anthracene-exposed ovotoxicity by altering the DNA damage repair response in mice†. Biol Reprod 2023; 108:694-707. [PMID: 36702632 PMCID: PMC10106840 DOI: 10.1093/biolre/ioac218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 01/28/2023] Open
Abstract
Obesity adversely affects reproduction, impairing oocyte quality, fecundity, conception, and implantation. The ovotoxicant, dimethylbenz[a]anthracene, is biotransformed into a genotoxic metabolite to which the ovary responds by activating the ataxia telangiectasia mutated DNA repair pathway. Basal ovarian DNA damage coupled with a blunted response to genotoxicant exposure occurs in obese females, leading to the hypothesis that obesity potentiates ovotoxicity through ineffective DNA damage repair. Female KK.Cg-a/a (lean) and KK.Cg-Ay/J (obese) mice received corn oil or dimethylbenz[a]anthracene (1 mg/kg) at 9 weeks of age for 7 days via intraperitoneal injection (n = 10/treatment). Obesity increased liver weight (P < 0.001) and reduced (P < 0.05) primary, preantral, and corpora lutea number. In lean mice, dimethylbenz[a]anthracene exposure tended (P < 0.1) to increase proestrus duration and reduced (P = 0.07) primordial follicle number. Dimethylbenz[a]anthracene exposure decreased (P < 0.05) uterine weight and increased (P < 0.05) primary follicle number in obese mice. Total ovarian abundance of BRCA1, γH2AX, H3K4me, H4K5ac, H4K12ac, and H4K16ac (P > 0.05) was unchanged by obesity or dimethylbenz[a]anthracene exposure. Immunofluorescence staining demonstrated decreased (P < 0.05) abundance of γH2AX foci in antral follicles of obese mice. In primary follicle oocytes, BRCA1 protein was reduced (P < 0.05) by dimethylbenz[a]anthracene exposure in lean mice. Obesity also decreased (P < 0.05) BRCA1 protein in primary follicle oocytes. These findings support both a follicle stage-specific ovarian response to dimethylbenz[a]anthracene exposure and an impact of obesity on this ovarian response.
Collapse
Affiliation(s)
- Jaspreet K Rishi
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Karl C Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
14
|
Yang Y, Cai Y, Guo J, Dai K, Liu L, Chen Z, Wang F, Deng M. Knockdown of KDM5B Leads to DNA Damage and Cell Cycle Arrest in Granulosa Cells via MTF1. Curr Issues Mol Biol 2023; 45:3219-3237. [PMID: 37185734 PMCID: PMC10136914 DOI: 10.3390/cimb45040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
KDM5B is essential for early embryo development, which is under the control of maternal factors in oocytes. Granulosa cells (GCs) play a critical role during oocyte mature. However, the role of KDM5B in GCs remains to be elucidated. In the current study, we found that KDM5B expressed highly in the ovaries and located in goat GCs. Using an RNA sequence, we identified 1353 differentially expressed genes in the KDM5B knockdown GCs, which were mainly enriched in cell cycle, cell division, DNA replication and the cellular oxidative phosphorylation regulation pathway. Moreover, we reported a decrease in the percentage of proliferated cells but an increase in the percentage of apoptotic cells in the KDM5B knockdown GCs. In addition, in the KDM5B knockdown GCs, the percentage of GCs blocked at the S phase was increased compared to the NC group, suggesting a critical role of KDM5B in the cell cycle. Moreover, in the KDM5B knockdown GCs, the reactive oxygen species level, the mitochondrial depolarization ratio, and the expression of intracellular phosphorylated histone H2AX (γH2AX) increased, suggesting that knockdown of KDM5B leads to DNA damage, primarily in the form of DNA double-strand breaks (DSBs). Interestingly, we found a down-regulation of MTF1 in the KDM5B knockdown GCs, and the level of cell proliferation, as well as the cell cycle block in the S phase, was improved. In contrast, in the group with both KDM5B knockdown and MTF1 overexpression, the level of ROS, the expression of γH2AX and the number of DNA DSB sites decreased. Taken together, our results suggest that KDM5B inhibits DNA damage and promotes the cell cycle in GCs, which might occur through the up-regulation of MTF1.
Collapse
Affiliation(s)
- Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjing Guo
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Dai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zili Chen
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Tang H, Cai L, He X, Niu Z, Huang H, Hu W, Bian H, Huang H. Radiation-induced bystander effect and its clinical implications. Front Oncol 2023; 13:1124412. [PMID: 37091174 PMCID: PMC10113613 DOI: 10.3389/fonc.2023.1124412] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
For many years, targeted DNA damage caused by radiation has been considered the main cause of various biological effects. Based on this paradigm, any small amount of radiation is harmful to the organism. Epidemiological studies of Japanese atomic bomb survivors have proposed the linear-non-threshold model as the dominant standard in the field of radiation protection. However, there is increasing evidence that the linear-non-threshold model is not fully applicable to the biological effects caused by low dose radiation, and theories related to low dose radiation require further investigation. In addition to the cell damage caused by direct exposure, non-targeted effects, which are sometimes referred to as bystander effects, abscopal effects, genetic instability, etc., are another kind of significant effect related to low dose radiation. An understanding of this phenomenon is crucial for both basic biomedical research and clinical application. This article reviews recent studies on the bystander effect and summarizes the key findings in the field. Additionally, it offers a cross-sectional comparison of bystander effects caused by various radiation sources in different cell types, as well as an in-depth analysis of studies on the potential biological mechanisms of bystander effects. This review aims to present valuable information and provide new insights on the bystander effect to enlighten both radiobiologists and clinical radiologists searching for new ways to improve clinical treatments.
Collapse
Affiliation(s)
- Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zihe Niu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Haitong Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Huahui Bian
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| |
Collapse
|
16
|
Nöthen T, Sarabi MA, Weinert S, Zuschratter W, Morgenroth R, Mertens PR, Braun-Dullaeus RC, Medunjanin S. DNA-Dependent Protein Kinase Mediates YB-1 (Y-Box Binding Protein)-Induced Double Strand Break Repair. Arterioscler Thromb Vasc Biol 2023; 43:300-311. [PMID: 36475703 DOI: 10.1161/atvbaha.122.317922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND DNA-PK (DNA-dependent protein kinase) is a stress-activated serine/threonine kinase that plays a central role in vascular smooth muscle cell proliferation and vascular proliferative disease processes such as neointimal formation. In this study, we link the activation of DNA-PK to the function of the transcription factor YB-1 (Y-box binding protein). METHODS To identify YB-1 phosphorylation by DNA-PK, we generated different YB-1-expressing vectors. YB-1 nuclear translocation was investigated using immunoblotting and immunofluorescence staining. For YB-1 activity, luciferase assays were performed. RESULTS We show by mutational analysis and kinase assay that the transcriptional regulator YB-1 is a substrate of DNA-PK. Blockade of DNA-PK by specific inhibitors revealed its critical involvement in YB-1phosphorylation as demonstrated by inhibition of an overexpressed YB-1 reporter construct. Using DNA-PK-deficient cells, we demonstrate that the shuttling of YB-1 from the cytoplasm to the nucleus is dependent on DNA-PK and that the N-terminal domain of YB-1 is phosphorylated at threonine 89. Point mutation of YB-1 at this residue abrogated the translocation of YB-1 into the nucleus. The phosphorylation of YB-1 by DNA-PK increased cellular DNA repair after exposure to ionizing radiation. Atherosclerotic tissue specimens were analyzed by immunohistochemistry. The DNA-PK subunits and YB-1 phosphorylated at T89 were found colocalized suggesting their in vivo interaction. In mice, the local application of the specific DNA-PK inhibitor NU7026 via thermosensitive Pluronic F-127 gel around dilated arteries significantly reduced the phosphorylation of YB-1. CONCLUSIONS DNA-PK directly phosphorylates YB-1 and, this way, modulates YB-1 function. This interaction could be demonstrated in vivo, and colocalization in human atherosclerotic plaques suggests clinical relevance of our finding. Phosphorylation of YB-1 by DNA-PK may represent a novel mechanism governing atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Till Nöthen
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Sönke Weinert
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Ronnie Morgenroth
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Ruediger C Braun-Dullaeus
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Senad Medunjanin
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
17
|
Yachi Y, Matsuya Y, Yoshii Y, Fukunaga H, Date H, Kai T. An Analytical Method for Quantifying the Yields of DNA Double-Strand Breaks Coupled with Strand Breaks by γ-H2AX Focus Formation Assay Based on Track-Structure Simulation. Int J Mol Sci 2023; 24:1386. [PMID: 36674901 PMCID: PMC9864015 DOI: 10.3390/ijms24021386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Complex DNA double-strand break (DSB), which is defined as a DSB coupled with additional strand breaks within 10 bp in this study, induced after ionizing radiation or X-rays, is recognized as fatal damage which can induce cell death with a certain probability. In general, a DSB site inside the nucleus of live cells can be experimentally detected using the γ-H2AX focus formation assay. DSB complexity is believed to be detected by analyzing the focus size using such an assay. However, the relationship between focus size and DSB complexity remains uncertain. In this study, using Monte Carlo (MC) track-structure simulation codes, i.e., an in-house WLTrack code and a Particle and Heavy Ion Transport code System (PHITS), we developed an analytical method for qualifying the DSB complexity induced by photon irradiation from the microscopic image of γ-H2AX foci. First, assuming that events (i.e., ionization and excitation) potentially induce DNA strand breaks, we scored the number of events in a water cube (5.03 × 5.03 × 5.03 nm3) along electron tracks. Second, we obtained the relationship between the number of events and the foci size experimentally measured by the γ-H2AX focus formation assay. Third, using this relationship, we evaluated the degree of DSB complexity induced after photon irradiation for various X-ray spectra using the foci size, and the experimental DSB complexity was compared to the results estimated by the well-verified DNA damage estimation model in the PHITS code. The number of events in a water cube was found to be proportional to foci size, suggesting that the number of events intrinsically related to DSB complexity at the DNA scale. The developed method was applicable to focus data measured for various X-ray spectral situations (i.e., diagnostic kV X-rays and therapeutic MV X-rays). This method would contribute to a precise understanding of the early biological impacts of photon irradiation by means of the γ-H2AX focus formation assay.
Collapse
Affiliation(s)
- Yoshie Yachi
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo 060-0812, Japan
- Japan Atomic Energy Agency (JAEA), Nuclear Science and Engineering Centre, Research Group for Radiation Transport Analysis, 2-4 Shirakata, Tokai, Naka-gun 319-1195, Japan
| | - Yuji Yoshii
- Central Institute of Isotope Science, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Takeshi Kai
- Japan Atomic Energy Agency (JAEA), Nuclear Science and Engineering Centre, Research Group for Radiation Transport Analysis, 2-4 Shirakata, Tokai, Naka-gun 319-1195, Japan
| |
Collapse
|
18
|
Quantitative Correlations between Radiosensitivity Biomarkers Show That the ATM Protein Kinase Is Strongly Involved in the Radiotoxicities Observed after Radiotherapy. Int J Mol Sci 2022; 23:ijms231810434. [PMID: 36142346 PMCID: PMC9498991 DOI: 10.3390/ijms231810434] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue overreactions (OR), whether called adverse effects, radiotoxicity, or radiosensitivity reactions, may occur during or after anti-cancer radiotherapy (RT). They represent a medical, economic, and societal issue and raise the question of individual response to radiation. To predict and prevent them are among the major tasks of radiobiologists. To this aim, radiobiologists have developed a number of predictive assays involving different cellular models and endpoints. To date, while no consensus has been reached to consider one assay as the best predictor of the OR occurrence and severity, radiation oncologists have proposed consensual scales to quantify OR in six different grades of severity, whatever the organ/tissue concerned and their early/late features. This is notably the case with the Common Terminology Criteria for Adverse Events (CTCAE). Few radiobiological studies have used the CTCAE scale as a clinical endpoint to evaluate the statistical robustness of the molecular and cellular predictive assays in the largest range of human radiosensitivity. Here, by using 200 untransformed skin fibroblast cell lines derived from RT-treated cancer patients eliciting OR in the six CTCAE grades range, correlations between CTCAE grades and the major molecular and cellular endpoints proposed to predict OR (namely, cell survival at 2 Gy (SF2), yields of micronuclei, recognized and unrepaired DSBs assessed by immunofluorescence with γH2AX and pATM markers) were examined. To our knowledge, this was the first time that the major radiosensitivity endpoints were compared together with the same cohort and irradiation conditions. Both SF2 and the maximal number of pATM foci reached after 2 Gy appear to be the best predictors of the OR, whatever the CTCAE grades range. All these major radiosensitivity endpoints are mathematically linked in a single mechanistic model of individual response to radiation in which the ATM kinase plays a major role.
Collapse
|
19
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
20
|
Mao DD, Cleary RT, Gujar A, Mahlokozera T, Kim AH. CDC20 regulates sensitivity to chemotherapy and radiation in glioblastoma stem cells. PLoS One 2022; 17:e0270251. [PMID: 35737702 PMCID: PMC9223386 DOI: 10.1371/journal.pone.0270251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma stem cells (GSCs) are an important subpopulation in glioblastoma, implicated in tumor growth, tumor recurrence, and radiation resistance. Understanding the cellular mechanisms for chemo- and radiation resistance could lead to the development of new therapeutic strategies. Here, we demonstrate that CDC20 promotes resistance to chemotherapy and radiation therapy. CDC20 knockdown does not increase TMZ- and radiation-induced DNA damage, or alter DNA damage repair, but rather promotes cell death through accumulation of the pro-apoptotic protein, Bim. Our results identify a CDC20 signaling pathway that regulates chemo- and radiosensitivity in GSCs, with the potential for CDC20-targeted therapeutic strategies in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Diane D. Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ryan T. Cleary
- Department of Neurological Surgery, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Amit Gujar
- The Jackson Laboratory in Genomic Medicine, Farmington, Connecticut, United States of America
| | - Tatenda Mahlokozera
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
21
|
Zhu K, Wu C, Peng X, Ji X, Luo S, Liu Y, Wang X. Nanoscale Calculation of Proton-Induced DNA Damage Using a Chromatin Geometry Model with Geant4-DNA. Int J Mol Sci 2022; 23:ijms23116343. [PMID: 35683021 PMCID: PMC9181653 DOI: 10.3390/ijms23116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Monte Carlo simulations can quantify various types of DNA damage to evaluate the biological effects of ionizing radiation at the nanometer scale. This work presents a study simulating the DNA target response after proton irradiation. A chromatin fiber model and new physics constructors with the ELastic Scattering of Electrons and Positrons by neutral Atoms (ELSEPA) model were used to describe the DNA geometry and the physical stage of water radiolysis with the Geant4-DNA toolkit, respectively. Three key parameters (the energy threshold model for strand breaks, the physics model and the maximum distance to distinguish DSB clusters) of scoring DNA damage were studied to investigate the impact on the uncertainties of DNA damage. On the basis of comparison of our results with experimental data and published findings, we were able to accurately predict the yield of various types of DNA damage. Our results indicated that the difference in physics constructor can cause up to 56.4% in the DNA double-strand break (DSB) yields. The DSB yields were quite sensitive to the energy threshold for strand breaks (SB) and the maximum distance to classify the DSB clusters, which were even more than 100 times and four times than the default configurations, respectively.
Collapse
Affiliation(s)
- Kun Zhu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Chun Wu
- School of Nursing, University of South China, Hengyang 421001, China;
| | - Xiaoyu Peng
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Xuantao Ji
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Siyuan Luo
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Yuchen Liu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Xiaodong Wang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
- Correspondence:
| |
Collapse
|
22
|
Latancia MT, Moreno NC, Leandro GS, Ribeiro VC, de Souza I, Vieira WKM, Bastos AU, Hoch NC, Rocha CRR, Menck CFM. DNA polymerase eta protects human cells against DNA damage induced by the tumor chemotherapeutic temozolomide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503498. [PMID: 35649682 DOI: 10.1016/j.mrgentox.2022.503498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Human DNA polymerases can bypass DNA lesions performing translesion synthesis (TLS), a mechanism of DNA damage tolerance. Tumor cells use this mechanism to survive lesions caused by specific chemotherapeutic agents, resulting in treatment relapse. Moreover, TLS polymerases are error-prone and, thus, can lead to mutagenesis, increasing the resistance potential of tumor cells. DNA polymerase eta (pol eta) - a key protein from this group - is responsible for protecting against sunlight-induced tumors. Xeroderma Pigmentosum Variant (XP-V) patients are deficient in pol eta activity, which leads to symptoms related to higher sensitivity and increased incidence of skin cancer. Temozolomide (TMZ) is a chemotherapeutic agent used in glioblastoma and melanoma treatment. TMZ damages cells' genomes, but little is known about the role of TLS in TMZ-induced DNA lesions. This work investigates the effects of TMZ treatment in human XP-V cells, which lack pol eta, and in its complemented counterpart (XP-V comp). Interestingly, TMZ reduces the viability of XP-V cells compared to TLS proficient control cells. Furthermore, XP-V cells treated with TMZ presented increased phosphorylation of H2AX, forming γH2AX, compared to control cells. However, cell cycle assays indicate that XP-V cells treated with TMZ replicate damaged DNA and pass-through S-phase, arresting in the G2/M-phase. DNA fiber assay also fails to show any specific effect of TMZ-induced DNA damage blocking DNA elongation in pol eta deficient cells. These results show that pol eta plays a role in protecting human cells from TMZ-induced DNA damage, but this can be different from its canonical TLS mechanism. The new role opens novel therapeutic possibilities of using pol eta as a target to improve the efficacy of TMZ-based therapies against cancer.
Collapse
Affiliation(s)
- Marcela T Latancia
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Natália C Moreno
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Giovana S Leandro
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Izadora de Souza
- Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - André Uchimura Bastos
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Nicolas Carlos Hoch
- Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Clarissa R R Rocha
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Departamento de Clínica e Oncologia Experimental, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Carlos F M Menck
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Hsu KS, Adileh M, Martin ML, Makarov V, Chen J, Wu C, Bodo S, Klingler S, Sauvé CEG, Szeglin BC, Smith JJ, Fuks Z, Riaz N, Chan TA, Nishimura M, Paty PB, Kolesnick R. Colorectal cancer develops inherent radiosensitivity that can be predicted using patient-derived organoids. Cancer Res 2022; 82:2298-2312. [PMID: 35472075 DOI: 10.1158/0008-5472.can-21-4128] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Identifying colorectal cancer patient populations responsive to chemotherapy or chemoradiation therapy before surgery remains a challenge. Recently validated mouse protocols for organoid irradiation employ the single hit multi-target (SHMT) algorithm, which yields a single value, the D0, as a measure of inherent tissue radiosensitivity. Here we translate these protocols to human tissue to evaluate radioresponsiveness of patient-derived organoids (PDOs) generated from normal human intestines and rectal tumors of patients undergoing neoadjuvant therapy. While PDOs from adenomas with a logarithmically-expanded Lgr5+-intestinal stem cell population retain the radioresistant phenotype of normal colorectal PDOs, malignant transformation yields PDOs from a large patient subpopulation displaying marked radiosensitivity due to reduced homologous recombination-mediated DNA repair. A proof-of-principle pilot clinical trial demonstrated that rectal cancer patient responses to neoadjuvant chemoradiation, including complete response, correlate closely with their PDO D0 values. Overall, upon transformation to colorectal adenocarcinoma, broad radiation sensitivity occurs in a large subset of patients that can be identified using SHMT analysis of PDO radiation responses.
Collapse
Affiliation(s)
- Kuo-Shun Hsu
- Memorial Sloan Kettering Cancer Center, New York City, United States
| | - Mohammad Adileh
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Vladimir Makarov
- Memorial Sloan Kettering Cancer Center, Cleveland, OH, United States
| | - Jiapeng Chen
- Memorial Sloan Kettering Cancer Center, Manhattan, New York, United States
| | - Chao Wu
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sahra Bodo
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Stefan Klingler
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Bryan C Szeglin
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - J Joshua Smith
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zvi Fuks
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, Manhattan, New York, United States
| | | | - Makoto Nishimura
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Philip B Paty
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | |
Collapse
|
24
|
Yang P, Qu X, Qi S, Li G, Wang S. Oral administration of inorganic nitrate alleviated biological damage induced by cone-beam computed tomography examination in Wistar rats. Nitric Oxide 2022; 122-123:19-25. [PMID: 35219774 DOI: 10.1016/j.niox.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To explore whether the inorganic nitrate has a protective effect on biological damage induced by cone-beam computed tomography (CBCT) and compare it with Vitamin C. MATERIALS AND METHODS Sixty Wistar rats were randomly separated into 6 groups: control group, irradiation (IR) group, NaNO3 group, IR + NaNO3 group, Vitamin C group, and IR + Vitamin C group. Rats were whole-body irradiated with CBCT four times. The absorbed dose of the skin surface was measured using thermoluminescent dosemeter chips and the mean whole-body absorbed dose was calculated. Peripheral blood was collected at 0.5h and 24h after irradiation. Bodyweight and organ index of rats before and after irradiation were analyzed. The bone marrow was taken for micronucleus test. Lymphocytes were isolated from peripheral blood for γ-H2AX immunofluorescence assay, apoptosis and reactive oxygen species (ROS) analysis. Total antioxidant capacity (TAC), malondialdehyde (MDA) and superoxide dismutase (SOD) in serum were detected. RESULTS The mean absorbed dose of four whole-body CBCT scans for rats was 73.04 mGy. Bodyweight and organ index before and after irradiation with X-ray had no significant differences. The micronuclei frequency of IR + NaNO3 and IR + Vitamin C groups showed a significant decrease than that in the IR group, which was not significantly different from that of the control group. The γ-H2AX foci rates in the IR + NaNO3 group and the IR + Vitamin C group were significantly lower than that in the IR group. In addition, the foci rate of the IR + NaNO3 group returned to the baseline level of the control group 24h after CBCT scanning. The apoptosis of lymphocytes in rats did not increase. The IR + NaNO3 group (P < 0.001) or IR + Vitamin C group (P < 0.001) showed a significant increase in ROS positive cells rate with the control group, while were significantly lower than those in the IR group (P < 0.01). In addition, the ROS-positive cell rate in the IR + NaNO3 group was significantly lower than that in the IR + Vitamin C group. The MDA in the serum of rats increased significantly, while SOD and TAC decreased significantly at 0.5h after irradiation. CONCLUSIONS Compared with Vitamin C, inorganic nitrate had better preventive effects on biological damage induced by CBCT scans in rats.
Collapse
Affiliation(s)
- Pan Yang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Xingmin Qu
- Department of Pediatric Dentistry, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Senrong Qi
- Department of Oral and Maxillofacial Radiology, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Gang Li
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
25
|
Budhathoki S, Graham C, Sethu P, Kannappan R. Engineered Aging Cardiac Tissue Chip Model for Studying Cardiovascular Disease. Cells Tissues Organs 2022; 211:348-359. [PMID: 34365455 PMCID: PMC8818062 DOI: 10.1159/000516954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
Due to the rapidly growing number of older people worldwide and the concomitant increase in cardiovascular complications, there is an urgent need for age-related cardiac disease modeling and drug screening platforms. In the present study, we developed a cardiac tissue chip model that incorporates hemodynamic loading and mimics essential aspects of the infarcted aging heart. We induced cellular senescence in H9c2 myoblasts using low-dose doxorubicin treatment. These senescent cells were then used to engineer cardiac tissue fibers, which were subjected to hemodynamic stresses associated with pressure-volume changes in the heart. Myocardial ischemia was modeled in the engineered cardiac tissue via hypoxic treatment. Our results clearly show that acute low-dose doxorubicin treatment-induced senescence, as evidenced by morphological and molecular markers, including enlarged and flattened nuclei, DNA damage response foci, and increased expression of cell cycle inhibitor p16INK4a, p53, and ROS. Under normal hemodynamic load, the engineered cardiac tissues demonstrated cell alignment and retained cardiac cell characteristics. Our senescent cardiac tissue model of hypoxia-induced myocardial infarction recapitulated the pathological disease hallmarks such as increased cell death and upregulated expression of ANP and BNP. In conclusion, the described methodology provides a novel approach to generate stress-induced aging cardiac cell phenotypes and engineer cardiac tissue chip models to study the cardiovascular disease pathologies associated with aging.
Collapse
Affiliation(s)
- Sachin Budhathoki
- Division of Cardiovascular Disease, Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caleb Graham
- Division of Cardiovascular Disease, Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ramaswamy Kannappan
- Division of Cardiovascular Disease, Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
27
|
Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc Natl Acad Sci U S A 2021; 118:2103585118. [PMID: 34819364 DOI: 10.1073/pnas.2103585118] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Mitotic errors can activate cyclic GMP-AMP synthase (cGAS) and induce type I interferon (IFN) signaling. Current models propose that chromosome segregation errors generate micronuclei whose rupture activates cGAS. We used a panel of antimitotic drugs to perturb mitosis in human fibroblasts and measured abnormal nuclear morphologies, cGAS localization, and IFN signaling in the subsequent interphase. Micronuclei consistently recruited cGAS without activating it. Instead, IFN signaling correlated with formation of cGAS-coated chromatin bridges that were selectively generated by microtubule stabilizers and MPS1 inhibitors. cGAS activation by chromatin bridges was suppressed by drugs that prevented cytokinesis. We confirmed cGAS activation by chromatin bridges in cancer lines that are unable to secrete IFN by measuring paracrine transfer of 2'3'-cGAMP to fibroblasts, and in mouse cells. We propose that cGAS is selectively activated by self-chromatin when it is stretched in chromatin bridges. Immunosurveillance of cells that fail mitosis, and antitumor actions of taxanes and MPS1 inhibitors, may depend on this effect.
Collapse
|
28
|
Tools used to assay genomic instability in cancers and cancer meiomitosis. J Cell Commun Signal 2021; 16:159-177. [PMID: 34841477 DOI: 10.1007/s12079-021-00661-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022] Open
Abstract
Genomic instability is a defining characteristic of cancer and the analysis of DNA damage at the chromosome level is a crucial part of the study of carcinogenesis and genotoxicity. Chromosomal instability (CIN), the most common level of genomic instability in cancers, is defined as the rate of loss or gain of chromosomes through successive divisions. As such, DNA in cancer cells is highly unstable. However, the underlying mechanisms remain elusive. There is a debate as to whether instability succeeds transformation, or if it is a by-product of cancer, and therefore, studying potential molecular and cellular contributors of genomic instability is of high importance. Recent work has suggested an important role for ectopic expression of meiosis genes in driving genomic instability via a process called meiomitosis. Improving understanding of these mechanisms can contribute to the development of targeted therapies that exploit DNA damage and repair mechanisms. Here, we discuss a workflow of novel and established techniques used to assess chromosomal instability as well as the nature of genomic instability such as double strand breaks, micronuclei, and chromatin bridges. For each technique, we discuss their advantages and limitations in a lab setting. Lastly, we provide detailed protocols for the discussed techniques.
Collapse
|
29
|
Fant C, Granzotto A, Mestas JL, Ngo J, Lafond M, Lafon C, Foray N, Padilla F. DNA Double-Strand Breaks in Murine Mammary Tumor Cells Induced by Combined Treatment with Doxorubicin and Controlled Stable Cavitation. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2941-2957. [PMID: 34315620 DOI: 10.1016/j.ultrasmedbio.2021.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Chemotherapeutic agents such as doxorubicin induce cell cytotoxicity through induction of DNA double-strand breaks. Recent studies have reported the occurrence of DNA double-strand breaks in different cell lines exposed to cavitational ultrasound. As ultrasound stable cavitation can potentiate the therapeutic effects of cytotoxic drugs, we hypothesized that combined treatment with unseeded stable cavitation and doxorubicin would lead to increased DNA damage and would reduce cell viability and proliferation in vitro. In this study, we describe how we determined, using 4T1 murine mammary carcinoma as a model cell line, that unseeded stable cavitation combined with doxorubicin leads to additive DNA double-strand break induction. Combined treatment with doxorubicin and unseeded stable cavitation significantly reduced cell viability and proliferation at 72 h. A mechanistic study of the potential mechanisms of action of the combined treatment identified the presence of cavitation necessary to increase early DNA double-strand break induction, likely mediated by a bystander effect with release of extracellular calcium.
Collapse
Affiliation(s)
- Cécile Fant
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | | | - Jean-Louis Mestas
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | - Jacqueline Ngo
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | - Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | | | - Frédéric Padilla
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France; Focused Ultrasound Foundation, Charlottesville, Virginia, USA; Department of Radiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
30
|
Mohiuddin M, Kasahara K. The Mechanisms of the Growth Inhibitory Effects of Paclitaxel on Gefitinib-resistant Non-small Cell Lung Cancer Cells. Cancer Genomics Proteomics 2021; 18:661-673. [PMID: 34479918 DOI: 10.21873/cgp.20288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIM Coronavirus disease 2019 (COVID-19) poses a great challenge for the treatment of cancer patients. It presents as a severe respiratory infection in aged individuals, including some lung cancer patients. COVID-19 may be linked to the progression of aggressive lung cancer. In addition, the side effects of chemotherapy, such as chemotherapy resistance and the acceleration of cellular senescence, can worsen COVID-19. Given this situation, we investigated the role of paclitaxel (a chemotherapy drug) in the cell proliferation, apoptosis, and cellular senescence of gefitinib-resistant non-small-cell lung cancer (NSCLC) cells (PC9-MET) to clarify the underlying mechanisms. MATERIALS AND METHODS PC9-MET cells were treated with paclitaxel for 72 h and then evaluated by a cell viability assay, DAPI staining, Giemsa staining, apoptosis assay, a reactive oxygen species (ROS) assay, SA-β-Gal staining, a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and Western blotting. RESULTS Paclitaxel significantly reduced the viability of PC9-MET cells and induced morphological signs of apoptosis. The apoptotic effects of paclitaxel were observed by increased levels of cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp 330) and cleaved PARP (Asp 214). In addition, paclitaxel increased ROS production, leading to DNA damage. Inhibition of ROS production by N-acetylcysteine attenuates paclitaxel-induced DNA damage. Importantly, paclitaxel eliminated cellular senescence, as observed by SA-β-Gal staining. Cellular senescence elimination was associated with p53/p21 and p16/pRb signaling inactivation. CONCLUSION Paclitaxel may be a promising anticancer drug and offer a new therapeutic strategy for managing gefitinib-resistant NSCLC during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Md Mohiuddin
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
31
|
Bigagli E, Cinci L, D'Ambrosio M, Nardini P, Portelli F, Colucci R, Lodovici M, Mugelli A, Luceri C. Hydrochlorothiazide Use and Risk of Nonmelanoma Skin Cancers: A Biological Plausibility Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6655542. [PMID: 34434485 PMCID: PMC8382532 DOI: 10.1155/2021/6655542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
Recent studies reported the association between increased risk of nonmelanoma skin cancers (NMSCs) and the use of hydrochlorothiazide (HCTZ), one of the most commonly prescribed diuretic, antihypertensive drug, over the world. Although HCTZ is known to be photosensitizing, the mechanisms involved in its potential prophotocarcinogenic effects remain unclear. Under acute exposure, therapeutically relevant concentrations of HCTZ (70, 140, and 370 ng/mL) amplified UVA-induced double-strand breaks, oxidative DNA, and protein damage in HaCaT human keratinocytes, and this effect was associated to a defective activity of the DNA repair enzyme, OGG1. Oxidative damage to DNA, but not that to proteins, was reversible within few hours. After chronic, combined exposure to HCTZ (70 ng/mL) and UVA (10 J/cm2), for 9 weeks, keratinocytes acquired a dysplastic-like phenotype characterized by a multilayered morphology and alterations in cell size, shape, and contacts. At the ultrastructural level, several atypical and enlarged nuclei and evident nucleoli were also observed. These transformed keratinocytes were apoptosis resistant, exhibited enhanced clonogenicity capacity, increased DNA damage and inflammation, defective DNA repair ability, and increased expression of the oncogene ΔNp63α and intranuclear β-catenin accumulation (a hallmark of Wnt pathway activation), compared to those treated with UVA alone. None of these molecular, morphological, or functional effects were observed in cells treated with HCTZ alone. All these features resemble in part those of preneoplastic lesions and NMSCs and provide evidence of a biological plausibility for the association among exposure to UVA, use of HCTZ, and increased risk of NMSCs. These results are of translational relevance since we used environmentally relevant UVA doses and tested HCTZ at concentrations that reflect the plasma levels of doses used in clinical practice. This study also highlights that drug safety data should be followed by experimental evaluations to clarify the mechanistic aspects of adverse events.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Mario D'Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Clinical and Experimental Medicine, Section of Histology, University of Florence, Florence, Italy
| | - Francesca Portelli
- Department of Health Sciences, Section of Anatomical Pathology, Careggi University Hospital, Florence, Italy
| | - Roberta Colucci
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Maura Lodovici
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessandro Mugelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Ide Y, Nakahara T, Fukada T, Nasu M. Local Irradiation of Mouse Tooth Germ Gives Insight into the Direct Effects of Irradiation on Root Development. Radiat Res 2021; 196:602-610. [PMID: 34388821 DOI: 10.1667/rade-20-00081.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2021] [Indexed: 11/03/2022]
Abstract
To elucidate the mechanism underlying the failure of root formation after irradiation, we established a method of local irradiation of the molar tooth germ and demonstrated that radiation directly affected dental root development. In the current study, to locally irradiate the lower first molars of 5-day-old C57BL/6J mice, we used lead glass containing a hole as a collimator. We confirmed that our local irradiation method targeted only the tooth germ. The irradiated root was immature in terms of apical growth, and dentin formation was irregular along the outside of the root apices. Moreover, calcified tissue apically surrounded Hertwig's epithelial root sheath, which disappeared abnormally early. This method using a local irradiation experimental model will facilitate research into radiation-induced disorders of dental root formation.
Collapse
Affiliation(s)
- Yoshiaki Ide
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Tokyo.,Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo
| | - Tetsuya Fukada
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Tokyo
| | - Masanori Nasu
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry at Tokyo
| |
Collapse
|
33
|
Chu CT, Chen YH, Chiu WT, Chen HC. Tyrosine phosphorylation of lamin A by Src promotes disassembly of nuclear lamina in interphase. Life Sci Alliance 2021; 4:4/10/e202101120. [PMID: 34385357 PMCID: PMC8362257 DOI: 10.26508/lsa.202101120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Lamins form the nuclear lamina, which is important for nuclear structure and activity. Although posttranslational modifications, in particular serine phosphorylation, have been shown to be important for structural properties and functions of lamins, little is known about the role of tyrosine phosphorylation in this regard. In this study, we found that the constitutively active Src Y527F mutant caused the disassembly of lamin A/C. We demonstrate that Src directly phosphorylates lamin A mainly at Tyr45 both in vitro and in intact cells. The phosphomimetic Y45D mutant was diffusively distributed in the nucleoplasm and failed to assemble into the nuclear lamina. Depletion of lamin A/C in HeLa cells induced nuclear dysmorphia and genomic instability as well as increased nuclear plasticity for cell migration, all of which were partially restored by re-expression of lamin A, but further promoted by the Y45D mutant. Together, our results reveal a novel mechanism for regulating the assembly of nuclear lamina through Src and suggest that aberrant phosphorylation of lamin A by Src may contribute to nuclear dysmorphia, genomic instability, and nuclear plasticity.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Chen Chen
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
34
|
Kuraishi Y, Uehara T, Muraki T, Iwaya M, Kinugawa Y, Nakajima T, Watanabe T, Miyagawa Y, Umemura T. Impact of DNA double-strand breaks on pancreaticobiliary maljunction carcinogenesis. Diagn Pathol 2021; 16:72. [PMID: 34372868 PMCID: PMC8353780 DOI: 10.1186/s13000-021-01132-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pancreaticobiliary maljunction (PBM) is a condition characterized by chronic inflammation due to refluxed pancreatic juice into the biliary tract that is associated with an elevated risk of biliary tract cancer. DNA double-strand breaks (DSBs) are considered the most serious form of DNA damage. DSBs are provoked by inflammatory cell damage and are recognized as an important oncogenic event in several cancers. This study used γ-H2AX, an established marker of DSB formation, to evaluate the impact of DNA damage on carcinogenesis in PBM. METHODS We investigated γ-H2AX expression immunohistochemically in gallbladder epithelium samples obtained from 71 PBM cases and 19 control cases. RESULTS Fourteen PBM cases with gallbladder adenocarcinoma were evaluated at non-neoplastic regions. A wide range of nuclear γ-H2AX staining was detected in all PBM and control specimens. γ-H2AX expression was significantly higher in PBM cases versus controls (median γ-H2AX-positive proportion: 14.4 % vs. 4.4 %, p = 0.001). Among the PBM cases, γ-H2AX expression was significantly higher in patients with carcinoma than in those without (median γ-H2AX-positive proportion: 21.4 % vs. 11.0 %, p = 0.031). CONCLUSIONS DSBs occurred significantly more abundantly in the PBM gallbladder mucosa, especially in the context of cancer, indicating an involvement in PBM-related carcinogenesis.
Collapse
Affiliation(s)
- Yasuhiro Kuraishi
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Takashi Muraki
- Department of Gastroenterology, North Alps Medical Center Azumi Hospital, Ikeda, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yasuhiro Kinugawa
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takayuki Watanabe
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yusuke Miyagawa
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
35
|
Acute Exposure to Bisphenol A Causes Oxidative Stress Induction with Mitochondrial Origin in Saccharomyces cerevisiae Cells. J Fungi (Basel) 2021; 7:jof7070543. [PMID: 34356922 PMCID: PMC8303452 DOI: 10.3390/jof7070543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bisphenol A (BPA) is a major component of the most commonly used plastic products, such as disposable plastics, Tetra Paks, cans, sport protective equipment, or medical devices. Due to the accumulation of excessive amounts of plastic waste and the subsequent release of BPA into the environment, BPA is classified as a pollutant that is undesirable in the environment. To date, the most interesting finding is the ability of BPA to act as an endocrine disrupting compound due to its binding to estrogen receptors (ERs), and adverse physiological effects on living organisms may result from this action. Since evidence of the potential pro-oxidizing effects of BPA has accumulated over the last years, herein, we focus on the detection of oxidative stress and its origin following BPA exposure using pulsed-field gel electrophoresis, flow cytometry, fluorescent microscopy, and Western blot analysis. Saccharomyces cerevisiae cells served as a model system, as these cells lack ERs allowing us to dissect the ER-dependent and -independent effects of BPA. Our data show that high concentrations of BPA affect cell survival and cause increased intracellular oxidation in yeast, which is primarily generated in the mitochondrion. However, an acute BPA exposure does not lead to significant oxidative damage to DNA or proteins.
Collapse
|
36
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
37
|
Ventura JA, Donoghue JF, Nowell CJ, Cann LM, Day LRJ, Smyth LML, Forrester HB, Rogers PAW, Crosbie JC. The γH2AX DSB marker may not be a suitable biodosimeter to measure the biological MRT valley dose. Int J Radiat Biol 2021; 97:642-656. [PMID: 33617395 DOI: 10.1080/09553002.2021.1893854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE γH2AX biodosimetry has been proposed as an alternative dosimetry method for microbeam radiation therapy (MRT) because conventional dosimeters, such as ionization chambers, lack the spatial resolution required to accurately measure the MRT valley dose. Here we investigated whether γH2AX biodosimetry should be used to measure the biological valley dose of MRT-irradiated mammalian cells. MATERIALS AND METHODS We irradiated human skin fibroblasts and mouse skin flaps with synchrotron MRT and broad beam (BB) radiation. BB doses of 1-5 Gy were used to generate a calibration curve in order to estimate the biological MRT valley dose using the γH2AX assay. RESULTS Our key finding was that MRT induced a non-linear dose response compared to BB, where doses 2-3 times greater showed the same level of DNA DSB damage in the valley in cell and tissue studies. This indicates that γH2AX may not be an appropriate biodosimeter to estimate the biological valley doses of MRT-irradiated samples. We also established foci yields of 5.9 ± 0 . 04 and 27.4 ± 2 . 5 foci/cell/Gy in mouse skin tissue and human fibroblasts respectively, induced by BB. Using Monte Carlo simulations, a linear dose response was seen in cell and tissue studies and produced predicted peak-to-valley dose ratios (PVDRs) of ∼30 and ∼107 for human fibroblasts and mouse skin tissue respectively. CONCLUSIONS Our report highlights novel MRT radiobiology, attempts to explain why γH2AX may not be an appropriate biodosimeter and suggests further studies aimed at revealing the biological and cellular communication mechanisms that drive the normal tissue sparing effect, which is characteristic of MRT.
Collapse
Affiliation(s)
- Jessica A Ventura
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Leonie M Cann
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Liam R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - Lloyd M L Smyth
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Helen B Forrester
- School of Science, RMIT University, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
38
|
Belmans N, Gilles L, Welkenhuysen J, Vermeesen R, Baselet B, Salmon B, Baatout S, Jacobs R, Lucas S, Lambrichts I, Moreels M. In vitro Assessment of the DNA Damage Response in Dental Mesenchymal Stromal Cells Following Low Dose X-ray Exposure. Front Public Health 2021; 9:584484. [PMID: 33692980 PMCID: PMC7939020 DOI: 10.3389/fpubh.2021.584484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells contained within the dental mesenchymal stromal cell (MSC) population are crucial for tissue homeostasis. Assuring their genomic stability is therefore essential. Exposure of stem cells to ionizing radiation (IR) is potentially detrimental for normal tissue homeostasis. Although it has been established that exposure to high doses of ionizing radiation (IR) has severe adverse effects on MSCs, knowledge about the impact of low doses of IR is lacking. Here we investigated the effect of low doses of X-irradiation with medical imaging beam settings (<0.1 Gray; 900 mGray per hour), in vitro, on pediatric dental mesenchymal stromal cells containing dental pulp stem cells from deciduous teeth, dental follicle progenitor cells and stem cells from the apical papilla. DNA double strand break (DSB) formation and repair kinetics were monitored by immunocytochemistry of γH2AX and 53BP1 as well as cell cycle progression by flow cytometry and cellular senescence by senescence-associated β-galactosidase assay and ELISA. Increased DNA DSB repair foci, after exposure to low doses of X-rays, were measured as early as 30 min post-irradiation. The number of DSBs returned to baseline levels 24 h after irradiation. Cell cycle analysis revealed marginal effects of IR on cell cycle progression, although a slight G2/M phase arrest was seen in dental pulp stromal cells from deciduous teeth 72 h after irradiation. Despite this cell cycle arrest, no radiation-induced senescence was observed. In conclusion, low X-ray IR doses (< 0.1 Gray; 900 mGray per hour), were able to induce significant increases in the number of DNA DSBs repair foci, but cell cycle progression seems to be minimally affected. This highlights the need for more detailed and extensive studies on the effects of exposure to low IR doses on different mesenchymal stromal cells.
Collapse
Affiliation(s)
- Niels Belmans
- Morphology Group, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.,Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Liese Gilles
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium.,Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Randy Vermeesen
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Bjorn Baselet
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Benjamin Salmon
- Université de Paris, Orofacial Pathologies, Imaging and Biotherapies UR2496 Lab, Montrouge, France.,Dental Medicine Department, AP-HP, Bretonneau hospital, Paris, France
| | - Sarah Baatout
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Reinhilde Jacobs
- Oral and Maxillofacial Surgery, Dentomaxillofacial Imaging Center, Department of Imaging and Pathology, OMFS-IMPATH Research Group, and University Hospitals, Katholieke Universiteit Leuven, Leuven, Belgium.,Department Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN/PMR), Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Ivo Lambrichts
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| | - Marjan Moreels
- Belgian Nuclear Research Centre, Institute for Environment, Health and Safety, Radiobiology Unit, Mol, Belgium
| |
Collapse
|
39
|
Yu W, Long H, Gao J, Wang Y, Tu Y, Sun L, Chen N. Study on Caenorhabditis Elegans as a Combined Model of Microdosimetry and Biology. Dose Response 2021; 19:1559325821990125. [PMID: 33628153 PMCID: PMC7883169 DOI: 10.1177/1559325821990125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
Microdosimetry is a tool for the investigation of microscopic energy deposition of ionizing radiation. This work used Caenorhabditis elegans as a model to estimate the microdosimetric deposition level at the 60Co gamma radiation. Monte Carlo software PHITS was employed to establish irradiated nematodes model. The dose deposition of the entire body and gonad irradiated to 100 Gy was calculated. The injury levels of radiation were evaluated by the detection of biological indicators. The result of microdosimetric experiment suggested that the dose of whole body of nematodes was estimated to be 99.9 ± 57.8 Gy, ranging from 19.6 to 332.2 Gy. The dose of gonad was predicted to be 129.4 ± 558.8 Gy (9.5-6597 Gy). The result of biological experiment suggested that there were little changes in the length of nematodes after irradiation. However, times of head thrash per minute and the spawning yield in 3 consecutive days decreased 27.1% and 94.7%, respectively. Nematodes in the irradiated group displayed heterogeneity. Through contour analysis, trends of behavior kinematics and reproductive capacity of irradiated nematodes proved to be consistent with the dose distribution levels estimated by microdosimetric model. Finally, C. elegans presented a suitable combined model of microdosimetry and biology for studying radiation.
Collapse
Affiliation(s)
- Wentao Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Huiqiang Long
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jin Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yidi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
40
|
Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021; 20:e13316. [PMID: 33524238 PMCID: PMC7884036 DOI: 10.1111/acel.13316] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.
Collapse
Affiliation(s)
- Dingxi Zhou
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Mariana Borsa
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | | |
Collapse
|
41
|
Dual RNA 3'-end processing of H2A.X messenger RNA maintains DNA damage repair throughout the cell cycle. Nat Commun 2021; 12:359. [PMID: 33441544 PMCID: PMC7807067 DOI: 10.1038/s41467-020-20520-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphorylated H2A.X is a critical chromatin marker of DNA damage repair (DDR) in higher eukaryotes. However, H2A.X gene expression remains relatively uncharacterised. Replication-dependent (RD) histone genes generate poly(A)- mRNA encoding new histones to package DNA during replication. In contrast, replication-independent (RI) histone genes synthesise poly(A)+ mRNA throughout the cell cycle, translated into histone variants that confer specific epigenetic patterns on chromatin. Remarkably H2AFX, encoding H2A.X, is a hybrid histone gene, generating both poly(A)+ and poly(A)- mRNA isoforms. Here we report that the selective removal of either mRNA isoform reveals different effects in different cell types. In some cells, RD H2A.X poly(A)- mRNA generates sufficient histone for deposition onto DDR associated chromatin. In contrast, cells making predominantly poly(A)+ mRNA require this isoform for de novo H2A.X synthesis, required for efficient DDR. This highlights the importance of differential H2A.X mRNA 3’-end processing in the maintenance of effective DDR. H2A.X histone variant gene encodes poly(A)+ and poly(A)- mRNA isoforms which are differentially expressed depending on cell lines. Here the authors show that upon DNA damage, cells expressing more poly(A)+ isoform require this isoform for de novo H2A.X synthesis while cells with more poly(A)- isoform have sufficient H2A.X present in chromatin.
Collapse
|
42
|
McAbee JH, Degorre-Kerbaul C, Tofilon PJ. In Vitro Methods for the Study of Glioblastoma Stem-Like Cell Radiosensitivity. Methods Mol Biol 2021; 2269:37-47. [PMID: 33687670 PMCID: PMC10802913 DOI: 10.1007/978-1-0716-1225-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ionizing radiation is a critical component of glioblastoma (GBM) therapy. Recent data have implicated glioblastoma stem-like cells (GSCs) as determinants of GBM development, maintenance, and treatment response. Understanding the response of GSCs to radiation should thus provide insight into the development of improved GBM treatment strategies. Towards this end, in vitro techniques for the analysis of GSC radiosensitivity are an essential starting point. One such method, the clonogenic survival assay has been adapted to assessing the intrinsic radiosensitivity of GSCs and is described here. As an alternative method, the limiting dilution assay is presented for defining the radiosensitivity of GSC lines that do not form colonies or only grow as neurospheres. In addition to these cellular strategies, we describe γH2AX foci analysis, which provides a surrogate marker for radiosensitivity at the molecular level. Taken together, the in vitro methods presented here provide tools for defining intrinsic radiosensitivity of GSCs and for testing agents that may enhance GBM radioresponse.
Collapse
Affiliation(s)
- Joseph H McAbee
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Charlotte Degorre-Kerbaul
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Wu KM, Chi CW, Lai JCY, Chen YJ, Kou YR. TLC388 Induces DNA Damage and G2 Phase Cell Cycle Arrest in Human Non-Small Cell Lung Cancer Cells. Cancer Control 2020; 27:1073274819897975. [PMID: 32281394 PMCID: PMC7154561 DOI: 10.1177/1073274819897975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
TLC388, a camptothecin-derivative targeting topoisomerase I, is a potential anticancer drug. In this study, its effect on A549 and H838 human non-small cell lung cancer (NSCLC) cells was investigated. Cell viability and proliferation were determined by thiazolyl blue tetrazolium bromide and clonogenic assays, respectively, and cell cycle analysis and detection of phosphorylated histone H3 (Ser10) were performed by flow cytometry. γ-H2AX protein; G2/M phase-associated molecules ataxia-telangiectasia mutated (ATM), CHK1, CHK2, CDC25C, CDC2, and cyclin B1; and apoptosis were assessed with immunofluorescence staining, immunoblotting, and an annexin V assay, respectively. The effect of co-treatment with CHIR124 (a checkpoint kinase 1 [CHK1] inhibitor) was also studied. TLC388 decreased the viability and proliferation of cells of both NSCLC lines in a dose-dependent manner. TLC388 inhibited the viability of NSCLC cell lines with an estimated concentration of 50% inhibition (IC50), which was 4.4 and 4.1 μM for A549 and H838 cells, respectively, after 24 hours. Moreover, it resulted in the accumulation of cells at the G2/M phase and increased γ-H2AX levels in A549 cells. Levels of the G2 phase-related molecules phosphorylated ATM, CHK1, CHK2, CDC25C, and cyclin B1 were increased in TLC388-treated cells. CHIR124 enhanced the cytotoxicity of TLC388 toward A549 and H838 cells and induced apoptosis of the former. TLC388 inhibits NSCLC cell growth by inflicting DNA damage and activating G2/M checkpoint proteins that trigger G2 phase cell cycle arrest to enable DNA repair. CHIR124 enhanced the cytotoxic effect of TLC388 and induced apoptosis.
Collapse
Affiliation(s)
- Kun-Ming Wu
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei.,Chest Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei.,Mackay Junior College of Medicine, Nursing, and Management, Taipei
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, New Taipei.,Department of Nursing, MacKay Medical College, New Taipei
| | | | - Yu-Jen Chen
- Mackay Junior College of Medicine, Nursing, and Management, Taipei.,Department of Medical Research, MacKay Memorial Hospital, New Taipei.,Department of Medical Research, China Medical University Hospital, Taichung.,Department of Radiation Oncology, MacKay Memorial Hospital, Taipei
| | - Yu Ru Kou
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei
| |
Collapse
|
44
|
Chen Y, Geng A, Zhang W, Qian Z, Wan X, Jiang Y, Mao Z. Fight to the bitter end: DNA repair and aging. Ageing Res Rev 2020; 64:101154. [PMID: 32977059 DOI: 10.1016/j.arr.2020.101154] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
DNA carries the genetic information that directs complex biological processes; thus, maintaining a stable genome is critical for individual growth and development and for human health. DNA repair is a fundamental and conserved mechanism responsible for mending damaged DNA and restoring genomic stability, while its deficiency is closely related to multiple human disorders. In recent years, remarkable progress has been made in the field of DNA repair and aging. Here, we will extensively discuss the relationship among DNA damage, DNA repair, aging and aging-associated diseases based on the latest research. In addition, the possible role of DNA repair in several potential rejuvenation strategies will be discussed. Finally, we will also review the emerging methods that may facilitate future research on DNA repair.
Collapse
|
45
|
Navabpour S, Rogers J, McFadden T, Jarome TJ. DNA Double-Strand Breaks Are a Critical Regulator of Fear Memory Reconsolidation. Int J Mol Sci 2020; 21:ijms21238995. [PMID: 33256213 PMCID: PMC7730899 DOI: 10.3390/ijms21238995] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have shown that following retrieval, a previously consolidated memory requires increased transcriptional regulation in order to be reconsolidated. Previously, it was reported that histone H3 lysine-4 trimethylation (H3K4me3), a marker of active transcription, is increased in the hippocampus after the retrieval of contextual fear memory. However, it is currently unknown how this epigenetic mark is regulated during the reconsolidation process. Furthermore, though recent evidence suggests that neuronal activity triggers DNA double-strand breaks (DSBs) in some early-response genes, it is currently unknown if DSBs contribute to the reconsolidation of a memory following retrieval. Here, using chromatin immunoprecipitation (ChIP) analyses, we report a significant overlap between DSBs and H3K4me3 in area CA1 of the hippocampus during the reconsolidation process. We found an increase in phosphorylation of histone H2A.X at serine 139 (H2A.XpS139), a marker of DSB, in the Npas4, but not c-fos, promoter region 5 min after retrieval, which correlated with increased H3K4me3 levels, suggesting that the two epigenetic marks may work in concert during the reconsolidation process. Consistent with this, in vivo siRNA-mediated knockdown of topoisomerase II β, the enzyme responsible for DSB, prior to retrieval, reduced Npas4 promoter-specific H2A.XpS139 and H3K4me3 levels and impaired long-term memory, indicating an indispensable role of DSBs in the memory reconsolidation process. Collectively, our data propose a novel mechanism for memory reconsolidation through increases in epigenetic-mediated transcriptional control via DNA double-strand breaks.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine & Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA;
| | - Jessie Rogers
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Taylor McFadden
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Timothy J. Jarome
- Fralin Biomedical Research Institute, Translational Biology, Medicine & Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA;
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +1-540-231-3520
| |
Collapse
|
46
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:E3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
47
|
A Phase 1 dose-escalation study to evaluate safety, pharmacokinetics and pharmacodynamics of AsiDNA, a first-in-class DNA repair inhibitor, administered intravenously in patients with advanced solid tumours. Br J Cancer 2020; 123:1481-1489. [PMID: 32839491 PMCID: PMC7653034 DOI: 10.1038/s41416-020-01028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
Background AsiDNA, a first-in-class oligonucleotide-mimicking double-stranded DNA breaks, acts as a decoy agonist to DNA damage response in tumour cells. It also activates DNA-dependent protein kinase and poly (adenosine diphosphate [ADP]-ribose) polymerase enzymes that induce phosphorylation of H2AX and protein PARylation. Methods The aim of this Phase 1 study was to determine dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), safety and pharmacokinetics/pharmacodynamics of AsiDNA administered daily for 3 days in the first week then weekly thereafter. Twenty-two patients with advanced solid tumours were enrolled in 5 dose levels: 200, 400, 600, 900, and 1300 mg, using a 3 + 3 design. Results The MTD was not reached. IV AsiDNA was safe. Two DLTs (grade 4 and grade 3 hepatic enzymes increased at 900 and 1300 mg), and two related SAE at 900 mg (grade 3 hypotension and grade 4 hepatic enzymes increased) were reported. AsiDNA PK increased proportionally with dose. A robust activation of DNA-PK by a significant posttreatment increase of γH2AX was evidenced in tumour biopsies. Conclusion The dose of 600 mg was identified as the optimal dose for further clinical development. Clinical trial registration Clinical trial registration (NCT number): NCT03579628.
Collapse
|
48
|
Turan V, Oktay K. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Hum Reprod Update 2020; 26:43-57. [PMID: 31822904 DOI: 10.1093/humupd/dmz043] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Oocyte aging has significant clinical consequences, and yet no treatment exists to address the age-related decline in oocyte quality. The lack of progress in the treatment of oocyte aging is due to the fact that the underlying molecular mechanisms are not sufficiently understood. BRCA1 and 2 are involved in homologous DNA recombination and play essential roles in ataxia telangiectasia mutated (ATM)-mediated DNA double-strand break (DSB) repair. A growing body of laboratory, translational and clinical evidence has emerged within the past decade indicating a role for BRCA function and ATM-mediated DNA DSB repair in ovarian aging. OBJECTIVE AND RATIONALE Although there are several competing or complementary theories, given the growing evidence tying BRCA function and ATM-mediated DNA DSB repair mechanisms in general to ovarian aging, we performed this review encompassing basic, translational and clinical work to assess the current state of knowledge on the topic. A clear understanding of the mechanisms underlying oocyte aging may result in targeted treatments to preserve ovarian reserve and improve oocyte quality. SEARCH METHODS We searched for published articles in the PubMed database containing key words, BRCA, BRCA1, BRCA2, Mutations, Fertility, Ovarian Reserve, Infertility, Mechanisms of Ovarian Aging, Oocyte or Oocyte DNA Repair, in the English-language literature until May 2019. We did not include abstracts or conference proceedings, with the exception of our own. OUTCOMES Laboratory studies provided robust and reproducible evidence that BRCA1 function and ATM-mediated DNA DSB repair, in general, weakens with age in oocytes of multiple species including human. In both women with BRCA mutations and BRCA-mutant mice, primordial follicle numbers are reduced and there is accelerated accumulation of DNA DSBs in oocytes. In general, women with BRCA1 mutations have lower ovarian reserves and experience earlier menopause. Laboratory evidence also supports critical role for BRCA1 and other ATM-mediated DNA DSB repair pathway members in meiotic function. When laboratory, translational and clinical evidence is considered together, BRCA-related ATM-mediated DNA DSB repair function emerges as a likely regulator of ovarian aging. Moreover, DNA damage and repair appear to be key features in chemotherapy-induced ovarian aging. WIDER IMPLICATIONS The existing data suggest that the BRCA-related ATM-mediated DNA repair pathway is a strong candidate to be a regulator of oocyte aging, and the age-related decline of this pathway likely impairs oocyte health. This knowledge may create an opportunity to develop targeted treatments to reverse or prevent physiological or chemotherapy-induced oocyte aging. On the immediate practical side, women with BRCA or similar mutations may need to be specially counselled for fertility preservation.
Collapse
Affiliation(s)
- Volkan Turan
- Department of Obstetrics and Gynecology, Uskudar University School of Medicine, Istanbul, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Kutluk Oktay
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
49
|
Bergant Loboda K, Janežič M, Štampar M, Žegura B, Filipič M, Perdih A. Substituted 4,5'-Bithiazoles as Catalytic Inhibitors of Human DNA Topoisomerase IIα. J Chem Inf Model 2020; 60:3662-3678. [PMID: 32484690 PMCID: PMC7469689 DOI: 10.1021/acs.jcim.0c00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human type II topoisomerases, molecular motors that alter the DNA topology, are a major target of modern chemotherapy. Groups of catalytic inhibitors represent a new approach to overcome the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. Here, we present a class of substituted 4,5'-bithiazoles as catalytic inhibitors targeting the human DNA topoisomerase IIα. Based on a structural comparison of the ATPase domains of human and bacterial type II topoisomerase, a focused chemical library of 4,5'-bithiazoles was assembled and screened to identify compounds that better fit the topology of the human topo IIα adenosine 5'-triphosphate (ATP) binding site. Selected compounds showed inhibition of human topo IIα comparable to that of the etoposide topo II drug, revealing a new class of inhibitors targeting this molecular motor. Further investigations showed that compounds act as catalytic inhibitors via competitive ATP inhibition. We also confirmed binding to the truncated ATPase domain of topo IIα and modeled the inhibitor molecular recognition with molecular simulations and dynophore models. The compounds also displayed promising cytotoxicity against HepG2 and MCF-7 cell lines comparable to that of etoposide. In a more detailed study with the HepG2 cell line, there was no induction of DNA double-strand breaks (DSBs), and the compounds were able to reduce cell proliferation and stop the cell cycle mainly in the G1 phase. This confirms the mechanism of action of these compounds, which differs from topo II poisons also at the cellular level. Substituted 4,5'-bithiazoles appear to be a promising class for further development toward efficient and potentially safer cancer therapies exploiting the alternative topo II inhibition paradigm.
Collapse
Affiliation(s)
- Kaja Bergant Loboda
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Janežič
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
50
|
Design and synthesis of 3,5-substituted 1,2,4-oxadiazoles as catalytic inhibitors of human DNA topoisomerase IIα. Bioorg Chem 2020; 99:103828. [DOI: 10.1016/j.bioorg.2020.103828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 01/05/2023]
|