1
|
Bugała E, Fornalski KW. Radiation adaptive response for constant dose-rate irradiation in high background radiation areas. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024:10.1007/s00411-024-01093-0. [PMID: 39470814 DOI: 10.1007/s00411-024-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/26/2024] [Indexed: 11/01/2024]
Abstract
The presented paper describes the problem of human health in regions with high level of natural ionizing radiation in various places in the world. The radiation adaptive response biophysical model was presented and calibrated for the special case of constant dose-rate irradiation. The calibration was performed for the data of residents of several high background radiation areas, like Ramsar in Iran, Kerala in India or Yangjiang in China. Studied end-points were: chromosomal aberrations, cancer incidence and cancer mortality. For the case of aberrations, among collected publications about 45% have shown the existence of adaptive response. Average reduction of chromosomal aberrations was ∼ 10%, while for the case of cancer incidence it was ∼ 15% and ∼ 17% for cancer mortality (each taking into account only results showing adaptive response). Results of the other 55% of data regarding chromosomal aberrations have been tested with the LNT (linear no-threshold) hypothesis, but results were inconsistent with the linear model. The conditions for adaptive response occurrence are still unknown, but it is postulated to correlate with the distribution of individual radiosensitivity among members of surveyed populations.
Collapse
Affiliation(s)
- Ernest Bugała
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, Warszawa, 00-662, Poland
| | | |
Collapse
|
2
|
Anello P, Esposito G. Biological effects in normal human fibroblasts following chronic and acute irradiation with both low- and high-LET radiation. Front Public Health 2024; 12:1404748. [PMID: 39502827 PMCID: PMC11534685 DOI: 10.3389/fpubh.2024.1404748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Radiobiological studies at low dose rates allow us to improve our knowledge of the mechanisms by which radiation exerts its effects on biological systems following chronic exposures. Moreover, these studies can complement available epidemiological data on the biological effects of low doses and dose rates of ionizing radiation. Very few studies have simultaneously compared the biological effects of low- and high-LET radiations at the same dose rate for chronic irradiation. Methods We compared, for the first time in the same experiment, the effects of chronic (dose rates as low as ~18 and 5 mGy/h) and acute irradiations on clonogenicity and micronucleus formation in AG1522 normal human skin fibroblasts in the confluent state exposed to doses of low- and high-LET radiation (gamma rays and alpha particles) to investigate any differences due to the different radiation quality and different dose rate (in the dose range 0.006-0.9 Gy for alpha particles and 0.4-2.3 Gy for gamma rays). Results As expected, alpha particles were more effective than gamma rays at inducing cytogenetic damage and reduced clonogenic cell survival. For gamma rays, the cytogenetic damage and the reduction of clonogenic cell survival were greater when the dose was delivered acutely instead of chronically. Instead, for the alpha particles, at the same dose, we found equal cytogenetic damage and reduction of clonogenic cell survival for both chronic and acute exposure (except for the highest doses of 0.4 and 0.9 Gy, where cytogenetic damage is greater at a low dose rate). Conclusion The results of this study may have an impact on space and terrestrial radioprotection of humans at low doses and low dose rates, on biodosimetry, and on the use of ionizing radiation in medicine. These results also provide insights into understanding damage induction and cell reaction mechanisms following chronic exposure (at dose rates as low as 18 and 5 mGy/h) to low- and high-LET radiation.
Collapse
Affiliation(s)
- Pasqualino Anello
- Istituto Superiore di Sanità (ISS), Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione Roma 1, Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS), Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione Roma 1, Rome, Italy
| |
Collapse
|
3
|
Szilágyi Z, Pintér B, Szabó E, Kubinyi G, Le Drean Y, Thuróczy G. Investigation of genotoxicity induced by intermediate frequency magnetic field combined with ionizing radiation: In vitro study on human fibroblast cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503817. [PMID: 39326937 DOI: 10.1016/j.mrgentox.2024.503817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
These days, exposure to electromagnetic fields has become omnipresent in modern society. Not only the extremely-low frequency and radiofrequency, but also intermediate frequency (IF) magnetic field (MF) might be absorbed in the human body resulting in an ever-growing concern about their possible health effects. Devices, such as induction cooktops, chargers, compact fluorescent lamps, touchscreens and electric vehicles emit a wide range of intermediate frequency fields. We investigated the effects of 22 kHz or 250 kHz intermediate frequency magnetic field exposure on the human skin cells. We also examined the adaptive response phenomenon; whether IF MF exposure could possibly reduce the harmful genotoxic effects of ionizing radiation. To get answers to these questions, in vitro studies were carried out on fibroblast cells to investigate the effects on oxidative stress, DNA damage and micronucleus formation. We found a decreased micronucleus formation due to the 22 kHz IF MF exposure and significantly increased oxidative stress in fibroblast cells, which were exposed only to 250 kHz IF MF. We were unable to detect the protective or co-genotoxic effects of intermediate frequency magnetic field exposure combined with ionizing radiation, thus we found no evidence for the adaptive response phenomena.
Collapse
Affiliation(s)
- Zsófia Szilágyi
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary.
| | - Bertalan Pintér
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary
| | - Erika Szabó
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary
| | - Györgyi Kubinyi
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary
| | - Yves Le Drean
- Research Institute for Environmental and Occupational Health, University of Rennes I, 2 Rue du Thabor, Rennes 35000, France
| | - György Thuróczy
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary
| |
Collapse
|
4
|
Chaurasia RK, Sapra BK, Aswal DK. Interplay of immune modulation, adaptive response and hormesis: Suggestive of threshold for clinical manifestation of effects of ionizing radiation at low doses? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170178. [PMID: 38280586 DOI: 10.1016/j.scitotenv.2024.170178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
The health impacts of low-dose ionizing radiation exposures have been a subject of debate over the last three to four decades. While there has been enough evidence of "no adverse observable" health effects at low doses and low dose rates, the hypothesis of "Linear No Threshold" continues to rule and govern the principles of radiation protection and the formulation of regulations and public policies. In adopting this conservative approach, the role of the biological processes underway in the human body is kept at abeyance. This review consolidates the available studies that discuss all related biological pathways and repair mechanisms that inhibit the progression of deleterious effects at low doses and low dose rates of ionizing radiation. It is pertinent that, taking cognizance of these processes, there is a need to have a relook at policies of radiation protection, which as of now are too stringent, leading to undue economic losses and negative public perception about radiation.
Collapse
Affiliation(s)
- R K Chaurasia
- Radiological Physics and Advisory Division, India; Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - B K Sapra
- Radiological Physics and Advisory Division, India; Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - D K Aswal
- Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
5
|
Iavicoli I, Fontana L, Santocono C, Guarino D, Laudiero M, Calabrese EJ. The challenges of defining hormesis in epidemiological studies: The case of radiation hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166030. [PMID: 37544458 DOI: 10.1016/j.scitotenv.2023.166030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In the current radiation protection system, preventive measures and occupational exposure limits for controlling occupational exposure to ionizing radiation are based on the linear no-threshold extrapolation model. However, currently an increasing body of evidence indicates that this paradigm predicts very poorly biological responses in the low-dose exposure region. In addition, several in vitro and in vivo studies demonstrated the presence of hormetic dose response curves correlated to ionizing radiation low exposure. In this regard, it is noteworthy that also the findings of different epidemiological studies, conducted in different categories of occupationally exposed workers (e.g., healthcare, nuclear industrial and aircrew workers), observed lower rates of mortality and/or morbidity from cancer and/or other diseases in exposed workers than in unexposed ones or in the general population, then suggesting the possible occurrence of hormesis. Nevertheless, these results should be considered with caution since the identification of hormetic response in epidemiological studies is rather challenging because of a number of major limitations. In this regard, some of the most remarkable shortcomings found in epidemiological studies performed in workers exposed to ionizing radiation are represented by lack or inadequate definition of exposure doses, use of surrogates of exposure, narrow dose ranges, lack of proper control groups and poor evaluation of confounding factors. Therefore, considering the valuable role and contribution that epidemiological studies might provide to the complex risk assessment and management process, there is a clear and urgent need to overcome the aforementioned limits in order to achieve an adequate, useful and more real-life risk assessment that should also include the key concept of hormesis. Thus, in the present conceptual article we also discuss and provide possible approaches to improve the capacity of epidemiological studies to identify/define the hormetic response and consequently improve the complex process of risk assessment of ionizing radiation at low exposure doses.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Luca Fontana
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Carolina Santocono
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Davide Guarino
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Laudiero
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
7
|
Li J, Shen C, Qiu H, Wang J, Yue X, Dai L, Huang Y, Li T, Fang Q, Zhi Y, Shi C, Li W. Intravesical IR-780 instillation prevents radiation cystitis by protecting urothelial integrity. Neurourol Urodyn 2023; 42:40-48. [PMID: 36208109 DOI: 10.1002/nau.25056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE To explore an efficient preventive strategy for radiation cystitis. METHODS We instilled IR-780 into the bladders of rats 1 h before bladder irradiation, and its bio-distribution was observed at different times. Bladders were then examined for pathogenic alterations and inflammation levels by day 3 and week 12 postirradiation, and the functional characteristics of the bladder were tested via cystometry by week 12. Human uroepithelial sv-huc-1 cells were used to determine the effect of IR-780 on cell viability, regardless of irradiation. We measured the intracellular levels of oxidative stress, DNA damage, apoptosis proportion, and the expression of antioxidant proteases and apoptotic caspases in IR-780 pretreated cells after radiation. RESULTS IR-780 is localized in the urothelium after intravesical instillation in vivo. Ionizing radiation could induce acute impairment of the bladder urothelium and inflammation in the bladder on day 3. Fibrosis of the irradiated bladder progressed and eventually affected voiding function at 12 weeks. Treatment with IR-780 before irradiation ameliorated these changes. In vitro, IR-780 protected against cell viability and apoptosis of sv-huc-1 cells after irradiation. Additionally, IR-780 may assist in eliminating reactive oxygen species and repairing irradiation-induced DNA damage. CONCLUSION Our data indicate that IR-780 can be used before irradiation to prevent acute urinary mucosal injury and late bladder dysfunction. Moreover, early urothelial impairment plays a significant role in radiation cystitis development.
Collapse
Affiliation(s)
- Jinjin Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chongxing Shen
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heping Qiu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwu Wang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Yue
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linyong Dai
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuandi Huang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Weibing Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Gonon G, de Toledo SM, Perumal V, Jay-Gerin JP, Azzam EI. Impact of the redox environment on propagation of radiation bystander effects: The modulating effect of oxidative metabolism and oxygen partial pressure. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 883-884:503559. [PMID: 36462795 DOI: 10.1016/j.mrgentox.2022.503559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Redox modulated pathways play important roles in out-of-field effects of ionizing radiation. We investigated how the redox environment impacts the magnitude of propagation of stressful effects from irradiated to bystander cells. Normal human fibroblasts that have incorporated [3H]-thymidine were intimately co-cultured with bystander cells in a strategy that allowed isolation of bystander cells with high purity. The antioxidant glutathione peroxidase (GPX) was maintained either at wild-type conditions or overexpressed in the bystanders. Following 24 h of coculture, levels of stress-responsive p21Waf1, p-Hdm2, and connexin43 proteins were increased in bystander cells expressing wild-type GPX relative to respective controls. These levels were significantly attenuated when GPX was ectopically overexpressed, demonstrating by direct approach the involvement of a regulator of intracellular redox homeostasis. Evidence of participation of pro-oxidant compounds was generated by exposing confluent cell cultures to low fluences of 3.7 MeV α particles in presence or absence of t-butyl hydroperoxide. By 3 h post-exposure to fluences wherein only ∼2% of cells are traversed through the nucleus by a particle track, increases in chromosomal damage were greater than expected in absence of the drug (p < 0.001) and further enhanced in its presence (p < 0.05). While maintenance and irradiation of cell cultures at low oxygen pressure (pO2 3.8 mm Hg) to mimic in vivo still supported the participation of bystander cells in responses assessed by chromosomal damage and stress-responsive protein levels (p < 0.001), the effects were attenuated compared to ambient pO2 (155 mm Hg) (p < 0.05). Together, the results show that bystander effects are attenuated at below ambient pO2 and when metabolic oxidative stress is reduced but increased when the basal redox environment tilts towards oxidizing conditions. They are consistent with bystander effects being independent of radiation dose rate.
Collapse
Affiliation(s)
- Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France; Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Sonia M de Toledo
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Venkatachalam Perumal
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Jean-Paul Jay-Gerin
- Département de médecine nucléaire et de radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, Ontario, Canada.
| |
Collapse
|
9
|
Induction and assessment of persistent radioresistance in murine leukocytes in vivo. Biochem Biophys Rep 2022; 31:101296. [PMID: 35707716 PMCID: PMC9189778 DOI: 10.1016/j.bbrep.2022.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate whether weekly exposure to gamma rays causes a persistent increase in the number of radioresistant leukocytes in mice in vivo. Using the comet assay, 1 Gy radiation exposure decreased the percentage of leukocytes with less than 5% DNA in the tail (<5% DNAT), and we propose that radioresistance induction might increase the number of cells with <5% DNAT after radiation exposure. We exposed mice to 1 Gy gamma rays weekly for four weeks or 2 Gy per week for nine weeks. We observed a significant increase in cells with <5% DNAT after the third week and up to nine weeks of exposure. We exposed animals to gradually increasing radiation doses and finally challenged the lymphocytes with 1 Gy radiation both in vivo and in vitro. We observed increased radioresistance in vitro, providing evidence that a cellular process is involved. However, more radioresistance was observed in vivo than in vitro, suggesting a physiological effect. Cells challenged in vitro were maintained on ice during and after exposure, which likely caused a reduction in DNA repair. Radioresistance induction likely arose from mutation selection in stem cells because leukocytes are unable to proliferate in peripheral blood. First evidence of cell radioresistance induced in vivo in mice. Leukocyte precursor cells in vivo a model for study radioresistance induction. Irradiation-division cycles in vivo cause long-lasting cellular radioresistance. Increase of <5% DNA at tail after irradiation an index of cell radioresistance. Course of radioresistance caused by mutation-selection differ from adaptive response.
Collapse
|
10
|
Review of the effect of reduced levels of background radiation on living organisms. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Shimura T, Nakashiro C, Fujiwara K, Shiga R, Sasatani M, Kamiya K, Ushiyama A. Radiation affects glutathione redox reaction by reduced glutathione peroxidase activity in human fibroblasts. JOURNAL OF RADIATION RESEARCH 2022; 63:183-191. [PMID: 34977941 PMCID: PMC8944298 DOI: 10.1093/jrr/rrab122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/14/2021] [Indexed: 06/14/2023]
Abstract
The glutathione (GSH) redox control is critical to maintain redox balance in the body's internal environment, and its perturbation leads to a dramatic increase in reactive oxygen species (ROS) levels and oxidative stress which have negative impacts on human health. Although ionizing radiation increases mitochondrial ROS generation, the mechanisms underlying radiation-induced late ROS accumulation are not fully understood. Here we investigated the radiation effect on GSH redox reactions in normal human diploid lung fibroblasts TIG-3 and MRC-5. Superoxide anion probe MitoSOX-red staining and measurement of GSH peroxidase (GPx) activity revealed that high dose single-radiation (SR) exposure (10 Gy) increased mitochondrial ROS generation and overall oxidative stress in parallel with decrease in GSH peroxidase (GPx) activity, while GSH redox control was effective after exposure to moderate doses under standard serum conditions. We used different serum conditions to elucidate the role of serum on GSH redox reaction. Serum starvation, serum deprivation and DNA damage response (DDR) inhibitors-treatment reduced the GPx activity and increased mitochondrial ROS generation regardless of radiation exposure. Fractionated-radiation was used to evaluate the radiation effect on GSH reactions. Repeated fractionated-radiation induced prolonged oxidative stress by down-regulation of GPx activity. In conclusion, radiation affects GSH usage according to radiation dose, irradiation methods and serum concentration. Radiation affected the GPx activity to disrupt fibroblast redox homeostasis.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Corresponding author. Department of Environmental Health, National Institute of Public Health 2-3-6 Minami, Wako, Saitama, 351-0197, Japan. Tel. +81-48-458-6261; Fax +81-48-458-6270;
| | - Chinami Nakashiro
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Kazusi Fujiwara
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Rina Shiga
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology; Research Center for Radiation Genome Medicine; Research Institute for Radiation Biology and Medicine (RIRBM); Hiroshima University, Hiroshima, 734-8551, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology; Research Center for Radiation Genome Medicine; Research Institute for Radiation Biology and Medicine (RIRBM); Hiroshima University, Hiroshima, 734-8551, Japan
| | - Akira Ushiyama
- Department of Environmental Health; National Institute of Public Health 2-3-6 Minami; Wako, Saitama, 351-0197, Japan
| |
Collapse
|
12
|
Bekal M, Sun L, Ueno S, Moritake T. Neurobehavioral effects of acute low-dose whole-body irradiation. JOURNAL OF RADIATION RESEARCH 2021; 62:804-811. [PMID: 33982114 PMCID: PMC8438260 DOI: 10.1093/jrr/rrab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Radiation exposure has multiple effects on the brain, behavior and cognitive functions. It has been reported that high-dose (>20 Gy) radiation-induced behavior and cognitive aberration partly associated with severe tissue destruction. Low-dose (<3 Gy) exposure can occur in radiological disasters and cerebral endovascular treatment. However, only a few reports analyzed behavior and cognitive functions after low-dose irradiation. This study was undertaken to assess the relationship between brain neurochemistry and behavioral disruption in irradiated mice. The irradiated mice (0.5 Gy, 1 Gy and 3 Gy) were tested for alteration in their normal behavior over 10 days. A serotonin (5-HT), Dopamine, gamma-Aminobutyric acid (GABA) and cortisol analysis was carried out in blood, hippocampus, amygdala and whole brain tissue. There was a significant decline in the exploratory activity of mice exposed to 3 Gy and 1 Gy radiation in an open field test. We observed a significant short-term memory loss in 3 Gy and 1 Gy irradiated mice in Y-Maze. Mice exposed to 1 Gy and 3 Gy radiation exhibited increased anxiety in an elevated plus maze (EPM). The increased anxiety and memory loss patterns were also seen in 0.5 Gy irradiated mice, but the results were not statistically significant. In this study we observed that neurotransmitters are significantly altered after irradiation, but the neuronal cells in the hippocampus were not significantly affected. This study suggests that the low-dose radiation-induced cognitive impairment may be associated with the neurochemical in low-dose irradiation and unlike the high-dose scenario might not be directly related to the morphological changes in the brain.
Collapse
Affiliation(s)
- Mahesh Bekal
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Susumu Ueno
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Takashi Moritake
- Corresponding author. Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan, E-mail:
| |
Collapse
|
13
|
Yu J, Azzam EI, Jadhav AB, Wang Y. COVID-19: The Disease, the Immunological Challenges, the Treatment with Pharmaceuticals and Low-Dose Ionizing Radiation. Cells 2021; 10:2212. [PMID: 34571861 PMCID: PMC8470324 DOI: 10.3390/cells10092212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
The year 2020 will be carved in the history books-with the proliferation of COVID-19 over the globe and with frontline health workers and basic scientists worldwide diligently fighting to alleviate life-threatening symptoms and curb the spread of the disease. Behind the shocking prevalence of death are countless families who lost loved ones. To these families and to humanity as a whole, the tallies are not irrelevant digits, but a motivation to develop effective strategies to save lives. However, at the onset of the pandemic, not many therapeutic choices were available besides supportive oxygen, anti-inflammatory dexamethasone, and antiviral remdesivir. Low-dose radiation (LDR), at a much lower dosage than applied in cancer treatment, re-emerged after a 75-year silence in its use in unresolved pneumonia, as a scientific interest with surprising effects in soothing the cytokine storm and other symptoms in severe COVID-19 patients. Here, we review the epidemiology, symptoms, immunological alterations, mutations, pharmaceuticals, and vaccine development of COVID-19, summarizing the history of X-ray irradiation in non-COVID diseases (especially pneumonia) and the currently registered clinical trials that apply LDR in treating COVID-19 patients. We discuss concerns, advantages, and disadvantages of LDR treatment and potential avenues that may provide empirical evidence supporting its potential use in defending against the pandemic.
Collapse
Affiliation(s)
- Jihang Yu
- Radiobiology and Health, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada; (J.Y.); (E.I.A.); (A.B.J.)
| | - Edouard I. Azzam
- Radiobiology and Health, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada; (J.Y.); (E.I.A.); (A.B.J.)
| | - Ashok B. Jadhav
- Radiobiology and Health, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada; (J.Y.); (E.I.A.); (A.B.J.)
| | - Yi Wang
- Radiobiology and Health, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada; (J.Y.); (E.I.A.); (A.B.J.)
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
14
|
Yuan ZH, Liu T, Wang H, Xue LX, Wang JJ. Fatty Acids Metabolism: The Bridge Between Ferroptosis and Ionizing Radiation. Front Cell Dev Biol 2021; 9:675617. [PMID: 34249928 PMCID: PMC8264768 DOI: 10.3389/fcell.2021.675617] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure of tumor cells to ionizing radiation (IR) alters the microenvironment, particularly the fatty acid (FA) profile and activity. Moreover, abnormal FA metabolism, either catabolism or anabolism, is essential for synthesizing biological membranes and delivering molecular signals to induce ferroptotic cell death. The current review focuses on the bistable regulation characteristics of FA metabolism and explains how FA catabolism and anabolism pathway crosstalk harmonize different ionizing radiation-regulated ferroptosis responses, resulting in pivotal cell fate decisions. In summary, targeting key molecules involved in lipid metabolism and ferroptosis may amplify the tumor response to IR.
Collapse
Affiliation(s)
- Zhu-hui Yuan
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Tong Liu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Li-xiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Biobank, Peking University Third Hospital, Beijing, China
| | - Jun-jie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
15
|
Domogauer JD, de Toledo SM, Howell RW, Azzam EI. Acquired radioresistance in cancer associated fibroblasts is concomitant with enhanced antioxidant potential and DNA repair capacity. Cell Commun Signal 2021; 19:30. [PMID: 33637118 PMCID: PMC7912493 DOI: 10.1186/s12964-021-00711-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are a major component of the cancer stroma, and their response to therapeutic treatments likely impacts the outcome. We tested the hypothesis that CAFs develop unique characteristics that enhance their resistance to ionizing radiation. Methods CAFs were generated through intimate coculture of normal human fibroblasts of skin or lung origin with various human cancer cell types using permeable microporous membrane inserts. Fibroblasts and cancer cells are grown intimately, yet separately, on either side of the insert’s membrane for extended times to generate activated fibroblast populations highly enriched in CAFs. Results The generated CAFs exhibited a decrease in Caveolin-1 protein expression levels, a CAF biomarker, which was further enhanced when the coculture was maintained under in-vivo-like oxygen tension conditions. The level of p21Waf1 was also attenuated, a characteristic also associated with accelerated tumor growth. Furthermore, the generated CAFs experienced perturbations in their redox environment as demonstrated by increases in protein carbonylation, mitochondrial superoxide anion levels, and modulation of the activity of the antioxidants, manganese superoxide dismutase and catalase. Propagation of the isolated CAFs for 25 population doublings was associated with enhanced genomic instability and a decrease in expression of the senescence markers β-galactosidase and p16INK4a. With relevance to radiotherapeutic treatments, CAFs in coculture with cancer cells of diverse origins (breast, brain, lung, and prostate) were resistant to the clastogenic effects of 137Cs γ rays compared to naïve fibroblasts. Addition of repair inhibitors of single- or double-stranded DNA breaks attenuated the resistance of CAFs to the clastogenic effects of γ rays, supporting a role for increased ability to repair DNA damage in CAF radioresistance. Conclusions This study reveals that CAFs are radioresistant and experience significant changes in indices of oxidative metabolism. The CAFs that survive radiation treatment likely modulate the fate of the associated cancer cells. Identifying them together with their mode of communication with cancer cells, and eradicating them, particularly when they may exist at the margin of the radiotherapy planning target volume, may improve the efficacy of cancer treatments.![]() Video Abstract
Collapse
Affiliation(s)
- Jason D Domogauer
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Sonia M de Toledo
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Roger W Howell
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Edouard I Azzam
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA.
| |
Collapse
|
16
|
Garty G, Xu Y, Johnson GW, Smilenov LB, Joseph SK, Pujol-Canadell M, Turner HC, Ghandhi SA, Wang Q, Shih R, Morton RC, Cuniberti DE, Morton SR, Bueno-Beti C, Morgan TL, Caracappa PF, Laiakis EC, Fornace AJ, Amundson SA, Brenner DJ. VADER: a variable dose-rate external 137Cs irradiator for internal emitter and low dose rate studies. Sci Rep 2020; 10:19899. [PMID: 33199728 PMCID: PMC7670416 DOI: 10.1038/s41598-020-76941-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022] Open
Abstract
In the long term, 137Cs is probably the most biologically important agent released in many accidental (or malicious) radiation disasters. It can enter the food chain, and be consumed, or, if present in the environment (e.g. from fallout), can provide external irradiation over prolonged times. In either case, due to the high penetration of the energetic γ rays emitted by 137Cs, the individual will be exposed to a low dose rate, uniform, whole body, irradiation. The VADER (VAriable Dose-rate External 137Cs irradiatoR) allows modeling these exposures, bypassing many of the problems inherent in internal emitter studies. Making use of discarded 137Cs brachytherapy seeds, the VADER can provide varying low dose rate irradiations at dose rates of 0.1 to 1.2 Gy/day. The VADER includes a mouse "hotel", designed to allow long term simultaneous residency of up to 15 mice. Two source platters containing ~ 250 mCi each of 137Cs brachytherapy seeds are mounted above and below the "hotel" and can be moved under computer control to provide constant low dose rate or a varying dose rate mimicking 137Cs biokinetics in mouse or man. We present the VADER design and characterization of its performance over 18 months of use.
Collapse
Affiliation(s)
- Guy Garty
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA.
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA.
| | - Yanping Xu
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
| | - Gary W Johnson
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Lubomir B Smilenov
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Simon K Joseph
- David A. Gardner PET Imaging Research Center, Columbia University, New York, NY, 10032, USA
| | | | - Helen C Turner
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Qi Wang
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Rompin Shih
- Department of Radiation Oncology, Columbia University, New York, NY, 10032, USA
| | - Robert C Morton
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - David E Cuniberti
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Shad R Morton
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Carlos Bueno-Beti
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Thomas L Morgan
- Environmental Health and Safety, Columbia University, New York, NY, 10032, USA
| | - Peter F Caracappa
- Environmental Health and Safety, Columbia University, New York, NY, 10032, USA
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC, 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC, 20057, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
17
|
Ionizing Radiation and Translation Control: A Link to Radiation Hormesis? Int J Mol Sci 2020; 21:ijms21186650. [PMID: 32932812 PMCID: PMC7555331 DOI: 10.3390/ijms21186650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Protein synthesis, or mRNA translation, is one of the most energy-consuming functions in cells. Translation of mRNA into proteins is thus highly regulated by and integrated with upstream and downstream signaling pathways, dependent on various transacting proteins and cis-acting elements within the substrate mRNAs. Under conditions of stress, such as exposure to ionizing radiation, regulatory mechanisms reprogram protein synthesis to translate mRNAs encoding proteins that ensure proper cellular responses. Interestingly, beneficial responses to low-dose radiation exposure, known as radiation hormesis, have been described in several models, but the molecular mechanisms behind this phenomenon are largely unknown. In this review, we explore how differences in cellular responses to high- vs. low-dose ionizing radiation are realized through the modulation of molecular pathways with a particular emphasis on the regulation of mRNA translation control.
Collapse
|
18
|
Cohen J, Vo NTK, Chettle DR, McNeill FE, Seymour CB, Mothersill CE. Quantifying Biophoton Emissions From Human Cells Directly Exposed to Low-Dose Gamma Radiation. Dose Response 2020; 18:1559325820926763. [PMID: 32489340 PMCID: PMC7238447 DOI: 10.1177/1559325820926763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/15/2022] Open
Abstract
Biophoton emission leading to bystander effects (BEs) was shown in beta-irradiated cells; however, technical challenges precluded the analysis of the biophoton role in gamma-induced BEs. The present work was to design an experimental approach to determine if, what type, and how many biophotons could be produced in gamma-irradiated cells. Photon emission was measured in HCT116 p53+/+ cells irradiated with a total dose of 22 mGy from a cesium-137 source at a dose rate of 45 mGy/min. A single-photon detection unit was used and shielded with lead to reduce counts from stray gammas reaching the detector. Higher quantities of photon emissions were observed when the cells in a tissue culture vessel were present and being irradiated compared to a cell-free vessel. Photon emissions were captured at either 340 nm (in the ultraviolet A [UVA] range) or 610 nm. At the same cell density, radiation exposure time, and radiation dose, HCT116 p53+/+ cells emitted 2.5 times more UVA biophotons than 610-nm biophotons. For the first time, gamma radiation was shown to induce biophoton emissions from biological cells. As cellular emissions of UVA biophotons following beta radiation lead to BEs, the involvement of cellular emissions of the same type of UVA biophotons in gamma radiation-induced BEs is highly likely.
Collapse
Affiliation(s)
- Jason Cohen
- Radiation Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - David R Chettle
- Radiation Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Fiona E McNeill
- Radiation Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
19
|
Vidal LM, Pimentel E, Cruces MP, Sánchez-Meza JC. Evaluating the effect of low dose rate of gamma rays in germ cells of Drosophila melanogaster. Int J Radiat Biol 2020; 96:1068-1075. [PMID: 32338555 DOI: 10.1080/09553002.2020.1761566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: Evaluation of genetic risk in germ cells is still matter of research, mainly due to their role in the transmission of genetic information from one generation to another. Although numerous experiments have been carried out in Drosophila in order to study the effect of radiation on germ cells, the role of dose rate (DR) has not been fully explored. The purpose of this study was to evaluate the action of DR on the radioprotection induction on male germ cell of D. melanogaster.Material and method: The productivity and the sex-linked recessive lethal (SLRL) tests were used to evaluate the radio-sensitivity of different states of the germ line of males. Two-day-old males of Canton-S wild type strain were pretreated with 0.2 Gy at 5.4 or 34.3 Gy/h of gamma rays from a 60Co source, three hours later, they were irradiated with 20 Gy at 907.7 Gy/h. Thereafter, each single male was crossed with 3 five-day old Basc virgin females, that were replaced every other day by new females. This procedure was conducted three times, to test the whole germ cell stages.Results: Females crossed with males irradiated with 0.2 Gy at both DR tested, laid a higher number of eggs than control, but egg-viability was reduced. On the other hand, in the group of 0.2 Gy + 20 Gy -combined treatments- the total number of eggs laid decreased only when 0.2 Gy were delivered at 34.3 Gy/h however, the egg-viability increased. The dose of 0.2 Gy at both DR did not modify the baseline frequency of SLRL. A tendency to decrease in the frequency of lethals in brood III was found in combined treatments at both DR.Conclusion: The fact that 0.2 Gy at 5.4 or 34.3 Gy/h induced an increase in the egg-viability and a tendency to decrease the genetic damage in pre-meiotic cells provoked by 20 Gy, might indicate the induction of any mechanism that could be interpreted as radioprotection in male germ cells of D. melanogaster. Results emphasize the need to carry out more studies on the effect of the DR on the induction of genetic damage in germ cells.
Collapse
Affiliation(s)
- Luz Ma Vidal
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México
| | - Emilio Pimentel
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México
| | - Martha P Cruces
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México
| | - Juan C Sánchez-Meza
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca, México
| |
Collapse
|
20
|
Jiménez E, Pimentel E, Cruces MP, Amaya-Chavez A. Relationship between viability and genotoxic effect of gamma rays delivered at different dose rates in somatic cells of Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:741-751. [PMID: 31354077 DOI: 10.1080/15287394.2019.1646681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The role of dose rate (DR) on biological effects of ionizing radiation is an area of significant research focus and relevant to environmental exposures. The present investigation was aimed to examine the direct relationship between viability and genotoxicity in Drosophila melanogaster, induced by gamma rays in a range of doses from 2 to 35 Gy administered at three different DR. Results indicated that larval-adult viability was reduced in relation to dose but not DR. No marked differences were found in the LD50 produced by differing DR tested. Frequencies of somatic mutation and recombination increased in direct correlation with dose and DR. Data demonstrate the importance of determination of the relationship between viability and genotoxicity induced by DR in in vivo systems for toxicological and radioprotection studies.
Collapse
Affiliation(s)
- Elizabeth Jiménez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares , Ocoyoacac , México
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares , Ocoyoacac , México
| | - Martha P Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares , Ocoyoacac , México
| | | |
Collapse
|
21
|
Azzam EI. What does radiation biology tell us about potential health effects at low dose and low dose rates? JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:S28-S39. [PMID: 31216522 DOI: 10.1088/1361-6498/ab2b09] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The health risks to humans exposed to low dose and low dose rate ionising radiation remain ambiguous and are the subject of debate. The need to establish risk assessment standards based on the mechanisms underlying low dose/low fluence radiation exposures has been recognised by scholarly and regulatory bodies as critical for reducing the uncertainty in predicting adverse health risks of human exposure to low doses of radiation. Here, a brief review of laboratory-based evidence of molecular and biochemical changes induced by low doses and low dose rates of radiation is presented. In particular, two phenomena, namely bystander effects and adaptive responses that may impact low-level radiation health risks, are discussed together with the need for further studies. The expansion of this knowledge by considering the important variables that affect the radiation response (e.g. genetic susceptibility, time after exposure), and using the latest advances in experimental models and bioinformatics tools, may guide epidemiological studies towards reducing the uncertainty in predicting the potential health hazards of exposure to low-dose radiation.
Collapse
Affiliation(s)
- Edouard I Azzam
- Departments of Radiology, RUTGERS New Jersey Medical School, Newark, NJ 07103, United States of America
| |
Collapse
|
22
|
Park J, Kwon T, Lee SS, Jin YW, Seong KM. Mapping the research trends on the biological effects of radiation less than 100 mSv: a bibliometric analysis for 30 years publication. Int J Radiat Biol 2019; 95:527-536. [DOI: 10.1080/09553002.2019.1552373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jina Park
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - TaeWoo Kwon
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seung-Sook Lee
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
23
|
Brooks AL. The impact of dose rate on the linear no threshold hypothesis. Chem Biol Interact 2019; 301:68-80. [PMID: 30763551 DOI: 10.1016/j.cbi.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/17/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The goal of this manuscript is to define the role of dose rate and dose protraction on the induction of biological changes at all levels of biological organization. Both total dose and the time frame over which it is delivered are important as the body has great capacity to repair all types of biological damage. The importance of dose rate has been recognized almost from the time that radiation was discovered and has been included in radiation standards as a Dose, Dose Rate, Effectiveness Factor (DDREF) and a Dose Rate Effectiveness Factor (DREF). This manuscript will evaluate the role of dose rate at the molecular, cellular, tissue, experimental animals and humans to demonstrate that dose rate is an important variable in estimating radiation cancer risk and other biological effects. The impact of low-dose rates on the Linear-No-Threshold Hypothesis (LNTH) will be reviewed since if the LNTH is not valid it is not possible to calculate a single value for a DDREF or DREF. Finally, extensive human experience is briefly reviewed to show that the radiation risks are not underestimated and that radiation at environmental levels has limited impact on total human cancer risk.
Collapse
Affiliation(s)
- Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA.
| |
Collapse
|
24
|
Cohen J, Vo NTK, Seymour CB, Mothersill CE. Parallel comparison of pre-conditioning and post-conditioning effects in human cancers and keratinocytes upon acute gamma irradiation. Int J Radiat Biol 2019; 95:170-178. [PMID: 30496014 DOI: 10.1080/09553002.2019.1547850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE To determine and compare the effects of pre-conditioning and post-conditioning towards gamma radiation responses in human cancer cells and keratinocytes. MATERIAL AND METHODS The clonogenic survival of glioblastoma cells (T98G), keratinocytes (HaCaT), and colorectal carcinoma cells (HCT116 p53+/+ and p53-/-) was assessed following gamma ray exposure from a Cs-137 source. The priming dose preceded the challenge dose in pre-conditioning whereas the priming dose followed the challenge dose in post-conditioning. The priming dose was either 5 mGy or 0.1 Gy. The challenge dose was 0.5-5 Gy. RESULTS In both pre- and post-conditioning where the priming dose was 0.1 Gy and the challenge dose was 4 Gy, RAR developed in T98G but not in HaCaT cells. In HCT116 p53+/+, pre-conditioning had either no effect or a radiosensitizing effect and whereas post-conditioning induced either radiosensitizing or radioadaptive effect. The different observed outcomes were dependent on dose, the time interval between the priming and challenge dose, and the time before the first irradiation. Post-conditioning effects could occur with a priming dose as low as 5 mGy in HCT116 p53+/+ cells. When HCT116 cells had no p53 protein expression, the radiosensitizing or radioadaptive response by the conditioning effect was abolished. CONCLUSIONS The results suggest that radiation conditioning responses are complex and depend on at least the following factors: the magnitude of priming/challenge dose, the time interval between priming and challenge dose, p53 status, cell seeding time prior to the first radiation treatment. This work is the first parallel comparison demonstrating the potential outcomes of pre- and post-conditioning in different human cell types using environmentally and medically relevant radiation doses.
Collapse
Affiliation(s)
- Jason Cohen
- a Radiation Sciences , McMaster University , Hamilton , Canada
| | - Nguyen T K Vo
- b Department of Biology , McMaster University , Hamilton , Canada
| | - Colin B Seymour
- b Department of Biology , McMaster University , Hamilton , Canada
| | | |
Collapse
|
25
|
Puukila S, Thome C, Brooks AL, Woloschak G, Boreham DR. The influence of changing dose rate patterns from inhaled beta-gamma emitting radionuclide on lung cancer. Int J Radiat Biol 2018; 94:955-966. [PMID: 30257126 PMCID: PMC6759062 DOI: 10.1080/09553002.2018.1511929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Purpose: Dose and dose rate are both appropriate for estimating risk from internally deposited radioactive materials. We investigated the role of dose rate on lung cancer induction in Beagle dogs following a single inhalation of strontium-90 (90Sr), cerium-144 (144Ce), yttrium-91 (91Y), or yttrium-90 (90Y). As retention of the radionuclide is dependent on biological clearance and physical half-life a representative quantity to describe this complex changing dose rate is needed. Materials and methods: Data were obtained from Beagle dog experiments from the Inhalation Toxicology Research Institute. The authors selected the dose rate at the effective half-life of each radionuclide (DRef). Results: Dogs exposed to DRef (1–100 Gy/day) died within the first year after exposure from acute lung disease. Dogs exposed at lower DRef (0.1–10 Gy/day) died of lung cancer. As DRef decreased further (<0.1 Gy/day 90Sr, <0.5 Gy/day 144Ce, <0.9 Gy/day 91Y, <8 Gy/day 90Y), survival and lung cancer frequency were not significantly different from control dogs. Conclusion: Radiation exposures resulting from inhalation of beta-gamma emitting radionuclides that decay at different rates based on their effective half-life, leading to different rates of decrease in dose rate and cumulative dose, is less effective in causing cancer than acute low linear energy transfer exposures of the lung.
Collapse
Affiliation(s)
- Stephanie Puukila
- a Department of Biology , Laurentian University , Sudbury , Canada.,b College of Medicine and Public Health , Flinders University , Adelaide , Australia
| | | | - Antone L Brooks
- c Department of Environmental Science , Retired Professor, Washington State University, Richland , WA , USA
| | - Gayle Woloschak
- d Northwestern University , Department of Radiation Oncology , Chicago , IL , USA
| | - Douglas R Boreham
- e Northern Ontario School of Medicine, Department of Medical Sciences , Sudbury , Canada.,f Bruce Power , Tiverton , Canada
| |
Collapse
|
26
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
27
|
Mustonen V, Kesäniemi J, Lavrinienko A, Tukalenko E, Mappes T, Watts PC, Jurvansuu J. Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses. BMC Cell Biol 2018; 19:17. [PMID: 30157751 PMCID: PMC6114495 DOI: 10.1186/s12860-018-0169-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background Elevated levels of environmental ionizing radiation can be a selective pressure for wildlife by producing reactive oxygen species and DNA damage. However, the underlying molecular mechanisms that are affected are not known. Results We isolated skin fibroblasts from bank voles (Myodes glareolus) inhabiting the Chernobyl nuclear power plant accident site where background radiation levels are about 100 times greater than in uncontaminated areas. After a 10 Gy dose of gamma radiation fibroblasts from Chernobyl animals recovered faster than fibroblasts isolated from bank voles living in uncontaminated control area. The Chernobyl fibroblasts were able to sustain significantly higher doses of an oxidant and they had, on average, a higher total antioxidant capacity than the control fibroblasts. Furthermore, the Chernobyl fibroblasts were also significantly more resistant than the control fibroblasts to continuous exposure to three DNA damaging drugs. After drug treatment transcription of p53-target gene pro-apoptotic Bax was higher in the control than in the Chernobyl fibroblasts. Conclusion Fibroblasts isolated from bank voles inhabiting Chernobyl nuclear power plant accident site show elevated antioxidant levels, lower sensitivity to apoptosis, and increased resistance against oxidative and DNA stresses. These cellular qualities may help bank voles inhabiting Chernobyl to cope with environmental radioactivity. Electronic supplementary material The online version of this article (10.1186/s12860-018-0169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venla Mustonen
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Jenni Kesäniemi
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Anton Lavrinienko
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Eugene Tukalenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, UA-03022, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Phillip C Watts
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Jaana Jurvansuu
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland.
| |
Collapse
|
28
|
Chaiswing L, Weiss HL, Jayswal RD, St. Clair DK, Kyprianou N. Profiles of Radioresistance Mechanisms in Prostate Cancer. Crit Rev Oncog 2018; 23:39-67. [PMID: 29953367 PMCID: PMC6231577 DOI: 10.1615/critrevoncog.2018025946] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiation therapy (RT) is commonly used for the treatment of localized prostate cancer (PCa). However, cancer cells often develop resistance to radiation through unknown mechanisms and pose an intractable challenge. Radiation resistance is highly unpredictable, rendering the treatment less effective in many patients and frequently causing metastasis and cancer recurrence. Understanding the molecular events that cause radioresistance in PCa will enable us to develop adjuvant treatments for enhancing the efficacy of RT. Radioresistant PCa depends on the elevated DNA repair system and the intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and scavenge anti-cancer regimens, whereas the elevated heat shock protein 90 (HSP90) and the epithelial-mesenchymal transition (EMT) enable radioresistant PCa cells to metastasize after exposure to radiation. The up-regulation of the DNA repairing system, ROS, HSP90, and EMT effectors has been studied extensively, but not targeted by adjuvant therapy of radioresistant PCa. Here, we emphasize the effects of ionizing radiation and the mechanisms driving the emergence of radioresistant PCa. We also address the markers of radioresistance, the gene signatures for the predictive response to radiotherapy, and novel therapeutic platforms for targeting radioresistant PCa. This review provides significant insights into enhancing the current knowledge and the understanding toward optimization of these markers for the treatment of radioresistant PCa.
Collapse
Affiliation(s)
| | - Heidi L. Weiss
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | - Rani D. Jayswal
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | | | - Natasha Kyprianou
- Department of Toxicology and Cancer Biology
- Department of Urology
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
29
|
Lemon JA, Phan N, Boreham DR. Multiple CT Scans Extend Lifespan by Delaying Cancer Progression in Cancer-Prone Mice. Radiat Res 2017; 188:495-504. [DOI: 10.1667/rr14575.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jennifer A. Lemon
- Medical Sciences, Northern Ontario School of Medicine, Sudbury, Canada, P3E 2C6
| | - Nghi Phan
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R. Boreham
- Medical Sciences, Northern Ontario School of Medicine, Sudbury, Canada, P3E 2C6
| |
Collapse
|
30
|
Solanki JH, Tritt T, Pasternack JB, Kim JJ, Leung CN, Domogauer JD, Colangelo NW, Narra VR, Howell RW. Cellular Response to Exponentially Increasing and Decreasing Dose Rates: Implications for Treatment Planning in Targeted Radionuclide Therapy. Radiat Res 2017; 188:221-234. [PMID: 28541775 PMCID: PMC5669265 DOI: 10.1667/rr14766.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The treatment of cancer using targeted radionuclide therapy is of interest to nuclear medicine and radiation oncology because of its potential for killing tumor cells while minimizing dose-limiting toxicities to normal tissue. The ionizing radiations emitted by radiopharmaceuticals deliver radiation absorbed doses over protracted periods of time with continuously varying dose rates. As targeted radionuclide therapy becomes a more prominent part of cancer therapy, accurate models for estimating the biologically effective dose (BED) or equieffective dose (EQD2α/β) will become essential for treatment planning. This study examines the radiobiological impact of the dose rate increase half-time during the uptake phase of the radiopharmaceutical. MDA-MB-231 human breast cancer cells and V79 Chinese hamster lung fibroblasts were irradiated chronically with 662 keV γ rays delivered with time-varying dose rates that are clinically relevant. The temporal dose-rate patterns were: 1. acute, 2. exponential decrease with a half-time of 64 h (Td = 64 h), 3. initial exponential increase to a maximum (half time Ti = 2, 8 or 24 h) followed by exponential decrease (Td = 64 h). Cell survival assays were conducted and surviving fractions were determined. There was a marked reduction in biological effect when Ti was increased. Cell survival data were tested against existing dose-response models to assess their capacity to predict response. Currently accepted models that are used in radiation oncology overestimated BED and EQD2α/β at low-dose rates and underestimated them at high-dose rates. This appears to be caused by an adaptive response arising as a consequence of the initial low-dose-rate phase of exposure. An adaptive response function was derived that yields more accurate BED and EQD2α/β values over the spectrum of dose rates and absorbed doses delivered. Our experimental data demonstrate a marked increase in cell survival when the dose-rate-increase half-time is increased, thereby suggesting an adaptive response arising as a consequence of this phase of exposure. We have modified conventional radiobiological models used in the clinic for brachytherapy and external beams of radiation to account for this phenomenon and facilitate their use for treatment planning in targeted radionuclide therapy.
Collapse
Affiliation(s)
- Jay H. Solanki
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Thomas Tritt
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Jordan B. Pasternack
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Julia J. Kim
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Calvin N. Leung
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Jason D. Domogauer
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Nicholas W. Colangelo
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Venkat R. Narra
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Roger W. Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
31
|
Subhashree M, Venkateswarlu R, Karthik K, Shangamithra V, Venkatachalam P. DNA damage and the bystander response in tumor and normal cells exposed to X-rays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 821:20-27. [PMID: 28735740 DOI: 10.1016/j.mrgentox.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
Abstract
Monolayer and suspension cultures of tumor (BMG-1, CCRF-CEM), normal (AG1522, HADF, lymphocytes) and ATM-mutant (GM4405) human cells were exposed to X-rays at doses used in radiotherapy (high dose and high dose-rate) or radiological imaging (low dose and low dose-rate). Radiation-induced DNA damage, its persistence, and possible bystander effects were evaluated, based on DNA damage markers (γ-H2AX, p53ser15) and cell-cycle-specific cyclins (cyclin B1 and cyclin D1). Dose-dependent DNA damage and a dose-independent bystander response were seen after exposure to high dose and high dose-rate radiation. The level of induced damage (expression of p53ser15, γ-H2AX) depended on ATM status. However, low dose and dose-rate exposures neither increased expression of marker proteins nor induced a bystander response, except in the CCRF-CEM cells. Bystander effects after high-dose irradiation may contribute to stochastic and deterministic effects. Precautions to protect unexposed regions or to inhibit transmission of DNA damage signaling might reduce radiation risks.
Collapse
Affiliation(s)
- M Subhashree
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - R Venkateswarlu
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - K Karthik
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - V Shangamithra
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India.
| |
Collapse
|
32
|
Basheerudeen SAS, Kanagaraj K, Jose M, Ozhimuthu A, Paneerselvam S, Pattan S, Joseph S, Raavi V, Perumal V. Entrance surface dose and induced DNA damage in blood lymphocytes of patients exposed to low-dose and low-dose-rate X-irradiation during diagnostic and therapeutic interventional radiology procedures. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 818:1-6. [DOI: 10.1016/j.mrgentox.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 01/03/2023]
|
33
|
Garty G, Xu Y, Elliston C, Marino SA, Randers-Pehrson G, Brenner DJ. Mice and the A-Bomb: Irradiation Systems for Realistic Exposure Scenarios. Radiat Res 2017; 187:465-475. [PMID: 28211757 DOI: 10.1667/rr008cc.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Validation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides. We present here several novel irradiation systems developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry to provide more realistic exposures for testing of novel biodosimetric assays. These irradiators provide a wide range of dose rates (from Gy/s to Gy/week) as well as mixed neutron/photon fields mimicking an improvised nuclear device.
Collapse
Affiliation(s)
- Guy Garty
- a Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533; and
| | - Yanping Xu
- a Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533; and
| | - Carl Elliston
- b Center for Radiological Research, Columbia University, New York, New York 10032
| | - Stephen A Marino
- a Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533; and
| | - Gerhard Randers-Pehrson
- a Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533; and
| | - David J Brenner
- b Center for Radiological Research, Columbia University, New York, New York 10032
| |
Collapse
|
34
|
Affiliation(s)
- Muhammad Torequl Islam
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina (Paiui), Brazil
- Department of Pharmacy, Southern University Bangladesh, Chittagong (Mehedibag), Bangladesh
| |
Collapse
|
35
|
Zhang J, Shim G, de Toledo SM, Azzam EI. The Translationally Controlled Tumor Protein and the Cellular Response to Ionizing Radiation-Induced DNA Damage. Results Probl Cell Differ 2017; 64:227-253. [DOI: 10.1007/978-3-319-67591-6_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
36
|
Brooks AL, Hoel DG, Preston RJ. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation. Int J Radiat Biol 2016; 92:405-26. [PMID: 27266588 PMCID: PMC4975094 DOI: 10.1080/09553002.2016.1186301] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). CONCLUSIONS Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2-30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP ( 2007 ) and BEIR VII (NRC/NAS 2006 ).
Collapse
Affiliation(s)
- Antone L. Brooks
- Retired Professor, Environmental Science, Washington State University,
Richland,
Washington,
USA
| | - David G. Hoel
- Medical University of South Carolina, Epidemiology,
Charleston South Carolina,
USA
| | - R. Julian Preston
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory (NHEERL) (MD B105-01), RTP,
USA
| |
Collapse
|
37
|
Role of heme Oxygenase-1 in low dose Radioadaptive response. Redox Biol 2016; 8:333-40. [PMID: 26966892 PMCID: PMC4789341 DOI: 10.1016/j.redox.2016.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 01/19/2023] Open
Abstract
Radioadaptive response (RAR) is an important phenomenon induced by low dose radiation. However, the molecular mechanism of RAR is obscure. In this study, we focused on the possible role of heme oxygenase 1 (HO-1) in RAR. Consistent with previous studies, priming dose of X-ray radiation (1–10 cGy) induced significant RAR in normal human skin fibroblasts (AG 1522 cells). Transcription and translation of HO-1 was up-regulated more than two fold by a priming dose of radiation (5 cGy). Zinc protoporphyrin Ⅸ, a specific competitive inhibitor of HO-1, efficiently inhibited RAR whereas hemin, an inducer of HO-1, could mimic priming dose of X-rays to induce RAR. Knocking down of HO-1 by transfection of HO-1 siRNA significantly attenuated RAR. Furthermore, the expression of HO-1 gene was modulated by the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which translocated from cytoplasm to nucleus after priming dose radiation and enhance the antioxidant level of cells. The critical role of HO-1 in low dose Radioadaptive response is proposed. Low dose irradiation activates Nrf2 Translocation and HO-1 expression. Nrf2/HO-1 pathway mediates Radioadaptive response via regulating ROS production.
Collapse
|
38
|
Hauptmann M, Haghdoost S, Gomolka M, Sarioglu H, Ueffing M, Dietz A, Kulka U, Unger K, Babini G, Harms-Ringdahl M, Ottolenghi A, Hornhardt S. Differential Response and Priming Dose Effect on the Proteome of Human Fibroblast and Stem Cells Induced by Exposure to Low Doses of Ionizing Radiation. Radiat Res 2016; 185:299-312. [PMID: 26934482 DOI: 10.1667/rr14226.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has been suggested that a mechanistic understanding of the cellular responses to low dose and dose rate may be valuable in reducing some of the uncertainties involved in current risk estimates for cancer- and non-cancer-related radiation effects that are inherited in the linear no-threshold hypothesis. In this study, the effects of low-dose radiation on the proteome in both human fibroblasts and stem cells were investigated. Particular emphasis was placed on examining: 1. the dose-response relationships for the differential expression of proteins in the low-dose range (40-140 mGy) of low-linear energy transfer (LET) radiation; and 2. the effect on differential expression of proteins of a priming dose given prior to a challenge dose (adaptive response effects). These studies were performed on cultured human fibroblasts (VH10) and human adipose-derived stem cells (ADSC). The results from the VH10 cell experiments demonstrated that low-doses of low-LET radiation induced unique patterns of differentially expressed proteins for each dose investigated. In addition, a low priming radiation dose significantly changed the protein expression induced by the subsequent challenge exposure. In the ADSC the number of differentially expressed proteins was markedly less compared to VH10 cells, indicating that ADSC differ in their intrinsic response to low doses of radiation. The proteomic results are further discussed in terms of possible pathways influenced by low-dose irradiation.
Collapse
Affiliation(s)
- Monika Hauptmann
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Siamak Haghdoost
- c Center for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Maria Gomolka
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Hakan Sarioglu
- b Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Protein Science, Neuherberg, Germany
| | - Marius Ueffing
- b Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Protein Science, Neuherberg, Germany
| | - Anne Dietz
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Ulrike Kulka
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Kristian Unger
- d Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Radiation Cytogenetics, Neuherberg, Germany; and
| | | | - Mats Harms-Ringdahl
- c Center for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Sabine Hornhardt
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| |
Collapse
|
39
|
Azzam EI, Colangelo NW, Domogauer JD, Sharma N, de Toledo SM. Is Ionizing Radiation Harmful at any Exposure? An Echo That Continues to Vibrate. HEALTH PHYSICS 2016; 110:249-51. [PMID: 26808874 PMCID: PMC4729313 DOI: 10.1097/hp.0000000000000450] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The health risks to humans and non-human biota exposed to low dose ionizing radiation remain ambiguous and are the subject of intense debate. The need to establish risk assessment standards based on the mechanisms underlying low-level radiation exposure has been recognized by regulatory agencies as critical to adequately protect people and to make the most effective use of national resources. Here, the authors briefly review evidence showing that the molecular and biochemical changes induced by low doses of radiation differ from those induced by high doses. In particular, an array of redundant and inter-related mechanisms act in both prokaryotes and eukaryotes to restore DNA integrity following exposures to relatively low doses of sparsely ionizing radiation. Furthermore, the radiation-induced protective mechanisms often overcompensate and minimize the mutagenic potential of the byproducts of normal oxidative metabolism. In contrast to adaptive protection observed at low doses of sparsely ionizing radiation, there is evidence that even a single nuclear traversal by a densely ionizing particle track can trigger harmful effects that spread beyond the traversed cell and induce damaging effects in the nearby bystander cells. In vivo studies examining whether exposure to low dose radiation at younger age modulates the latency of expression of age-related diseases such as cancer, together with studies on the role of genetic susceptibility, will further illuminate the magnitude of risk of exposure to low dose radiation.
Collapse
Affiliation(s)
- Edouard I Azzam
- *Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | | | | | | | | |
Collapse
|
40
|
Seong KM, Seo S, Lee D, Kim MJ, Lee SS, Park S, Jin YW. Is the Linear No-Threshold Dose-Response Paradigm Still Necessary for the Assessment of Health Effects of Low Dose Radiation? J Korean Med Sci 2016; 31 Suppl 1:S10-23. [PMID: 26908982 PMCID: PMC4756336 DOI: 10.3346/jkms.2016.31.s1.s10] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
Inevitable human exposure to ionizing radiation from man-made sources has been increased with the proceeding of human civilization and consequently public concerns focus on the possible risk to human health. Moreover, Fukushima nuclear power plant accidents after the 2011 East-Japan earthquake and tsunami has brought the great fear and anxiety for the exposure of radiation at low levels, even much lower levels similar to natural background. Health effects of low dose radiation less than 100 mSv have been debated whether they are beneficial or detrimental because sample sizes were not large enough to allow epidemiological detection of excess effects and there was lack of consistency among the available experimental data. We have reviewed an extensive literature on the low dose radiation effects in both radiation biology and epidemiology, and highlighted some of the controversies therein. This article could provide a reasonable view of utilizing radiation for human life and responding to the public questions about radiation risk. In addition, it suggests the necessity of integrated studies of radiobiology and epidemiology at the national level in order to collect more systematic and profound information about health effects of low dose radiation.
Collapse
Affiliation(s)
- Ki Moon Seong
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Songwon Seo
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Dalnim Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Min-Jeong Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Woo Jin
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
41
|
Bannister LA, Serran ML, Mantha RR. Low-Dose Gamma Radiation Does Not Induce an Adaptive Response for Micronucleus Induction in Mouse Splenocytes. Radiat Res 2015; 184:533-44. [DOI: 10.1667/rr14102.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Chen H, Goodus MT, de Toledo SM, Azzam EI, Levison SW, Souayah N. Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal. ASN Neuro 2015; 7:7/3/1759091415578026. [PMID: 26056396 PMCID: PMC4461572 DOI: 10.1177/1759091415578026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Damage to normal human brain cells from exposure to ionizing radiation may occur during the course of radiotherapy or from accidental exposure. Delayed effects may complicate the immediate effects resulting in neurodegeneration and cognitive decline. We examined cellular and molecular changes associated with exposure of neural stem/progenitor cells (NSPs) to 137Cs γ-ray doses in the range of 0 to 8 Gy. Subventricular zone NSPs isolated from newborn mouse pups were analyzed for proliferation, self-renewal, and differentiation, shortly after irradiation. Strikingly, there was no apparent increase in the fraction of dying cells after irradiation, and the number of single cells that formed neurospheres showed no significant change from control. Upon differentiation, irradiated neural precursors did not differ in their ability to generate neurons, astrocytes, and oligodendrocytes. By contrast, progression of NSPs through the cell cycle decreased dramatically after exposure to 8 Gy (p < .001). Mice at postnatal day 10 were exposed to 8 Gy of γ rays delivered to the whole body and NSPs of the subventricular zone were analyzed using a four-color flow cytometry panel combined with ethynyl deoxyuridine incorporation. Similar flow cytometric analyses were performed on NSPs cultured as neurospheres. These studies revealed that neither the percentage of neural stem cells nor their proliferation was affected. By contrast, γ-irradiation decreased the proliferation of two classes of multipotent cells and increased the proliferation of a specific glial-restricted precursor. Altogether, these results support the conclusion that primitive neural precursors are radioresistant, but their proliferation is slowed down as a consequence of γ-ray exposure.
Collapse
Affiliation(s)
- Hongxin Chen
- Department of Neurology and Neurosciences, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Matthew T Goodus
- Department of Neurology and Neurosciences, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Sonia M de Toledo
- Department of Radiology, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Edouard I Azzam
- Department of Radiology, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Steven W Levison
- Department of Neurology and Neurosciences, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Nizar Souayah
- Department of Neurology and Neurosciences, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
43
|
Buonanno M, De Toledo SM, Howell RW, Azzam EI. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. JOURNAL OF RADIATION RESEARCH 2015; 56:502-8. [PMID: 25805407 PMCID: PMC4426929 DOI: 10.1093/jrr/rrv005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/23/2015] [Indexed: 05/23/2023]
Abstract
During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low 'flux' of the high atomic number and high energy (HZE) radiations relative to the higher 'flux' of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding of the biological effects of low-LET protons and high-LET HZE particles, the interplay between the biochemical processes modulated by these radiations is unclear. Here we show that exposure of normal human fibroblasts to a low mean absorbed dose of 20 cGy of 0.05 or 1-GeV protons (LET ∼ 1.25 or 0.2 keV/μm, respectively) protects the irradiated cells (P < 0.0001) against chromosomal damage induced by a subsequent exposure to a mean absorbed dose of 50 cGy from 1 GeV/u iron ions (LET ∼ 151 keV/μm). Surprisingly, unirradiated (i.e. bystander) cells with which the proton-irradiated cells were co-cultured were also significantly protected from the DNA-damaging effects of the challenge dose. The mitigating effect persisted for at least 24 h. These results highlight the interactions of biological effects due to direct cellular traversal by radiation with those due to bystander effects in cell populations exposed to mixed radiation fields. They show that protective adaptive responses can spread from cells targeted by low-LET space radiation to bystander cells in their vicinity. The findings are relevant to understanding the health hazards of space travel.
Collapse
Affiliation(s)
- Manuela Buonanno
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA Present address: Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Sonia M De Toledo
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Edouard I Azzam
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
44
|
Chevalier F, Hamdi DH, Saintigny Y, Lefaix JL. Proteomic overview and perspectives of the radiation-induced bystander effects. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:280-93. [PMID: 25795126 DOI: 10.1016/j.mrrev.2014.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/22/2014] [Accepted: 11/18/2014] [Indexed: 11/28/2022]
Abstract
Radiation proteomics is a recent, promising and powerful tool to identify protein markers of direct and indirect consequences of ionizing radiation. The main challenges of modern radiobiology is to predict radio-sensitivity of patients and radio-resistance of tumor to be treated, but considerable evidences are now available regarding the significance of a bystander effect at low and high doses. This "radiation-induced bystander effect" (RIBE) is defined as the biological responses of non-irradiated cells that received signals from neighboring irradiated cells. Such intercellular signal is no more considered as a minor side-effect of radiotherapy in surrounding healthy tissue and its occurrence should be considered in adapting radiotherapy protocols, to limit the risk for radiation-induced secondary cancer. There is no consensus on a precise designation of RIBE, which involves a number of distinct signal-mediated effects within or outside the irradiated volume. Indeed, several cellular mechanisms were proposed, including the secretion of soluble factors by irradiated cells in the extracellular matrix, or the direct communication between irradiated and neighboring non-irradiated cells via gap junctions. This phenomenon is observed in a context of major local inflammation, linked with a global imbalance of oxidative metabolism which makes its analysis challenging using in vitro model systems. In this review article, the authors first define the radiation-induced bystander effect as a function of radiation type, in vitro analysis protocols, and cell type. In a second time, the authors present the current status of protein biomarkers and proteomic-based findings and discuss the capacities, limits and perspectives of such global approaches to explore these complex intercellular mechanisms.
Collapse
Affiliation(s)
- François Chevalier
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France.
| | - Dounia Houria Hamdi
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France
| | - Yannick Saintigny
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France
| | - Jean-Louis Lefaix
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France
| |
Collapse
|
45
|
Taylor K, Lemon JA, Boreham DR. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice. Mutagenesis 2014; 29:279-87. [PMID: 24870562 DOI: 10.1093/mutage/geu016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[(18)F] fluoro-2-deoxy-D-glucose ((18)F-FDG), however little research has been conducted on the biological effects of (18)F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from (18)F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from (18)F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of (18)F-FDG, mice were injected with a range of activities of (18)F-FDG (0-14.80 MBq) or irradiated with Cs-137 γ-rays (0-100 mGy). The adaptive response was investigated 24h after the (18)F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the (18)F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq (18)F-FDG relative to controls (P < 0.019). A 0.74 MBq (18)F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical (18)F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. The (18)F-FDG RBE was <1.0, indicating that the mixed radiation quality and/or low dose rate from PET scans is less damaging than equivalent doses of gamma radiation.
Collapse
Affiliation(s)
- Kristina Taylor
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jennifer A Lemon
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Douglas R Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
46
|
Tseng BP, Giedzinski E, Izadi A, Suarez T, Lan ML, Tran KK, Acharya MM, Nelson GA, Raber J, Parihar VK, Limoli CL. Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxid Redox Signal 2014; 20:1410-22. [PMID: 23802883 PMCID: PMC3936501 DOI: 10.1089/ars.2012.5134] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Redox homeostasis is critical in regulating the fate and function of multipotent cells in the central nervous system (CNS). Here, we investigated whether low dose charged particle irradiation could elicit oxidative stress in neural stem and precursor cells and whether radiation-induced changes in redox metabolism would coincide with cognitive impairment. RESULTS Low doses (<1 Gy) of charged particles caused an acute and persistent oxidative stress. Early after (<1 week) irradiation, increased levels of reactive oxygen and nitrogen species were generally dose responsive, but were less dependent on dose weeks to months thereafter. Exposure to ion fluences resulting in less than one ion traversal per cell was sufficient to elicit radiation-induced oxidative stress. Whole body irradiation triggered a compensatory response in the rodent brain that led to a significant increase in antioxidant capacity 2 weeks following exposure, before returning to background levels at week 4. Low dose irradiation was also found to significantly impair novel object recognition in mice 2 and 12 weeks following irradiation. INNOVATION Data provide evidence that acute exposure of neural stem cells and the CNS to very low doses and fluences of charged particles can elicit a persisting oxidative stress lasting weeks to months that is associated with impaired cognition. CONCLUSIONS Exposure to low doses of charged particles causes a persistent oxidative stress and cognitive impairment over protracted times. Data suggest that astronauts subjected to space radiation may develop a heightened risk for mission critical performance decrements in space, along with a risk of developing long-term neurocognitive sequelae.
Collapse
Affiliation(s)
- Bertrand P Tseng
- 1 Department of Internal Medicine, Duke University Medical Center , Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li M, Gonon G, Buonanno M, Autsavapromporn N, de Toledo SM, Pain D, Azzam EI. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 2014; 20:1501-23. [PMID: 24111926 PMCID: PMC3936510 DOI: 10.1089/ars.2013.5649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.
Collapse
Affiliation(s)
- Min Li
- 1 Department of Radiology, Cancer Center, Rutgers University-New Jersey Medical School , Newark, New Jersey
| | | | | | | | | | | | | |
Collapse
|
48
|
Shao M, Lu X, Cong W, Xing X, Tan Y, Li Y, Li X, Jin L, Wang X, Dong J, Jin S, Zhang C, Cai L. Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress. PLoS One 2014; 9:e92574. [PMID: 24651118 PMCID: PMC3961432 DOI: 10.1371/journal.pone.0092574] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/24/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. OBJECTIVE The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. METHODS Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. RESULTS HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. CONCLUSION These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Minglong Shao
- School of Public Health of Jilin University, Changchun, China; Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Xiao Xing
- School of Public Health of Jilin University, Changchun, China; Changchun Institute for Food and Drug Control, Changchun, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Kosair Children's Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| | - Yunqian Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Litai Jin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Xiaojie Wang
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Juancong Dong
- School of Public Health of Jilin University, Changchun, China
| | - Shunzi Jin
- School of Public Health of Jilin University, Changchun, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Kosair Children's Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
49
|
Klammer H, Mladenov E, Li F, Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett 2013; 356:58-71. [PMID: 24370566 DOI: 10.1016/j.canlet.2013.12.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 12/30/2022]
Abstract
It is becoming increasingly clear that cells exposed to ionizing radiation (IR) and other genotoxic agents (targeted cells) can communicate their DNA damage response (DDR) status to cells that have not been directly irradiated (bystander cells). The term radiation-induced bystander effects (RIBE) describes facets of this phenomenon, but its molecular underpinnings are incompletely characterized. Consequences of DDR in bystander cells have been extensively studied and include transformation and mutation induction; micronuclei, chromosome aberration and sister chromatid exchange formation; as well as modulations in gene expression, proliferation and differentiation patterns. A fundamental question arising from such observations is why targeted cells induce DNA damage in non-targeted, bystander cells threatening thus their genomic stability and risking the induction of cancer. Here, we review and synthesize available literature to gather support for a model according to which targeted cells modulate as part of DDR their redox status and use it as a source to generate signals for neighboring cells. Such signals can be either small molecules transported to adjacent non-targeted cells via gap-junction intercellular communication (GJIC), or secreted factors that can reach remote, non-targeted cells by diffusion or through the circulation. We review evidence that such signals can induce in the recipient cell modulations of redox status similar to those seen in the originating targeted cell - occasionally though self-amplifying feedback loops. The resulting increase of oxidative stress in bystander cells induces, often in conjunction with DNA replication, the observed DDR-like responses that are at times strong enough to cause apoptosis. We reason that RIBE reflect the function of intercellular communication mechanisms designed to spread within tissues, or the entire organism, information about DNA damage inflicted to individual, constituent cells. Such responses are thought to protect the organism by enhancing repair in a community of cells and by eliminating severely damaged cells.
Collapse
Affiliation(s)
- Holger Klammer
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Fanghua Li
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
50
|
Amendola R, Cervelli M, Tempera G, Fratini E, Varesio L, Mariottini P, Agostinelli E. Spermine metabolism and radiation-derived reactive oxygen species for future therapeutic implications in cancer: an additive or adaptive response. Amino Acids 2013; 46:487-98. [PMID: 23999645 DOI: 10.1007/s00726-013-1579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/07/2013] [Indexed: 02/07/2023]
Abstract
Destruction of cells by irradiation-induced radical formation is one of the most frequent interventions in cancer therapy. An alternative to irradiation-induced radical formation is in principle drug-induced formation of radicals, and the formation of toxic metabolites by enzyme catalyzed reactions. Thus, combination therapy targeting polyamine metabolism could represent a promising strategy to fight hyper-proliferative disease. The aim of this work is to discuss and evaluate whether the presence of a DNA damage provoked by enzymatic ROS overproduction may act as an additive or adaptive response upon radiation and combination of hyperthermia with lysosomotropic compounds may improve the cytocidal effect of polyamines oxidation metabolites. Low level of X-irradiations delivers challenging dose of damage and an additive or adaptive response with the chronic damage induced by spermine oxidase overexpression depending on the deficiency of the DNA repair mechanisms. Since reactive oxygen species lead to membrane destabilization and cell death, we discuss the effects of BSAO and spermine association in multidrug resistant cells that resulted more sensitive to spermine metabolites than their wild-type counterparts, due to an increased mitochondrial activity. Since mammal spermine oxidase is differentially activated in a tissue specific manner, and cancer cells can differ in term of DNA repair capability, it could be of interest to open a scientific debate to use combinatory treatments to alter spermine metabolism and deliver differential response.
Collapse
|