1
|
Fibronectin in development and wound healing. Adv Drug Deliv Rev 2021; 170:353-368. [PMID: 32961203 DOI: 10.1016/j.addr.2020.09.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
Fibronectin structure and composition regulate contextual cell signaling. Recent advances have been made in understanding fibronectin and its role in tissue organization and repair. This review outlines fibronectin splice variants and their functions, evaluates potential therapeutic strategies targeting or utilizing fibronectin, and concludes by discussing potential future directions to modulate fibronectin function in development and wound healing.
Collapse
|
2
|
Wernicke C, Hellmann J, Finckh U, Rommelspacher H. Chronic ethanol exposure changes dopamine D2 receptor splicing during retinoic acid-induced differentiation of human SH-SY5Y cells. Pharmacol Rep 2011; 62:649-63. [PMID: 20885005 DOI: 10.1016/s1734-1140(10)70322-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/08/2009] [Indexed: 11/20/2022]
Abstract
There is evidence for ethanol-induced impairment of the dopaminergic system in the brain during development. The dopamine D2 receptor (DRD2) and the dopamine transporter (DAT) are decisively involved in dopaminergic signaling. Two splice variants of DRD2 are known, with the short one (DRD2s) representing the autoreceptor and the long one (DRD2l) the postsynaptic receptor. We searched for a model to investigate the impact of chronic ethanol exposure and withdrawal on the expression of these proteins during neuronal differentiation. RA-induced differentiation of human neuroblastoma SH-SY5Y cells seems to represent such a model. Our real-time RT-PCR, Western blot, and immunocytochemistry analyses of undifferentiated and RA-differentiated cells have demonstrated the enhanced expression of both splice variants of DRD2, with the short one being stronger enhanced than the long one under RA-treatment, and the DRD2 distribution on cell bodies and neurites under both conditions. In contrast, DAT was down-regulated by RA. The DAT is functional both in undifferentiated and RA-differentiated cells as demonstrated by [(3)H]dopamine uptake. Chronic ethanol exposure during differentiation for up to 4 weeks resulted in a delayed up-regulation of DRD2s. Ethanol withdrawal caused an increased expression of DRD2l and a normalization of DRD2s. Thus the DRD2s/DRD2l ratio was still disturbed. The dopamine level was increased by RA-differentiation compared to controls and was diminished under RA/ethanol treatment and ethanol withdrawal compared to RA-only treated cells. In conclusion, chronic ethanol exposure impairs differentiation-dependent adaptation of dopaminergic proteins, specifically of DRD2s. RA-differentiating SH-SY5Y cells are suited to study the impact of chronic ethanol exposure and withdrawal on expression of dopaminergic proteins during neuronal differentiation.
Collapse
Affiliation(s)
- Catrin Wernicke
- Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Klinik für Psychiatrie und Psychotherapie, Dorotheenstr. 94, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
3
|
Zheng C, Fasken MB, Marshall NJ, Brockmann C, Rubinson ME, Wente SR, Corbett AH, Stewart M. Structural basis for the function of the Saccharomyces cerevisiae Gfd1 protein in mRNA nuclear export. J Biol Chem 2010; 285:20704-15. [PMID: 20463024 PMCID: PMC2898303 DOI: 10.1074/jbc.m110.107276] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/30/2010] [Indexed: 01/08/2023] Open
Abstract
Following transcription, mRNA is processed, packaged into messenger ribonucleoprotein (mRNP) particles, and transported through nuclear pores (NPCs) to the cytoplasm. At the NPC cytoplasmic face, Dbp5 mediates mRNP remodeling and mRNA export factor dissociation, releasing transcripts for translation. In Saccharomyces cerevisiae, the conserved poly(A) RNA-binding protein, Nab2, facilitates NPC targeting of transcripts and also modulates poly(A) tail length. Dbp5 removes Nab2 from mRNPs at the cytoplasmic face of the pore and, importantly, a Nab2 RNA-binding mutant suppresses the thermosensitive rat8-2 (dbp5) mutant. GFD1 is a multicopy suppressor of rat8-2 (dbp5), and Gfd1 interacts physically with both Dbp5 and the Nab2 N-terminal domain (Nab2-N). Here, we present a structural and functional analysis of the Gfd1/Nab2-N interaction. Crystallography, supported by solution NMR, shows that Gfd1 residues 126-150 form an alpha-helix when bound to Nab2-N. Engineered Nab2-N and Gfd1 mutants that inhibit this interaction in vitro were used to probe its function in vivo using the genetic interaction between GFD1 and NAB2. Although GFD1 is not essential for viability, its deletion severely impairs growth of rat8-2 (dbp5) cells. Moreover, although Gfd1 overexpression suppresses rat8-2 (dbp5), Gfd1 mutants that do not bind Nab2 only partially suppress rat8-2 (dbp5). Furthermore, rat8-2 (dbp5) cells that express nab2-Y34A, in which binding to Gfd1 is impaired, show a synthetic growth phenotype and nuclear accumulation of poly(A) RNA. These data support the importance of the Gfd1/Nab2 interaction for Dbp5 activity and provide further molecular details of the interactions that facilitate Dbp5-mediated mRNP remodeling in the terminal step of mRNA export.
Collapse
Affiliation(s)
- Chao Zheng
- From the MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Milo B. Fasken
- the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Neil J. Marshall
- From the MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Christoph Brockmann
- From the MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Max E. Rubinson
- the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Susan R. Wente
- the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Anita H. Corbett
- the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Murray Stewart
- From the MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
4
|
Amaral JS, Pinho MJ, Soares-da-Silva P. Regulation of amino acid transporters in the rat remnant kidney. Nephrol Dial Transplant 2009; 24:2058-67. [PMID: 19155532 DOI: 10.1093/ndt/gfn752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Partial renal ablation is associated with compensatory renal growth, significant azotaemia, a significant increase in fractional excretion of sodium and changes in solute transport. The present study evaluated the occurrence of adaptations in the remnant kidney, especially in renal amino acid transporters and sodium transporters and their putative role in sodium handling in the early stages (24 h and 1 week) after uninephrectomy. METHODS Wistar rats aged 8 weeks old were submitted to renal ablation of the right kidney--Unx rats (n = 10). 24 hours (n = 5) and 1 week (n = 5) after surgery, rats were anesthetized and the left kidney was removed. Urinary and plasmatic levels of catecholamines, sodium, urea and creatinine were measured. Gene expression of the amino acid and sodium transporters was determined by Real-time reverse transcription PCR. Protein expression was evaluated by Western blot using specific antibodies for the amino acid and sodium transporters. RESULTS Uninephrectomized (Unx) rats for 24 h showed a lower urinary excretion of L-DOPA, dopamine and DOPAC than the corresponding Sham rats, accompanied by an increase in the expression of the Na(+)-K(+)-ATPase protein (64% increase). Unx rats for 1 week presented a hypertrophied remnant kidney, higher urine outflow and a approximately 2-fold increase in the fractional excretion of sodium. The NHE3 mRNA expression was significantly decreased in Unx rats throughout the study (approximately 20% decrease). LAT1 transcript and protein were consistently overexpressed at both 24 h and 1 week after uninephrectomy. In contrast, 4F2hc and LAT2 transcript abundance was lower in 24-h Unx rats than in Sham rats (a 36% decrease in both cases). CONCLUSIONS These results provide evidence that the renal expression of the amino acid transporters LAT1, LAT2 and 4F2hc and the sodium transporters Na(+)-K(+)-ATPase and NHE3 is differently regulated following unilateral nephrectomy. In conclusion, this study allowed us to characterize the renal adaptations in the early stages after uninephrectomy, which showed a combined interaction of multiple mechanisms regulating sodium homeostasis including the renal dopaminergic system, and the abundance of amino acid transporters and sodium transporters.
Collapse
Affiliation(s)
- João S Amaral
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
5
|
Goossens K, Van Soom A, Van Zeveren A, Favoreel H, Peelman LJ. Quantification of fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC DEVELOPMENTAL BIOLOGY 2009; 9:1. [PMID: 19126199 PMCID: PMC2648952 DOI: 10.1186/1471-213x-9-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/06/2009] [Indexed: 01/23/2023]
Abstract
Background Fibronectin 1 (FN1), a glycoprotein component of the extracellular matrix, exerts different functions during reproductive processes such as fertilisation, gastrulation and implantation. FN1 expression has been described to increase significantly from the morula towards the early blastocyst stage, suggesting that FN1 may also be involved in early blastocyst formation. By alternative splicing at 3 defined regions, different FN1 isoforms are generated, each with a unique biological function. The analysis of the alternative FN1 splicing on the one hand and the search for candidate FN1 receptors on the other hand during early bovine embryo development may reveal more about its function during bovine preimplantation embryo development. Results RT-qPCR quantification of the FN1 splice isoforms in oocytes, embryos, cumulus cells and adult tissue samples revealed a large variation in overall FN1 expression and in splice variant expression. Moreover, two new FN1 transcript variants were identified, the first one expressed in bovine preimplantation embryos and the second one expressed in cumulus cells. In the search for candidate receptors for the new embryo specific FN1 isoform, RNA expression analysis identified 5 α integrin subunits (ITGA2B, ITGA3, ITGA5, ITGA8, ITGAV) and 2 β integrin subunits (ITGB1 and ITGB3) with a similar or overlapping RNA expression pattern as compared to FN1. But double immunofluorescent stainings could not confirm complete co-localisation between FN1 and one out of 3 selected integrins alpha subunits (ITGA3, ITGA5, ITGAV). Conclusion The existence of a new FN1 transcript variant, specifically expressed in morulae and blastocysts strengthens the idea that FN1 is involved in the process of compaction and blastocyst formation. Analysis of the integrin expression could not identify the binding partner for the embryo specific FN1 transcript variant making further steps necessary for the identification of the FN1 receptor and the downstream effects of FN1-receptor binding.
Collapse
Affiliation(s)
- Karen Goossens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
6
|
Abstract
The sequencing of the human genome and ensuing wave of data generation have brought new light upon the extent and importance of alternative splicing as an RNA regulatory mechanism. Alternative splicing could potentially explain the complexity of protein repertoire during evolution, and defects in the splicing mechanism are responsible for diseases as complex as cancer. Among the challenges that rise in light of these discoveries are cataloguing splice variation in the human and other eukaryotic genomes, and identifying and characterizing the splicing regulatory elements that control their expression. Bioinformatics efforts tackling these two questions are just at the beginning. This article is a survey of these methods.
Collapse
Affiliation(s)
- Liliana Florea
- Department of Computer Science, George Washington University, Academic Center-Rm 714, Washington DC 20052, USA.
| |
Collapse
|
7
|
Akker SA, Misra S, Aslam S, Morgan EL, Smith PJ, Khoo B, Chew SL. Pre-spliceosomal binding of U1 small nuclear ribonucleoprotein (RNP) and heterogenous nuclear RNP E1 is associated with suppression of a growth hormone receptor pseudoexon. Mol Endocrinol 2007; 21:2529-40. [PMID: 17622584 DOI: 10.1210/me.2007-0038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pseudoexons occur frequently in the human genome. This paper characterizes a pseudoexon in the GH receptor gene. Inappropriate activation of this pseudoexon causes Laron syndrome. Using in vitro splicing assays, pseudoexon silencing was shown to require a combination of a weak 5' pseudosplice-site and splicing silencing elements within the pseudoexon. Immunoprecipitation experiments showed that specific binding of heterogenous nuclear ribonucleoprotein E1 (hnRNP E1) and U1 small nuclear ribonucleoprotein (snRNP) in the pre-spliceosomal complex was associated with silencing of pseudoexon splicing. The possible role of hnRNP E1 was further supported by RNA interference experiments in cultured cells. Immunoprecipitation experiments with three other pseudoexons suggested that pre-spliceosomal binding of U1 snRNP is a potential general mechanism of suppression of pseudoexons.
Collapse
Affiliation(s)
- Scott A Akker
- Department of Endocrinology, 5th Floor, King George V Block, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
8
|
Sironen A, Vilkki J, Bendixen C, Thomsen B. Infertile Finnish Yorkshire boars carry a full-length LINE-1 retrotransposon within the KPL2 gene. Mol Genet Genomics 2007; 278:385-91. [PMID: 17610085 DOI: 10.1007/s00438-007-0256-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
The KPL2 gene is expressed predominantly in cells with cilia or flagella. We have previously demonstrated that a large intronic insertion in KPL2 is associated with immotile sperm cells and infertility in the domesticated pig (Sus scrofa). To fully characterize the structure of the mutation, we have now cloned and sequenced the insertion. The data identified the presence of a long interspersed nuclear element-1 (LINE-1) encoding all activities required for retrotransposition, including a 5'-untranslated region (UTR) with an internal RNA polymerase II promoter, two open reading frames (ORF1 and ORF2) separated by an intergenic region and a 3' UTR containing a polyadenylation signal. Characterization of the junctions between the LINE-1 and the genomic target revealed the presence of direct repeats of 14 bp at both ends, showing that integration occurred by target-primed reverse transcription. Furthermore, sequence analysis suggested that the aberrant splicing pattern of KPL2 transcripts induced by the LINE-1 element is caused by interference with putative intronic splice signals and activation of a cryptic splice site. These data demonstrate that integration of a transposition-competent L1 element into KPL2 is responsible for the defective spermatozoa, which accentuates the role of mobile DNA elements as insertional mutagens in mammalian genomes.
Collapse
Affiliation(s)
- Anu Sironen
- Food and Biotechnology, Animal Genomics, MTT Agrifood Research Finland, 31600, Jokioinen, Finland
| | | | | | | |
Collapse
|
9
|
Pinho MJ, Pinto V, Serrão MP, Jose PA, Soares-da-Silva P. Underexpression of the Na+-dependent neutral amino acid transporter ASCT2 in the spontaneously hypertensive rat kidney. Am J Physiol Regul Integr Comp Physiol 2007; 293:R538-47. [PMID: 17475673 DOI: 10.1152/ajpregu.00906.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study examined the inward transport of l-[14C]alanine, an ASCT2 preferential substrate, in monolayers of immortalized renal proximal tubular epithelial (PTE) cells from Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. The expression of ASCT2 in WKY and SHR PTE cells and kidney cortices from WKY and SHR was also evaluated. l-[14C]alanine uptake was highly dependent on extracellular Na+. Replacement of NaCl by LiCl or choline chloride abolished transport activity in SHR and WKY PTE cells. In the presence of the system L inhibitor BCH, Na+-dependent l-alanine uptake in WKY and SHR PTE cells was inhibited by alanine, serine, and cysteine, which is consistent with amino acid transport through ASCT2. The saturable component of Na+-dependent l-alanine transport under Vmax conditions in SHR PTE cells was one-half of that in WKY PTE cells, with similar Km values. Differences in magnitude of Na+-dependent l-alanine uptake through ASCT2 between WKY and SHR PTE cells correlated positively with differences in ASCT2 protein expression, this being more abundant in WKY PTE cells. Abundance of ASCT2 transcript and protein in kidney cortices of SHR rats was also lower than that in normotensive WKY rats. In conclusion, immortalized SHR and WKY PTE cells take up l-alanine mainly through a high-affinity Na+-dependent amino acid transporter, with functional features of ASCT2 transport. The activity and expression of the ASCT2 transporter were considerably lower in the SHR cells.
Collapse
Affiliation(s)
- Maria João Pinho
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200 Porto, Portugal
| | | | | | | | | |
Collapse
|
10
|
Nashchekin D, Masich S, Soop T, Kukalev A, Kovrigina E, Nashchekina O, Daneholt B. Two splicing isoforms of the Y-box protein ctYB-1 appear on the same mRNA molecule. FEBS J 2007; 274:202-11. [PMID: 17222182 DOI: 10.1111/j.1742-4658.2006.05576.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Y-box proteins constitute an evolutionarily conserved family of DNA- and RNA-binding proteins involved in the regulation of transcription and translation. In the dipteran Chironomus tentans, a homologue to the vertebrate Y-box protein YB-1 was recently characterized and designated ctYB-1. It is transferred from nucleus to cytoplasm bound to mRNA and is likely to affect translation. It appears in two size variants, p40 and p50. We further analysed the two size variants and their interaction with mRNA. Southern blot analysis, in situ hybridization and RT-PCR analysis suggested that there is just one YB-1 gene, and that the two size variants represent splicing isoforms. In a C. tentans epithelial cell line, only p40 is present, whereas both variants appear together in eight tissues from fourth-instar larvae, although in somewhat different proportions. Furthermore, the appearance of the two isoforms was studied in relation to a specific 35-40 kb mRNA transcript in the salivary glands, the Balbiani ring mRNA. Because of their exceptional size, Balbiani ring messenger ribonucleoprotein particles in nucleoplasm and Balbiani ring polysomes in cytoplasm could be identified and selectively studied. We were able to establish that both isoforms are associated with both nuclear and cytoplasmic Balbiani ring mRNA. In addition, a p50-specific antibody coimmunoprecipitated p40 from Balbiani ring polysomes, suggesting that the two splicing isoforms are located along the same Balbiani ring mRNA molecule. The functional significance of the two isoforms is being discussed.
Collapse
Affiliation(s)
- Dmitry Nashchekin
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Harries LW. Alternate mRNA processing of the hepatocyte nuclear factor genes and its role in monogenic diabetes. Expert Rev Endocrinol Metab 2006; 1:715-726. [PMID: 30754156 DOI: 10.1586/17446651.1.6.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Variation in mRNA processing has the capacity to exert fine control over gene expression in most cell types. The hepatic nuclear factor genes, like approximately 74% of the genome, produce multiple transcripts. Hepatic nuclear factor isoforms exhibit both spatial and temporal variation in expression. In this review, the known isoforms of the hepatocyte nuclear factor-1α, hepatocyte nuclear factor-1β and hepatocyte nuclear factor-4α genes are described and their properties are compared. Finally, data are discussed regarding the influence of hepatocyte nuclear factor-1α alternate mRNA processing on the clinical phenotype of maturity-onset diabetes of the young.
Collapse
Affiliation(s)
- Lorna W Harries
- a RCUK Diabetes and Metabolism Academic Fellow, Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
12
|
Abstract
The cAMP-dependent kinase (PKA) plays a crucial part in long-term memory formation in the honeybee (Apis mellifera). One of the putative substrates of the PKA activity is the cAMP response element binding protein (CREB), a transcription factor in the bZIP protein family. We searched the honeybee genome to characterize genes from the CREB/CREM and the PKA families. We identified two genes that encode regulatory subunits and three genes encode catalytic subunits of PKA. Eight genes code for bZIP proteins, but only one gene was found that encodes a member of the CREB/CREM family. The phylogenetic relationship of these genes was analysed with their Drosophila and human counterparts.
Collapse
Affiliation(s)
- D Eisenhardt
- Neurobiology, FB Biology/Chemistry/Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | | | | |
Collapse
|
13
|
Harries LW, Ellard S, Stride A, Morgan NG, Hattersley AT. Isomers of the TCF1 gene encoding hepatocyte nuclear factor-1 alpha show differential expression in the pancreas and define the relationship between mutation position and clinical phenotype in monogenic diabetes. Hum Mol Genet 2006; 15:2216-24. [PMID: 16760222 DOI: 10.1093/hmg/ddl147] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The generation of multiple transcripts by mRNA processing has the potential to moderate differences in gene expression both between tissues and at different stages of development. Where gene function is compromised by mutation, the presence of multiple isoforms may influence the resulting phenotype. Heterozygous mutations in the transcription factor hepatocyte nuclear factor-1 alpha (HNF1A or TCF1 gene) result in early-onset diabetes as a result of pancreatic beta-cell dysfunction. We investigated the expression of the three alternatively processed isoforms of the HNF1A gene and their impact on the phenotype associated with mutations. Real-time PCR demonstrated variation in tissue expression of HNF1A isomers: HNF1A(A), with the lowest transactivation activity compared with the truncated isoforms HNF1A(B) and HNF1A(C), is the major isomer in liver (54%) and kidney (67%) but not in adult pancreas (24%) and islets (26%). However, in fetal pancreas HNF1A(A) is the major transcript (84%), which supports developmental regulation of isomer expression. We examined whether the isomers affected by the mutation altered the diabetes phenotype in 564 subjects with 123 mutations in HNF1A. Mutations that affected only isomer HNF1A(A) (exons 8-10) were diagnosed later (25.5 years) than mutations affecting all three isomers (exons 1-6) (18.0 years) (P=0.006). This first genotype/phenotype relationship described for patients with HNF1A mutations is explained by isomer structure and not by either mutation type or functional domain. We conclude that all three isomers may be critical for beta-cell function and could play a role in both the developing and mature beta cell.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clincal Sciences, Peninsula Medical School, Barrack Road, Exeter, Devon, UK.
| | | | | | | | | |
Collapse
|
14
|
Velazquez-Dones A, Hagopian JC, Ma CT, Zhong XY, Zhou H, Ghosh G, Fu XD, Adams JA. Mass spectrometric and kinetic analysis of ASF/SF2 phosphorylation by SRPK1 and Clk/Sty. J Biol Chem 2005; 280:41761-8. [PMID: 16223727 DOI: 10.1074/jbc.m504156200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of the spliceosome requires the participation of SR proteins, a family of splicing factors rich in arginine-serine dipeptide repeats. The repeat regions (RS domains) are polyphosphorylated by the SRPK and Clk/Sty families of kinases. The two families of kinases have distinct enzymatic properties, raising the question of how they may work to regulate the function of SR proteins in RNA metabolism in mammalian cells. Here we report the first mass spectral analysis of the RS domain of ASF/SF2, a prototypical SR protein. We found that SRPK1 was responsible for efficient phosphorylation of a short stretch of amino acids in the N-terminal portion of the RS domain of ASF/SF2 while Clk/Sty was able to transfer phosphate to all available serine residues in the RS domain, indicating that SR proteins may be phosphorylated by different kinases in a stepwise manner. Both kinases bind with high affinity and use fully processive catalytic mechanisms to achieve either restrictive or complete RS domain phosphorylation. These findings have important implications on the regulation of SR proteins in vivo by the SRPK and Clk/Sty families of kinases.
Collapse
Affiliation(s)
- Adolfo Velazquez-Dones
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Reis EM, Louro R, Nakaya HI, Verjovski-Almeida S. As antisense RNA gets intronic. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:2-12. [PMID: 15805775 DOI: 10.1089/omi.2005.9.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent work describing the transcriptional output of the human genome points to the existence of a significant number of non-coding RNA transcripts coming from intronic regions, with a fraction of these being oriented antisense relative to the protein-coding mRNA of the known gene. In this article, we survey the main findings of the large-scale expression analysis projects that led to the identification of antisense intronic messages and which demonstrate their ubiquitous expression in the human genome. We review the current knowledge on long, unspliced, intronic antisense transcripts, a new class of non-coding RNAs, recently described by our group to be correlated with the degree of tumor differentiation in prostate cancer, which we postulate is involved in the fine tuning of gene expression in eukaryotes. Possible mechanisms of antisense intronic transcript biogenesis and function in gene expression regulation are discussed, as is their involvement in human diseases. While there is still no conclusive evidence demonstrating a functional role for these long, intronic antisense messages, the far-reaching implications of their existence for the mechanisms regulating gene expression certainly warrant further experimentation.
Collapse
Affiliation(s)
- Eduardo M Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
16
|
Danzi S, Klein I. Posttranscriptional regulation of myosin heavy chain expression in the heart by triiodothyronine. Am J Physiol Heart Circ Physiol 2005; 288:H455-60. [PMID: 15650152 DOI: 10.1152/ajpheart.00896.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triiodothyronine (T3) regulates cardiac contractility in part by regulating the expression of several important cardiac myocyte genes. In the rat, the T3-mediated induction of alpha-myosin heavy chain (MHC) transcription in hypothyroid hearts is rapid, exhibiting zero-order kinetics, whereas the repression of beta-MHC in these same hearts is much slower. To elucidate the mechanism for T3 transcriptional as well as posttranscriptional regulation of both MHC gene isoforms, we used an RT-PCR-based transcription assay and the RNA polymerase II inhibitor actinomycin D in an in vivo model to simultaneously measure specific alpha- and beta-MHC heterogeneous nuclear RNA (hnRNA), mRNA kinetics, and MHC antisense RNA. In vivo actinomycin D treatment blocked alpha-MHC transcription in euthyroid rats by >80% at 2 h and suggested a half-life of alpha-MHC hnRNA of approximately 1 h, whereas actinomycin D inhibited beta-MHC transcription in hypothyroid rats by >75% at 6 h, suggesting a significantly longer hnRNA half-life of approximately 4 h. The effect of actinomycin D on beta-MHC transcription was independent of T3. T3 treatment in hypothyroid animals caused beta-MHC mRNA to decline more rapidly than beta-MHC hnRNA, demonstrating, for the first time, a posttranscriptional mechanism(s). The measured change in beta-MHC mRNA half-life indicates a T3-mediated destabilization of beta-MHC mRNA. To understand the mechanism by which T3 destabilizes beta-MHC mRNA, we measured beta-MHC antisense RNA. beta-MHC antisense RNA is present in euthyroid myocytes, but levels are not significant in hypothyroid myocytes. This differential expression may explain some of the effects of T3 on MHC posttranscriptional regulation.
Collapse
Affiliation(s)
- Sara Danzi
- Division of Endocrinology and Department of Medicine, North Shore University Hospital/New York University School of Medicine and North Shore-LIJ Research Institute, Manhasset, New York, USA
| | | |
Collapse
|
17
|
Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H. Function of alternative splicing. Gene 2004; 344:1-20. [PMID: 15656968 DOI: 10.1016/j.gene.2004.10.022] [Citation(s) in RCA: 651] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/10/2004] [Accepted: 10/21/2004] [Indexed: 02/06/2023]
Abstract
Alternative splicing is one of the most important mechanisms to generate a large number of mRNA and protein isoforms from the surprisingly low number of human genes. Unlike promoter activity, which primarily regulates the amount of transcripts, alternative splicing changes the structure of transcripts and their encoded proteins. Together with nonsense-mediated decay (NMD), at least 25% of all alternative exons are predicted to regulate transcript abundance. Molecular analyses during the last decade demonstrate that alternative splicing determines the binding properties, intracellular localization, enzymatic activity, protein stability and posttranslational modifications of a large number of proteins. The magnitude of the effects range from a complete loss of function or acquisition of a new function to very subtle modulations, which are observed in the majority of cases reported. Alternative splicing factors regulate multiple pre-mRNAs and recent identification of physiological targets shows that a specific splicing factor regulates pre-mRNAs with coherent biological functions. Therefore, evidence is now accumulating that alternative splicing coordinates physiologically meaningful changes in protein isoform expression and is a key mechanism to generate the complex proteome of multicellular organisms.
Collapse
Affiliation(s)
- Stefan Stamm
- Institute for Biochemistry, University of Erlangen, Fahrstrasse 17, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shur I, Ben-Avraham D, Benayahu D. Alternatively spliced isoforms of a novel stromal RNA regulating factor. Gene 2004; 334:113-21. [PMID: 15256261 DOI: 10.1016/j.gene.2004.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 12/11/2003] [Accepted: 03/09/2004] [Indexed: 11/24/2022]
Abstract
Bone marrow stromal cells (MSC) are pluripotent cells that possess a unique capacity to differentiate under appropriate conditions into various lineages. The MSC differentiation is dependent on factors that can switch on and maintain a relevant genetic program to make a particular cell type. The present study describes the cloning and molecular analysis of a novel gene, SRRF (Stromal RNA Regulating Factor), suggested to be involved in RNA processing in MSC. We cloned two alternatively spliced isoforms of this gene, transcripts A and B, from the marrow stromal cells expression library. Differential expression analysis demonstrated a restricted expression of the transcripts to MSC, while other spliced forms of this gene were detected in other tissues. The bioinformatic analysis of the two isoforms revealed RNA binding motifs (RRM), protein-protein and protein-DNA interaction motifs. Participation of SRRF isoforms in post-transcriptional events in MSC is believed to govern the tissue specificity of RNA transcription and to have an important role in regulation of the RNA expression that directs the MSC differentiation pathway.
Collapse
Affiliation(s)
- I Shur
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 66978, Israel
| | | | | |
Collapse
|
19
|
Auboeuf D, Dowhan DH, Kang YK, Larkin K, Lee JW, Berget SM, O'Malley BW. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc Natl Acad Sci U S A 2004; 101:2270-4. [PMID: 14982999 PMCID: PMC356940 DOI: 10.1073/pnas.0308133100] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological consequences of steroid hormone-mediated transcriptional activation of target genes might be difficult to predict because alternative splicing of a single neosynthesized precursor RNA can result in production of different protein isoforms with opposite biological activities. Therefore, an important question to address is the manner in which steroid hormones affect the splicing of their target gene transcripts. In this report, we demonstrate that individual steroid hormones had different and opposite effects on alternative splicing decisions, stimulating the production of different spliced variants produced from genes driven by steroid hormone-dependent promoters. Steroid hormone transcriptional effects are mediated by steroid hormone receptor coregulators that also modify alternative splicing decisions. Our data suggest that activated steroid hormone receptors recruit coregulators to the target promoter that participate in both the production and the splicing of the target gene transcripts. Because different coregulators activating transcription can have opposite effects on alternative splicing decisions, we conclude that the precise nature of the transcriptional coregulators recruited by activated steroid receptors, depending on the promoter and cellular contexts, may play a major role in regulating the nature of the spliced variants produced from certain target genes in response to steroid hormones.
Collapse
Affiliation(s)
- Didier Auboeuf
- Department of Molecular and Cellular Biology, Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Margulies EH, Blanchette M, Haussler D, Green ED. Identification and characterization of multi-species conserved sequences. Genome Res 2004; 13:2507-18. [PMID: 14656959 PMCID: PMC403793 DOI: 10.1101/gr.1602203] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Comparative sequence analysis has become an essential component of studies aiming to elucidate genome function. The increasing availability of genomic sequences from multiple vertebrates is creating the need for computational methods that can detect highly conserved regions in a robust fashion. Towards that end, we are developing approaches for identifying sequences that are conserved across multiple species; we call these "Multi-species Conserved Sequences" (or MCSs). Here we report two strategies for MCS identification, demonstrating their ability to detect virtually all known actively conserved sequences (specifically, coding sequences) but very little neutrally evolving sequence (specifically, ancestral repeats). Importantly, we find that a substantial fraction of the bases within MCSs (approximately 70%) resides within non-coding regions; thus, the majority of sequences conserved across multiple vertebrate species has no known function. Initial characterization of these MCSs has revealed sequences that correspond to clusters of transcription factor-binding sites, non-coding RNA transcripts, and other candidate functional elements. Finally, the ability to detect MCSs represents a valuable metric for assessing the relative contribution of a species' sequence to identifying genomic regions of interest, and our results indicate that the currently available genome sequences are insufficient for the comprehensive identification of MCSs in the human genome.
Collapse
Affiliation(s)
- Elliott H Margulies
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
21
|
Bolander FF. Posttranscriptional Control. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Sparre T, Reusens B, Cherif H, Larsen MR, Roepstorff P, Fey SJ, Mose Larsen P, Remacle C, Nerup J. Intrauterine programming of fetal islet gene expression in rats--effects of maternal protein restriction during gestation revealed by proteome analysis. Diabetologia 2003; 46:1497-511. [PMID: 13680128 DOI: 10.1007/s00125-003-1208-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2003] [Revised: 07/03/2003] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Fetal undernutrition can result in intrauterine growth restriction and increased incidence of Type 2 diabetes mellitus. Intrauterine malnutrition in form of an isocaloric low-protein diet given to female rats throughout gestation decreases islet-cell proliferation, islet size and pancreatic insulin content, while increasing the apoptotic rate and sensitivity to nitrogen oxide and interleukin-1beta. Hence, the influence of a low-protein diet on the development of beta-cells and islets could also be of interest for the pathogenesis of Type 1 and Type 2 diabetes mellitus. We hypothesise that the effects of a low-protein diet in utero are caused by intrauterine programming of beta-cell gene expression. METHODS Pregnant Wistar rats were fed a low-protein diet (8% protein) or a control diet (20% protein) throughout gestation. At day 21.5 of gestation fetal pancreata were removed, digested and cultured for 7 days. Neoformed islets were collected and analysed by proteome analysis comprising 2-dimensional gel electrophoresis and mass spectrometry. RESULTS A total of 2810 different protein spots were identified, 70 of which were changed due to the low-protein diet. From 45 of the changed protein spots, identification was obtained by mass spectrometry (64% success rate). Proteins induced by the low-protein diet were grouped according to their biological functions, e.g. cell cycle and differentiation, protein synthesis and chaperoning. CONCLUSIONS/INTERPRETATION Our study offers a possible explanation of the alterations induced by a low-protein diet in islets. It shows that in Wistar rats the intrauterine milieu could program islet gene expression in ways unfavourable for the future of the progeny. This could be important for our understanding of the development of Type 1 and Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- T Sparre
- Steno Diabetes Center, Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Eisenhardt D, Friedrich A, Stollhoff N, Müller U, Kress H, Menzel R. The AmCREB gene is an ortholog of the mammalian CREB/CREM family of transcription factors and encodes several splice variants in the honeybee brain. INSECT MOLECULAR BIOLOGY 2003; 12:373-382. [PMID: 12864917 DOI: 10.1046/j.1365-2583.2003.00421.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The transcription factor CREB (cAMP response element binding protein) is required for the switch from short-term to long-term synaptic plasticity and from short-term to long-term memory. Its activity is regulated by the cAMP-dependent signalling cascade, which has been shown to play a crucial role in the honeybee's long-term memory formation. To elucidate the role of the CREB in honeybee memory formation we analysed a CREB-homologous gene, AmCREB, which is expressed as several transcripts in the honeybee brain. Eight transcripts have been identified (AmCREB 1-8) that are generated by alternate splicing. One antibody generated against a subset of these variants reveals a cytosolic localization in the mushroom body alpha-lobes, the glomeruli of the antennal lobes, the protocerebral lobes, the central complex and in the optical lobes.
Collapse
Affiliation(s)
- D Eisenhardt
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Oomizu S, Boyadjieva N, Sarkar DK. Ethanol and Estradiol Modulate Alternative Splicing of Dopamine D2 Receptor Messenger RNA and Abolish the Inhibitory Action of Bromocriptine on Prolactin Release From the Pituitary Gland. Alcohol Clin Exp Res 2003. [DOI: 10.1111/j.1530-0277.2003.tb04423.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Oomizu S, Boyadjieva N, Sarkar DK. Ethanol and estradiol modulate alternative splicing of dopamine D2 receptor messenger RNA and abolish the inhibitory action of bromocriptine on prolactin release from the pituitary gland. Alcohol Clin Exp Res 2003; 27:975-80. [PMID: 12824819 PMCID: PMC2869286 DOI: 10.1097/01.alc.0000071743.57855.be] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several reports show evidence for the existence of high levels of prolactin (PRL) in alcoholic men and women. Previously we have shown that ethanol increases PRL release both in vivo and in vitro. How ethanol increases PRL release is not well understood. METHODS In this study, we determined the effects of ethanol in the presence and absence of estradiol-17 beta on PRL messenger RNA (mRNA) levels, dopamine D2 receptor mRNA splicing, and the PRL-inhibitory response of a dopaminergic agent, bromocriptine, in the pituitary of Fischer-344 rats and in primary cultures of anterior pituitary cells. Real-time reverse transcriptase-polymerase chain reaction was used for mRNA detection, and radioimmunoassay was used for hormone detection. RESULTS Estradiol and ethanol alone increased PRL mRNA expression in the pituitary gland. Ethanol also potentiated estradiol action on PRL mRNA expression in the pituitary. Determination of the D2 receptor splicing, by determining the changes in the percentage of D2 receptor mRNA expressed as its long form (D2L) and as its short form (D2S), revealed that both ethanol and estradiol altered D2 receptor splicing. Ethanol and estradiol, alone and together, increased the percentage of the D2L receptor but decreased the D2S receptor percentage. Similarly, ethanol and estradiol alone and in combination increased D2L, but decreased the D2S receptor percentage in primary cultures of pituitary cells. Evaluation of bromocriptine's inhibition of PRL release in primary cultures of pituitary cells indicated that ethanol reduced the ability of this D2 receptor agonist to inhibit PRL release. CONCLUSIONS These results confirm estradiol's inhibition of D2 function and provide novel evidence that ethanol, like estradiol, reduces dopamine's ability to inhibit PRL release by modifying alternative splicing of the dopamine D2 receptor in the pituitary.
Collapse
Affiliation(s)
- Souichi Oomizu
- Endocrinology Program, Biomedical Division, Center of Alcohol Studies and Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, 08901, USA
| | | | | |
Collapse
|
26
|
Soret J, Tazi J. Phosphorylation-dependent control of the pre-mRNA splicing machinery. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 31:89-126. [PMID: 12494764 DOI: 10.1007/978-3-662-09728-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- J Soret
- Institut de Génétique Moléculaire, UMR5535 du CNRS, IFR 24, 1919 Route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
27
|
Marfatia KA, Crafton EB, Green DM, Corbett AH. Domain analysis of the Saccharomyces cerevisiae heterogeneous nuclear ribonucleoprotein, Nab2p. Dissecting the requirements for Nab2p-facilitated poly(A) RNA export. J Biol Chem 2003; 278:6731-40. [PMID: 12496292 DOI: 10.1074/jbc.m207571200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mature poly(A) RNA transcripts are exported from the nucleus in complex with heterogeneous nuclear ribonucleoproteins (hnRNPs). Nab2p is an essential Saccharomyces cerevisiae hnRNP protein that interacts with poly(A) RNA and shuttles between the nucleus and cytoplasm. Functional Nab2p is required for export of poly(A) RNA from the nucleus. The Nab2 protein consists of the following four domains: a unique N-terminal domain, a glutamine-rich domain, an arginine-glycine (RGG) domain, and a zinc finger domain. We generated Nab2p deletion mutants to analyze the contribution of each domain to the in vivo function of Nab2p. We first tested whether the deletion mutants could replace the essential NAB2 gene. We then examined the impact of these mutations on Nab2p localization, poly(A) RNA localization, and association of Nab2p with poly(A) RNA. Our analyses revealed that the N-terminal domain is required for nuclear export of both poly(A) RNA and Nab2p. We confirm that the RGG domain is important for Nab2p import in vivo. Finally, the zinc finger domain is critical for the interaction between Nab2p and poly(A) RNA in vivo. Our data support a model where Nab2p associates with poly(A) RNA in the nucleus through the zinc finger domain and facilitates the export of the poly(A) RNA through protein interactions mediated by the N-terminal domain.
Collapse
Affiliation(s)
- Kavita A Marfatia
- Department of Biochemistry, Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
28
|
Green DM, Johnson CP, Hagan H, Corbett AH. The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc Natl Acad Sci U S A 2003; 100:1010-5. [PMID: 12531921 PMCID: PMC298717 DOI: 10.1073/pnas.0336594100] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Indexed: 11/18/2022] Open
Abstract
For mRNA to be transported from the nucleus to the cytoplasm, it must travel from the site of transcription through the nuclear interior to the nuclear pore. Studies in Saccharomyces cerevisiae have suggested a relationship between poly(A) RNA trafficking and myosin-like protein 1 (Mlp1p), a nuclear-pore associated protein that is homologous to the mammalian Tpr (translocated promoter region) protein [Kosova, B., Panté, N., Rollenhagen, C., Podtelejnikov, A., Mann, M., Aebi, U., and Hurt, E. (2000) J. Biol. Chem. 275, 343-350]. We identified a yeast two-hybrid interaction between the C-terminal globular domain of Mlp1p and Nab2p, a shuttling heterogeneous nuclear ribonucleoprotein that is required for mRNA export. Coimmunoprecipitation confirms that Nab2p also interacts with full-length Mlp1p and in vitro binding experiments show that Nab2p binds directly to the C-terminal domain of Mlp1p. In addition, our experiments reveal that the C-terminal domain of Mlp1p is both necessary and sufficient to cause accumulation of poly(A) RNA and Nab2p in the nucleus. We propose a model where Mlp1p acts as a checkpoint at the nuclear pore by interacting with export-competent ribonucleoprotein complexes through its C-terminal globular domain. This study identifies Nab2p as a heterogeneous nuclear ribonucleoprotein found in complex with Mlp1p and begins to delineate the path that mRNA travels from the chromatin to the nuclear pore.
Collapse
Affiliation(s)
- Deanna M Green
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
29
|
Ischemia induces a translocation of the splicing factor tra2-beta 1 and changes alternative splicing patterns in the brain. J Neurosci 2002. [PMID: 12122051 DOI: 10.1523/jneurosci.22-14-05889.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alternative splice-site selection is regulated by the relative concentration of individual members of the serine-arginine family of proteins and heterogeneous nuclear ribonucleoproteins. Most of these proteins accumulate predominantly in the nucleus, and a subset of them shuttles continuously between nucleus and cytosol. We demonstrate that in primary neuronal cultures, a rise in intracellular calcium concentration induced by thapsigargin leads to a translocation of the splicing regulatory protein tra2-beta1 and a consequent change in splice-site selection. To investigate this phenomenon under physiological conditions, we used an ischemia model. Ischemia induced in the brain causes a cytoplasmic accumulation and hyperphosphorylation of tra2-beta1. In addition, several of the proteins binding to tra2-beta1, such as src associated in mitosis 68 and serine/arginine-rich proteins, accumulate in the cytosol. Concomitant with this subcellular relocalization, we observed a change in alternative splice-site usage of the ICH-1 gene. The increased usage of its alternative exons is in agreement with previous studies demonstrating its repression by a high concentration of proteins with serine/arginine-rich domains. Our findings suggest that a change in the calcium concentration associated with ischemia is part of a signaling event, which changes pre-mRNA splicing pathways by causing relocalization of proteins that regulate splice-site selection.
Collapse
|
30
|
Lin YS, Dowling ALS, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG, Thummel KE. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62:162-72. [PMID: 12065767 DOI: 10.1124/mol.62.1.162] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently demonstrated that a variant allele of CYP3A5 (CYP3A5*3) confers low CYP3A5 expression as a result of improper mRNA splicing. In this study, we further evaluated the regulation of CYP3A5 in liver and jejunal mucosa from white donors. For all tissues, high levels of CYP3A5 protein were strongly concordant with the presence of a wild-type allele of the CYP3A5 gene (CYP3A5*1). CYP3A5 represented greater than 50% of total CYP3A content in nearly all of the livers and jejuna that carried the CYP3A5*1 wild-type allele. Overall, CYP3A5 protein content accounted for 31% of the variability in hepatic midazolam hydroxylation activity. Improperly spliced mRNA (SV1-CYP3A5) was found only in tissues containing a CYP3A5*3 allele. Properly spliced CYP3A5 mRNA (wt-CYP3A5) was detected in all tissues, but the median wt-CYP3A5 mRNA was 4-fold higher in CYP3A5*1/*3 livers compared with CYP3A5*3/*3 livers. Differences in wt-CYP3A5 and CYP3A4 mRNA content explained 53 and 51% of the interliver variability in CYP3A5 and CYP3A4 content, respectively. Hepatic CYP3A4 and CYP3A5 contents were not correlated when all livers were compared. However, for CYP3A5*1/*3 livers, levels of the two proteins were strongly correlated (r = 0.93) as were wt-CYP3A5 and CYP3A4 mRNA (r = 0.76). These findings suggest that CYP3A4 and CYP3A5 genes share a common regulatory pathway for constitutive expression, possibly involving conserved elements in the 5'-flanking region.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The availability of the human genomic sequence is changing the way in which biological questions are addressed. Based on the prediction of genes from nucleotide sequences, homologies among their encoded amino acids can be analyzed and used to place them in distinct families. This serves as a first step in building hypotheses for testing the structural and functional properties of previously uncharacterized paralogous genes. As genomic information from more organisms becomes available, these hypotheses can be refined through comparative genomics and phylogenetic studies. Instead of the traditional single-gene approach in endocrine research, we are beginning to gain an understanding of entire mammalian genomes, thus providing the basis to reveal subfamilies and pathways for genes involved in ligand signaling. The present review provides selective examples of postgenomic approaches in the analysis of novel genes involved in hormonal signaling and their chromosomal locations, polymorphisms, splicing variants, differential expression, and physiological function. In the postgenomic era, scientists will be able to move from a gene-by-gene approach to a reconstructionistic one by reading the encyclopedia of life from a global perspective. Eventually, a community-based approach will yield new insights into the complexity of intercellular communications, thereby offering us an understanding of hormonal physiology and pathophysiology.
Collapse
Affiliation(s)
- Chandra P Leo
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | | | |
Collapse
|
32
|
Srebrow A, Blaustein M, Kornblihtt AR. Regulation of fibronectin alternative splicing by a basement membrane-like extracellular matrix. FEBS Lett 2002; 514:285-9. [PMID: 11943167 DOI: 10.1016/s0014-5793(02)02382-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hepatocytes are the source of plasma fibronectin (FN) which lacks the alternatively spliced EDI segment, distinctive of oncofetal FN. When hepatic or other epithelial cells are cultured on plastic, EDI inclusion is triggered. Here we report that EDI inclusion is inhibited when hepatic cells are cultured on a basement membrane-like extracellular matrix (ECM), demonstrating a new role for the ECM in the control of gene expression. The effect is duplicated by collagen IV and laminin but not by collagen I; is not observed with another alternatively spliced FN exon (EDII); and correlates with a decrease in cell proliferation, consistently with high EDI inclusion levels observed in many physiological and pathological proliferative processes.
Collapse
Affiliation(s)
- Anabella Srebrow
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II (C1428EHA), Buenos Aires, Argentina.
| | | | | |
Collapse
|
33
|
Green DM, Marfatia KA, Crafton EB, Zhang X, Cheng X, Corbett AH. Nab2p is required for poly(A) RNA export in Saccharomyces cerevisiae and is regulated by arginine methylation via Hmt1p. J Biol Chem 2002; 277:7752-60. [PMID: 11779864 DOI: 10.1074/jbc.m110053200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
From transcription to translation, mRNA is complexed with heterogeneous nuclear ribonucleoproteins (hnRNP proteins) that mediate mRNA processing, export from the nucleus, and delivery into the cytoplasm. Although the mechanism is unknown, export of mature mRNA from the nucleus is a critical regulatory step in gene expression. Analyses of hnRNP proteins have shown that many of these proteins are required for this essential cellular process. In this study, we characterize the Saccharomyces cerevisiae Nab2 protein, which was first identified as a poly(A) RNA-binding protein (Anderson, J. T., Wilson, S. M., Datar, K. V., and Swanson, M. S. (1993) Mol. Cell. Biol. 13, 2730-2741). Our work indicates that poly(A) RNA export from the nucleus is dependent upon a functional Nab2 protein; correspondingly, export of Nab2p from the nucleus is dependent upon ongoing RNA polymerase II transcription. Furthermore, we show that Nab2p is modified within its RGG domain by the type I protein-arginine methyltransferase, Hmt1p. Our experiments demonstrate that arginine methylation is required for the export of Nab2p from the nucleus and therefore establish an in vivo effect of this modification. Overall, these experiments provide evidence that Nab2p is an hnRNP protein that is required for poly(A) RNA export and whose export from the nucleus is regulated by Hmt1p.
Collapse
Affiliation(s)
- Deanna M Green
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|