1
|
Cole MA, Ranjan N, Gerber GF, Pan XZ, Flores-Guerrero D, McNamara G, Chaturvedi S, Sperati CJ, McCrae KR, Brodsky RA. Complement biosensors identify a classical pathway stimulus in complement-mediated thrombotic microangiopathy. Blood 2024; 144:2528-2545. [PMID: 39357054 DOI: 10.1182/blood.2024025850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT Complement-mediated thrombotic microangiopathy (CM-TMA) or hemolytic uremic syndrome, previously identified as atypical hemolytic uremic syndrome, is a TMA characterized by germ line variants or acquired antibodies to complement proteins and regulators. Building upon our prior experience with the modified Ham (mHam) assay for ex vivo diagnosis of complementopathies, we have developed an array of cell-based complement "biosensors" by selective removal of complement regulatory proteins (CD55 and CD59, CD46, or a combination thereof) in an autonomously bioluminescent HEK293 cell line. These biosensors can be used as a sensitive method for diagnosing CM-TMA and monitoring therapeutic complement blockade. Using specific complement pathway inhibitors, this model identifies immunoglobulin M (IgM)-driven classical pathway stimulus during both acute disease and in many patients during clinical remission. This provides a potential explanation for ∼50% of patients with CM-TMA who lack an alternative pathway "driving" variant and suggests at least a subset of CM-TMA is characterized by a breakdown of IgM immunologic tolerance.
Collapse
Affiliation(s)
- Michael A Cole
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Nikhil Ranjan
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Gloria F Gerber
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Xiang-Zuo Pan
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - George McNamara
- Ross Fluorescence Imaging Center, Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shruti Chaturvedi
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - C John Sperati
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Keith R McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Robert A Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
2
|
Li J, Wang K, Starodubtseva MN, Nadyrov E, Kapron CM, Hoh J, Liu J. Complement factor H in molecular regulation of angiogenesis. MEDICAL REVIEW (2021) 2024; 4:452-466. [PMID: 39444793 PMCID: PMC11495524 DOI: 10.1515/mr-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 10/25/2024]
Abstract
Angiogenesis, the process of formation of new capillaries from existing blood vessels, is required for multiple physiological and pathological processes. Complement factor H (CFH) is a plasma protein that inhibits the alternative pathway of the complement system. Loss of CFH enhances the alternative pathway and increases complement activation fragments with pro-angiogenic capacity, including complement 3a, complement 5a, and membrane attack complex. CFH protein contains binding sites for C-reactive protein, malondialdehyde, and endothelial heparan sulfates. Dysfunction of CFH prevents its interaction with these molecules and initiates pro-angiogenic events. Mutations in the CFH gene have been found in patients with age-related macular degeneration characterized by choroidal neovascularization. The Cfh-deficient mice show an increase in angiogenesis, which is decreased by administration of recombinant CFH protein. In this review, we summarize the molecular mechanisms of the anti-angiogenic effects of CFH and the regulatory mechanisms of CFH expression. The therapeutic potential of recombinant CFH protein in angiogenesis-related diseases has also been discussed.
Collapse
Affiliation(s)
- Jiang Li
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Kaili Wang
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | | | - Josephine Hoh
- Department of Ophthalmology, Yale School of Medicine, New Haven, CT, USA
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Gomel State Medical University, Gomel, Belarus
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Cole MA, Ranjan N, Gerber GF, Pan XZ, Flores-Guerrero D, Chaturvedi S, Sperati CJ, McCrae KR, Brodsky RA. Complement Biosensors Identify a Classical Pathway Stimulus in Complement-Mediated Hemolytic Uremic Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596475. [PMID: 38854038 PMCID: PMC11160691 DOI: 10.1101/2024.05.29.596475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Complement-mediated hemolytic uremic syndrome (CM-HUS) is a thrombotic microangiopathy characterized by germline variants or acquired antibodies to complement proteins and regulators. Building upon our prior experience with the modified Ham (mHam) assay for ex vivo diagnosis of complementopathies, we have developed an array of cell-based complement "biosensors'' by selective removal of complement regulatory proteins (CD55 and CD59, CD46, or a combination thereof) in an autonomously bioluminescent HEK293 cell line. These biosensors can be used as a sensitive method for diagnosing CM-HUS and monitoring therapeutic complement blockade. Using specific complement pathway inhibitors, this model identifies IgM-driven classical pathway stimulus during both acute disease and in many patients during clinical remission. This provides a potential explanation for ~50% of CM-HUS patients who lack an alternative pathway "driving" variant and suggests at least a subset of CM-HUS is characterized by a breakdown of IgM immunologic tolerance. Key Points CM-HUS has a CP stimulus driven by polyreactive IgM, addressing the mystery of why 40% of CM-HUS lack complement specific variantsComplement biosensors and the bioluminescent mHam can be used to aid in diagnosis of CM-HUS and monitor complement inhibitor therapy.
Collapse
|
4
|
Kanbay M, Copur S, Yilmaz ZY, Baydar DE, Bilge I, Susal C, Kocak B, Ortiz A. The role of anticomplement therapy in the management of the kidney allograft. Clin Transplant 2024; 38:e15277. [PMID: 38485664 DOI: 10.1111/ctr.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
As the number of patients living with kidney failure grows, the need also grows for kidney transplantation, the gold standard kidney replacement therapy that provides a survival advantage. This may result in an increased rate of transplantation from HLA-mismatched donors that increases the rate of antibody-mediated rejection (AMR), which already is the leading cause of allograft failure. Plasmapheresis, intravenous immunoglobulin therapy, anti-CD20 therapies (i.e., rituximab), bortezomib and splenectomy have been used over the years to treat AMR as well as to prevent AMR in high-risk sensitized kidney transplant recipients. Eculizumab and ravulizumab are monoclonal antibodies targeting the C5 protein of the complement pathway and part of the expanding field of anticomplement therapies, which is not limited to kidney transplant recipients, and also includes complement-mediated microangiopathic hemolytic anemia, paroxysmal nocturnal hemoglobinuria, and ANCA-vasculitis. In this narrative review, we summarize the current knowledge concerning the pathophysiological background and use of anti-C5 strategies (eculizumab and ravulizumab) and C1-esterase inhibitor in AMR, either to prevent AMR in high-risk desensitized patients or to treat AMR as first-line or rescue therapy and also to treat de novo thrombotic microangiopathy in kidney transplant recipients.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Zeynep Y Yilmaz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Dilek Ertoy Baydar
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Ilmay Bilge
- Department of Pediatrics, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Caner Susal
- Transplant Immunology Research Center of Excellence, Koc University Hospital, Istanbul, Turkey
| | - Burak Kocak
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| |
Collapse
|
5
|
Mack KL, Talbott HE, Griffin MF, Parker JBL, Guardino NJ, Spielman AF, Davitt MF, Mascharak S, Downer M, Morgan A, Valencia C, Akras D, Berger MJ, Wan DC, Fraser HB, Longaker MT. Allele-specific expression reveals genetic drivers of tissue regeneration in mice. Cell Stem Cell 2023; 30:1368-1381.e6. [PMID: 37714154 PMCID: PMC10592051 DOI: 10.1016/j.stem.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
In adult mammals, skin wounds typically heal by scarring rather than through regeneration. In contrast, "super-healer" Murphy Roths Large (MRL) mice have the unusual ability to regenerate ear punch wounds; however, the molecular basis for this regeneration remains elusive. Here, in hybrid crosses between MRL and non-regenerating mice, we used allele-specific gene expression to identify cis-regulatory variation associated with ear regeneration. Analyzing three major cell populations (immune, fibroblast, and endothelial), we found that genes with cis-regulatory differences specifically in fibroblasts were associated with wound-healing pathways and also co-localized with quantitative trait loci for ear wound-healing. Ectopic treatment with one of these proteins, complement factor H (CFH), accelerated wound repair and induced regeneration in typically fibrotic wounds. Through single-cell RNA sequencing (RNA-seq), we observed that CFH treatment dramatically reduced immune cell recruitment to wounds, suggesting a potential mechanism for CFH's effect. Overall, our results provide insights into the molecular drivers of regeneration with potential clinical implications.
Collapse
Affiliation(s)
- Katya L Mack
- Stanford University, Department of Biology, Stanford, CA, USA
| | - Heather E Talbott
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Michelle F Griffin
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Jennifer B L Parker
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Nicholas J Guardino
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Amanda F Spielman
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Michael F Davitt
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Shamik Mascharak
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Mauricio Downer
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Annah Morgan
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Caleb Valencia
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Deena Akras
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Mark J Berger
- Stanford University, Department of Computer Science, Stanford, CA 94305, USA
| | - Derrick C Wan
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Hunter B Fraser
- Stanford University, Department of Biology, Stanford, CA, USA.
| | - Michael T Longaker
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Xu F, Yu EYW, Cai X, Yue L, Jing LP, Liang X, Fu Y, Miao Z, Yang M, Shuai M, Gou W, Xiao C, Xue Z, Xie Y, Li S, Lu S, Shi M, Wang X, Hu W, Langenberg C, Yang J, Chen YM, Guo T, Zheng JS. Genome-wide genotype-serum proteome mapping provides insights into the cross-ancestry differences in cardiometabolic disease susceptibility. Nat Commun 2023; 14:896. [PMID: 36797296 PMCID: PMC9935862 DOI: 10.1038/s41467-023-36491-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Identification of protein quantitative trait loci (pQTL) helps understand the underlying mechanisms of diseases and discover promising targets for pharmacological intervention. For most important class of drug targets, genetic evidence needs to be generalizable to diverse populations. Given that the majority of the previous studies were conducted in European ancestry populations, little is known about the protein-associated genetic variants in East Asians. Based on data-independent acquisition mass spectrometry technique, we conduct genome-wide association analyses for 304 unique proteins in 2,958 Han Chinese participants. We identify 195 genetic variant-protein associations. Colocalization and Mendelian randomization analyses highlight 60 gene-protein-phenotype associations, 45 of which (75%) have not been prioritized in Europeans previously. Further cross-ancestry analyses uncover key proteins that contributed to the differences in the obesity-induced diabetes and coronary artery disease susceptibility. These findings provide novel druggable proteins as well as a unique resource for the trans-ancestry evaluation of protein-targeted drug discovery.
Collapse
Affiliation(s)
- Fengzhe Xu
- School of Life Sciences, Fudan University, Shanghai, China
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
| | - Evan Yi-Wen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, 210009, Nanjing, China
| | - Xue Cai
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Liang Yue
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Li-Peng Jing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, 510275, Guangzhou, China
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, 73000, Lanzhou, China
| | - Xinxiu Liang
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Yuanqing Fu
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Zelei Miao
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Min Yang
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Menglei Shuai
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Wanglong Gou
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Congmei Xiao
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Zhangzhi Xue
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Yuting Xie
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Sainan Li
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Sha Lu
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Meiqi Shi
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Xuhong Wang
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Wensheng Hu
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Jian Yang
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Tiannan Guo
- School of Life Sciences, Westlake University, 310024, Hangzhou, China.
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China.
| | - Ju-Sheng Zheng
- School of Life Sciences, Westlake University, 310024, Hangzhou, China.
- Westlake Intelligent Biomarker Discovery (iMarker) Lab, Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China.
- Research Center for Industries of the Future and Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 310030, Hangzhou, China.
| |
Collapse
|
7
|
Thurman JM, Harrison RA. The susceptibility of the kidney to alternative pathway activation-A hypothesis. Immunol Rev 2023; 313:327-338. [PMID: 36369971 DOI: 10.1111/imr.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glomerulus is often the prime target of dysregulated alternative pathway (AP) activation. In particular, AP activation is the key driver of two severe kidney diseases: atypical hemolytic uremic syndrome and C3 glomerulopathy. Both conditions are associated with a variety of predisposing molecular defects in AP regulation, such as genetic variants in complement regulators, autoantibodies targeting AP proteins, or autoantibodies that stabilize the AP convertases (C3- and C5-activating enzymes). It is noteworthy that these are systemic AP defects, yet in both diseases pathologic complement activation primarily affects the kidneys. In particular, AP activation is often limited to the glomerular capillaries. This tropism of AP-mediated inflammation for the glomerulus points to a unique interaction between AP proteins in plasma and this particular anatomic structure. In this review, we discuss the pre-clinical and clinical data linking the molecular causes of aberrant control of the AP with activation in the glomerulus, and the possible causes of this tropism. Based on these data, we propose a model for why the kidney is so uniquely and frequently targeted in patients with AP defects. Finally, we discuss possible strategies for preventing pathologic AP activation in the kidney.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
8
|
Kronbichler A, Bajema I, Geetha D, Säemann M. Novel aspects in the pathophysiology and diagnosis of glomerular diseases. Ann Rheum Dis 2022; 82:585-593. [PMID: 36535746 DOI: 10.1136/ard-2022-222495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Immune deposits/complexes are detected in a multitude of tissues in autoimmune disorders, but no organ has attracted as much attention as the kidney. Several kidney diseases are characterised by the presence of specific configurations of such deposits, and many of them are under a 'shared care' between rheumatologists and nephrologists. This review focuses on five different diseases commonly encountered in rheumatological and nephrological practice, namely IgA vasculitis, lupus nephritis, cryoglobulinaemia, anti-glomerular basement membrane disease and anti-neutrophil cytoplasm-antibody glomerulonephritis. They differ in disease aetiopathogenesis, but also the potential speed of kidney function decline, the responsiveness to immunosuppression/immunomodulation and the deposition of immune deposits/complexes. To date, it remains unclear if deposits are causing a specific disease or aim to abrogate inflammatory cascades responsible for tissue damage, such as neutrophil extracellular traps or the complement system. In principle, immunosuppressive therapies have not been developed to tackle immune deposits/complexes, and repeated kidney biopsy studies found persistence of deposits despite reduction of active inflammation, again highlighting the uncertainty about their involvement in tissue damage. In these studies, a progression of active lesions to chronic changes such as glomerulosclerosis was frequently reported. Novel therapeutic approaches aim to mitigate these changes more efficiently and rapidly. Several new agents, such as avacopan, an oral C5aR1 inhibitor, or imlifidase, that dissolves IgG within minutes, are more specifically reducing inflammatory cascades in the kidney and repeat tissue sampling might help to understand their impact on immune cell deposition and finally kidney function recovery and potential impact of immune complexes/deposits.
Collapse
Affiliation(s)
- Andreas Kronbichler
- Department of Medicine, University of Cambridge, Cambridge, UK .,Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge, UK
| | - Ingeborg Bajema
- Department of Pathology, Leiden University Medical Center, Leiden and Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Duvuru Geetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcus Säemann
- 6th Medical Department, Nephrology and Dialysis, Clinic Ottakring, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
9
|
Macrophage Depletion Reduces Disease Pathology in Factor H-Dependent Immune Complex-Mediated Glomerulonephritis. J Immunol Res 2022; 2022:1737419. [PMID: 35097132 PMCID: PMC8794693 DOI: 10.1155/2022/1737419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/05/2022] Open
Abstract
Complement factor H (FH) is a key regulator of the alternative pathway of complement, in man and mouse. Earlier, our studies revealed that the absence of FH causes the C57BL6 mouse to become susceptible to chronic serum sickness (CSS) along with an increase in the renal infiltration of macrophages compared to controls. To understand if the increased recruitment of macrophages (Mϕs) to the kidney was driving inflammation and propagating injury, we examined the effect of Mϕ depletion with clodronate in FH knockout mice with CSS. Eight-week-old FHKO mice were treated with apoferritin (4 mg/mouse) for 5 wks and with either vehicle (PBS) or clodronate (50 mg/kg ip, 3 times/wk for the last 3 weeks). The administration of clodronate decreased monocytes and Mϕs in the kidneys by >80%. Kidney function assessed by BUN and albumin remained closer to normal on depletion of Mϕs. Clodronate treatment prevented the alteration in cytokines, TNFα and IL-6, and increase in gene expression of connective tissue growth factor (CTGF), TGFβ-1, matrix metalloproteinase-9 (MMP9), fibronectin, laminin, and collagen in FHKO mice with CSS (P < 0.05). Clodronate treatment led to relative protection from immune complex- (IC-) mediated disease pathology during CSS as assessed by the significantly reduced glomerular pathology (GN) and extracellular matrix. Our results suggest that complement activation is one of the mechanism that regulates the macrophage landscape and thereby fibrosis. The exact mechanism remains to be deciphered. In brief, our data shows that Mϕs play a critical role in FH-dependent ICGN and Mϕ depletion reduces disease progression.
Collapse
|
10
|
Local complement factor H protects kidney endothelial cell structure and function. Kidney Int 2021; 100:824-836. [PMID: 34139209 DOI: 10.1016/j.kint.2021.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/09/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022]
Abstract
Factor H (FH) is a critical regulator of the alternative complement pathway and its deficiency or mutation underlie kidney diseases such as dense deposit disease. Since vascular dysfunction is an important facet of kidney disease, maintaining optimal function of the lining endothelial cells is important for vascular health. To investigate the molecular mechanisms that are regulated by FH in endothelial cells, FH deficient and sufficient mouse kidney endothelial cell cultures were established. Endothelial FH deficiency resulted in cytoskeletal remodeling, increased angiogenic potential, loss of cellular layer integrity and increased cell proliferation. FH reconstitution prevented these FH-dependent proliferative changes. Respiratory flux analysis showed reduced basal mitochondrial respiration, ATP production and maximal respiratory capacity in FH deficient endothelial cells, while proton leak remained unaltered. Similar changes were observed in FH deficient human glomerular endothelial cells indicating the translational potential of these studies. Gene expression analysis revealed that the FH-dependent gene changes in mouse kidney endothelial cells include significant upregulation of genes involved in inflammation and the complement system. The transcription factor nuclear factor-kB, that regulates many biological processes, was translocated from the cytoplasm to the nucleus in the absence of FH. Thus, our studies show the functional relevance of intrinsic FH in kidney endothelial cells in man and mouse.
Collapse
|
11
|
Jacob A, Nina Peralta L, Pegues D, Okamura K, Chang A, McSkimming D, Alexander J. Exercise alleviates symptoms of CNS lupus. Brain Res 2021; 1765:147478. [PMID: 33852888 DOI: 10.1016/j.brainres.2021.147478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
Systemic lupus erythematosus (lupus) is a global health problem where 20-80% patients display cognitive problems and central nervous system (CNS) dysfunction. Early diagnosis and treatment of lupus remains a clinical challenge. Exercise improves experimental lupus nephritis. However, the effects of exercise in CNS lupus remains unknown. This study investigates the effects of controlled exercise (CE) that consisted of treadmill walking (5 m/min for 10 min everyday) on experimental CNS lupus using the well-established mouse model, MRL/lpr mice. The MRL/lpr mice were subjected to CE from 8 weeks (preclinical) to 16 weeks (disease). Multiplex gene expression analysis revealed significant upregulation of genes involved in neurite growth, proliferation and synaptic plasticity, and a decrease in inflammatory genes including complement proteins, NFkB, chemokines and cytokines in exercised mice compared to the unmanipulated, age-matched controls. The loss of blood-brain barrier integrity, astrogliosis and edema seen in MRL/lpr mice were reduced with exercise. Exercised mice performed better in behavioral assessments such as open field, nesting, and tail suspension test. For the first time our results show that a supervised, well-regulated and controlled exercise regimen alleviates CNS lupus and could potentially serve as an intervention strategy to improve the quality of life. Exercise could also serve as an adjunct therapy for lupus and other neuroinflammatory diseases, thereby reducing the need for the current therapies with toxic side effects. The validity of the findings and a safe exercise regimen needs to be established by additional studies in patients.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA
| | | | - Deja Pegues
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA
| | - Kazuki Okamura
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Jessy Alexander
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA.
| |
Collapse
|
12
|
Wu J, Hu Z, Wang Y, Hu D, Yang Q, Li Y, Dai W, Zhu F, Yang J, Wang M, Zhu H, Liu L, He X, Han M, Yao Y, Pei G, Zeng R, Xu G. Severe glomerular C3 deposition indicates severe renal lesions and a poor prognosis in patients with immunoglobulin A nephropathy. Histopathology 2021; 78:882-895. [PMID: 33336446 DOI: 10.1111/his.14318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/23/2020] [Accepted: 12/16/2020] [Indexed: 01/04/2023]
Abstract
AIMS Glomerular complement 3 (C3) deposition is often observed in renal biopsies of patients with IgA nephropathy (IgAN); however, the relationship between the intensity of C3 deposition and the long-term prognosis of IgAN has rarely been reported. In this retrospective study, we aimed to evaluate the prognostic value of glomerular C3 deposition for IgAN progression. METHODS AND RESULTS From June 2009 to June 2010, a total of 136 adult patients with IgAN were enrolled in the study. According to the intensity of glomerular C3 deposition, patients were divided into a glomerular C3high group (34 patients) and a glomerular C3low group (102 patients). The levels of clinical parameters, glomerular immune complexes, histopathological features, and serum cytokines of the two groups were compared. On the basis of an average of 105 months of follow-up, the predictive value of glomerular C3 deposition for IgAN progression was also investigated. Patients in the C3high group had more severe glomerular IgA, IgG, IgM, and complement factor H deposition, a higher percentage of mesangial hypercellularity (M1), and higher levels of segmental glomerulosclerosis (S1), tubular atrophy/interstitial fibrosis (T2), and crescents (C2) than those in the C3low group. Renal biopsies in the C3high group showed higher densities of interstitial inflammatory cells and higher levels of serum interferon-γ than those in the C3low group. Multivariate Cox regression analysis revealed that a higher intensity of glomerular C3 deposition remained as an independent predictor of serum creatinine doubling and end-stage renal disease. CONCLUSIONS A high intensity of glomerular C3 deposition is associated with the severity of renal lesions, and predicts long-term poor renal survival for IgAN patients.
Collapse
Affiliation(s)
- Jianliang Wu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danni Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueqiang Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Dai
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liu Liu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofeng He
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Thurman JM. Complement and the Kidney: An Overview. Adv Chronic Kidney Dis 2020; 27:86-94. [PMID: 32553250 DOI: 10.1053/j.ackd.2019.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
The complement cascade was first recognized as a downstream effector system of antibody-mediated cytotoxicity. Consistent with this view, it was discovered in the 1960s that complement is activated in the glomeruli of patients with immune complex glomerulonephritis. More recently, research has shown that complement system has many additional functions relating to regulation of the immune response, homeostasis, and metabolism. It has also become clear that the complement system is important to the pathogenesis of many non-immune complex mediated kidney diseases. In fact, in atypical hemolytic uremic syndrome and C3 glomerulopathy, uncontrolled complement activation is the primary driver of disease. Complement activation generates multiple pro-inflammatory fragments, and if not properly controlled it can cause fulminant tissue injury. Furthermore, the mechanisms of complement activation and complement-mediated injury vary from disease to disease. Many new drugs that target the complement cascade are in clinical development, so it is important to fully understand the biology of the complement system and its role in disease.
Collapse
|
14
|
Thurman JM, Panzer SE, Le Quintrec M. The role of complement in antibody mediated transplant rejection. Mol Immunol 2019; 112:240-246. [PMID: 31195225 PMCID: PMC6646053 DOI: 10.1016/j.molimm.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 12/26/2022]
Abstract
Antibody mediated transplant rejection (AMR) is a major cause of long-term allograft failure, and currently available treatments are of limited efficacy for treating the disease. AMR is caused by donor specific antibodies (DSA) that bind to antigens within the transplanted organ. DSA usually activate the classical pathway of complement within the allograft, and complement activation is believed to be an important cause of tissue injury in AMR. Several new clinical assays may improve our ability to identify patients at risk of AMR. Complement inhibitory drugs have also been tested in selected patients and in small series. Better understanding of the role of complement activation in the pathogenesis of AMR will likely improve our ability to diagnose the disease and to develop novel treatments.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Sarah E Panzer
- Department of Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Moglie Le Quintrec
- Department of Nephrology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| |
Collapse
|
15
|
Possible role of complement factor H in podocytes in clearing glomerular subendothelial immune complex deposits. Sci Rep 2019; 9:7857. [PMID: 31133737 PMCID: PMC6536504 DOI: 10.1038/s41598-019-44380-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Podocytes are known to express various complement factors including complement factor H (CFH) and to promote the removal of both subendothelial and subepithelial immune complex (IC) deposits. Using podocyte-selective injury model NEP25 mice and an IgG3-producing hybridoma clone 2B11.3 established by MRL/lpr mice, the present study investigated the role of podocyte complement regulation in only subendothelial IC deposition. In immunotoxin (LMB2) induced fatal podocyte injury (NEP25/LMB2) at day 12, glomerular CFH and C3a receptor (C3aR) expression was decreased as compared with NEP25/vehicle mice. In contrast, in sublytic podocyte injury 5 days after LMB2, glomerular CFH and C3aR expression was increased as compared with NEP25/vehicle mice. Intra-abdominal injection of 2B11.3 hybridoma to NEP25 mice (NEP25/hybridoma) caused IC deposition limited to the subendothelial area associated with unaltered CFH expression. NEP25/hybridoma mice with sublytic podocyte injury (NEP25/hybridoma/LMB2) resulted in increased glomerular CFH expression (1.7-fold) accompanied by decreased subendothelial IC deposition, as compared with NEP25/hybridoma. Immunostaining revealed that CFH was dominantly expressed in podocytes of NEP25/hybridoma/LMB2. In addition, puromycin-induced sublytic podocyte injury promoted CFH expression in immortalized mouse podocytes in vitro. These results suggest that in response to sublytic levels of injury, podocyte induced CFH expression locally and clearance of subendothelial IC deposits.
Collapse
|
16
|
Alexander JJ, Sankaran JS, Seldeen KL, Thiyagarajan R, Jacob A, Quigg RJ, Troen BR, Judex S. Absence of complement factor H alters bone architecture and dynamics. Immunobiology 2018; 223:761-771. [DOI: 10.1016/j.imbio.2018.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/22/2018] [Accepted: 07/28/2018] [Indexed: 01/03/2023]
|
17
|
Goetz L, Laskowski J, Renner B, Pickering MC, Kulik L, Klawitter J, Stites E, Christians U, van der Vlag J, Ravichandran K, Holers VM, Thurman JM. Complement factor H protects mice from ischemic acute kidney injury but is not critical for controlling complement activation by glomerular IgM. Eur J Immunol 2018; 48:791-802. [PMID: 29389016 DOI: 10.1002/eji.201747240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/21/2017] [Accepted: 01/26/2018] [Indexed: 12/28/2022]
Abstract
Natural IgM binds to glomerular epitopes in several progressive kidney diseases. Previous work has shown that IgM also binds within the glomerulus after ischemia/reperfusion (I/R) but does not fully activate the complement system. Factor H is a circulating complement regulatory protein, and congenital or acquired deficiency of factor H is a strong risk factor for several types of kidney disease. We hypothesized that factor H controls complement activation by IgM in the kidney after I/R, and that heterozygous factor H deficiency would permit IgM-mediated complement activation and injury at this location. We found that mice with targeted heterozygous deletion of the gene for factor H developed more severe kidney injury after I/R than wild-type controls, as expected, but that complement activation within the glomeruli remained well controlled. Furthermore, mice that are unable to generate soluble IgM were not protected from renal I/R, even in the setting of heterozygous factor H deficiency. These results demonstrate that factor H is important for limiting injury in the kidney after I/R, but it is not critical for controlling complement activation by immunoglobulin within the glomerulus in this setting. IgM binds to glomerular epitopes after I/R, but it is not a significant source of injury.
Collapse
Affiliation(s)
- Lindsey Goetz
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer Laskowski
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brandon Renner
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Liudmila Kulik
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jelena Klawitter
- Department of Anesthesia, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erik Stites
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Uwe Christians
- Department of Anesthesia, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
18
|
Hoh Kam J, Morgan JE, Jeffery G. Aged complement factor H knockout mice kept in a clean barriered environment have reduced retinal pathology. Exp Eye Res 2016; 149:116-125. [PMID: 27397653 DOI: 10.1016/j.exer.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/14/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
Age-related macular degeneration (AMD) is the largest cause of visual loss in those over 60 years in the West and is a condition increasing in prevalence. Many diseases result from genetic/environmental interactions and 50% of AMD cases have an association with polymorphisms of the complement system including complement factor H. Here we explore interactions between genetic predisposition and environmental conditions in triggering retinal pathology in two groups of aged complement factor H knock out (Cfh(-/-)) mice. Mice were maintained over 9 months in either a conventional open environment or a barriered pathogen free environment. Open environment Cfh(-/-) mice had significant increases in subretinal macrophage numbers, inflammatory and stress responses and reduced photoreceptor numbers over mice kept in a pathogen free environment. Hence, environmental factors can drive retinal disease in these mice when linked to complement deficits impairing immune function. Both groups of mice had similar levels of retinal amyloid beta accumulation. Consequently there is no direct link between this and inflammation in Cfh(-/-) mice.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, UK
| | - James E Morgan
- School of Optometry and Visual Science, Cardiff University, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, UK.
| |
Collapse
|
19
|
Alfandary H, Davidovits M. Novel factor H mutation associated with familial membranoproliferative glomerulonephritis type I. Pediatr Nephrol 2015; 30:2129-34. [PMID: 26289290 DOI: 10.1007/s00467-015-3166-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Idiopathic membranoproliferative glomerulonephritis (MPGN) is a rare disease, accounting for 3-5% of all cases of primary nephritic syndrome. We report an uncommon case of familial MPGN type I associated with a new mutation in the complement factor H gene (CFH). METHODS Clinical data were collected on three siblings with known factor H deficiency who presented with MPGN. All underwent immunological and genetic assays. Their parents and ten healthy adults served as controls for the DNA analysis. RESULTS All three children presented with recurrent episodes of hematuria and proteinuria, the youngest starting at age 5 months. One child currently has nephrotic syndrome and end-stage renal disease. All of the children were found to be homozygous for a C.262C > A (p.Pro88Thr) mutation in exon 3 of CFH that is associated with a quantitative/functional deficiency of factor H. The parents of the three siblings were found to be heterozygous for the mutation. None of the controls carried this mutation. CONCLUSIONS Different mutations in CFH may be responsible for different glomerular diseases, including MPGN type I. A modifier gene or an environmental trigger may contribute to this phenotype-genotype discrepancy. Understanding the role of the alternative complement pathway in this disease would allow us to offer these patients more targeted therapy, including a clinical trial of eculizumab.
Collapse
Affiliation(s)
- Hadas Alfandary
- Institute of Nephrology, Schneider Children's Medical Center of Israel, Petach, Tikva, Israel, 49202.
| | - Miriam Davidovits
- Institute of Nephrology, Schneider Children's Medical Center of Israel, Petach, Tikva, Israel, 49202.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
|
21
|
Abrogation of immune complex glomerulonephritis by native carboxypeptidase and pharmacological antagonism of the C5a receptor. Cell Mol Immunol 2015; 13:651-7. [PMID: 26166765 PMCID: PMC5037280 DOI: 10.1038/cmi.2015.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
Activation of complement generates C5a which leads to signaling through C5aR1. This is tightly controlled, including by the plasma proteins factor H (FH) and carboxypeptidase N. Here we studied a chronic serum sickness (CSS) model of glomerulonephritis (GN) in which there is an active humoral immune response, formation of glomerular immune complexes (ICs), and resulting glomerular inflammation. The antibody response, glomerular IC deposition, the degree of GN, and consequent renal functional insufficiency in CSS were all worse in FH−/− mice compared to wild-type FH+/+ animals. This was ameliorated in the former by giving a C5aR1 antagonist for the final 3 weeks of the 5-week protocol. In contrast, blocking CP-mediated inactivation of C5a increased these disease measures. Thus, complement regulation by both plasma FH and CP to limit the quantity of active C5a is important in conditions where the humoral immune response is directed to a continuously present foreign antigen. Signaling through C5aR1 enhances the humoral immune response as well as the inflammatory response to ICs that have formed in glomeruli. Both effects are relevant even after disease has begun. Thus, pharmacological targeting of C5a in IC-mediated GN has potential clinical relevance.
Collapse
|
22
|
Alexander JJ, Chaves LD, Chang A, Jacob A, Ritchie M, Quigg RJ. CD11b is protective in complement-mediated immune complex glomerulonephritis. Kidney Int 2015; 87:930-9. [PMID: 25565310 PMCID: PMC4424815 DOI: 10.1038/ki.2014.373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022]
Abstract
In chronic serum sickness, glomerular immune complexes form, yet C57BL/6 mice do not develop glomerulonephritis unless complement factor H (CfH) is absent, indicating the relevance of complement regulation. Complement receptor 3 (CD11b) and Fcγ receptors on leukocytes, and CfH on platelets, can bind immune complexes. Here we induced immune complex–mediated glomerulonephritis in CfH−/− mice chimeric for wild-type, CfH−/−, CD11b−/−, or FcRγ−/− bone marrow stem cells. Glomerulonephritis was worse in CD11b−/− chimeras compared with all others, whereas disease in FcRγ−/− and wild-type chimeras was comparable. Disease tracked strongly with humoral immune responses, but not glomerular immune complex deposits. Interstitial inflammation with M1 macrophages strongly correlated with glomerulonephritis scores. CD11b−/− chimeras had significantly more M1 macrophages and CD4+ T cells. The renal dendritic cell populations originating from bone marrow–derived CD11c+ cells were similar in all experimental groups. CD11b+ cells bearing colony-stimulating factor 1 receptor were present in kidneys, including CD11b−/− chimeras; these cells correlated negatively with glomerulonephritis scores. Thus, experimental immune complex–mediated glomerulonephritis is associated with accumulation of M1 macrophages and CD4+ T cells in kidneys and functional renal insufficiency. Hence, CD11b on mononuclear cells is instrumental in generating an anti-inflammatory response in the inflamed kidney.
Collapse
Affiliation(s)
- Jessy J Alexander
- Division of Nephrology, Department of Medicine, Clinical and Translational Research Center, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Lee D Chaves
- Division of Nephrology, Department of Medicine, Clinical and Translational Research Center, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Alexander Jacob
- Division of Nephrology, Department of Medicine, Clinical and Translational Research Center, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Maria Ritchie
- Division of Nephrology, Department of Medicine, Clinical and Translational Research Center, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Richard J Quigg
- Division of Nephrology, Department of Medicine, Clinical and Translational Research Center, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| |
Collapse
|
23
|
Abstract
Activation of the complement system is tightly regulated by plasma and cell-associated complement regulatory proteins (CRPs), such as factor H (fH), decay-accelerating factor, and membrane cofactor protein. Animal models of disease have provided considerable insights into the important roles for CRPs in the kidney. Mice deficient in fH have excessive fluid phase C3 activation and inactivation, leading to deposition of inactivated C3b in glomerular capillary walls (GCW), comparable with dense deposit disease. In contrast, when fH lacks C-terminal surface targeting regions, local activation on the GCW leads to a disease reminiscent of thrombotic microangiopathy. The uniquely rodent protein, CR1-related y (Crry), has features analogous to human membrane cofactor protein. Defective Crry leads to unrestricted alternative pathway activation in the tubulointerstitium, resulting in pathologic features ranging from thrombotic microangiopathy (TMA), acute kidney injury, and tubulointerstitium nephritis. In the presence of initiators of the classic or lectin pathways, commonly in the form of immune complexes in human glomerular diseases, complement regulation is stressed, with the potential for recruitment of the spontaneously active alternative pathway. The threshold for this activation is set by CRPs; pathology is more likely when complement regulation is defective. Within the endocapillary region of the GCW, fH is key, while decay-accelerating factor and Crry are protective on mesangial cells and podocytes. Arguably, acquired alterations in these CRPs is a more common event, extending from pathologic states of cellular injury or production of inhibitory antibodies, to physiological fine tuning of the adaptive immune response.
Collapse
|
24
|
Bonomo JA, Palmer ND, Hicks PJ, Lea JP, Okusa MD, Langefeld CD, Bowden DW, Freedman BI. Complement factor H gene associations with end-stage kidney disease in African Americans. Nephrol Dial Transplant 2014; 29:1409-14. [PMID: 24586071 DOI: 10.1093/ndt/gfu036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mutations in the complement factor H gene (CFH) region associate with renal-limited mesangial proliferative forms of glomerulonephritis including IgA nephropathy (IgAN), dense deposit disease (DDD) and C3 glomerulonephritis (C3GN). Lack of kidney biopsies could lead to under diagnosis of CFH-associated end-stage kidney disease (ESKD) in African Americans (AAs), with incorrect attribution to other causes. A prior genome-wide association study in AAs with non-diabetic ESKD implicated an intronic CFH single nucleotide polymorphism (SNP). METHODS Thirteen CFH SNPs (8 exonic, 2 synonymous, 2 3'UTR, and the previously associated intronic variant rs379489) were tested for association with common forms of non-diabetic and type 2 diabetes-associated (T2D) ESKD in 3770 AAs (1705 with non-diabetic ESKD, 1305 with T2D-ESKD, 760 controls). Most cases lacked kidney biopsies; those with known IgAN, DDD or C3GN were excluded. RESULTS Adjusting for age, gender, ancestry and apolipoprotein L1 gene risk variants, single SNP analyses detected 6 CFH SNPs (5 exonic and the intronic variant) as significantly associated with non-diabetic ESKD (P = 0.002-0.01), three of these SNPs were also associated with T2D-ESKD. Weighted CFH locus-wide Sequence Kernel Association Testing (SKAT) in non-diabetic ESKD (P = 0.00053) and T2D-ESKD (P = 0.047) confirmed significant evidence of association. CONCLUSIONS CFH was associated with commonly reported etiologies of ESKD in the AA population. These results suggest that a subset of cases with ESKD clinically ascribed to the effects of hypertension or glomerulosclerosis actually have CFH-related forms of mesangial proliferative glomerulonephritis. Genetic testing may prove useful to identify the causes of renal-limited kidney disease in patients with ESKD who lack renal biopsies.
Collapse
Affiliation(s)
- Jason A Bonomo
- Department of Molecular Medicine and Translational Science, Wake Forest School of Medicine, Winston-Salem, NC, USA Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nicholette D Palmer
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Pamela J Hicks
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Janice P Lea
- Division of Renal Medicine, Department of Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Mark D Okusa
- Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Carl D Langefeld
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
25
|
Jacob A, Chaves L, Eadon MT, Chang A, Quigg RJ, Alexander JJ. Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology 2013; 139:328-37. [PMID: 23347386 DOI: 10.1111/imm.12079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 12/31/2022] Open
Abstract
Complement factor H (Cfh) is a key regulator of the complement cascade and protects C57BL/6 mice from immune complex-mediated complement-dependent glomerulonephritis. In chronic serum sickness (CSS) there are increased deposits of immune complexes in the glomeruli with inflammation and a scarring phenotype. As cucurmin is an effective anti-inflammatory agent and reduces complement activation, we hypothesized that it should alleviate renal disease in this setting. To determine the effectiveness of curcumin, an apoferritin-induced CSS model in Cfh-deficient (Cfh(-/-)) mice was used. Curcumin treatment (30 mg/kg) given every day in parallel with apoferritin reduced glomerulonephritis and enhanced kidney function (blood urea nitrogen, 45·4 ± 7·5 versus 35·6 ± 5·1; albuminuria, 50·1 ± 7·1 versus 15·7 ± 7·1; glomerulonephritis, 2·62 + 0·25 versus 2 + 0·3, P < 0·05). In line with reduced IgG deposits in mice with CSS given curcumin, C9 deposits were reduced indicating reduced complement activation. Mice treated with curcumin had a significant reduction in the number of splenic CD19(+) B cells and the ratio of CD19 : CD3 cells (P < 0·05) with no change in the T-cell population. Myeloperoxidase assay showed reduced macrophages in the kidney. However, a significant reduction in the M2 subset of splenic macrophages by apoferritin was prevented by curcumin, suggesting a protective function. Curcumin treatment reduced mRNA expression of inflammatory proteins monocyte chemoattractant protein-1 and transforming growth factor-β and matrix proteins, fibronectin, laminin and collagen. Our results clearly illustrate that curcumin reduces glomerulosclerosis, improves kidney function and could serve as a therapeutic agent during serum sickness.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
26
|
Factor friction: protective and pathogenic roles for complement factors in immune complex glomerulonephritis. Kidney Int 2012; 82:945-7. [DOI: 10.1038/ki.2012.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Hirasawa Y, Nishiyama T, Nagao T, Feng Y, Nagamatsu T. Involvement of protein kinase C in reduction of aggregated protein and phosphorylation of CREB in glomeruli. Exp Anim 2012; 61:119-24. [PMID: 22531726 DOI: 10.1538/expanim.61.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We previously demonstrated the cAMP-PKA pathway to be associated with the reduction in aggregated proteins such as immune complex in glomeruli. The aim of this study was to clarify whether PKC is involved in the reduction of aggregated protein and phosphorylation of CREB in aggregated protein-loaded glomeruli. Mice were injected with aggregated bovine serum albumin (a-BSA), and glomeruli were isolated. The a-BSA-injected mice produced more cyclic AMP and had more phosphorylated serine and phosphorylated CREB in their glomeruli than the controls. The expression of phospho-CREB increased with the accumulation of a-BSA. KT5720 and H7 suppressed the increase in phosphorylated CREB in a-BSA-loaded glomeruli and the decrease in accumulated a-BSA in the glomeruli. These findings suggest that PKC is associated with the reduction of aggregated protein and phosphorylation of CREB in aggregated protein-loaded glomeruli.
Collapse
Affiliation(s)
- Yasushi Hirasawa
- Laboratory of Pharmacobiology and Therapeutics, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | | | | | | | | |
Collapse
|
28
|
The C5a receptor has a key role in immune complex glomerulonephritis in complement factor H-deficient mice. Kidney Int 2012; 82:961-8. [PMID: 22832515 PMCID: PMC3472160 DOI: 10.1038/ki.2012.249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chronic serum sickness leads to the formation of glomerular immune complexes; however, C57BL/6 mice do not develop glomerulonephritis unless complement factor H (CFH) is absent from the plasma. Here we studied the role for C5a receptor (R) in this setting. The exaggerated humoral immune response in CFH−/− mice was normalized in CFH−/−C5aR−/− double knockout mice, highlighting the C5aR dependence. The CFH knockout mice developed proliferative glomerulonephritis with endocapillary F4/80+ macrophage infiltration, a process reduced in the double knockout mice. There was no interstitial inflammation by histologic criteria or flow cytometry for F4/80+Ly6ChiCCR2hi inflammatory macrophages. There were, however, more interstitial CD3+CD4+ T lymphocytes in CFH knockout mice with chronic serum sickness, while double knockout mice had greater than 5-fold more Ly6CloCCR2lo anti-inflammatory macrophages compared to the CFH knockout mice. Mice lacking C5aR were significantly protected from functional renal disease as assessed by blood urea nitrogen levels. Thus, IgG- and iC3b-containing immune complexes are not inflammatory in C57BL/6 mice. Yet when these mice lack CFH, sufficient C3b persists in glomeruli to generate C5a and activate C5aR.
Collapse
|
29
|
Choi J, Moon JW, Shin HJ. Chronic Kidney Disease, Early Age-related Macular Degeneration, and Peripheral Retinal Drusen. Ophthalmic Epidemiol 2011; 18:259-63. [DOI: 10.3109/09286586.2011.602509] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Bao L, Haas M, Quigg RJ. Complement factor H deficiency accelerates development of lupus nephritis. J Am Soc Nephrol 2010; 22:285-95. [PMID: 21148254 DOI: 10.1681/asn.2010060647] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Complement factor H (CfH) is a key regulator of the alternative pathway, and its presence on mouse platelets and podocytes allows the processing of immune complexes. Because of the role of immune complexes in the pathophysiology of lupus nephritis, we studied the role of CfH in the development of nephritis in MRL-lpr mice, an animal model of lupus. At 12 weeks, CfH-deficient MRL-lpr mice had significantly more albuminuria and higher BUN levels than MRL-lpr controls. Cfh-deficient MRL-lpr mice also experienced earlier mortality: at 14 weeks, 6 of 9 CfH-deficient MRL-lpr mice had died of renal failure, whereas all 11 littermate CfH-sufficient MRL-lpr mice were alive (P ≤ 0.001). Histologically, CfH-deficient MRL-lpr mice developed severe diffuse lupus nephritis by 12 weeks (glomerulonephritis scores of 2.6 ± 0.4 versus 0.4 ± 0.2 in littermate controls, P = 0.001). Similar to other CfH-deficient mouse models on nonautoimmune backgrounds, immunofluorescence staining showed extensive linear C3 staining along glomerular capillary walls. IgG was present in the mesangium and peripheral capillary walls along with excessive infiltration of macrophages and neutrophils. Ultrastructurally, there were subendothelial and subepithelial immune deposits and extensive podocyte foot process effacement. In summary, the loss of CfH accelerates the development of lupus nephritis and recapitulates the functional and structural features of the human disease. This illustrates the critical role of complement regulation and metabolism of immune complexes in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Lihua Bao
- Section of Nephrology, The University of Chicago, 5841 S. Maryland Avenue, MC5100, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
31
|
Alexander JJ, Hack BK, Jacob A, Chang A, Haas M, Finberg RW, Quigg RJ. Abnormal immune complex processing and spontaneous glomerulonephritis in complement factor H-deficient mice with human complement receptor 1 on erythrocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:3759-67. [PMID: 20702729 DOI: 10.4049/jimmunol.1000683] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement receptor 1 (CR1) on human erythrocytes (Es) and complement factor H (CFH) on rodent platelets perform immune adherence, which is a function that allows the processing of immune complexes (ICs) bearing C3 by the mononuclear phagocyte system. Similar immune adherence occurs in the glomerular podocyte by CR1 in humans and CFH in rodents. As a model for human IC processing, we studied transgenic mice lacking CFH systemically but with human CR1 on Es. These CR1(hu)Tg/CFH(-/-) mice spontaneously developed proliferative glomerulonephritis, which was accelerated in a chronic serum sickness model by active immunization with heterologous apoferritin. ICs containing Ag, IgG and C3 bound to Es in CR1(hu)Tg/CFH(-/-) mice. In this setting, there was increased IC deposition in glomeruli, attributable to the presence of CR1 on Es, together with the absence of CFH on platelets and podocytes. In the absence of plasma CFH, the accumulated ICs activated complement, which led to spontaneous and chronic serum sickness-induced proliferative glomerulonephritis. These findings illustrate the complexities of complement-dependent IC processing by blood cells and in the glomerulus, and the importance of CFH as a plasma complement regulator.
Collapse
Affiliation(s)
- Jessy J Alexander
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Maruvada R, Prasadarao NV, Rubens CE. Acquisition of factor H by a novel surface protein on group B Streptococcus promotes complement degradation. FASEB J 2009; 23:3967-77. [PMID: 19608625 DOI: 10.1096/fj.09-138149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Binding of the host complement regulator, factor H (FH), by some pathogenic microbes constitutes an important virulence mechanism, whereby complement is broken down to help microbes survive in the host. Although it has been hypothesized for the past two decades that GBS type III binds FH via sialic acid present on its capsule, neither the binding of FH to GBS has been demonstrated nor the mechanism of interaction identified. We observed that FH bound to both wild-type and capsule or sialic acid-deficient GBS that were used as negative controls. Wild-type and acapsular GBS were incubated with serum or pure FH degraded almost 90% of C3b, suggesting that the GBS-bound FH maintained cofactor activity. In addition, dot-blot analysis showed approximately 5-10% of C5 and C9 formation, as compared to an Escherichia coli control, suggesting breakdown at the C3b level. Protease treatment of the bacteria completely abolished binding of FH. Using overlay assays and mass spectroscopic analysis, we identified the FH receptor as the streptococcal histidine triad (SHT) surface protein. The ability of binding FH to SHT was further confirmed by using recombinant SHT. This report describes the identification of the SHT as an FH-binding protein on the surface of GBS type III, revealing a novel mechanism by which the bacterium acquires FH to evade complement opsonization.
Collapse
Affiliation(s)
- Ravi Maruvada
- Division of Infectious Diseases, Johns Hopkins School of Medicine, 200 N. Wolfe St., Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
33
|
Kokubo T, Ishikawa N, Uchida H, Chasnoff SE, Xie X, Mathew S, Hruska KA, Choi ET. CKD accelerates development of neointimal hyperplasia in arteriovenous fistulas. J Am Soc Nephrol 2009; 20:1236-45. [PMID: 19423694 DOI: 10.1681/asn.2007121312] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Arteriovenous (AV) access failure resulting from venous neointimal hyperplasia is a major cause of morbidity in patients with ESRD. To understand the role of chronic kidney disease (CKD) in the development of neointimal hyperplasia, we created AV fistulae (common carotid artery to jugular vein in an end-to-side anastomosis) in mice with or without CKD (renal ablation or sham operation). At 2 and 3 wk after operation, neointimal hyperplasia at the site of the AV anastomosis increased 2-fold in animals with CKD compared with controls, but cellular proliferation in the neointimal hyperplastic lesions did not significantly differ between the groups, suggesting that the enhanced neointimal hyperplasia in the setting of CKD may be secondary to a migratory phenotype of vascular smooth muscle cells (VSMC). In ex vivo migration assays, aortic VSMC harvested from mice with CKD migrated significantly greater than VSMC harvested from control mice. Moreover, animals with CKD had higher serum levels of osteopontin, which stimulates VSMC migration. When we treated animals with bone morphogenic protein-7, which promotes VSMC differentiation, before creation of the AV anastomosis, the effect of CKD on the development of neointimal hyperplasia was eliminated. In summary, CKD accelerates development of neointimal hyperplasia at the anastomotic site of an AV fistula, and administration of bone morphogenic protein-7 neutralizes this effect.
Collapse
Affiliation(s)
- Taku Kokubo
- Department of Cardiovascular Surgery, Asahikawa Medical University, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bao L, Wang Y, Chen P, Sarav M, Haas M, Minto AW, Petkova M, Quigg RJ. Mesangial cell complement receptor 1-related protein y limits complement-dependent neutrophil accumulation in immune complex glomerulonephritis. Immunology 2009; 128:e895-904. [PMID: 19740350 DOI: 10.1111/j.1365-2567.2009.03102.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The absence of complement receptor 1 (CR1) related gene/protein y (Crry) leads to embryonic lethality as a result of unrestricted complement activation and concomitant neutrophil infiltration. Here we used Crry(-/-)C3(+/-) mice to investigate the role of Crry in the pathogenesis of immune complex glomerulonephritis (GN). After 3 weeks of immunization with horse spleen apoferritin, six of nine Crry(-/-) C3(+/-) mice and none of the six control C3(+/-) mice developed proliferative GN (P = 0.010). After 5 weeks of immunization, GN scores in Crry(-/-) C3(+/-) mice were 0.67 +/- 0.22 mean +/- standard error of the mean (SEM), compared with 0.32 +/- 0.16 in C3(+/-) mice. Glomerular hypercellularity was attributable to neutrophil infiltration in mice with GN (1.7 +/- 0.3/glomerulus) compared with those without GN (0.4 +/- 0.1/glomerulus) (P = 0.001). Absent staining for alpha-smooth muscle actin and proliferating cell nuclear antigen suggested that mesangial cell proliferation did not play a significant role in this model. Serum C3 levels in Crry(-/-) C3(+/-) mice were approximately 20% and 30% those of wild-type mice and C3(+/-) mice, respectively. To determine whether this acquired hypocomplementaemia was relevant to this GN model system, Crry(-/-) C3(+/-) mouse kidneys were transplanted into wild-type mice followed by immunization with apoferritin for 1 or 2 weeks. Surprisingly, none of the Crry(-/-) C3(+/-) mouse kidneys developed GN at these early time-points, indicating that increasing circulating C3 levels several-fold did not increase susceptibility to GN. Renal expression of decay-accelerating factor was not different among any of the groups studied. Thus, our data indicate that mesangial cell Crry limits complement activation and subsequent neutrophil recruitment in the setting of local immune complex deposition.
Collapse
Affiliation(s)
- Lihua Bao
- The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Klein R, Knudtson MD, Lee KE, Klein BEK. Serum cystatin C level, kidney disease markers, and incidence of age-related macular degeneration: the Beaver Dam Eye Study. ACTA ACUST UNITED AC 2009; 127:193-9. [PMID: 19204238 DOI: 10.1001/archophthalmol.2008.551] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To examine the associations of the serum cystatin C level and chronic kidney disease with the incidence of age-related macular degeneration (AMD) over 15 years. METHODS In this population-based cohort study of 4926 individuals aged 43 to 86 years at baseline, 3779 participated in 1 or more follow-up examinations. Age-related macular degeneration was determined by grading photographs of the macula. Individuals were defined as having mild or moderate to severe chronic kidney disease based on a value of more than 45 mL/min/1.73 m(2) to 60 mL/min/1.73 m(2) or less and 45 mL/min/1.73 m(2) or less, respectively, according to the Modification of Diet in Renal Disease Study equation. RESULTS While controlling for age and other risk factors, the level of serum cystatin C at baseline was associated with the incidence of early AMD (odds ratio per log standard deviation [95% confidence interval], 1.16 [1.01-1.35]) and exudative AMD (1.42 [1.03-1.96]) but not geographic atrophy (0.89 [0.56-1.41]) or progression of AMD (1.02 [0.88-1.18]). Mild chronic kidney disease was associated with the 15-year cumulative incidence of early AMD (odds ratio per log standard deviation, 1.36 [95% confidence interval, 1.00-1.86]) but not the incidence of other AMD end points. CONCLUSION There is a relationship between the level of serum cystatin C and chronic kidney disease with the incidence of AMD. The underlying biological processes remain to be determined.
Collapse
Affiliation(s)
- Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, 610 N Walnut St, Room 417 WARF, Madison, WI 53726-2336, USA.
| | | | | | | |
Collapse
|
36
|
Lommatzsch A, Hermans P, Müller KD, Bornfeld N, Bird AC, Pauleikhoff D. Are low inflammatory reactions involved in exudative age-related macular degeneration? Graefes Arch Clin Exp Ophthalmol 2008; 246:803-10. [DOI: 10.1007/s00417-007-0749-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 10/31/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022] Open
|
37
|
Thompson CL, Klein BEK, Klein R, Xu Z, Capriotti J, Joshi T, Leontiev D, Lee KE, Elston RC, Iyengar SK. Complement factor H and hemicentin-1 in age-related macular degeneration and renal phenotypes. Hum Mol Genet 2007; 16:2135-48. [PMID: 17591627 DOI: 10.1093/hmg/ddm164] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the associations of complement factor H (CFH) and hemicentin-1 (HMCN1) with age-related macular degeneration (AMD) and renal function. Three scales, measuring the course of AMD and drusen development, were examined in two samples: the Family Age-Related Macular degeneration Study (FARMS), consisting of families ascertained through a single individual with severe AMD, and an unascertained population-based family cohort, the Beaver Dam Eye Study (BDES), which was also used to assess longitudinal changes in AMD and associations with renal function. Associations were performed by a regression accounting for known risk factors as well as familial and sibling effects. Strong evidence of the association of rs1061170 (Y402H) variation with AMD was confirmed (P = 9.15 x 10(-5) in BDES, P = 0.016 in FARMS). This association was observed in multiple AMD scales, suggesting that its role is not phenotype-specific. Polymorphisms in both CFH and HMCN1 appeared to influence the longitudinal rate of change of AMD. The rs1061170 polymorphism was also associated with a reduction in estimated glomerular filtration rate (eGFR) (P = 0.046). Another CFH polymorphism, rs800292, was similarly associated with eGFR [beta = -0.90 (P = 0.022)]. Associations between rs743137 (P = 0.05) and rs680638 (P = 0.022) in HMCN1 with calculated creatinine clearance progression were also observed. Both genes appear to play a role in both AMD and renal pathophysiology. These findings support evidence for common pathways influencing ocular and renal function and suggest that further work is required on their common determinants.
Collapse
Affiliation(s)
- Cheryl L Thompson
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The complement system is an important component of the innate immune system and a modulator of adaptive immunity. The entire complement system is focused on C3 and C5. Thus, there are proteins that activate C3 and C5, those that regulate this activation, and those that transduce the effects of C3 and C5 activation products; each can affect the kidney in renal injury. The normal kidney has the inherent capacity to protect itself from complement activation through cellular expression of decay-accelerating factor, membrane cofactor protein (in human beings), and Crry (in rodents). In addition, plasma factor H protects vascular spaces in the kidney. Although the main function of these proteins is to limit complement activation, there is now considerable evidence that they can transduce signals on engagement in immune cells. The G-protein-coupled 7-span transmembrane receptors for C3a and C5a, and the integral membrane complement receptors (CR) for C3b, iC3b, and C3dg, are expressed outside the kidney, particularly in cells of hematopoietic and immune lineage. These are important in renal injury through their infiltration of the kidney and/or by affecting kidney-directed immune responses. There is mounting evidence that intrinsic glomerular and tubular cell C3aR and C5aR expression and activation also can affect renal injury. CR1 on podocytes and the beta2 integrins CR3 and CR4 in kidney dendritic cells have functions that remain poorly defined. Cells of the kidney also have the capacity to produce and activate their own complement proteins. Thus, intrinsic renal cells express decay-accelerating factor, membrane cofactor protein, Crry, C3aR, C5aR, CR1, CR3, and CR4. These can be engaged by C3 and C5 activation products derived from systemic and local pools in renal injury. Given their capacity to provide signals that influence kidney cellular behavior, their activation can have substantial effects in renal injury. Defining these in a cell- and disease-specific fashion is an exciting challenge for future research.
Collapse
Affiliation(s)
- Tipu S Puri
- Section of Nephrology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
39
|
Goverdhan SV, Hannan S, Newsom RB, Luff AJ, Griffiths H, Lotery AJ. An analysis of the CFH Y402H genotype in AMD patients and controls from the UK, and response to PDT treatment. Eye (Lond) 2007; 22:849-54. [PMID: 17464302 PMCID: PMC5989925 DOI: 10.1038/sj.eye.6702830] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM Mutation in the complement factor H (CFH) gene is an important risk factor for age-related macular degeneration (AMD). In this study, we identified the strength of the CFH Y402H gene variant association in a UK AMD cohort and tested the hypothesis that this variant may influence the biological response of choroidal neovascularisation (CNV) following photodynamic therapy (PDT) for CNV. METHODS A total of 557 cases with AMD and 551 normal controls were genotyped for the CFH Y402H (1277 C/T) variant using the 5' nuclease TaqMan assay for allelic discrimination. The CFH gene association for AMD, for the different CNV subtypes and for patients needing PDT was estimated. Twenty-seven PDT-treated patients were followed up for 15 months with ETDRS-derived vision, clinical examination, and fundus angiography. Individuals with different CFH genotypes were then analysed for any association with visual change following PDT. RESULTS The risk association for AMD with the CFH CC genotype (odd ratio (OR)=3.62, Pc<0.0001) was similar to that reported in other Caucasian cohorts. The magnitude and strength of this association was stronger in AREDS stages 2-4 (ORs=4.48, 2.69, and 5.17). ORs for the risk of predominantly classic CNV were significantly raised for both the CC (OR=17.87, P<0.0001) and CT (OR=9.06, P=0.0002) genotypes. The number of patients carrying the high-risk C allele was 70.4% in those requiring PDT as compared to 52.3% in the non-PDT group (OR=2.16, P=0.011), and presence of the CC genotype significantly increased the risk of PDT (OR=5.48, P=0.015). The degree of visual loss following PDT was significantly higher in the CFH CC genotype group (P=0.038); 50% of CC cases (n=13) and 45% of the CT cases (n=12) lost 15 or more ETDRS letters at final follow-up. CONCLUSION In this UK cohort of AMD patients, the CFH Y402H variant was significantly enriched in patients with predominantly classic CNV. Patients homozygous for the CFH Y402H genotype seem to have worse visual acuity after PDT.
Collapse
Affiliation(s)
- SV Goverdhan
- Clinical Neurosciences Division, University of Southampton, Southampton General Hospital, Southampton, UK
- Southampton Eye Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - S Hannan
- Southampton Eye Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - RB Newsom
- Southampton Eye Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - AJ Luff
- Southampton Eye Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - H Griffiths
- Clinical Neurosciences Division, University of Southampton, Southampton General Hospital, Southampton, UK
| | - AJ Lotery
- Clinical Neurosciences Division, University of Southampton, Southampton General Hospital, Southampton, UK
- Southampton Eye Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
40
|
Woodman ME, Cooley AE, Miller JC, Lazarus JJ, Tucker K, Bykowski T, Botto M, Hellwage J, Wooten RM, Stevenson B. Borrelia burgdorferi binding of host complement regulator factor H is not required for efficient mammalian infection. Infect Immun 2007; 75:3131-9. [PMID: 17420242 PMCID: PMC1932899 DOI: 10.1128/iai.01923-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, is naturally resistant to its host's alternative pathway of complement-mediated killing. Several different borrelial outer surface proteins have been identified as being able to bind host factor H, a regulator of the alternative pathway, leading to a hypothesis that such binding is important for borrelial resistance to complement. To test this hypothesis, the development of B. burgdorferi infection was compared between factor H-deficient and wild-type mice. Factor B- and C3-deficient mice were also studied to determine the relative roles of the alternative and classical/lectin pathways in B. burgdorferi survival during mammalian infection. While it was predicted that B. burgdorferi should be impaired in its ability to infect factor H-deficient animals, quantitative analyses of bacterial loads indicated that those mice were infected at levels similar to those of wild-type and factor B- and C3-deficient mice. Ticks fed on infected factor H-deficient or wild-type mice all acquired similar numbers of bacteria. Indirect immunofluorescence analysis of B. burgdorferi acquired by feeding ticks from the blood of infected mice indicated that none of the bacteria had detectable levels of factor H on their outer surfaces, even though such bacteria express high levels of surface proteins capable of binding factor H. These findings demonstrate that the acquisition of host factor H is not essential for mammalian infection by B. burgdorferi and indicate that additional mechanisms are employed by the Lyme disease spirochete to evade complement-mediated killing.
Collapse
Affiliation(s)
- Michael E Woodman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, MS421 W. R. Willard Medical Education Building, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bao L, Haas M, Minto AW, Quigg RJ. Decay-accelerating factor but not CD59 limits experimental immune-complex glomerulonephritis. J Transl Med 2007; 87:357-64. [PMID: 17259999 DOI: 10.1038/labinvest.3700522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The complex balance between the pro-activating and regulatory influences of the complement system can affect the pathogenesis of immune complex-mediated glomerulonephritis (ICGN). Key complement regulatory proteins include decay accelerating factor (DAF) and CD59, which inhibit C3 activation and C5b-9 generation, respectively. Both are glycosylphosphatidylinositol-linked cell membrane proteins, which are widely distributed in humans and mice. Chronic serum sickness induced by daily immunization with horse spleen apoferritin over 6 weeks was used to induce ICGN in DAF-, CD59- and DAF/CD59-deficient mice, with wild-type littermate mice serving as controls. Both DAF and DAF/CD59-deficient mice had an increased incidence of GN relative to wild-type controls associated with significantly increased glomerular C3 deposition. Disease expression in CD59-deficient mice was no different than wild-type controls. DAF- and DAF/CD59-deficient mice also had increased monocyte chemoattractant protein-1 mRNA expression and glomerular infiltration with CD45(+) leukocytes. Our findings suggest that activation of C3 is strongly associated with experimental ICGN while downstream formation of C5b-9 is of lesser pathogenic importance in this model.
Collapse
Affiliation(s)
- Lihua Bao
- Section of Nephrology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
42
|
Alexander JJ, Wang Y, Chang A, Jacob A, Minto AWM, Karmegam M, Haas M, Quigg RJ. Mouse podocyte complement factor H: the functional analog to human complement receptor 1. J Am Soc Nephrol 2007; 18:1157-66. [PMID: 17344423 DOI: 10.1681/asn.2006101125] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Complement factor H (Cfh) is a key plasma protein in humans and animals that serves to limit alternative pathway complement activation in plasma, as well as in local sites such as capillaries of the glomerulus and eye. It was shown that rodent Cfh on platelets is the functional analogue to human erythrocyte complement receptor 1 with a role that is distinct from plasma Cfh and that Cfh is also on cultured rodent podocytes. For investigation of the role of Cfh in the kidney, renal transplants were performed between wild-type (WT) and Cfh(-/-) C57BL/6 mice. For these studies, bilateral native nephrectomies were done so that renal function was dependent solely on the transplanted kidney. Chronic serum sickness was induced by active immunization with apoferritin. Diffuse proliferative glomerulonephritis (GN) occurred in WT kidneys that were transplanted into Cfh(-/-) recipients (n = 8) but not into WT recipients (n = 14), consistent with the importance of plasma Cfh to dictate outcome in this disease model. Relative to the WT recipients of WT kidneys, WT mice with Cfh(-/-) kidneys (n = 12) developed glomerular disease features, including increased albuminuria (82.8 +/- 7.0 versus 45.1 +/- 3.6 microg/mg creatinine; P < 0.001) and blood urea nitrogen levels (54.4 +/- 6.1 versus 44.2 +/- 3.7 mg/dl; P < 0.01). In addition, they had substantial glomerular capillary wall deposits of IgG and C3, which by electron microscopy were present in subendothelial and subepithelial immune deposits, whereas WT kidneys in WT hosts had almost exclusive mesangial deposits. The IgG deposits in Cfh(-/-) kidneys were adjacent to Cfh-deficient podocytes, whereas WT kidneys in a Cfh(-/-) host had podocyte-associated Cfh with absent IgG deposits. These data suggest that locally produced podocyte Cfh is important to process immune complexes in the subepithelial space, where it also limits complement activation. Just as in platelets, rodent podocytes seem to use Cfh as the functional surrogate for human complement receptor 1.
Collapse
Affiliation(s)
- Jessy J Alexander
- Section of Nephrology, University of Chicago, 5841 S. Maryland Avenue, MC5100, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bao L, Wang Y, Chang A, Minto AW, Zhou J, Kang H, Haas M, Quigg RJ. Unrestricted C3 activation occurs in Crry-deficient kidneys and rapidly leads to chronic renal failure. J Am Soc Nephrol 2007; 18:811-22. [PMID: 17229915 DOI: 10.1681/asn.2006101176] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Deficiency of the C3 convertase regulator Crry is embryonic lethal in mice unless C3 also is absent. For evaluation of the effect of local kidney Crry deficiency in the setting of an intact complement system, Crry(-/-)C3(-/-) mouse kidneys were transplanted into syngeneic C57BL/6 wild-type mice. These Crry-deficient kidneys developed marked inflammatory cell infiltration, tubular damage, and interstitial fibrosis, whereas similar changes were absent in control transplanted kidneys. Strong C3 deposition in the vessels and tubules that correlated significantly with measures of disease supported that complement activation was pathogenic in this model. Microarray studies showed upregulation of a number of chemokine and extracellular matrix genes, which were validated for CCL2 and CXCL10 mRNA and collagen III protein. The functional significance of these pathophysiologic findings was evaluated by removing both native kidneys, so the transplanted kidney alone provided renal function. Within 21 d of transplantation, seven of eight Crry-deficient kidneys in complement-sufficient wild-type hosts failed, compared with two of 13 controls (P = 0.001), with final blood urea nitrogen levels of 133.9 +/- 33.0 and 55.6 +/- 8.3 mg/dl, respectively (P = 0.015). These data show that mouse Crry is a critical complement regulator in the kidney. When absent, unrestricted complement activation occurs and quickly leads to marked inflammation and progressive renal failure, with features relevant to human diseases with underlying defects in complement regulation, such as hemolytic uremic syndrome.
Collapse
Affiliation(s)
- Lihua Bao
- Section of Nephrology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC5100, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Licht C, Schlötzer-Schrehardt U, Kirschfink M, Zipfel PF, Hoppe B. MPGN II--genetically determined by defective complement regulation? Pediatr Nephrol 2007; 22:2-9. [PMID: 17024390 DOI: 10.1007/s00467-006-0299-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 12/25/2022]
Abstract
MPGN II is a rare disease which is characterized by complement containing deposits within the GBM. The disease is characterized by functional impairment of the GBM causing progressive loss of renal function eventually resulting in end stage renal disease. It now becomes evident that in addition to C3NeF, which inhibits the inactivation of the alternative C3 convertase C3bBb, different genetically determined factors are also involved in the pathogenesis of MPGN II. These factors though different from C3NeF also result in defective complement regulation acting either through separate pathways or synergistically with C3NeF. Following the finding of MPGN II in Factor H deficient animals, patients with MPGN II were identified presenting with an activated complement system caused by Factor H deficiency. Factor H gene mutations result in a lack of plasma Factor H or in a functional defect of Factor H protein. Loss of Factor H function can also be caused by inactivating Factor H autoantibodies, C3 mutations preventing interaction between C3 and Factor H, or autoantibodies against C3. Identification of patients with MPGN II caused by defective complement control may allow treatment by replacement of the missing factor via plasma infusion, thus possibly preventing or at least delaying disease progress.
Collapse
|
45
|
Alexander JJ, Quigg RJ. The simple design of complement factor H: Looks can be deceiving. Mol Immunol 2007; 44:123-32. [PMID: 16919753 DOI: 10.1016/j.molimm.2006.07.287] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 07/13/2006] [Accepted: 07/13/2006] [Indexed: 01/15/2023]
Abstract
The complement system is a powerful component of innate immunity which recognizes and facilitates the elimination of pathogens and unwanted host material. Since complement can also lead to host tissue injury and inflammation, strict regulation of its activation is important. One of the key regulators is complement factor H (CFH), a protein with an ever-expanding list of relevant functions. Inherited mutations in CFH can account for membranoproliferative glomerulonephritis (MPGN) type II, atypical hemolytic uremic syndrome, and age-related macular degeneration. The former can be associated with excessive systemic complement activation from dysfunctional CFH, while the latter two are associated with mutations affecting the ability of CFH to bind to anionic surfaces such as on endothelial cells and glomerular and retinal capillary walls. Mice with targeted deletion of CFH can spontaneously develop MPGN and have increased susceptibility to models of GN. In the rodent, CFH on platelets functions as the immune adherence receptor, analogous to CR1 on primate erythrocytes. In mice, platelets lacking CFH are unable to effectively clear immune complexes which results in their accumulation in glomeruli. The same switch also appears to be true in the rodent podocyte where CFH is present in place of CR1 in human podocytes. Thus, CFH has a variety of functions which can affect the diverse roles the complement system plays in health and disease.
Collapse
Affiliation(s)
- Jessy J Alexander
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
46
|
Mathew S, Lund RJ, Strebeck F, Tustison KS, Geurs T, Hruska KA. Reversal of the adynamic bone disorder and decreased vascular calcification in chronic kidney disease by sevelamer carbonate therapy. J Am Soc Nephrol 2006; 18:122-30. [PMID: 17182886 DOI: 10.1681/asn.2006050490] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A model of chronic kidney disease (CKD)-induced vascular calcification (VC) that complicates the metabolic syndrome was produced. In this model, the metabolic syndrome is characterized by severe atherosclerotic plaque formation, hypertension, type 2 diabetes, obesity, and hypercholesterolemia, and CKD stimulates calcification of the neointima and tunica media of the aorta. The CKD in this model is associated the adynamic bone disorder form of renal osteodystrophy. The VC of the model is associated with hyperphosphatemia, and control of the serum phosphorus both in this animal model and in humans has been preventive in the development of VC. This article reports studies that demonstrate reduction of established VC by the addition of sevelamer carbonate to the diets of this murine metabolic syndrome model with CKD. Sevelamer, besides normalizing the serum phosphorus, surprisingly, reversed the CKD-induced trabecular osteopenia. Sevelamer therapy increased osteoblast surfaces in the metaphyseal trabeculae of the tibia and femur. It also increased osteoid surfaces and, importantly, bone formation rates. In addition, sevelamer was found to be effective in decreasing serum cholesterol levels. These results suggest that sevelamer may have important actions in decreasing diabetic and uremic vasculopathy and that sevelamer carbonate may be capable of increasing bone formation rates that are suppressed by diabetic nephropathy.
Collapse
Affiliation(s)
- Suresh Mathew
- Renal Division, Department of Pediatrics, Washington University School of Medicien, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hotta O, Ishida A, Kimura T, Taguma Y. Improvements in Treatment Strategies for Patients With Antineutrophil Cytoplasmic Antibody-associated Rapidly Progressive Glomerulonephritis. Ther Apher Dial 2006; 10:390-5. [PMID: 17096692 DOI: 10.1111/j.1744-9987.2006.00401.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The course of rapidly progressive glomerulonephritis (RPGN) caused by antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is often life-threatening, especially in the elderly when pulmonary involvement and/or severely impaired renal function are present. Corticosteroids and cyclophosphamide are the first-line treatment, but ironically infection, not vascular events such as hemorrhage, caused by the vasculitis itself, is the most common cause of death of RPGN patients. Several new treatment strategies, such as leukocytapheresis (LCAP) and intravenous immunoglobulin (IVIg), have become available during the past decade and these treatments have made it possible to treat high-risk RPGN patients without inducing serious immunosuppressive states. In the present paper we review recent clinical trials of LCAP and IVIg therapy in patients with pauci-immune/ANCA-associated RPGN, and show improved clinical outcomes after using these new treatment strategies in our institution.
Collapse
Affiliation(s)
- Osamu Hotta
- Department of Nephrology, Sendai Shakaihoken Hospital, Sendai, Japan.
| | | | | | | |
Collapse
|
48
|
An E, Lu X, Flippin J, Devaney JM, Halligan B, Hoffman EP, Hoffman E, Strunnikova N, Csaky K, Hathout Y. Secreted Proteome Profiling in Human RPE Cell Cultures Derived from Donors with Age Related Macular Degeneration and Age Matched Healthy Donors. J Proteome Res 2006; 5:2599-610. [PMID: 17022631 DOI: 10.1021/pr060121j] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Age-related macular degeneration (AMD) is characterized by progressive loss of central vision, which is attributed to abnormal accumulation of macular deposits called "drusen" at the interface between the basal surface of the retinal pigment epithelium (RPE) and Bruch's membrane. In the most severe cases, drusen deposits are accompanied by the growth of new blood vessels that breach the RPE layer and invade photoreceptors. In this study, we hypothesized that RPE secreted proteins are responsible for drusen formation and choroidal neovascularization. We used stable isotope labeling by amino acids in cell culture (SILAC) in combination with LC-MS/MS analysis and ZoomQuant quantification to assess differential protein secretion by RPE cell cultures prepared from human autopsy eyes of AMD donors (diagnosed by histological examinations of the macula and genotyped for the Y402H-complement factor H variant) and age-matched healthy control donors. In general, RPE cells were found to secrete a variety of extracellular matrix proteins, complement factors, and protease inhibitors that have been reported to be major constituents of drusen (hallmark deposits in AMD). Interestingly, RPE cells from AMD donors secreted 2 to 3-fold more galectin 3 binding protein, fibronectin, clusterin, matrix metalloproteinase-2 and pigment epithelium derived factor than RPE cells from age-matched healthy donors. Conversely, secreted protein acidic and rich in cysteine (SPARC) was found to be down regulated by 2-fold in AMD RPE cells versus healthy RPE cells. Ingenuity pathway analysis grouped these differentially secreted proteins into two groups; those involved in tissue development and angiogenesis and those involved in complement regulation and protein aggregation such as clusterin. Overall, these data strongly suggest that RPE cells are involved in the biogenesis of drusen and the pathology of AMD.
Collapse
Affiliation(s)
- Eunkyung An
- Center for Genetic Medicine, Children's National Medical Center, and Program in Biochemistry and Molecular Genetics, Institute of Biomedical Science, The George Washington University, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Alexander JJ, Aneziokoro OGB, Chang A, Hack BK, Markaryan A, Jacob A, Luo R, Thirman M, Haas M, Quigg RJ. Distinct and separable roles of the complement system in factor H-deficient bone marrow chimeric mice with immune complex disease. J Am Soc Nephrol 2006; 17:1354-61. [PMID: 16597679 DOI: 10.1681/asn.2006020138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Plasma complement factor H (Cfh) is a potent complement regulator, whereas Cfh on the surface of rodent platelets is responsible for immune complex processing. For dissection between the two, bone marrow chimeras between Cfh-deficient (Cfh(-/-)) and wild-type C57BL/6 mice were created. Platelet Cfh protein was tracked with the Cfh status of the bone marrow donor, indicating that platelet Cfh is of intrinsic origin. In an active model of immune complex disease, Cfh(-/-) mice that were reconstituted with wild-type bone marrow had levels of platelet-associated immune complexes comparable to those of wild-type mice and were protected against the excessive glomerular deposition of immune complexes seen in Cfh(-/-) mice, yet these mice still developed glomerular inflammation. In contrast, wild-type mice with Cfh(-/-) bone marrow had reduced platelet-associated immune complexes and extensive glomerular deposition of complement-activating immune complexes, but they did not develop glomerular pathology. The large quantities of glomerular C3 in wild-type mice with Cfh(-/-) bone marrow were in the form of iC3b and C3dg, whereas active C3b remained in Cfh(-/-) recipients of wild-type bone marrow. These data show that plasma Cfh limits complement activation in the circulation and other accessible sites such as the glomerulus, whereas platelet Cfh is responsible for immune complex processing.
Collapse
Affiliation(s)
- Jessy J Alexander
- Section of Nephrology, The University of Chicago, AMB S-508, MC 5100, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW This review considers new information on the pathogenesis of a long recognized and poorly understood form of glomerular injury, membranoproliferative glomerulonephritis. This disease has received growing attention as it is the principal renal manifestation of hepatitis C virus infection, which has become pandemic worldwide. RECENT FINDINGS This review briefly describes three murine models of membranoproliferative glomerulonephritis suitable for pathogenesis studies. We consider recent evidence implicating innate immune mechanisms in immune and autoimmune-mediated glomerulonephritis, and recent data pointing to the alternative pathway of complement activation in the amplification of glomerulonephritic injury. SUMMARY Understanding the contribution of complement activation and innate immunity to the evolution of membranoproliferative glomerulonephritis promises to provide new therapeutic targets for this disease. Inhibitors of the complement cascade are already being tested in clinical trials as therapeutic interventions for some human glomerular diseases. Successful tests of this approach in membranoproliferative glomerulonephritis are still awaited. Our understanding of how the innate immune system modulates glomerulonephritis is still in an early stage, and future studies should be directed at identifying targets and specific interventions that may also benefit patients with this disease.
Collapse
Affiliation(s)
- Kelly D Smith
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|