1
|
Doan TNA, Cowley JM, Phillips AL, Briffa JF, Leemaqz SY, Burton RA, Romano T, Wlodek ME, Bianco-Miotto T. Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA. Epigenetics 2024; 19:2294516. [PMID: 38126131 PMCID: PMC10761017 DOI: 10.1080/15592294.2023.2294516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.
Collapse
Affiliation(s)
- Thu N. A. Doan
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - James M. Cowley
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Aaron L. Phillips
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica F. Briffa
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shalem Y. Leemaqz
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Mary E. Wlodek
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Diniz F, Edgington-Giordano F, Ngo NYN, Caspi G, El-Dahr SS, Tortelote GG. Morphometric analysis of the intergenerational effects of protein restriction on nephron endowment in mice. Heliyon 2024; 10:e39552. [PMID: 39498088 PMCID: PMC11533620 DOI: 10.1016/j.heliyon.2024.e39552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Background Parental nutritional status is crucial in shaping offspring's kidney development. However, the association between a protein-restrictive diet and its intergenerational impact on kidney development remains unclear. Methods We conducted multigenerational morphometric measurements to investigate the effects of parental protein deprivation on offspring kidney development across four generations. F0 mice were divided into two groups and fed a normal protein diet (NPD) or a low-protein diet (LPD) for three weeks before mating and continued these diets throughout gestation and lactation. Body weight (BW), kidney weight (KW), KW/BW ratio, nephron counts, and blood pressure were assessed in F1 pups. To examine paternal effects, we bred CD1 females on an NPD with males on an LPD. BW, KW, KW/BW, and nephron counts were measured at P20. To measure the transgenerational effect of parental LPD on kidney development, F1 offspring (from parents on LPD) were fed NPD upon weaning. These F1 offspring were bred at 6 weeks of age to produce F2, F3 and F4 generations. Kidney metrics were evaluated across generations. Results The average body weight of P0 pups from parents on NPD was 1.61g, while pups from parental LPD weighed an average of 0.869g, a decrease of 54 % (p = 6.9e-11, Wilcoxon test). F1 from parental LPD have significantly smaller kidneys than the control, with an average combined kidney weight of 0.0082g versus 0.0129g, a 37 % decrease (p = 3.2e-02, Wilcoxon test). P20 BW and KW remained low in LPD offspring. These effects persisted for 4 generations (F1 to F4) with an average glomerular count reduction of roughly 20 %. F3 and F4 showed wider variability in glomerular counts but were not statistically significant compared to controls. Conclusions Both maternal and paternal LPD significantly affected offspring nephron endowment. Our study underscores the complex nature of nutritional transgenerational effects on kidney development, emphasizing the importance of both maternal and paternal dietary impacts on kidney development and the developmental origin of adult disease.
Collapse
Affiliation(s)
- Fabiola Diniz
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Francesca Edgington-Giordano
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nguyen Yen Nhi Ngo
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Gal Caspi
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Samir S. El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Giovane G. Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
3
|
Iacobelli S, Lapillonne A, Boubred F. Early postnatal nutrition and renal consequences in preterm infants. Pediatr Res 2024:10.1038/s41390-024-03080-z. [PMID: 38374220 DOI: 10.1038/s41390-024-03080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Perinatal nutritional factors may lead to decreased nephron endowment, decreased kidney function, and long-term development of chronic kidney disease and non-communicable diseases. At the same time, optimal postnatal nutrition and catch-up growth are associated with better neurodevelopmental outcomes in preterm infants. Therefore, nutritional management of preterm infants is a major challenge for neonatologists. In this context, the Section of Nutrition, Gastroenterology and Metabolism reviewed the current knowledge on nutritional issues related to kidney function. This narrative review discusses the clinical impact of early postnatal nutrition on long-term kidney function. In preterm infants, data are largely lacking to determine the extent to which early nutrition contributes to nephrogenesis and nephron endowment. However, some nutritional principles may help clinicians better protect the developing kidney in preterm infants. IMPACT: Clinical data show that preterm infants are an emerging population at high risk for chronic kidney disease. Both undernutrition and overnutrition can alter long-term kidney function. In preterm infants, data are largely lacking to determine the extent to which early postnatal nutrition contributes to nephrogenesis, nephron endowment and increased risk for chronic kidney disease. Some nutritional principles may help clinicians better protect the developing kidney in preterm infants: avoiding extrauterine growth restriction; providing adequate protein and caloric intakes; limiting exposure to high and prolonged hyperglycaemia; avoiding micronutrient deficiencies and maintaining acid-base and electrolyte balance.
Collapse
Affiliation(s)
- Silvia Iacobelli
- Réanimation Néonatale et Pédiatrique, CHU La Réunion, Saint-Pierre, France.
- Centre d'Études Périnatales de l'Océan Indien (UR7388), Université de La Réunion, de La Réunion, France.
| | - Alexandre Lapillonne
- Service de Médecine néonatale, CHU La Conception, APHM, Marseille, France
- Aix-Marseille Université, C2VN, INRAe, INSERM, Marseille, France
| | - Farid Boubred
- Department of Neonatology, APHP, Necker-Enfants Malades University Hospital, EHU 7328 Paris Cite University Paris, Paris, France
- CNRC Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Ho SY, Yuliana ME, Chou HC, Chen CM. Intrauterine growth restriction alters kidney metabolism at the end of nephrogenesis. Nutr Metab (Lond) 2023; 20:50. [PMID: 37990266 PMCID: PMC10664663 DOI: 10.1186/s12986-023-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND This study investigated the effect of uteroplacental insufficiency (UPI) on renal development by detecting metabolic alterations in the kidneys of rats with intrauterine growth restriction (IUGR). METHODS On gestational day 17, pregnant Sprague Dawley rats were selected and allocated randomly to either the IUGR group or the control group. The IUGR group received a protocol involving the closure of bilateral uterine vessels, while the control group underwent a sham surgery. The rat pups were delivered on gestational day 22 by natural means. Pups were randomly recruited from both the control and IUGR groups on the seventh day after birth. The kidneys were surgically removed to conduct Western blot and metabolomic analyses. RESULTS IUGR was produced by UPI, as evidenced by the significantly lower body weights of the pups with IUGR compared to the control pups on postnatal day 7. UPI significantly increased the levels of cleaved caspase-3 (p < 0.05) and BAX/Bcl-2 (p < 0.01) in the pups with IUGR. Ten metabolites exhibited statistically significant differences between the groups (q < 0.05). Metabolic pathway enrichment analysis demonstrated statistically significant variations between the groups in the metabolism related to fructose and mannose, amino and nucleotide sugars, and inositol phosphate. CONCLUSIONS UPI alters kidney metabolism in growth-restricted newborn rats and induces renal apoptosis. The results of our study have the potential to provide new insights into biomarkers and metabolic pathways that are involved in the kidney changes generated by IUGR.
Collapse
Affiliation(s)
- Sheng-Yuan Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Merryl Esther Yuliana
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Faculty of Medicine, Christian University of Indonesia, Jakarta, Indonesia
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Sutherland MR, Black MJ. The impact of intrauterine growth restriction and prematurity on nephron endowment. Nat Rev Nephrol 2023; 19:218-228. [PMID: 36646887 DOI: 10.1038/s41581-022-00668-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 01/18/2023]
Abstract
In humans born at term, maximal nephron number is reached by the time nephrogenesis is completed - at approximately 36 weeks' gestation. The number of nephrons does not increase further and subsequently remains stable until loss occurs through ageing or disease. Nephron endowment is key to the functional capacity of the kidney and its resilience to disease; hence, any processes that impair kidney development in the developing fetus can have lifelong adverse consequences for renal health and, consequently, for quality and length of life. The timing of nephrogenesis underlies the vulnerability of developing human kidneys to adverse early life exposures. Indeed, exposure of the developing fetus to a suboptimal intrauterine environment during gestation - resulting in intrauterine growth restriction (IUGR) - and/or preterm birth can impede kidney development and lead to reduced nephron endowment. Furthermore, emerging research suggests that IUGR and/or preterm birth is associated with an elevated risk of chronic kidney disease in later life. The available data highlight the important role of early life development in the aetiology of kidney disease and emphasize the need to develop strategies to optimize nephron endowment in IUGR and preterm infants.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Liu H, Ngo NYN, Herzberger KF, Gummaraju M, Hilliard S, Chen CH. Histone deacetylases 1 and 2 target gene regulatory networks of nephron progenitors to control nephrogenesis. Biochem Pharmacol 2022; 206:115341. [PMID: 36356658 DOI: 10.1016/j.bcp.2022.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Our studies demonstrated the critical role of Histone deacetylases (HDACs) in the regulation of nephrogenesis. To better understand the key pathways regulated by HDAC1/2 in early nephrogenesis, we performed chromatin immunoprecipitation sequencing (ChIP-Seq) of HDAC1/2 on isolated nephron progenitor cells (NPCs) from mouse E16.5 kidneys. Our analysis revealed that 11,802 (40.4%) of HDAC1 peaks overlap with HDAC2 peaks, further demonstrates the redundant role of HDAC1 and HDAC2 during nephrogenesis. Common HDAC1/2 peaks are densely concentrated close to the transcriptional start site (TSS). GREAT Gene Ontology analysis of overlapping HDAC1/2 peaks reveals that HDAC1/2 are associated with metanephric nephron morphogenesis, chromatin assembly or disassembly, as well as other DNA checkpoints. Pathway analysis shows that negative regulation of Wnt signaling pathway is one of HDAC1/2's most significant function in NPCs. Known motif analysis indicated that Hdac1 is enriched in motifs for Six2, Hox family, and Tcf family members, which are essential for self-renewal and differentiation of nephron progenitors. Interestingly, we found the enrichment of HDAC1/2 at the enhancer and promoter regions of actively transcribed genes, especially those concerned with NPC self-renewal. HDAC1/2 simultaneously activate or repress the expression of different genes to maintain the cellular state of nephron progenitors. We used the Integrative Genomics Viewer to visualize these target genes associated with each function and found that HDAC1/2 co-bound to the enhancers or/and promoters of genes associated with nephron morphogenesis, differentiation, and cell cycle control. Taken together, our ChIP-Seq analysis demonstrates that HDAC1/2 directly regulate the molecular cascades essential for nephrogenesis.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pediatrics, School of Medicine, Tulane University, United States.
| | - Nguyen Yen Nhi Ngo
- Department of Pediatrics, School of Medicine, Tulane University, United States
| | - Kyra F Herzberger
- Department of Pediatrics, School of Medicine, Tulane University, United States
| | - Manasi Gummaraju
- Department of Pediatrics, School of Medicine, Tulane University, United States; School of Arts and Science, Washington University in St. Louis, United States
| | - Sylvia Hilliard
- Department of Pediatrics, School of Medicine, Tulane University, United States
| | - Chao-Hui Chen
- Department of Pediatrics, School of Medicine, Tulane University, United States
| |
Collapse
|
7
|
Perl AJ, Schuh MP, Kopan R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 2022; 18:683-695. [PMID: 36104510 PMCID: PMC11078284 DOI: 10.1038/s41581-022-00620-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Low nephron number - resulting, for example, from prematurity or developmental anomalies - is a risk factor for the development of hypertension, chronic kidney disease and kidney failure. Considerable interest therefore exists in the mechanisms that regulate nephron endowment and contribute to the premature cessation of nephrogenesis following preterm birth. The cessation of nephrogenesis in utero or shortly after birth is synchronized across multiple niches in all mammals, and is coupled with the exhaustion of nephron progenitor cells. Consequently, no nephrons are formed after the cessation of developmental nephrogenesis, and lifelong renal function therefore depends on the complement of nephrons generated during gestation. In humans, a tenfold variation in nephron endowment between individuals contributes to differences in susceptibility to kidney disease; however, the mechanisms underlying this variation are not yet clear. Salient advances in our understanding of environmental inputs, and of intrinsic molecular mechanisms that contribute to the regulation of cessation timing or nephron progenitor cell exhaustion, have the potential to inform interventions to enhance nephron endowment and improve lifelong kidney health for susceptible individuals.
Collapse
Affiliation(s)
- Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Haruhara K, Kanzaki G, Sasaki T, Hatanaka S, Okabayashi Y, Puelles VG, Harper IS, Shimizu A, Cullen-McEwen LA, Tsuboi N, Yokoo T, Bertram JF. Associations between nephron number and podometrics in human kidneys. Kidney Int 2022; 102:1127-1135. [PMID: 36175177 DOI: 10.1016/j.kint.2022.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
Podocyte loss and resultant nephron loss are common processes in the development of glomerulosclerosis and chronic kidney disease. While the cortical distribution of glomerulosclerosis is known to be non-uniform, the relationship between the numbers of non-sclerotic glomeruli (NSG), podometrics and zonal differences in podometrics remain incompletely understood. To help define this, we studied autopsy kidneys from 50 adults with median age 68 years and median eGFR 73.5 mL/min/1.73m2 without apparent glomerular disease in a cross-sectional analysis. The number of NSG per kidney was estimated using the physical dissector/fractionator combination, while podometrics were estimated using model-based stereology. The number of NSG per kidney was directly correlated with podocyte number per tuft and podocyte density. Each additional 100,000 NSG per kidney was associated with 26 more podocytes per glomerulus and 16 podocytes per 106 μm3 increase in podocyte density. These associations were independent of clinical factors and cortical zone. While podocyte number per glomerulus was similar in the three zones, superficial glomeruli were the smallest and had the highest podocyte density but smallest podocytes. Increasing age and hypertension were associated with lower podocyte number, with age mostly affecting superficial glomeruli, and hypertension mostly affecting juxtamedullary glomeruli. Thus, in this first study to report a direct correlation between the number of NSG and podometrics, we suggest that podocyte number is decreasing in NSG of individuals losing nephrons. However, another possible interpretation may be that more nephrons might protect against further podocyte loss.
Collapse
Affiliation(s)
- Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaya Sasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Saeko Hatanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ian S Harper
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Melbourne, Australia.
| |
Collapse
|
9
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
10
|
Hassanzadeh-Taheri M, Mohammadifard M, Erfanian Z, Hosseini M. The maternal reduced uteroplacental perfusion model of preeclampsia induces sexually dimorphic metabolic responses in rat offspring. Biol Sex Differ 2022; 13:48. [PMID: 36109770 PMCID: PMC9479437 DOI: 10.1186/s13293-022-00458-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Offspring born to preeclamptic mothers are prone to obesity, diabetes and hypertension in later life, but still, studies investigating the underlying mechanism are limited. Here, we aimed to investigate the impact of the reduced uteroplacental perfusion (RUPP) rat preeclampsia model on offspring metabolic outcomes. METHODS Timed pregnant Wistar rats underwent RUPP or sham surgeries on day 14 of gestation. Glucometabolic parameters were evaluated on postnatal days (PND), 14 (childhood), and 60 (young adult). In addition, intraperitoneal glucose tolerance test (IPGTT), homeostatic model assessment of insulin resistance (HOMA-IR), immunohistochemical staining for insulin in pancreatic islets, arterial blood pressure and 24-h urine protein (24hUP) excretion were performed at PND60. RESULTS Male, but not female, young adult rats (PND60) of RUPP dams exhibited an impaired IPGTT, decreased circulatory insulin and weakened pancreatic insulin immunoreactivity. Compared to the male offspring of the sham group, the body mass of male RUPP offspring significantly caught up after PND42, but it was not sex-specific. RUPP pups also exhibited upregulations in glucagon (only males) and ghrelin (both sexes with a more significant increase in males) during PND14-PND60. However, in sham offspring (both sexes), glucagon levels were downregulated and ghrelin levels unchanged during PND14-PND60. The blood pressure, HOMA-IR and 24hUP values did not alter in RUPP pups. CONCLUSIONS The overall results suggest that maternal RUPP has negative and sex-specific impacts on insulin, glucagon and ghrelin regulations in offspring and that, as young adults, male RUPP rats may be more prone to develop obesity and diabetes.
Collapse
Affiliation(s)
- Mohammadmehdi Hassanzadeh-Taheri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Mohammadifard
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Erfanian
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
11
|
Diaz DMM, Aguirre MDCC, Escalera ALR, Gutiérrez MTT, Robles IO, Guzmán MJM, Díaz ALG, Peña MCG, Alvarado-Nájera AN, Domínguez IG, Villavicencio-Bautista JC, Rodríguez AAH, Marín-García R, González FJA, Wong AC, Guerra EG, Castañeda RD, Aguilar CAP, Zúñiga-Macías LP, Guerra JMA. Histologic characterization and risk factors for persistent albuminuria in adolescents in a region of highly prevalent end-stage renal failure of unknown origin. Clin Kidney J 2022; 15:1300-1311. [PMID: 35756733 PMCID: PMC9217647 DOI: 10.1093/ckj/sfac018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
End-stage renal failure of unknown origin (ESRD-UO) is a public health problem in Mexico and many regions of the world. The prevalence of ESRD-UO in Aguascalientes Mexico is one of the highest worldwide, particularly in adults between 20 and 40 years of age.
Aim
To screen adolescents for chronic kidney disease (CKD), identify risk factors, and histologically characterize adolescents with persistent albuminuria (pACR).
Methodology
This is a cross-sectional, observational, and comparative study of adolescents in whom serum creatinine and the albumin creatinine ratio (ACR) were determined when screening for CKD. A clinical evaluation and risk factor survey were conducted. Patients with an abnormal ACR (≥ 30 mg/gr) or a low glomerular filtration rate (GFR) (≤75 ml/min/1.73 m2) were reevaluated and a renal ultrasound was obtained (rUS). A kidney biopsy was performed in patients with pACR.
Results
Five-hundred and thirteen (513) students were included, 19 had pACR and 494 were controls. The prevalence of pACR was 3.7% (95%CI 2.1 – 5.3). Only one patient had a decreased GRF. None of the patients with pACR had anatomical abnormalities of the urinary tract by rUS. Patients with pACR had a decreased total renal volume in comparison with the control group (150 vs 195 ml/m2, p <0.01). Eighteen (18) kidney biopsies were performed, 72% had glomerulomegaly, and only one patient had mild fibrosis. Podocyte abnormalities were evident on electron microscopy: partial fusion (100%), microvillous degeneration (80%), and increased organelles (60%). Risk factors for pACR were: homestead proximity to maize crops, the use of pesticides at the father´s workplace, a family history of CKD, and blood pressure abnormalities. The body mass index and breastfeeding were protective factors.
Conclusions
The prevalence of pACR in adolescents in Aguascalientes is high, and histologic compromise is characterized by podocyte injury in the absence of fibrosis. The renal volume of pACR patients was decreased, suggesting oligonephronia. Exposure to environmental toxins such as pesticides, even prenatally, may be responsible for this pathological entity. Screening programs in adolescents by determining ACR are necessary in our milieu.
Collapse
Affiliation(s)
| | - Myriam del Carmen Corrales Aguirre
- Department of Nephrology, Hospital Centenario Miguel Hidalgo, Mexico
- Department of Pediatrics, Hospital Centenario Miguel Hidalgo, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | - Alfredo Chew Wong
- Department of Nephrology, Hospital Centenario Miguel Hidalgo, Mexico
| | | | - Rodolfo Delgadillo Castañeda
- Department of Nephrology, Hospital Centenario Miguel Hidalgo, Mexico
- Department of Pediatrics, Hospital Centenario Miguel Hidalgo, Mexico
| | | | | | | |
Collapse
|
12
|
Voggel J, Lubomirov L, Lechner F, Fink G, Nüsken E, Wohlfarth M, Pfitzer G, Shah-Hosseini K, Hellmich M, Alejandre Alcázar MA, Dötsch J, Nüsken KD. Vascular tone regulation in renal interlobar arteries of male rats is dysfunctional after intrauterine growth restriction. Am J Physiol Renal Physiol 2021; 321:F93-F105. [PMID: 34056927 DOI: 10.1152/ajprenal.00653.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intrauterine growth restriction (IUGR) due to an adverse intrauterine environment predisposes to arterial hypertension and loss of kidney function. Here, we investigated whether vascular dysregulation in renal interlobar arteries (RIAs) may contribute to hypertensive glomerular damage after IUGR. In rats, IUGR was induced by bilateral uterine vessel ligation. Offspring of nonoperated rats served as controls. From postnatal day 49, blood pressure was telemetrically recorded. On postnatal day 70, we evaluated contractile function in RIAs and mesenteric arteries. In addition, blood, urine, and glomerular parameters as well as renal collagen deposition were analyzed. IUGR RIAs not only showed loss of stretch activation in 9 of 11 arteries and reduced stretch-induced myogenic tone but also showed a shift of the concentration-response relation of acetylcholine-induced relaxation toward lower concentrations. However, IUGR RIAs also exhibited augmented contractions through phenylephrine. Systemic mean arterial pressure [mean difference: 4.8 mmHg (daytime) and 5.7 mmHg (night)], mean glomerular area (IUGR: 9,754 ± 338 µm2 and control: 8,395 ± 227 µm2), and urinary protein-to-creatinine ratio (IUGR: 1.67 ± 0.13 g/g and control: 1.26 ± 0.10 g/g) were elevated after IUGR. We conclude that male IUGR rat offspring may have increased vulnerability toward hypertensive glomerular damage due to loss of myogenic tone and augmented endothelium-dependent relaxation in RIAs.NEW & NOTEWORTHY For the first time, our study presents wire myography data from renal interlobar arteries (RIAs) and mesenteric arteries of young adult rat offspring after intrauterine growth restriction (IUGR). Our data indicate that myogenic tone in RIAs is dysfunctional after IUGR. Furthermore, IUGR offspring suffer from mild arterial hypertension, glomerular hypertrophy, and increased urinary protein-to-creatinine ratio. Dysregulation of vascular tone in RIAs could be an important variable that impacts upon vulnerability toward glomerular injury after IUGR.
Collapse
Affiliation(s)
- Jenny Voggel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Lubomir Lubomirov
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Felix Lechner
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria Wohlfarth
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Kija Shah-Hosseini
- Institute of Medical Statistics and Computational Biology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcázar
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.,Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Alhamoud I, Legan SK, Gattineni J, Baum M. Sex differences in prenatal programming of hypertension by dexamethasone. Exp Biol Med (Maywood) 2021; 246:1554-1562. [PMID: 33794700 DOI: 10.1177/15353702211003294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prenatal dexamethasone has been shown to increase blood pressure in male offspring but the mechanism for the increase in blood pressure is unclear. The present study examined if prenatal programming by maternal injection of dexamethasone on days 15 and 16 of gestation affected the blood pressure comparably in female and male offspring. Our hypothesis was that males would be affected by prenatal dexamethasone to a greater extent than females and that either an increase in renal tubular transporter abundance or an increase in renin or aldosterone system would be associated with hypertension with prenatal programming. Prenatal dexamethasone increased blood pressure at two months and six months of age and resulted in proteinuria and albuminuria at six months in male but not female rat offspring. There was no effect of prenatal dexamethasone on blood pressure and proteinuria at one month in male and in female offspring. While prenatal dexamethasone increased male renal thick ascending limb sodium potassium two chloride cotransporter protein abundance at two months, prenatal dexamethasone on days 15 and 16 of gestation did not affect transporter abundance in males at other ages, nor did it affect proximal tubule sodium/hydrogen exchanger or distal convoluted tubule sodium chloride cotransporter protein abundance at any age. There was no difference in systemic renin or aldosterone in the prenatal dexamethasone group compared to same sex controls. In conclusion, male but not female offspring have an increase in blood pressure and urinary protein excretion with prenatal dexamethasone. The increase in blood pressure with prenatal programming was not associated with a consistent increase in renal tubular transporter protein abundance, nor plasma renin activity and serum aldosterone.
Collapse
Affiliation(s)
- Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA
| |
Collapse
|
14
|
Mahizir D, Briffa JF, Anevska K, Wadley GD, Moritz KM, Wlodek ME. Exercise alters cardiovascular and renal pregnancy adaptations in female rats born small on a high-fat diet. Am J Physiol Regul Integr Comp Physiol 2021; 320:R404-R416. [PMID: 33326343 DOI: 10.1152/ajpregu.00260.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/13/2020] [Indexed: 11/22/2022]
Abstract
Intrauterine growth restriction programs adult cardiorenal disease, which may be exacerbated by pregnancy and obesity. Importantly, exercise has positive cardiovascular effects. This study determined if high-fat feeding exacerbates the known adverse cardiorenal adaptations to pregnancy in rats born small and whether endurance exercise can prevent these complications. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham (Control) surgery on embryonic day 18 (E18) in Wistar-Kyoto rats. Female offspring consumed a Chow or high-fat diet (HFD) from weaning and were randomly allocated to either a sedentary (Sedentary) or an exercise protocol at 16 wk; exercised before and during pregnancy (Exercise), or exercised during pregnancy only (PregEx). Systolic blood pressure was measured prepregnancy and rats were mated at 20 wk. During pregnancy, systolic blood pressure (E18) and renal function (E19) were assessed. Sedentary HFD Control females had increased estimated glomerular filtration rate (eGFR) compared with Chow. Compared with Control, Sedentary-Restricted females had increased eGFR, which was not influenced by HFD. Renal function was not affected by exercise and prepregnancy blood pressure was not altered. Restricted Chow-fed dams and dams fed a high-fat diet had a greater reduction in systolic blood pressure during late gestation, which was only prevented by Exercise. In summary, high-fat fed females born small are at a greater risk of altered cardiorenal adaptations to pregnancy. Although cardiovascular dysfunction was prevented by Exercise, renal dysfunction was not affected by exercise interventions. This study highlights that modifiable risk factors can have beneficial effects in the mother during pregnancy, which may impact fetal growth and development.
Collapse
Affiliation(s)
- Dayana Mahizir
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Bajpai D. Preeclampsia for the Nephrologist: Current Understanding in Diagnosis, Management, and Long-term Outcomes. Adv Chronic Kidney Dis 2020; 27:540-550. [PMID: 33328071 DOI: 10.1053/j.ackd.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/11/2022]
Abstract
Preeclampsia is a multisystem progressive disorder of pregnancy that can be potentially catastrophic for the mother and the fetus. It involves complex perturbations of the kidney and systemic physiology, along with long-term effects on vascular and kidney health. Thus, the nephrologist plays a key role in the peripartum and long-term management of preeclampsia. Recent translational research has improved our understanding of its pathophysiology, and there is hope for novel therapies. In this review, we discuss the evolution of diagnostic criteria and dilemmas in the diagnosis of hypertensive disorders in pregnancy. We summarize the advances in the pathogenesis and prediction of preeclampsia. We describe the management and prevention of preeclampsia focusing specially on the forthcoming strategies from the nephrologist's perspective. We address the evidence regarding long-term outcomes for the mother and the child. We end with exploring areas warranting future research.
Collapse
|
16
|
Jain J, Legan SK, Alhamoud I, Gattineni J, Baum M. Effect of sex on glomerular filtration rate in programmed rats by prenatal dexamethasone. Physiol Rep 2020; 7:e14154. [PMID: 31243892 PMCID: PMC6594923 DOI: 10.14814/phy2.14154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
We have previously demonstrated that dexamethasone administered to pregnant rats during specific times during gestation results in a reduction in glomerular number and hypertension in offspring at 2 and 6 months of age. In this study, we examined the effect of prenatal dexamethasone administered daily on days 15 and 16 of gestation in male and female offspring after 1 year of age on glomerular filtration rate. The prenatal dexamethasone male group had a higher systolic blood pressure than the vehicle male group. Females had lower systolic blood pressures than the males and prenatal dexamethasone did not affect blood pressure in female offspring. Prenatal dexamethasone resulted in a reduction in glomerular filtration rate in male but not in female rats. When corrected for body weight, the control male rats had a lower glomerular filtration rate than the control female rats. Males had greater protein excretion than females and prenatal dexamethasone increased the protein excretion only in male rats. Glomerulosclerosis was also greater in male rats than females but was not affected by prenatal dexamethasone. In summary, male rats appear to have evidence of a decline in glomerular filtration rate after 1 year of age and prenatal dexamethasone programs an accelerated decline in glomerular filtration rate in male but not in female offspring.
Collapse
Affiliation(s)
- Jyoti Jain
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
17
|
Kooiman J, Terstappen F, van Wagensveld L, Franx A, Wever KE, Roseboom TJ, Joles JA, Gremmels H, Lely AT. Conflicting Effects of Fetal Growth Restriction on Blood Pressure Between Human and Rat Offspring: A Meta-Analysis. Hypertension 2020; 75:806-818. [PMID: 31983304 DOI: 10.1161/hypertensionaha.119.14111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Low birth weight is associated with hypertension. Low birth weight can result from fetal growth restriction (FGR) or prematurity. FGR is postulated to impact blood pressure (BP) by developmental programming. This systematic review and meta-analysis studies BP in human and animal offspring following FGR. Pubmed and Web of Science were searched for studies reporting on BP after placental insufficiency induced FGR compared with normal growth controls. Primary outcome was mean absolute BP difference (ΔBP mm Hg [95% CI]). Meta-analysis was performed using random-effects models. Subgroup analyses were executed on species, sex, age, pregnancy duration, and stress during BP readings. Due to large interspecies heterogeneity, analyses were performed separately for human (n=41) and animal (n=31) studies, the latter restricted to rats (n=27). Human studies showed a ΔBP between FGR and controls of -0.6 mm Hg ([95% CI, -1.7 to 0.6]; I2=91%). Mean ΔBP was -2.6 mm Hg (95% CI, -5.7 to 0.4) in women versus -0.5 mm Hg (95% CI, -3.7 to 2.7) in men. Subgroup analyses did not indicate age, gestational age, and stress during measurements as sources of heterogeneity. In rats, mean BP was 12.0 mm Hg ([95% CI, 8.8-15.2]; I2=81%) higher in FGR offspring. This difference was more pronounced in FGR males (13.6 mm Hg [95% CI, 10.3-17.0] versus 9.1 mm Hg [95% CI, 5.3-12.8]). Subgroup analyses on age showed no statistical interaction. BP readings under restrained conditions resulted in larger BP differences between FGR and control rats (15.3 mm Hg [95% CI, 11.6-18.9] versus 5.7 mm Hg [95% CI, 1.1-10.3]). Rat studies confirm the relation between FGR and offspring BP, while observational studies in humans do not show such differences. This may be due to the observational nature of human studies, methodological limitations, or an absence of this phenomenon in humans. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: CRD42018091819.
Collapse
Affiliation(s)
- Judith Kooiman
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands
| | - Fieke Terstappen
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands.,Department of Developmental Origin of Disease (F.T.), University Medical Center Utrecht, the Netherlands
| | - Lilian van Wagensveld
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands
| | - Arie Franx
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands
| | - Kimberley E Wever
- Systematic Review Center for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands (K.E.W.)
| | - Tessa J Roseboom
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Obstetrics and Gynecology, Amsterdam Public Health Research Institute, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, the Netherlands (T.J.R.)
| | - Jaap A Joles
- Wilhelmina Children's Hospital and Department of Nephrology and Hypertension (J.A.J., H.G.), University Medical Center Utrecht, the Netherlands
| | - Hendrik Gremmels
- Wilhelmina Children's Hospital and Department of Nephrology and Hypertension (J.A.J., H.G.), University Medical Center Utrecht, the Netherlands
| | - A Titia Lely
- From the Department of Obstetrics (J.K., F.T., L.v.W., A.F., A.T.L.), University Medical Center Utrecht, the Netherlands
| |
Collapse
|
18
|
Akison LK, Probyn ME, Gray SP, Cullen-McEwen LA, Tep K, Steane SE, Gobe GC, Wlodek ME, Bertram JF, Moritz KM. Moderate prenatal ethanol exposure in the rat promotes kidney cell apoptosis, nephron deficits, and sex-specific kidney dysfunction in adult offspring. Anat Rec (Hoboken) 2020; 303:2632-2645. [PMID: 31984647 DOI: 10.1002/ar.24370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/31/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Alcohol during pregnancy can impair fetal development and result in offspring with neurodevelopmental deficits. Less is known about how low to moderate alcohol exposure can affect other organs, such as the kidney. Here, the effects of moderate ethanol exposure throughout pregnancy on kidney development were examined using a rat model. Rats were fed a liquid diet containing 6% ethanol (vol/vol) or control (0% ethanol) throughout pregnancy. Kidneys were collected at embryonic day (E) 20 or postnatal day (PN) 30 and total glomerular (nephron) number determined using unbiased stereology. Kidney function was examined in offspring at 8 and 19 months. At E20, fetuses exposed to ethanol had fewer nephrons with increased apoptosis. Alcohol exposure caused kidney dysregulation of pro- (Bax) and anti- (Bcl-2) apoptotic factors, and reduced expression of the cell proliferation marker, Ki67. Prenatal alcohol decreased expression of Gdnf and Tgfb1, important regulators of branching morphogenesis, in male fetuses. At PN30, kidney volume and nephron number were lower in offspring exposed to prenatal alcohol. Urine flow and osmolality were normal in offspring exposed to alcohol however sodium excretion tended to be lower in females prenatally exposed to alcohol. Findings suggest exposure to moderate levels of alcohol during pregnancy results in impaired kidney development and leads to a permanent nephron deficit. Although the impact on adult kidney function was relatively minor, these data highlight that even at moderate levels, alcohol consumption during pregnancy can have deleterious long-term outcomes and should be avoided.
Collapse
Affiliation(s)
- Lisa K Akison
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Megan E Probyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Stephen P Gray
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Louise A Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Karrona Tep
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Sarah E Steane
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Glenda C Gobe
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - John F Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
19
|
Effects of intrauterine growth restriction on Ca 2+-activated force and contractile protein expression in the mesenteric artery of 1-year-old Wistar-Kyoto rats. J Physiol Biochem 2020; 76:111-121. [PMID: 31927696 DOI: 10.1007/s13105-020-00724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
Intrauterine growth restriction (IUGR) affects vascular reactivity in older rats, but at present the causative factors for this change are unknown. Therefore, we investigated downstream events associated with vascular reactivity, specifically, Ca2+-regulated force production and shifts in contractile protein content. The mesenteric artery from male and female 1-year-old Wistar-Kyoto rats was examined using two distinct experimental growth restriction models. Uterine ligation surgery restriction or a sham surgery was conducted at day 18 of pregnancy, whilst a food restriction diet (40% control diet) began on gestational day 15. Extracellular vascular reactivity was studied using intact mesenteric arteries, which were subsequently chemically permeabilized using 50 μM β-escin to examine Ca2+-activated force. Peak contractile responses to a K+-induced depolarization and phenylephrine were significantly elevated due to an increase in maximum Ca2+-activated force in the male surgery restricted group. No changes in contractile forces were reported between female experimental groups. Sections of mesenteric artery were examined using western blotting, revealing IUGR increased the relative abundance of the voltage-gated Ca2+ channel, inositol-1,4,5-trisphosphate receptor and myosin light chain kinase, in both male growth restricted groups, whereas no changes were seen in females. These findings demonstrate for the first time in 1-year-old rats that changes in vascular reactivity due to IUGR are caused by a change in Ca2+-activated force and shifts in important contractile protein content. These changes affect the Wistar-Kyoto rat in a sex-specific and maternal insult-dependent manner.
Collapse
|
20
|
Luyckx VA, Brenner BM. Clinical consequences of developmental programming of low nephron number. Anat Rec (Hoboken) 2019; 303:2613-2631. [PMID: 31587509 DOI: 10.1002/ar.24270] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/30/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Nephron number in humans varies up to 13-fold, likely reflecting the impact of multiple factors on kidney development, including inherited body size and ethnicity, as well as maternal health and nutrition, fetal exposure to gestational diabetes or preeclampsia and other environmental factors, which may potentially be modifiable. Such conditions predispose to low or high offspring birth weight, growth restriction or preterm birth, which have all been associated with increased risks of higher blood pressures and/or kidney dysfunction in later life. Low birth weight, preterm birth, and intrauterine growth restriction are associated with reduced nephron numbers. Humans with hypertension and chronic kidney disease tend to have fewer nephrons than their counterparts with normal blood pressures or kidney function. A developmentally programmed reduction in nephron number therefore enhances an individual's susceptibility to hypertension and kidney disease in later life. A low nephron number at birth may not lead to kidney dysfunction alone except when severe, but in the face of superimposed acute or chronic kidney injury, a kidney endowed with fewer nephrons may be less able to adapt, and overt kidney disease may develop. Given that millions of babies are born either too small, too big or too soon each year, the population impact of altered renal programming is likely to be significant. Many gestational exposures are modifiable, therefore urgent attention is required to implement public health measures to optimize maternal, fetal, and child health, to prevent or mitigate the consequences of developmental programming, to improve the health future generations.
Collapse
Affiliation(s)
- Valerie A Luyckx
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Institute of Biomedical Ethics and the History of Medicine, University of Zurich, Switzerland
| | - Barry M Brenner
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Shamseldeen AM, Ali Eshra M, Ahmed Rashed L, Fathy Amer M, Elham Fares A, Samir Kamar S. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings. Arch Physiol Biochem 2019; 125:367-377. [PMID: 29741967 DOI: 10.1080/13813455.2018.1471511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context: Maternal diet composition could influence fetal organogenesis. Objective: We investigated effects of high fat diet (HFD) intake alone or combined with omega 3 during pregnancy, lactation and early days of weaning on nephrogenesis of pups and maternal renal function and morphology. Material and methods: Mothers and their pups included in each group were supplied with the same diet composition. Rats were divided into group I, II and III supplied with chow of either 10 kcal%, 45 kcal% or 45 kcal% from fat together with omega-3 respectively. Results: Group II showed increased serum urea and creatinine, renal TNF-α, IL1β. Structural injury was observed in mothers and their pups as Bowman's capsule and tubular dilatation and increased expression of PCNA that were decreased following omega-3 supplementation added to down regulation of Wnt4, Pax2 gene and podocin expression. Discussion and conclusion: Omega-3 supplementation improves lipid nephrotoxicity observed in mothers and their pups.
Collapse
Affiliation(s)
| | - Mohammed Ali Eshra
- a Department of Physiology Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Laila Ahmed Rashed
- b Department of Biochemistry Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Marwa Fathy Amer
- b Department of Biochemistry Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Amal Elham Fares
- c Department of Medical Histology Faculty of Medicine, Cairo University , Cairo , Egypt
| | - Samaa Samir Kamar
- c Department of Medical Histology Faculty of Medicine, Cairo University , Cairo , Egypt
| |
Collapse
|
22
|
Park B, Lee JW, Kim HS, Park EA, Cho SJ, Park H. Effects of Prenatal Growth Status on Subsequent Childhood Renal Function Related to High Blood Pressure. J Korean Med Sci 2019; 34:e174. [PMID: 31243933 PMCID: PMC6597485 DOI: 10.3346/jkms.2019.34.e174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/03/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Hypertension is one of the major causes of chronic diseases. The effect on high blood pressure (BP) with fetal growth restriction is now well-established. Recent studies suggest that a reduced number of nephrons programmed during the intrauterine period contribute to a subsequently elevated BP, due to a permanent nephron deficit. However, few studies have examined this in children. We investigated the effects of low birth weight (LBW) and preterm birth on the renal function markers related to a high BP in childhood. METHODS We used data from 304 children aged 7-12 years who participated in the 2014 Ewha Birth and Growth Cohort survey in Korea. We assessed the serum uric acid, cystatin C, blood urea nitrogen (BUN), creatinine levels, and the estimated glomerular filtration rate (eGFR) in childhood. Anthropometric characteristics, BP in childhood, birth weight and gestational age were collected. RESULTS The serum uric acid was significantly higher in LBW children (4.0 mg/dL) than in normal birth weight children (3.7 mg/dL). The cystatin C levels were highest among children who were very preterm (0.89 mg/dL) compared with those who were not (preterm, 0.84 mg/dL; normal, 0.81 mg/dL), although the result was only borderline significant (P for trend = 0.06). Decreased birth weight was found to be significantly associated with an increased serum BUN level in childhood. In the analysis of the effects of renal function on BP, subjects with an eGFR lower than the median value had a significantly higher diastolic BP in childhood (difference = 2.4 mmHg; P < 0.05). CONCLUSION These findings suggest that LBW and preterm birth are risk factors for increased serum levels of renal function markers in childhood. Reduced eGFR levels were significantly associated with elevated diastolic BP in childhood. It is necessary to identify vulnerable individuals during their life and intervene appropriately to reduce the risk of an increased BP in the future.
Collapse
Affiliation(s)
- Bohyun Park
- Department of Preventive Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jung Won Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hae Soon Kim
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Eun Ae Park
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Su Jin Cho
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyesook Park
- Department of Preventive Medicine, Ewha Womans University School of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Lu HQ, Hu R. Lasting Effects of Intrauterine Exposure to Preeclampsia on Offspring and the Underlying Mechanism. AJP Rep 2019; 9:e275-e291. [PMID: 31511798 PMCID: PMC6736667 DOI: 10.1055/s-0039-1695004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia is a common pregnancy complication which can have adverse impact on both mother and baby. In addition to the short term effects, a large body of epidemiological evidence has found preeclampsia can exert long-lasting effects on mother and offspring. Studies suggest that offspring exposed to preeclampsia are at a higher risk of developing cardiovascular, metabolic, and neurological diseases, as well as other diseases. However, studies investigating the underlying mechanism are limited, the exact mechanism still remains unclear. In this study, we will review the epidemiological evidence and studies exploring the mechanism underlying long-term effects of preeclampsia on offspring. Further studies should be targeted at this field so as to implement effective clinical management to prevent the exposed offspring from potential diseases.
Collapse
Affiliation(s)
- Hui Qing Lu
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Rong Hu
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Al-Sawalha NA, AlSari RR, Khabour OF, Alzoubi KH. Influence of prenatal waterpipe tobacco smoke exposure on renal biomarkers in adult offspring rats. Inhal Toxicol 2019; 31:171-179. [DOI: 10.1080/08958378.2019.1624897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nour A. Al-Sawalha
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Riham R. AlSari
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F. Khabour
- Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
25
|
Briffa JF, O'Dowd R, Romano T, Muhlhausler BS, Moritz KM, Wlodek ME. Reducing Pup Litter Size Alters Early Postnatal Calcium Homeostasis and Programs Adverse Adult Cardiovascular and Bone Health in Male Rats. Nutrients 2019; 11:nu11010118. [PMID: 30626125 PMCID: PMC6356436 DOI: 10.3390/nu11010118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022] Open
Abstract
The in utero and early postnatal environments play essential roles in offspring growth and development. Standardizing or reducing pup litter size can independently compromise long-term health likely due to altered milk quality, thus limiting translational potential. This study investigated the effect reducing litter size has on milk quality and offspring outcomes. On gestation day 18, dams underwent sham or bilateral uterine vessel ligation surgery to generate dams with normal (Control) and altered (Restricted) milk quality/composition. At birth, pups were cross-fostered onto separate dams with either an unadjusted or reduced litter size. Plasma parathyroid hormone-related protein was increased in Reduced litter pups, whereas ionic calcium and total body calcium were decreased. These data suggest Reduced litter pups have dysregulated calcium homeostasis in early postnatal life, which may impair bone mineralization decreasing adult bone bending strength. Dams suckling Reduced litter pups had increased milk long-chain monounsaturated fatty acid and omega-3 docosahexaenoic acid. Reduced litter pups suckled by Normal milk quality/composition dams had increased milk omega-6 linoleic and arachidonic acids. Reduced litter male adult offspring had elevated blood pressure. This study highlights care must be taken when interpreting data from research that alters litter size as it may mask subtle cardiometabolic health effects.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia.
| | - Rachael O'Dowd
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia.
| | - Tania Romano
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia.
- Department of Physiology, Anatomy and Microbiology, LaTrobe University, Bundoora 3083, Australia.
| | - Beverly S Muhlhausler
- Department of Food and Wine Science, School of Agriculture, Food and Wine, FOODplus Research Centre, The University of Adelaide, Adelaide 5064, Australia.
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, St. Lucia 4101, Australia.
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
26
|
Sutherland MR, Ng KW, Drenckhahn JD, Wlodek ME, Black MJ. Impact of Intrauterine Growth Restriction on the Capillarization of the Early Postnatal Rat Heart. Anat Rec (Hoboken) 2019; 302:1580-1586. [PMID: 30471197 DOI: 10.1002/ar.24037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 01/15/2023]
Abstract
Capillarization plays a key role in the growth of the developing heart. We therefore hypothesized that impaired heart development following intrauterine growth restriction (IUGR) may arise from inadequate myocardial capillary growth. The aims of the study were to examine the effect of IUGR on the growth and diffusion radius of intramyocardial capillaries in rats at postnatal day 1. Uteroplacental insufficiency was induced in rats in late gestation (E18, term = E22) by bilateral uterine artery and vein ligation (restricted offspring N = 12; six males and six females); offspring from sham-operated dams were used as controls (N = 10; five males and five females). At postnatal day 1, the hearts were immersion-fixed and heart volume, capillary length density, capillary diffusion radius, and total capillary length were stereologically determined. Restricted offspring were significantly smaller at birth, with a concomitant reduction in heart volume and total myocardial capillary length compared to controls. Capillary growth was not impaired relative to heart size, with no significant differences in capillary length density or diffusion radius in the myocardium of restricted and control offspring. There were no sex differences in any of the parameters examined. In conclusion, there was no evidence to indicate that microvascular development is compromised in the heart of IUGR offspring at 1 day after birth. Total myocardial capillary length, however, was significantly reduced in the growth restricted offspring and further longitudinal studies are required to elucidate the long-term impact, particularly following hypertrophic cardiac growth. Anat Rec, 302:1580-1586, 2019. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology and the Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ka Wing Ng
- Department of Anatomy and Developmental Biology and the Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jörg D Drenckhahn
- Department of Pediatric Cardiology, Justus Liebig University Giessen, Giessen, Germany
| | - Mary E Wlodek
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology and the Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Tham MS, Smyth IM. Cellular and molecular determinants of normal and abnormal kidney development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e338. [DOI: 10.1002/wdev.338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ming S. Tham
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| | - Ian M. Smyth
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
- Department of Biochemistry and Molecular Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| |
Collapse
|
28
|
Christie MJ, Romano T, Murphy RM, Posterino GS. The effect of intrauterine growth restriction on Ca 2+ -activated force and contractile protein expression in the mesenteric artery of adult (6-month-old) male and female Wistar-Kyoto rats. Physiol Rep 2018; 6:e13954. [PMID: 30592188 PMCID: PMC6308111 DOI: 10.14814/phy2.13954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/29/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is known to alter vascular smooth muscle reactivity, but it is currently unknown whether these changes are driven by downstream events that lead to force development, specifically, Ca2+ -regulated activation of the contractile apparatus or a shift in contractile protein content. This study investigated the effects of IUGR on Ca2+ -activated force production, contractile protein expression, and a potential phenotypic switch in the resistance mesenteric artery of both male and female Wistar-Kyoto (WKY) rats following two different growth restriction models. Pregnant female WKY rats were randomly assigned to either a control (C; N = 9) or food restriction diet (FR; 40% of control; N = 11) at gestational day-15 or underwent a bilateral uterine vessel ligation surgery restriction (SR; N = 10) or a sham surgery control model (SC; N = 12) on day-18 of gestation. At 6-months of age, vascular responsiveness of intact mesenteric arteries was studied, before chemically permeabilization using 50 μmol/L β-escin to investigate Ca2+ -activated force. Peak responsiveness to a K+ -induced depolarization was decreased (P ≤ 0.05) due to a reduction in maximum Ca2+ -activated force (P ≤ 0.05) in both male growth restricted experimental groups. Vascular responsiveness was unchanged between female experimental groups. Segments of mesenteric artery were analyzed using Western blotting revealed IUGR reduced the relative abundance of important receptor and contractile proteins in male growth restricted rats (P ≤ 0.05), suggesting a potential phenotypic switch, whilst no changes were observed in females. Results from this study suggest that IUGR alters the mesenteric artery reactivity due to a decrease in maximum Ca2+ -activated force, and likely contributed to by a reduction in contractile protein and receptor/channel content in 6-month-old male rats, while female WKY rats appear to be protected.
Collapse
Affiliation(s)
- Michael J. Christie
- Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityMelbourneVictoriaAustralia
| | - Tania Romano
- Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityMelbourneVictoriaAustralia
| | - Robyn M. Murphy
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneVictoriaAustralia
| | - Giuseppe S. Posterino
- Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
29
|
Gallo LA, Walton SL, Mazzuca MQ, Tare M, Parkington HC, Wlodek ME, Moritz KM. Uteroplacental insufficiency temporally exacerbates salt-induced hypertension associated with a reduced natriuretic response in male rat offspring. J Physiol 2018; 596:5859-5872. [PMID: 29604087 PMCID: PMC6265551 DOI: 10.1113/jp275655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Low weight at birth increases the risk of developing chronic diseases in adulthood A diet that is high in salt is known to elevate blood pressure, which is a major risk factor for cardiovascular and kidney diseases The present study demonstrates that growth restricted male rats have a heightened sensitivity to high dietary salt, in the context of raised systolic blood pressure, reduced urinary sodium excretion and stiffer mesenteric resistance vessels Other salt-induced effects, such as kidney hyperfiltration, albuminuria and glomerular damage, were not exacerbated by being born small The present study demonstrates that male offspring born small have an increased cardiovascular susceptibility to high dietary salt, such that that minimizing salt intake is probably of particular benefit to this at-risk population ABSTRACT: Intrauterine growth restriction increases the risk of developing chronic diseases in adulthood. Lifestyle factors, such as poor dietary choices, may elevate this risk. We determined whether being born small increases the sensitivity to a dietary salt challenge, in the context of hypertension, kidney disease and arterial stiffness. Bilateral uterine vessel ligation or sham surgery (offspring termed Restricted and Control, respectively) was performed on 18-day pregnant Wistar Kyoto rats. Male offspring were allocated to receive a diet high in salt (8% sodium chloride) or remain on standard rat chow (0.52% sodium chloride) from 20 to 26 weeks of age for 6 weeks. Systolic blood pressure (tail-cuff), renal function (24 h urine excretions) and vascular stiffness (pressure myography) were assessed. Restricted males were born 15% lighter than Controls and remained smaller throughout the study. Salt-induced hypertension was exacerbated in Restricted offspring, reaching a peak systolic pressure of ∼175 mmHg earlier than normal weight counterparts. The natriuretic response to high dietary salt in Restricted animals was less than in Controls and may explain the early rise in arterial pressure. Growth restricted males allocated to a high salt diet also had increased passive arterial stiffness of mesenteric resistance arteries. Other aspects of renal function, including salt-induced hyperfiltration, albuminuria and glomerular damage, were not exacerbated by uteroplacental insufficiency. The present study demonstrates that male offspring exposed to uteroplacental insufficiency and born small have an increased sensitivity to salt-induced hypertension and arterial remodelling.
Collapse
Affiliation(s)
- Linda A. Gallo
- Department of PhysiologyThe University of MelbourneVICAustralia
- School of Biomedical SciencesThe University of QueenslandQLDAustralia
- Mater Research Institute‐The University of QueenslandTranslational Research InstituteQLDAustralia
| | - Sarah L. Walton
- School of Biomedical SciencesThe University of QueenslandQLDAustralia
- Child Health Research CentreThe University of QueenslandQLDAustralia
| | - Marc Q. Mazzuca
- Department of PhysiologyThe University of MelbourneVICAustralia
| | - Marianne Tare
- Department of PhysiologyMonash UniversityVICAustralia
- Monash Rural HealthMonash UniversityVICAustralia
| | | | - Mary E. Wlodek
- Department of PhysiologyThe University of MelbourneVICAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesThe University of QueenslandQLDAustralia
- Child Health Research CentreThe University of QueenslandQLDAustralia
| |
Collapse
|
30
|
Impact of prenatal and postnatal maternal environment on nephron endowment, renal function and blood pressure in the Lewis polycystic kidney rat. J Dev Orig Health Dis 2018; 10:154-163. [PMID: 30274564 DOI: 10.1017/s2040174418000673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maternal insufficiency during fetal development can have long-lasting effects on the offspring, most notably on nephron endowment. In polycystic kidney disease (PKD), variability in severity of disease is observed and maternal environment may be a modifying factor. In this study, we first established that in a rodent model of PKD, the Lewis polycystic kidney (LPK) rat's nephron numbers are 25% lower compared with wildtype animals. We then investigated the effects of prenatal and postnatal maternal environment on phenotype and nephron number. LPK pups born from and raised by homozygous LPK dams (control) were compared with LPK pups cross-fostered onto heterozygous LPK dams to improve postnatal environment; with LPK pups born from and raised by heterozygous LPK dams to improve both prenatal and postnatal environment and with LPK pups born from and raised by Wistar Kyoto-LPK heterozygous dams to improve both prenatal and postnatal environment on a different genetic background. Improvement in both prenatal and postnatal environment improved postnatal growth, renal function and reduced blood pressure, most notably in animals with different genetic background. Animals with improved postnatal environment only showed improved growth and blood pressure, but to a lesser extent. All intervention groups showed increased nephron number compared with control LPK. In summary, prenatal and postnatal environment had significant effect in delaying progression and reducing severity of PKD, including nephron endowment.
Collapse
|
31
|
Yeung KR, Sunderland N, Lind JM, Heffernan S, Pears S, Xu B, Hennessy A, Makris A. Increased salt sensitivity in offspring of pregnancies complicated by experimental preeclampsia. Clin Exp Pharmacol Physiol 2018; 45:1302-1308. [PMID: 29992611 DOI: 10.1111/1440-1681.13008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/28/2023]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy known to increase the risk of cardiovascular disease in mothers and offspring. Offspring exposed to a suboptimal intrauterine environment may experience altered fetal programming and subsequent long-term cardiovascular changes. This study investigated changes in the vascular response in offspring from experimental preeclampsia (EPE) induced by uterine artery ligation, in the absence of fetal growth restriction, compared to normal baboon pregnancies (controls), following a high salt diet challenge. After 1 week of standard diet (containing <1% salt), animals were fed a high salt diet (6%) for 2 weeks. Systolic and diastolic blood pressure (SBP, DBP), aldosterone, renin and creatinine clearance were evaluated in EPE (n = 6, 50% male) and control (n = 6, 50% male) offspring. A repeated measures analysis was performed, and P < 0.05 was considered significant. At baseline, there were no differences between the groups in any parameter (EPE, mean age and weight 3.2 ± 1.2 years, 6.8 ± 1.0 kg, respectively; Control, 2.9 ± 0.8 years, 7.1 ± 1.5 kg). After salt loading the EPE group had significantly higher SBP (92 ± 5 mm Hg) compared to the control group (83 ± 4 mm Hg, P = 0.03). Aldosterone concentration was higher in the EPE group despite the same salt excretion and no difference in renal function. Salt sensitivity may differ in offspring from hypertensive pregnancies due to fetal programming. This could have long-term consequences for cardiovascular health of EPE offspring and further research is required to determine the exact pathological mechanisms.
Collapse
Affiliation(s)
- Kristen R Yeung
- Western Sydney University, Sydney, NSW, Australia.,Heart Research Institute, Sydney, NSW, Australia
| | | | | | | | - Suzanne Pears
- Heart Research Institute, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Bei Xu
- Western Sydney University, Sydney, NSW, Australia.,Heart Research Institute, Sydney, NSW, Australia
| | - Annemarie Hennessy
- Western Sydney University, Sydney, NSW, Australia.,Heart Research Institute, Sydney, NSW, Australia
| | - Angela Makris
- Western Sydney University, Sydney, NSW, Australia.,Heart Research Institute, Sydney, NSW, Australia.,Nephrology Department, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
32
|
Effect of early postnatal nutrition on chronic kidney disease and arterial hypertension in adulthood: a narrative review. J Dev Orig Health Dis 2018; 9:598-614. [PMID: 30078383 DOI: 10.1017/s2040174418000454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrauterine growth restriction (IUGR) has been identified as a risk factor for adult chronic kidney disease (CKD), including hypertension (HTN). Accelerated postnatal catch-up growth superimposed to IUGR has been shown to further increase the risk of CKD and HTN. Although the impact of excessive postnatal growth without previous IUGR is less clear, excessive postnatal overfeeding in experimental animals shows a strong impact on the risk of CKD and HTN in adulthood. On the other hand, food restriction in the postnatal period seems to have a protective effect on CKD programming. All these effects are mediated at least partially by the activation of the renin-angiotensin system, leptin and neuropeptide Y (NPY) signaling and profibrotic pathways. Early nutrition, especially in the postnatal period has a significant impact on the risk of CKD and HTN at adulthood and should receive specific attention in the prevention of CKD and HTN.
Collapse
|
33
|
Briffa JF, Wlodek ME, Moritz KM. Transgenerational programming of nephron deficits and hypertension. Semin Cell Dev Biol 2018; 103:94-103. [PMID: 29859996 DOI: 10.1016/j.semcdb.2018.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023]
Abstract
Exposure to a sub-optimal environment in the womb can result in poor fetal growth and impair the normal development of organs. The kidney, specifically the process of nephrogenesis, has been shown to be impacted by many common pregnancy exposures including an inadequate diet, poor placental function, maternal stress as well as maternal smoking and alcohol consumption. This can result in offspring being born with a reduced nephron endowment, which places these individuals at increased risk of hypertension and chronic kidney disease (CKD). Of recent interest is whether this disease risk can be passed on to subsequent generations and, if so, what are the mechanisms and pathways involved. In this review, we highlight the growing body of evidence that a low birth weight and hypertension, which are both major risk factors for cardiovascular and CKD, can be transmitted across generations. However, as yet there is little data as to whether a low nephron endowment contributes to this disease transmission. The emerging data suggests transmission can occur both through both the maternal and paternal lines, which likely involves epigenetic mechanisms such chromatin remodelling (DNA methylation and histone modification) and non-coding RNA modifications. In addition, females who were born small and/or have a low nephron endowment are at an increased risk for pregnancy complications, which can influence the growth and development of the next generation. Future animal studies in this area should include examining nephron endowment across multiple generations and determining adult renal function. Clinically, long term follow-up studies of large birth cohorts need to be undertaken to more clearly determine the impact a sub-optimal environment in one generation has on the health outcomes in the second, and subsequent, generation.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
34
|
Walton SL, Mazzuca MQ, Tare M, Parkington HC, Wlodek ME, Moritz KM, Gallo LA. Angiotensin receptor blockade in juvenile male rat offspring: Implications for long-term cardio-renal health. Pharmacol Res 2018; 134:320-331. [PMID: 29870806 DOI: 10.1016/j.phrs.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 11/25/2022]
Abstract
Inhibition of the renin-angiotensin system in early postnatal life is a potential therapeutic approach to prevent long-term cardiovascular and kidney diseases in individuals born small. We determined the long-term effects of juvenile losartan treatment on cardiovascular and kidney function in control male rat offspring and those exposed to uteroplacental insufficiency and born small. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed in late gestation in Wistar Kyoto rats. At weaning, male offspring were randomly assigned to receive losartan in their drinking water or drinking water alone from 5 to 8 weeks of age, and followed to 26 weeks of age. Systolic blood pressure and kidney function were assessed throughout the study. Pressure myography was used to assess passive mechanical wall properties in mesenteric and femoral arteries from 26-week-old offspring. Losartan treatment for three weeks lowered systolic blood pressure in both Control and Restricted groups but this difference was not sustained after the cessation of treatment. Losartan, irrespective of birth weight, mildly increased renal tubulointerstitial fibrosis when assessed at 26 weeks of age. Mesenteric artery stiffness was increased by the early losartan treatment, and was associated with increased collagen and decreased elastin content. Losartan also exerted long-term increases in fat mass and decreases in skeletal muscle mass. In this study, untreated Restricted offspring did not develop hypertension, vascular dysfunction or kidney changes as anticipated. Regardless, we demonstrate that short-term losartan treatment in the juvenile period negatively affects postnatal growth, and kidney and vascular parameters in adulthood, irrespective of birth weight. The long-term effects of early-life losartan treatment warrant further consideration in settings where the potential benefits may outweigh the risks; i.e. when programmed adulthood diseases are apparent and in childhood cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- Sarah L Walton
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia; Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Marc Q Mazzuca
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marianne Tare
- Department of Physiology, Monash University, Clayton, VIC, Australia; Monash Rural Health, Churchill, VIC, Australia
| | | | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia; Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia.
| | - Linda A Gallo
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia; Department of Physiology, The University of Melbourne, Parkville, VIC, Australia; Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
35
|
The transgenerational effect of maternal and paternal F1 low birth weight on bone health of second and third generation offspring. J Dev Orig Health Dis 2018; 10:144-153. [PMID: 29631641 DOI: 10.1017/s204017441800020x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low birth weight programs diseases in adulthood, including adverse bone health. These diseases can have intergenerational and transgenerational origins, whereby transmission to subsequent generations occurs via both parental lines. Uteroplacental insufficiency surgery (Restricted) or sham surgery (Control) was performed on gestational day 18, in F0 Wistar-Kyoto rats. F1 Restricted males and females mated with breeders in order to generate F2 offspring of maternal and paternal lineages. F2 males and females were randomly selected for breeding to generate F3 offspring. F2 and F3 offspring did not have differences in birth weight irrespective of F1 low birth weight and parental line. Maternal line females had minor alterations to trabecular content and density at 6 months, these differences were not sustained at 12 months. Maternal line males had changes to trabecular content at 6 and 12 months; however, differences were no longer present at 16 months. Despite altered bone geometry at 12 and 16 months, bending strength remained unaffected at both ages. Bone health of paternal line females was not affected at 6 and 12 months. Paternal line males at 6 months had changes to trabecular and cortical content; cortical thickness, periosteal circumference and bending strength; however, these differences were no longer sustained at 12 and 16 months. Our data demonstrate that there is no transgenerational transmission of adverse bone health in F2 and F3 offspring, derived from low F1 birth weight females and males. Our results are novel, as bone health across generations and both parental lines has not been investigated in a model of low birth weight due to uteroplacental insufficiency.
Collapse
|
36
|
Baum M. Role of renal sympathetic nerve activity in prenatal programming of hypertension. Pediatr Nephrol 2018; 33:409-419. [PMID: 27001053 DOI: 10.1007/s00467-016-3359-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/30/2022]
Abstract
Prenatal insults, such as maternal dietary protein deprivation and uteroplacental insufficiency, lead to small for gestational age (SGA) neonates. Epidemiological studies from many different parts of the world have shown that SGA neonates are at increased risk for hypertension and early death from cardiovascular disease as adults. Animal models, including prenatal administration of dexamethasone, uterine artery ligation and maternal dietary protein restriction, result in SGA neonates with fewer nephrons than controls. These models are discussed in this educational review, which provides evidence that prenatal insults lead to altered sodium transport in multiple nephron segments. The factors that could result in increased sodium transport are discussed, focusing on new information that there is increased renal sympathetic nerve activity that may be responsible for augmented renal tubular sodium transport. Renal denervation abrogates the hypertension in programmed rats but has no effect on control rats. Other potential factors that could cause hypertension in programmed rats, such as the renin-angiotensin system, are also discussed.
Collapse
Affiliation(s)
- Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Building, Dallas, TX, 75390-9063, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
37
|
Cuffe JSM, Briffa JF, Rosser S, Siebel AL, Romano T, Hryciw DH, Wlodek ME, Moritz KM. Uteroplacental insufficiency in rats induces renal apoptosis and delays nephrogenesis completion. Acta Physiol (Oxf) 2018; 222. [PMID: 29047216 DOI: 10.1111/apha.12982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
AIM Uteroplacental insufficiency in rats reduces nephron endowment, leptin concentrations and programmes cardiorenal disease in offspring. Cross-fostering growth-restricted (Restricted) offspring onto a mother with normal lactation restores leptin concentrations and nephron endowment. This study aimed to determine whether the reduced nephron endowment in Restricted offspring is due to delayed glomerular formation and dysregulation of renal genes regulating branching morphogenesis, apoptosis or leptin signalling. Furthermore, we aimed to investigate whether cross-fostering Restricted offspring onto Control mothers could improve glomerular maturation and restore renal gene abundance. METHODS Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham (Control) surgery on gestation day 18 (E18). Kidneys were collected at E20, postnatal day 1 (PN1) and PN7. An additional cohort was cross-fostered onto separate mothers at birth and kidneys collected at PN7. RESULTS Kidneys were lighter in the Restricted group, but weight was restored with cross-fostering. At E20, abundance of Bax, Flt1 and Vegfa was increased in Restricted offspring, while Ret and Bcl2 transcripts were increased only in Restricted females. At PN7, abundance of Gdnf and Ret was higher in Restricted offspring, as was Casp3. Restricted offspring had a wider nephrogenic zone with more immature glomeruli suggesting a delayed or extended nephrogenic period. Cross-fostering had subtle effects on gene abundance and glomerular maturity. CONCLUSION Uteroplacental insufficiency induced apoptosis in the developing kidney and delayed and extended nephrogenesis. Cross-fostering Restricted offspring onto Control mothers had beneficial effects on kidney growth and renal maturity, which may contribute to the restoration of nephron endowment.
Collapse
Affiliation(s)
- J. S. M. Cuffe
- School of Biomedical Sciences; The University of Queensland; St. Lucia Qld Australia
- School of Medical Science; Menzies Health Institute Queensland; Griffith University; Southport Qld Australia
| | - J. F. Briffa
- Department of Physiology; The University of Melbourne; Parkville Vic. Australia
| | - S. Rosser
- School of Biomedical Sciences; The University of Queensland; St. Lucia Qld Australia
| | - A. L. Siebel
- Department of Physiology; The University of Melbourne; Parkville Vic. Australia
| | - T. Romano
- Department of Physiology, Anatomy and Microbiology; La Trobe University; Bundoora Vic. Australia
| | - D. H. Hryciw
- Department of Physiology; The University of Melbourne; Parkville Vic. Australia
| | - M. E. Wlodek
- Department of Physiology; The University of Melbourne; Parkville Vic. Australia
| | - K. M. Moritz
- School of Biomedical Sciences; The University of Queensland; St. Lucia Qld Australia
| |
Collapse
|
38
|
Anevska K, Cheong JN, Wark JD, Wlodek ME, Romano T. Maternal stress does not exacerbate long-term bone deficits in female rats born growth restricted, with differential effects on offspring bone health. Am J Physiol Regul Integr Comp Physiol 2018; 314:R161-R170. [DOI: 10.1152/ajpregu.00215.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Females born growth restricted have poor adult bone health. Stress exposure during pregnancy increases risk of pregnancy complications. We determined whether maternal stress exposure in growth-restricted females exacerbates long-term maternal and offspring bone phenotypes. On gestational day 18, bilateral uterine vessel ligation (restricted) or sham (control) surgery was performed on Wistar-Kyoto rats. At 4 mo, control and restricted females were mated and allocated to unstressed or stressed pregnancies. Stressed pregnancies had physiological measurements performed; unstressed females were not handled. After birth, mothers were aged to 13 mo. Second-generation (F2) offspring generated four experimental groups: control unstressed, restricted unstressed, control stressed and restricted stressed. F2 offspring were studied at postnatal day 35 (PN35), 6, 12, and 16 mo. Peripheral quantitative computed tomography was performed on maternal and F2 offspring femurs. Restricted females, irrespective of stress during pregnancy, had decreased endosteal circumference, bending strength, and increased osteocalcin concentrations after pregnancy at 13 mo. F2 offspring of stressed mothers were born lighter. F2 male offspring from stressed pregnancies had decreased trabecular content at 6 mo and decreased endosteal circumference at 16 mo. F2 female offspring from growth-restricted mothers had reduced cortical thickness at PN35 and reduced endosteal circumference at 6 mo. At 12 mo, females from unstressed restricted and stressed control mothers had decreased trabecular content. Low birth weight females had long-term bone changes, highlighting programming effects on bone health. Stress during pregnancy did not exacerbate these programmed effects. Male and female offspring responded differently to maternal growth restriction and stress, indicating gender-specific programming effects.
Collapse
Affiliation(s)
- Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Jean N. Cheong
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - John D. Wark
- Department of Medicine, The University of Melbourne and Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Mary E. Wlodek
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| |
Collapse
|
39
|
Asif Y, Wlodek ME, Black MJ, Russell AP, Soeding PF, Wadley GD. Sustained cardiac programming by short-term juvenile exercise training in male rats. J Physiol 2017; 596:163-180. [PMID: 29143975 DOI: 10.1113/jp275339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/14/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cardiac hypertrophy following endurance-training is thought to be due to hypertrophy of existing cardiomyocytes. The benefits of endurance exercise on cardiac hypertrophy are generally thought to be short-lived and regress to sedentary levels within a few weeks of stopping endurance training. We have now established that cardiomyocyte hyperplasia also plays a considerable role in cardiac growth in response to just 4 weeks of endurance exercise in juvenile (5-9 weeks of age) rats. The effect of endurance exercise on cardiomyocyte hyperplasia diminishes with age and is lost by adulthood. We have also established that the effect of juvenile exercise on heart mass is sustained into adulthood. ABSTRACT The aim of this study was to investigate if endurance training during juvenile life 'reprogrammes' the heart and leads to sustained improvements in the structure, function, and morphology of the adult heart. Male Wistar Kyoto rats were exercise trained 5 days week-1 for 4 weeks in either juvenile (5-9 weeks of age), adolescent (11-15 weeks of age) or adult life (20-24 weeks of age). Juvenile exercise training, when compared to 24-week-old sedentary rats, led to sustained increases in left ventricle (LV) mass (+18%; P < 0.05), wall thickness (+11%; P < 0.05), the longitudinal area of binucleated cardiomyocytes (P < 0.05), cardiomyocyte number (+36%; P < 0.05), and doubled the proportion of mononucleated cardiomyocytes (P < 0.05), with a less pronounced effect of exercise during adolescent life. Adult exercise training also increased LV mass (+11%; P < 0.05), wall thickness (+6%; P < 0.05) and the longitudinal area of binucleated cardiomyocytes (P < 0.05), despite no change in cardiomyocyte number or the proportion of mono- and binucleated cardiomyocytes. Resting cardiac function, LV chamber dimensions and fibrosis levels were not altered by juvenile or adult exercise training. At 9 weeks of age, juvenile exercise significantly reduced the expression of microRNA-208b, which is a known regulator of cardiac growth, but this was not sustained to 24 weeks of age. In conclusion, juvenile exercise leads to physiological cardiac hypertrophy that is sustained into adulthood long after exercise training has ceased. Furthermore, this cardiac reprogramming is largely due to a 36% increase in cardiomyocyte number, which results in an additional 20 million cardiomyocytes in adulthood.
Collapse
Affiliation(s)
- Y Asif
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3125, Australia
| | - M E Wlodek
- Department of Physiology, The University of Melbourne, VIC, 3010, Australia
| | - M J Black
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - A P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3125, Australia
| | - P F Soeding
- Department of Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - G D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3125, Australia.,Department of Physiology, The University of Melbourne, VIC, 3010, Australia
| |
Collapse
|
40
|
Kidneys in 5-year-old preterm-born children: a longitudinal cohort monitoring of renal function. Pediatr Res 2017; 82:979-985. [PMID: 28665930 DOI: 10.1038/pr.2017.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/28/2017] [Indexed: 11/09/2022]
Abstract
BackgroundBeing aware of the impact of low birth weight on late-onset hypertension, our aim was to describe systolic blood pressure (sBP) and renal function in 3-5-year-old preterm-born children and to determine which perinatal factors or childhood factors were associated with an altered renal function at 5 years in these children.MethodsThis was a prospective longitudinal cohort study of children born at 27-31 weeks of gestation and included at birth and examined at 3, 4, and 5 years of age. The primary outcome was renal function at 5 years: BP, estimated glomerular filtration rate, and albuminuria.ResultsOne hundred and sixty five children were examined, of whom 93 (56.4%) were male. Gestational age was 29.2±1.4 weeks and birth weight was 1,217±331 g. Overall, 25% children had sBP ≥90th percentile at age 3 and 4 years and 11% at 5 years. In multivariate analysis, sBP ≥90th percentile at 5 years was associated with the use of antenatal steroids (OR=0.19(0.05;0.65)). There was a significant association between protein intake on day 28 and sBP at 5 years (β=2.1±1.0, P=0.03). Glomerular filtration rate at 5 years was significantly decreased in case of hyaline membrane disease or necrotizing enterocolitis. High urine albumin was not predictable from one year to another.ConclusionIn preterm-born children, sBP was often high and neonatal protein intake was associated with increased blood pressure during childhood.
Collapse
|
41
|
Prenatal hypoxia leads to hypertension, renal renin-angiotensin system activation and exacerbates salt-induced pathology in a sex-specific manner. Sci Rep 2017; 7:8241. [PMID: 28811528 PMCID: PMC5557956 DOI: 10.1038/s41598-017-08365-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
Prenatal hypoxia is associated with growth restriction and adverse cardiovascular outcomes. Here, we describe renal and cardiovascular outcomes in ageing mouse offspring prenatally exposed to hypoxia (12% O2) from embryonic day 14.5 until birth. At 12 months of age, both male and female offspring exposed to prenatal hypoxia had elevated mean arterial pressure. Glomerular number was reduced by 25% in hypoxia-exposed male, but not female, offspring and this was associated with increased urinary albumin excretion, glomerular hypertrophy and renal fibrosis. Hypoxia-exposed offspring of both sexes were more susceptible to salt-induced cardiac fibrosis, however, renal fibrosis was exacerbated by high salt in males only. In male but not female hypoxia-exposed offspring, renal renin mRNA was increased at weaning. By 12 months, renal renin mRNA expression and concentrations were elevated in both sexes. mRNA expression of At1aR was also elevated in male hypoxia-exposed offspring at 12 months. These results demonstrate that prenatal hypoxia programs elevated blood pressure and exacerbates salt-induced cardiovascular and renal pathology in a sex specific manner. Given sex differences observed in RAS expression and nephron number, future studies may consider RAS blockade as a therapeutic target in this model.
Collapse
|
42
|
|
43
|
Marques FZ, Prestes PR, Byars SG, Ritchie SC, Würtz P, Patel SK, Booth SA, Rana I, Minoda Y, Berzins SP, Curl CL, Bell JR, Wai B, Srivastava PM, Kangas AJ, Soininen P, Ruohonen S, Kähönen M, Lehtimäki T, Raitoharju E, Havulinna A, Perola M, Raitakari O, Salomaa V, Ala-Korpela M, Kettunen J, McGlynn M, Kelly J, Wlodek ME, Lewandowski PA, Delbridge LM, Burrell LM, Inouye M, Harrap SB, Charchar FJ. Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure. J Am Heart Assoc 2017; 6:e005971. [PMID: 28615213 PMCID: PMC5669193 DOI: 10.1161/jaha.117.005971] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. METHODS AND RESULTS We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. CONCLUSIONS Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Francine Z Marques
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Priscilla R Prestes
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Sean G Byars
- Centre for Systems Genomics, The University of Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Victoria, Australia
| | - Scott C Ritchie
- Centre for Systems Genomics, The University of Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Victoria, Australia
| | - Peter Würtz
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Sheila K Patel
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
| | - Scott A Booth
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Indrajeetsinh Rana
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Yosuke Minoda
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Stuart P Berzins
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Victoria, Australia
| | - Claire L Curl
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - James R Bell
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Bryan Wai
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Piyush M Srivastava
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Saku Ruohonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Fimlab Laboratories, Department of Clinical Chemistry, Pirkanmaa Hospital District, School of Medicine, University of Tampere, Finland
| | - Emma Raitoharju
- Fimlab Laboratories, Department of Clinical Chemistry, Pirkanmaa Hospital District, School of Medicine, University of Tampere, Finland
| | - Aki Havulinna
- National Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, United Kingdom
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Maree McGlynn
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jason Kelly
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Mary E Wlodek
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
| | | | - Lea M Delbridge
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Louise M Burrell
- Department of Medicine, The University of Melbourne Austin Health, Heidelberg, Victoria, Australia
- Department of Cardiology, Austin Health, Heidelberg, Victoria, Australia
| | - Michael Inouye
- Heart Failure Research Group, Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
- Centre for Systems Genomics, The University of Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Victoria, Australia
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Stephen B Harrap
- Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Fadi J Charchar
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
- Department of Physiology, The University of Melbourne, Victoria, Australia
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| |
Collapse
|
44
|
Romano T, Wark JD, Wlodek ME. Developmental programming of bone deficits in growth-restricted offspring. Reprod Fertil Dev 2017; 27:823-33. [PMID: 24613152 DOI: 10.1071/rd13388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/28/2014] [Indexed: 01/21/2023] Open
Abstract
Recent evidence links low birthweight and poor adult bone health. We characterised bone size, mineral content, density and strength (stress strain index of bone bending strength (SSI)) in rats from weaning to 12 months. Bilateral uterine vessel ligation (Restricted) or sham surgery (Control) was performed on gestational Day 18 in rats inducing uteroplacental insufficiency. Postmortem of male and female offspring was performed at postnatal Day 35 and at 2, 4, 6 and 12 months. Femur mineral content, density and strength were measured using quantitative computed tomography (pQCT). Restricted pups were born 10%-15% lighter and remained smaller with shorter femurs than Controls (P<0.05). Male and female Restricted rats had lower trabecular bone content compared with Controls (P<0.05), without trabecular density changes. Cortical content was reduced in Restricted males (Day 35 and 6 and 12 months) and at all ages in Restricted females (P<0.05). Cortical density was lower at Day 35 in Restricted males (P<0.05). SSI was lower at Day 35 and at 6 and 12 months in Restricted males, and at all ages in Restricted females (P<0.05). Skeletal deficits were detected in Restricted offspring with gender-specific differences during juvenile and adolescent periods. Bone deficits observed at 6 months in males were greater than at 12 months, indicating that aging can exacerbate programmed bone phenotypes.
Collapse
Affiliation(s)
- Tania Romano
- Department of Human Biosciences, La Trobe University, Bundoora, Vic. 3086, Australia
| | - John D Wark
- Department of Medicine, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, Vic. 3010, Australia
| |
Collapse
|
45
|
Briffa JF, O'Dowd R, Moritz KM, Romano T, Jedwab LR, McAinch AJ, Hryciw DH, Wlodek ME. Uteroplacental insufficiency reduces rat plasma leptin concentrations and alters placental leptin transporters: ameliorated with enhanced milk intake and nutrition. J Physiol 2017; 595:3389-3407. [PMID: 28369926 DOI: 10.1113/jp273825] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Uteroplacental insufficiency compromises maternal mammary development, milk production and pup organ development; this is ameliorated by cross-fostering, which improves pup growth and organ development and prevents adult diseases in growth-restricted (Restricted) offspring by enhancing postnatal nutrition. Leptin is transported to the fetus from the mother by the placenta; we report reduced plasma leptin concentrations in Restricted fetuses associated with sex-specific alterations in placental leptin transporter expression. Pup plasma leptin concentrations were also reduced during suckling, which may suggest reduced milk leptin transport or leptin reabsorption. Mothers suckled by Restricted pups had impaired mammary development and changes in milk fatty acid composition with no alterations in milk leptin; cross-fostering restored pup plasma leptin concentrations, which may be correlated to improved milk composition and intake. Increased plasma leptin and altered milk fatty acid composition in Restricted pups suckling mothers with normal lactation may improve postnatal growth and prevent adult diseases. ABSTRACT Uteroplacental insufficiency reduces birth weight and adversely affects fetal organ development, increasing adult disease risk. Cross-fostering improves postnatal nutrition and restores these deficits. Mothers with growth-restricted pups have compromised milk production and composition; however, the impact cross-fostering has on milk production and composition is unknown. Plasma leptin concentrations peak during the completion of organogenesis, which occurs postnatally in rats. Leptin is transferred to the fetus via the placenta and to the pup via the lactating mammary gland. This study investigated the effect of uteroplacental insufficiency on pup plasma leptin concentrations and placental leptin transporters. We additionally examined whether cross-fostering improves mammary development, milk composition and pup plasma leptin concentrations. Fetal growth restriction was induced by bilateral uterine vessel ligation surgery on gestation day 18 in Wistar Kyoto rats (termed uteroplacental insufficiency surgery mothers). Growth-restricted (Restricted) fetuses had reduced plasma leptin concentrations, persisting throughout lactation, and sex-specific alterations in placental leptin transporters. Mothers suckled by Restricted pups had impaired mammary development, altered milk fatty acid composition and increased plasma leptin concentrations, despite no changes in milk leptin. Milk intake was reduced in Restricted pups suckling uteroplacental insufficiency surgery mothers compared to Restricted pups suckling sham-operated mothers. Cross-fostering Restricted pups onto a sham-operated mother improved postnatal growth and restored plasma leptin concentrations compared to Restricted pups suckling uteroplacental insufficiency surgery mothers. Uteroplacental insufficiency alters leptin homeostasis. This is ameliorated with cross-fostering and enhanced milk fatty acid composition and consumption, which may protect the pups from developing adverse health conditions in adulthood.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Rachael O'Dowd
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tania Romano
- Department of Human Biosciences, LaTrobe University, Bundoora, VIC, 3083, Australia
| | - Lisa R Jedwab
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, St Albans, VIC, 3021, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
46
|
Abstract
Hypertension and chronic kidney disease (CKD) have a significant impact on global morbidity and mortality. The Low Birth Weight and Nephron Number Working Group has prepared a consensus document aimed to address the relatively neglected issue for the developmental programming of hypertension and CKD. It emerged from a workshop held on April 2, 2016, including eminent internationally recognized experts in the field of obstetrics, neonatology, and nephrology. Through multidisciplinary engagement, the goal of the workshop was to highlight the association between fetal and childhood development and an increased risk of adult diseases, focusing on hypertension and CKD, and to suggest possible practical solutions for the future. The recommendations for action of the consensus workshop are the results of combined clinical experience, shared research expertise, and a review of the literature. They highlight the need to act early to prevent CKD and other related noncommunicable diseases later in life by reducing low birth weight, small for gestational age, prematurity, and low nephron numbers at birth through coordinated interventions. Meeting the current unmet needs would help to define the most cost-effective strategies and to optimize interventions to limit or interrupt the developmental programming cycle of CKD later in life, especially in the poorest part of the world.
Collapse
|
47
|
Newsome AD, Davis GK, Ojeda NB, Alexander BT. Complications during pregnancy and fetal development: implications for the occurrence of chronic kidney disease. Expert Rev Cardiovasc Ther 2017; 15:211-220. [PMID: 28256177 PMCID: PMC5543771 DOI: 10.1080/14779072.2017.1294066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Numerous epidemiological studies indicate an inverse association between birth weight and the risk for chronic kidney disease. Areas covered: Historically, the first studies to address the developmental origins of chronic disease focused on the inverse relationship between birth weight and blood pressure. A reduction in nephron number was a consistent finding in low birth weight individuals and experimental models of developmental insult. Recent studies indicate that a congenital reduction in renal reserve in conjunction with an increase in blood pressure that has its origins in fetal life increases vulnerability to renal injury and disease. Expert commentary: Limited experimental studies have investigated the mechanisms that contribute to the developmental origins of kidney disease. Several studies suggest that enhanced susceptibility to renal injury following a developmental insult is altered by sex and age. More in-depth studies are needed to clarify how low birth weight contributes to enhanced renal risk, and how sex and age influence this adverse relationship.
Collapse
Affiliation(s)
- Ashley D. Newsome
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Gwendolyn K. Davis
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Norma B. Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS
| | - Barbara T. Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
48
|
Short KM, Smyth IM. Imaging, Analysing and Interpreting Branching Morphogenesis in the Developing Kidney. Results Probl Cell Differ 2017; 60:233-256. [PMID: 28409348 DOI: 10.1007/978-3-319-51436-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The kidney develops as an outgrowth of the epithelial nephric duct known as the ureteric bud, in a position specified by a range of rostral and caudal factors which serve to ensure two kidneys form in the appropriate positions in the body. At its simplest level, kidney development can be viewed as the process by which this single bud then undergoes a process of arborisation to form a complex connected network of ducts which will serve to drain urine from the nephrons in the adult organ. The process of bud elaboration is dictated by factors expressed by both the bud itself and by surrounding cells of the metanephric mesenchyme which control cell division and bifurcation. These cells play two critical roles. Firstly, they potentiate the ongoing elaboration of the ureteric tree: remove them and branching ceases. Secondly, they harbour progenitor cells which are fated to undergo their own process of tubulogenesis to form the nephrons of the adult organ. In this chapter, we will discuss how the ureteric bud arises in the developing embryo, how it undergoes branching, how we can measure and study this process and finally the likely relevance that this process has for our understanding of congenital and acquired kidney disease.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Ian M Smyth
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
49
|
McCarty R. Cross-fostering: Elucidating the effects of gene×environment interactions on phenotypic development. Neurosci Biobehav Rev 2016; 73:219-254. [PMID: 28034661 DOI: 10.1016/j.neubiorev.2016.12.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/03/2023]
Abstract
Cross-fostering of litters from soon after birth until weaning is a valuable tool to study the ways in which gene×environment interactions program the development of neural, physiological and behavioral characteristics of mammalian species. In laboratory mice and rats, the primary focus of this review, cross-fostering of litters between mothers of different strains or treatment groups (intraspecific) or between mothers of different species (interspecific) has been conducted over the past 9 decades. Areas of particular interest have included maternal effects on emotionality, social preferences, responses to stressful stimulation, nutrition and growth, blood pressure regulation, and epigenetic effects on brain development and behavior. Results from these areas of research highlight the critical role of the postnatal maternal environment in programming the development of offspring phenotypic characteristics. In addition, experimental paradigms that have included cross-fostering have permitted investigators to tease apart prenatal versus postnatal effects of various treatments on offspring development and behavior.
Collapse
Affiliation(s)
- Richard McCarty
- Department of Psychology, Vanderbilt University, Nashville, TN 37240 USA.
| |
Collapse
|
50
|
The conundrums of chronic kidney disease and aging. J Nephrol 2016; 30:477-483. [PMID: 27885585 DOI: 10.1007/s40620-016-0362-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/01/2016] [Indexed: 01/13/2023]
Abstract
Chronic kidney disease (CKD), as presently defined, is a common disorder. Aging is a nearly universal phenomenon that can affect renal anatomy and function, but at variable rates in individuals. Loss of nephrons and a decline in glomerular filtration rate (GFR) is a characteristic of normal aging, called renal senescence. Using fixed and absolute thresholds for defining CKD on the basis of GFR for all ages may lead to diagnostic uncertainty (a conundrum) in both young and older subjects. This brief review will consider the physiological and anatomical changes of the kidney occurring in the process of normal renal senescence focusing on GFR and will examine the relevance of these observation for the diagnosis of CKD using GFR as the distinguishing parameter. Once a better understanding of the pathobiology underlying renal senescence is obtained, specific interventions may become available to slow the process.
Collapse
|