1
|
Wang Y, Yang L, Xu G. New-Onset Acute Interstitial Nephritis Post-SARS-CoV-2 Infection and COVID-19 Vaccination: A Panoramic Review. J Epidemiol Glob Health 2023; 13:615-636. [PMID: 37870719 PMCID: PMC10686899 DOI: 10.1007/s44197-023-00159-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
The 2019 coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has posed a considerable challenge to global healthcare. Acute interstitial nephritis (AIN) post SARS-CoV-2 infection and vaccination has been reported, but its clinical features and pathogenesis remained unclear. We reviewed so far the largest 22 cases of AIN post SARS-CoV-2 infection and 36 cases of AIN following COVID-19 vaccination. The onset of AIN was mainly related to messenger RNA vaccines (52.8%). Apart from fever, proteinuria (45.5%) was the main manifestation of AIN post SARS-CoV-2 infection, left acute kidney injury (AKI, 63.9%) in patients post COVID-19 vaccination. The potential mechanism of vaccination induced AIN was conjugating vaccines with proteins to form a hapten, which activated dendritic cells and promoted a cascade immunological reaction leading to AIN.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nephrology, Donghu District, the Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, China
| | - Ling Yang
- Department of Health Management Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, Donghu District, the Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Juncos LA, Wieruszewski PM, Kashani K. Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. Compr Physiol 2022; 12:3767-3780. [PMID: 36073750 DOI: 10.1002/cphy.c210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.
Collapse
Affiliation(s)
- Luis A Juncos
- Division of Nephrology, Central Arkansas Veterans' Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Patrick M Wieruszewski
- Division of Hospital Pharmacy, Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Mattson DL, Dasinger JH, Abais-Battad JM. Amplification of Salt-Sensitive Hypertension and Kidney Damage by Immune Mechanisms. Am J Hypertens 2021; 34:3-14. [PMID: 32725162 PMCID: PMC7891248 DOI: 10.1093/ajh/hpaa124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/27/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Humans with salt-sensitive (SS) hypertension demonstrate increased morbidity, increased mortality, and renal end-organ damage when compared with normotensive subjects or those with salt-resistant hypertension. Increasing evidence indicates that immune mechanisms play an important role in the full development of SS hypertension and associated renal damage. Recent experimental advances and studies in animal models have permitted a greater understanding of the mechanisms of activation and action of immunity in this disease process. Evidence favors a role of both innate and adaptive immune mechanisms that are triggered by initial, immune-independent alterations in blood pressure, sympathetic activity, or tissue damage. Activation of immunity, which can be enhanced by a high-salt intake or by alterations in other components of the diet, leads to the release of cytokines, free radicals, or other factors that amplify renal damage and hypertension and mediate malignant disease.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Henry Dasinger
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
4
|
Wang R, Chen T, Wang C, Zhang Z, Wang XM, Li Q, Lee VWS, Wang YM, Zheng G, Alexander SI, Wang Y, Harris DCH, Cao Q. Flt3 inhibition alleviates chronic kidney disease by suppressing CD103+ dendritic cell-mediated T cell activation. Nephrol Dial Transplant 2020; 34:1853-1863. [PMID: 30590794 DOI: 10.1093/ndt/gfy385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a global public health problem, which lacks effective treatment. Previously, we have shown that CD103+ dendritic cells (DCs) are pathogenic in adriamycin nephropathy (AN), a model of human focal segmental glomerulosclerosis (FSGS). Fms-like tyrosine kinase 3 (Flt3) is a receptor that is expressed with high specificity on tissue resident CD103+ DCs. METHODS To test the effect on CD103+ DCs and kidney injury of inhibition of Flt3, we used a selective Flt3 inhibitor (AC220) to treat mice with AN. RESULTS Human CD141+ DCs, homologous to murine CD103+ DCs, were significantly increased in patients with FSGS. The number of kidney CD103+ DCs, but not CD103- DCs or plasmacytoid DCs, was significantly decreased in AN mice after AC220 administration. Treatment with AC220 significantly improved kidney function and reduced kidney injury and fibrosis in AN mice. AC220-treated AN mice had decreased levels of inflammatory cytokines and chemokines, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, CCL2 and CCL5 and reduced kidney infiltration of CD4 T cells and CD8 T cells. The protective effect of AC220 was associated with its suppression of CD103+ DCs-mediated CD8 T cell proliferation and activation in AN mice. CONCLUSION Flt3 inhibitor AC220 effectively reduced kidney injury in AN mice, suggesting that this inhibitor might be a useful pharmaceutical agent to treat CKD.
Collapse
Affiliation(s)
- Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Titi Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Chengshi Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Zhiqiang Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Xin Maggie Wang
- Flow Cytometry Facility, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Qing Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Vincent W S Lee
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Zhang F, Wang C, Wen X, Chen Y, Mao R, Cui D, Li L, Liu J, Chen Y, Cheng J, Lu Y. Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103 + DCs-mediated CD8 + T cell responses. J Cell Mol Med 2020; 24:5817-5831. [PMID: 32283569 PMCID: PMC7214166 DOI: 10.1111/jcmm.15250] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic nephropathy (DN) as a kind of serious microvascular complication of Diabetes Mellitus (DM) usually causes the end‐stage of renal disease (ESRD). Studies have demonstrated that CD103+ dendritic cells (DCs) exhibited a renal pathogenic effect in murine chronic kidney disease (CKD). Mesenchymal stem cells (MSCs) can alleviate DN and suppress the DCs maturation. To explore the role of CD103+ DCs and the potential mechanisms underlying MSCs‐mediated protective effects in DN, we used bone marrow MSCs (BM‐MSCs) to treat DN rats. MSCs transplantation considerably recovered kidney function and diminished renal injury, fibrosis and the population of renal CD103+ DCs in DN rat. The MSCs‐treated DN rats had decreased mRNA expression levels of interleukin (IL)1β, IL6, tumour necrosis factor alpha (TNF‐α), monocyte chemotactic protein 1 (MCP‐1) and reduced CD8 T cell infiltration in the kidney. MSCs significantly down‐regulated the genes expression of transcription factors (Basic leucine zipper transcriptional factor ATF‐like 3, Batf3 and DNA‐binding protein inhibitor ID‐2, Id2) and FMS‐like tyrosine kinase‐3 (Flt3) which are necessary for CD103+ DCs development. The protective effect of MSCs may be partly related to their immunosuppression of CD8+ T cell proliferation and activation mediated by CD103+ DCs in the kidney of DN rats.
Collapse
Affiliation(s)
- Fuping Zhang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiwen Mao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Danli Cui
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Mattson DL. Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat Rev Nephrol 2019; 15:290-300. [PMID: 30804523 DOI: 10.1038/s41581-019-0121-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune mechanisms have been recognized to have a role in the pathogenesis of hypertension, vascular disease and kidney damage in humans and animals for many decades. Contemporary advances in experimentation have permitted a deeper understanding of the mechanisms by which inflammation and immunity participate in cardiovascular disease, and multiple observations have demonstrated strong correlations between the discoveries made in animals and those made in patients with hypertension. Of note, striking phenotypic similarities have been observed in the infiltration of immune cells in the kidney and the development of end-organ damage in patients and animal models with sodium-sensitive hypertension. The available data suggest that an initial salt-induced increase in renal perfusion pressure, which is likely independent of immune mechanisms, induces the infiltration of immune cells into the kidney. The mechanisms mediating immune cell infiltration in the kidney are not well understood but likely involve tissue damage, the direct influence of salt to stimulate immune cell activation, sympathetic nerve stimulation or other factors. The infiltrating cells then release cytokines, free radicals and other factors that contribute to renal damage as well as increased retention of sodium and water and vascular resistance, which lead to the further development of hypertension.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
[About salt and immunity-a story of Mr. Hyde : The influence of hyperosmolar microenvironment on immune response]. DER PATHOLOGE 2019; 40:259-264. [PMID: 31720747 DOI: 10.1007/s00292-019-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hyperosmolar micromilieu has been observed in physiologic (kidney medulla, lymphatic tissue) and pathologic (renal allorejection, solid tumors) conditions. Hyperosmolarity can modulate gene expression and alter the stimulatory profile of macrophages and dendritic cells. We have reported that dendritic cells upon exposure to hypertonic stimuli shift their profile towards a macrophage-M2-like phenotype, resulting in attenuated local alloreactivity during acute kidney graft rejection. Moreover, we showed that a hyperosmotic microenvironment affects the cross-priming capacity of dendritic cells. Using ovalbumin as a model antigen, we showed that exposure of dendritic cells to hyperosmolarity strongly inhibits activation of antigen-specific T cells despite enhancement of antigen uptake, processing, and presentation; it can reduce dendritic cell-T cell contact time. We have identified TRIF as key mediator of this phenomenon. Moreover, we detected a hyperosmolarity-triggered, TRIF-dependent clustering of MHC class I‑antigen complexes, but not of unloaded MHCI molecules, providing a possible explanation for a reduced T cell activation. Our findings identify dendritic cells as important players in hyperosmolarity-triggered immune imbalance and suggest that targeting local hyperosmolarity in tumor micromilieu may contribute to an enhanced specific anti-tumor immune response.
Collapse
|
8
|
Biswas PS. IL-17 in Renal Immunity and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2019; 201:3153-3159. [PMID: 30455371 DOI: 10.4049/jimmunol.1801042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022]
Abstract
The kidney is an organ particularly susceptible to damage caused by infections and autoimmune conditions. Renal inflammation confers protection against microbial infections. However, if unchecked, unresolved inflammation may lead to kidney damage. Although proinflammatory cytokine IL-17 is required for immunity against extracellular pathogens, dysregulated IL-17 response is also linked to autoimmunity. In this review, we will discuss the current knowledge of IL-17 activity in the kidney in context to renal immunity and autoimmunity and raise the intriguing question to what extent neutralization of IL-17 is beneficial or harmful to renal inflammation.
Collapse
Affiliation(s)
- Partha S Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
9
|
Coelho S, Cabral G, Lopes JA, Jacinto A. Renal regeneration after acute kidney injury. Nephrology (Carlton) 2018; 23:805-814. [PMID: 29575280 DOI: 10.1111/nep.13256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
Acute kidney injury is common and associated with negative renal and patient outcomes. The human kidney has a real but limited regeneration capacity. Understanding renal regeneration may allow us to manipulate this process and thus develop therapeutic weapons to improve patients' outcome. In the first part of this paper we discuss the clinical factors associated with renal recovery: baseline patient particularities, acute kidney injury characteristics and the medical approach taken in the short and long-term. In the second part, the cellular and molecular mechanisms underlying renal regeneration are explored. The immune system seems to have an important role, first promoting inflammation and then tissue healing. Other players, such as cellular senescence, mitochondrial dysfunction, renal haemodynamics and metabolic reprogramming also have a role in renal regeneration. We aim to develop a short review of renal regeneration, offering a holistic view of this process.
Collapse
Affiliation(s)
- Silvia Coelho
- Intensive Care Department, Hospital Fernando Fonseca, EPE, Amadora, Portugal.,CEDOC - Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Guadalupe Cabral
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - José A Lopes
- Division of Nephrology and Renal Transplantation, Department of Medicine Centro Hospitalar Lisboa Norte, EPE, Lisbon, Portugal
| | - António Jacinto
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
10
|
Raghavan R, Shawar S. Mechanisms of Drug-Induced Interstitial Nephritis. Adv Chronic Kidney Dis 2017; 24:64-71. [PMID: 28284381 DOI: 10.1053/j.ackd.2016.11.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/11/2022]
Abstract
Drug-induced acute interstitial nephritis (DI-AIN) is a drug hypersensitivity reaction (DHR) that manifests 7 to 10 days after exposure to the culprit drug. DHRs account for fewer than 15% of reported adverse drug reactions. The kidneys are susceptible to DHR because: (1) the high renal blood flow whereby antigens are filtered, secreted, or concentrated, and (2) it is a major site of excretion for drugs and drug metabolites. More than 250 different drugs from various classes have been incriminated as causative agents of DI-AIN, the third most common cause of acute kidney injury in the hospital. DI-AIN must be differentiated from drug-induced nephrotoxic acute tubular necrosis because of their differing pathophysiology and treatment. DI-AIN begins with antigen processing and presentation to local dendritic cells. The dendritic cells activate T cells, and the subsequent effector phase of the immune response is mediated by various cytokines. Incriminated antigenic mechanisms include response to a conjugation product of the drug or its metabolite with a host protein (eg, beta-lactam or sulfonamide antibiotic) or the direct binding of the drug to a particular host allele to elicit a hypersensitivity response (eg, certain anti-epileptic drugs). If the offending drug is not identified and discontinued in a timely manner, irreversible fibrosis and chronic kidney disease will occur. The core structure of each drug or its metabolite is an antigenic determinant, and the host interaction is termed the structure-activity relationship. Differing structure-activity relationships accounts for effect, hypersensitivity, and cross-reactivity among and between classes. The essence of management of DI-AIN lies with the four sequential steps: anticipation, diagnosis, treatment, and prevention. Corticosteroids are used in the treatment of DI-AIN because of their potent anti-inflammatory effects on T cells and eosinophils. Anticipation and prevention require notifying the patient that DI-AIN is an idiosyncratic, hypersensitivity reaction that recurs on re-exposure, and the drug should be avoided.
Collapse
|
11
|
Berthier CC, Kretzler M, Davidson A. A systems approach to renal inflammation in SLE. Clin Immunol 2016; 185:109-118. [PMID: 27534926 DOI: 10.1016/j.clim.2016.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Lupus disease and its complications including lupus nephritis (LN) are very disabling and significantly impact the quality of life and longevity of patients. Broadly immunosuppressive treatments do not always provide the expected clinical benefits and have significant side effects that contribute to patient morbidity. In the era of systems biology, new strategies are being deployed integrating diverse sources of information (molecular and clinical) so as to identify individual disease specificities and select less aggressive treatments. In this review, we summarize integrative approaches linking molecular disease profiles (mainly tissue transcriptomics) and clinical phenotypes. The main goals are to better understand the pathogenesis of lupus nephritis, to identify the risk factors for renal flare and to find the predictors of both short and long-term clinical outcome. Identification of common key drivers and additional patient-specific key drivers can open the door to improved and individualized therapy to prevent and treat LN.
Collapse
Affiliation(s)
- Celine C Berthier
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Anne Davidson
- Feinstein Institute, Center for Autoimmunity and Musculoskeletal Diseases, Manhasset, NY, USA 11030.
| |
Collapse
|
12
|
The Phenotypic Characterization of the Human Renal Mononuclear Phagocytes Reveal a Co-Ordinated Response to Injury. PLoS One 2016; 11:e0151674. [PMID: 26999595 PMCID: PMC4801374 DOI: 10.1371/journal.pone.0151674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Mammalian tissues contain networks of mononuclear phagocytes (MPh) that sense injury and orchestrate the response to it. In mice, this is affected by distinct populations of dendritic cells (DC), monocytes and macrophages and recent studies suggest the same is true for human skin and intestine but little is known about the kidney. Here we describe the analysis of MPh populations in five human kidneys and show they are highly heterogeneous and contain discrete populations of DC, monocytes and macrophages. These include: plasmacytoid DC (CD303+) and both types of conventional DC—cDC1 (CD141+ cells) and CD2 (CD1c+ cells); classical, non-classical and intermediate monocytes; and macrophages including a novel population of CD141+ macrophages clearly distinguishable from cDC1 cells. The relative size of the MPh populations differed between kidneys: the pDC population was bi-modally distributed being less than 2% of DC in two kidneys without severe injury and over 35% in the remaining three with low grade injury in the absence of morphological evidence of inflammation. There were profound differences in the other MPh populations in kidneys with high and low numbers of pDC. Thus, cDC1 cells were abundant (55 and 52.3%) when pDC were sparse and sparse (12.8–12.5%) when pDC were abundant, whereas the proportions of cDC2 cells and classical monocytes increased slightly in pDC high kidneys. We conclude that MPh are highly heterogeneous in human kidneys and that pDC infiltration indicative of low-grade injury does not occur in isolation but is part of a co-ordinated response affecting all renal DC, monocyte and macrophage populations.
Collapse
|
13
|
Chessa F, Mathow D, Wang S, Hielscher T, Atzberger A, Porubsky S, Gretz N, Burgdorf S, Gröne HJ, Popovic ZV. The renal microenvironment modifies dendritic cell phenotype. Kidney Int 2016; 89:82-94. [DOI: 10.1038/ki.2015.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
|
14
|
|
15
|
Chousterman BG, Boissonnas A, Poupel L, Baudesson de Chanville C, Adam J, Tabibzadeh N, Licata F, Lukaszewicz AC, Lombès A, Deterre P, Payen D, Combadière C. Ly6Chigh Monocytes Protect against Kidney Damage during Sepsis via a CX3CR1-Dependent Adhesion Mechanism. J Am Soc Nephrol 2015; 27:792-803. [PMID: 26160897 DOI: 10.1681/asn.2015010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022] Open
Abstract
Monocytes have a crucial role in both proinflammatory and anti-inflammatory phenomena occurring during sepsis. Monocyte recruitment and activation are orchestrated by the chemokine receptors CX3CR1 and CCR2 and their cognate ligands. However, little is known about the roles of these cells and chemokines during the acute phase of inflammation in sepsis. Using intravital microscopy in a murine model of polymicrobial sepsis, we showed that inflammatory Ly6C(high) monocytes infiltrated kidneys, exhibited altered motility, and adhered strongly to the renal vascular wall in a chemokine receptor CX3CR1-dependent manner. Adoptive transfer of Cx3cr1-proficient monocyte-enriched bone marrow cells into septic Cx3cr1-depleted mice prevented kidney damage and promoted mouse survival. Modulation of CX3CR1 activation in septic mice controlled monocyte adhesion, regulated proinflammatory and anti-inflammatory cytokine expression, and was associated with the extent of kidney lesions such that the number of lesions decreased when CX3CR1 activity increased. Consistent with these results, the pro-adhesive I249 CX3CR1 allele in humans was associated with a lower incidence of AKI in patients with sepsis. These data show that inflammatory monocytes have a protective effect during sepsis via a CX3CR1-dependent adhesion mechanism. This receptor might be a new therapeutic target for kidney injury during sepsis.
Collapse
Affiliation(s)
- Benjamin G Chousterman
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France;
| | - Lucie Poupel
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Camille Baudesson de Chanville
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julien Adam
- Institut Gustave-Roussy, Université Paris-Sud Villejuif, France
| | - Nahid Tabibzadeh
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Service des Explorations Fonctionnelles and Institut National de la Santé et de la Recherche Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Paris, France; and
| | - Fabrice Licata
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Anne-Claire Lukaszewicz
- Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, U1160, Paris, France
| | - Amélie Lombès
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Philippe Deterre
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Didier Payen
- Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, U1160, Paris, France
| | - Christophe Combadière
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France;
| |
Collapse
|
16
|
Abstract
The central nervous system (CNS) possesses powerful local and global immunosuppressive capabilities that modulate unwanted inflammatory reactions in nervous tissue. These same immune-modulatory mechanisms are also co-opted by malignant brain tumors and pose a formidable challenge to brain tumor immunotherapy. Routes by which malignant gliomas coordinate immunosuppression include the mechanical and functional barriers of the CNS; immunosuppressive cytokines and catabolites; immune checkpoint molecules; tumor-infiltrating immune cells; and suppressor immune cells. The challenges to overcoming tumor-induced immunosuppression, however, are not unique to the brain, and several analogous immunosuppressive mechanisms also exist for primary tumors outside of the CNS. Ultimately, the immune responses in the CNS are linked and complementary to immune processes in the periphery, and advances in tumor immunotherapy in peripheral sites may therefore illuminate novel approaches to brain tumor immunotherapy, and vice versa.
Collapse
Affiliation(s)
- Powell Perng
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| | - Michael Lim
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
17
|
Simultaneous deletion of NOD1 and NOD2 inhibits in vitro alloresponses but does not prevent allograft rejection. Immunobiology 2015; 220:1227-31. [PMID: 26159289 DOI: 10.1016/j.imbio.2015.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 11/23/2022]
Abstract
Pattern recognition receptors (PRRs) play an important role in host anti-donor responses to transplanted tissue. A key trigger of the host alloresponse involves recognition of foreign antigen presented on activated antigen presenting cells by the host T cells. Emerging data suggest that PRR blockade can abrogate host anti-donor responses by interfering with activation of antigen presenting cells, particularly activation of dendritic cells. Our study asked whether blockade of a well-characterized family of intracellular PRRs, the NOD family, interfered with alloantigen recognition and allograft rejection. We found that deletion of either NOD1 or NOD2 in antigen presenting cells (APCs) had no effect on induction of T cell proliferation to alloantigen, but that simultaneous deletion of NOD1 and NOD2 significantly inhibited T cell responses. There was however no effect of the NOD deletion on skin graft rejection when NOD1×NOD2 skin was transplanted onto allogeneic hosts or when WT skin was transplanted onto NOD1×NOD2 deficient recipients. The conclusion of this study is that in vitro alloresponses are negatively impacted by the simultaneous deletion of NOD1 and NOD2, but that allograft rejection across a stringent allo barrier is not affected. Our results suggest that the NOD family members, NOD1 and NOD2, play a collaborative role in T cell activation by alloantigen and that their blockade in vitro can inhibit T cell responses.
Collapse
|
18
|
Liu C, Mei W, Tang J, Yuan Q, Huang L, Lu M, Wu L, Peng Z, Meng J, Yang H, Shen H, Lv B, Hu G, Tao L. Mefunidone attenuates tubulointerstitial fibrosis in a rat model of unilateral ureteral obstruction. PLoS One 2015; 10:e0129283. [PMID: 26042668 PMCID: PMC4456380 DOI: 10.1371/journal.pone.0129283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammation has a crucial role in renal interstitial fibrosis, which is the common pathway of chronic kidney diseases. Mefunidone (MFD) is a new compound which could effectively inhibit the proliferation of renal fibroblasts in vitro. However, the overall effect of Mefunidone in renal fibrosis remains unknown. METHODS Sprague-Dawley rats were randomly divided intro 6 groups: sham operation, unilateral ureteral obstruction (UUO), UUO/Mefunidone (25, 50, 100mg/kg/day) and UUO/PFD (500mg/kg/day). The rats were sacrificed respectively on days 3, 7, and 14 after the operation. Tubulointerstitial injury index, interstitial collagen deposition, expression of fibronectin (FN), α-smooth muscle actin (α-SMA), type I and III collagen and the number of CD3+ and CD68+ cells were determined. The expressions of proinflammatory cytokines, p-ERK, p-IκB, and p-STAT3 were measured in human renal proximal tubular epithelial cells of HK-2 or macrophages. RESULTS Mefunidone treatment significantly attenuated tubulointerstitial injury, interstitial collagen deposition, expression of FN, α-SMA, type I and III collagen in the obstructive kidneys, which correlated with significantly reduced the number of T cells and macrophages in the obstructive kidneys. Mechanistically, Mefunidone significantly inhibited tumor necrosis factor-α (TNF-α-) or lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. This effect is possibly due to the inhibition of phosphorylation of ERK, IκB, and STAT3. CONCLUSION Mefunidone treatment attenuated tubulointerstitial fibrosis in a rat model of UUO, at least in part, through inhibition of inflammation.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjuan Mei
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miaomiao Lu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Meng
- Department of Respiration, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Shen
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Lv
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gaoyun Hu
- Department of Medical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
19
|
Li A, Wang J, Zhu D, Zhang X, Pan R, Wang R. Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial–mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells. Free Radic Res 2015; 49:1095-113. [DOI: 10.3109/10715762.2015.1038258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Chen T, Cao Q, Wang Y, Harris D. The Role of Dendritic Cells in Renal Inflammation. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Abstract
Acute interstitial nephritis (AIN) is an under recognized and under diagnosed cause of acute kidney injury (AKI). It is estimated to account for 15 - 20% of cases of AKI; it is the reported diagnosis in 2.8% of all kidney biopsies, and 13.5% of biopsies done specifically for acute renal failure. Considerable evidence implicates antigen initiated cell-mediated injury in the pathogenesis of AIN. Drugs account for 70% of all cases, with over 150 different agents incriminated. The remaining cases are due to infections, autoimmune diseases, and rarely idiopathic. The central component of renal injury in AIN is altered tubular function, which usually precedes decrements in filtration rate. The key to early diagnosis is vigilance for the presence of tubular dysfunction in non-oliguric individuals, especially in patients with modest but gradual increments in creatinine level. The utility of urinary biomarkers to diagnose AIN in its early nascent and potentially reversible stage remains to be determined. Prompt recognition, elimination of the offending source of antigen, and use of a limited course of steroid therapy where indicated, will result in complete resolution in ~ 65% of cases, partial resolution in up to 20%, and irreversible damage in the rest.
Collapse
|
22
|
Gong L, Wang Y, Zhou L, Bai X, Wu S, Zhu F, Zhu YF. Activation of toll-like receptor-7 exacerbates lupus nephritis by modulating regulatory T cells. Am J Nephrol 2014; 40:325-44. [PMID: 25341693 DOI: 10.1159/000368204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Toll-like receptor-7 (TLR7), which recognizes viral single-stranded RNA, can trigger immune complex glomerulonephritis in experimental lupus erythematosus. However, whether it modulates dendritic cells (DCs) phenotype and regulatory T cells (Treg) function is incompletely understood. METHOD Splenocytes and bone marrow DCs were obtained from 5- and 20-week-old female MRL(lpr/lpr) mice and C57BL/6 mice. In addition, to understand the response of Treg and DCs to TLR7 ligation in vivo, 16-week-old female MRL(lpr/lpr) and C57BL/6 mice were distributed into two groups with or without intraperitoneal injections of TLR7 ligand every other day. RESULTS After activation with the TLR7 ligand imiquimod in vivo and vitro, DCs from imiquimod-treated MRL/lpr mice showed an altered costimulatory profile, with decreased induction of CD80, CD86, and MHCII expression, comparing to age-matched C57BL/6 control mice. There was no significant difference in the numbers of CD4+CD25+Foxp3+ cells after TLR7 ligation by imiquimod in MRL(lpr/lpr) and control mice. Immunostaining of kidney sections of nephritic MRL/lpr mice revealed that CD11c was expressed in the infiltrated tubulointerstitial cells, and confocal microscopic analysis of renal CD11c+MHCII+, CD11c+CD80+, and CD11c+)CD86+ cells showed an immature phenotype with low levels of CD80, CD86, and MHCII in imiquimod-treated MRL/lpr mice. There was no difference in the number of Foxp3 positive cells in kidneys between the imiquimod and vehicle-treated groups. CONCLUSIONS Our results suggest that activation of TLR7 exacerbated lupus nephritis by modulating the abnormally costimulatory phenotype of dendritic cells and functions of Treg in MRL/lpr mice.
Collapse
Affiliation(s)
- Li Gong
- Experimental animal center, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Acute kidney injury is common, dangerous and costly, affecting around one in five patients emergency admissions to hospital. Although survival decreases as disease worsens, it is now apparent that even modest degrees of dysfunction are not only associated with higher mortality but are an independent risk factor for death. This review focuses on the pathophysiology of acute kidney injury secondary to ischaemia - its commonest aetiology. The haemodynamic disturbances, endothelial injury, epithelial cell injury and immunological mechanisms underpinning its initiation and extension will be discussed along with the considerable and complex interplay between these factors that lead to an intense, pro-inflammatory state. Mechanisms of tubular recovery will be discussed but also the pathophysiology of abnormal repair with its direct consequences for long-term renal function. Finally, the concept of 'organ cross-talk' will be introduced as a potential explanation for the higher mortality observed with acute kidney injury that might be deemed modest in conventional biochemical terms.
Collapse
Affiliation(s)
- Nigel Suren Kanagasundaram
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Sahu R, Bethunaickan R, Singh S, Davidson A. Structure and function of renal macrophages and dendritic cells from lupus-prone mice. Arthritis Rheumatol 2014; 66:1596-607. [PMID: 24866269 DOI: 10.1002/art.38410] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To characterize renal macrophages and dendritic cells (DCs) in 2 murine models of lupus nephritis. METHODS We used a bead-based enrichment step followed by cell sorting to isolate populations of interest from young mice and nephritic mice. Cell morphology was examined by microscopy. Arginase and nitrite production was examined using biochemical assays. The antigen-presenting functions of the cells were determined using mixed lymphocyte reactions. Selected cytokine, chemokine, and Toll-like receptor (TLR) profiles were examined using real-time quantitative polymerase chain reaction. RESULTS We identified 2 populations of macrophages and 3 populations of DCs in both of our murine models of lupus (NZB/NZW and [NZW × BXSB]F1 mice). F4/80(high) macrophages, which were resident in normal kidneys and found to be increased in number during nephritis, did not produce either arginase or nitrite upon cytokine stimulation and acquired a mixed proinflammatory and antiinflammatory functional phenotype during nephritis that resembles the constitutively activated phenotype of gut F4/80(high) macrophages. The various cell types differed in their expression of chemokine receptors and TLRs, consistent with variability in their renal location. Resident renal CD103+ DCs were the best antigen-presenting cells and could easily be distinguished from CD11c(high) myeloid DCs that accumulated in large numbers during nephritis. CONCLUSION Our study highlights the heterogeneity of the macrophage/DC infiltrate in chronic lupus nephritis and provides an initial phenotypic and functional analysis of the different cellular components that can now be used to define the role of each cell subset in nephritis progression or amelioration. Of note, the dominant macrophage population that accumulates during nephritis has an acquired phenotype that is neither M1 nor M2 and may reflect failure of resolution of inflammation.
Collapse
Affiliation(s)
- Ranjit Sahu
- Feinstein Institute for Medical Research, Manhasset, New York
| | | | | | | |
Collapse
|
25
|
Hamano Y, Abe M, Matsuoka S, Zhang D, Kondo Y, Kagami Y, Ishigami A, Maruyama N, Tsuruta Y, Yumura W, Suzuki K. Susceptibility quantitative trait loci for pathogenic leucocytosis in SCG/Kj mice, a spontaneously occurring crescentic glomerulonephritis and vasculitis model. Clin Exp Immunol 2014; 177:353-65. [PMID: 24654803 DOI: 10.1111/cei.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2014] [Indexed: 11/26/2022] Open
Abstract
The spontaneous crescentic glomerulonephritis-forming/Kinjoh (SCG/Kj) mouse, a model of human crescentic glomerulonephritis (CrGN) and systemic vasculitis, is characterized by the production of myeloperoxidase-specific anti-neutrophil cytoplasmic autoantibody (MPO-ANCA) and marked leucocytosis. This study was performed to identify the specific populations of leucocytes associated with CrGN and susceptibility loci for pathogenic leucocytosis. Four hundred and twenty female (C57BL/6 × SCG/Kj) F2 intercross mice were subjected to serial flow cytometry examination of the peripheral blood (PB). Kidney granulocytes and monocytes were examined histopathologically. Linkage analyses were performed with 109 polymorphic microsatellite markers. Correlation studies revealed that increase of the granulocytes, F4/80(+) cells, CD3(+) CD4(-) CD8(-) T cells and dendritic cells (DCs) in peripheral blood (PB) were associated significantly with glomerulonephritis, crescent formation and vasculitis. In kidney sections, F4/80(low) cells were observed in crescent, while F4/80(high) cells were around the Bowman's capsules and in the interstitium. Numbers of F4/80(+) cells in crescents correlated significantly with F4/80(+) cell numbers in PB, but not with numbers of F4/80(+) cells in the interstitium. Genome-wide quantitative trait locus (QTL) mapping revealed three SCG/Kj-derived non-Fas QTLs for leucocytosis, two on chromosome 1 and one on chromosome 17. QTLs on chromosome 1 affected DCs, granulocytes and F4/80(+) cells, but QTL on chromosome 17 affected DCs and granulocytes. We found CrGN-associated leucocytes and susceptibility QTLs with their positional candidate genes. F4/80(+) cells in crescents are considered as recruited inflammatory macrophages. The results provide information for leucocytes to be targeted and genetic elements in CrGN and vasculitis.
Collapse
Affiliation(s)
- Y Hamano
- Aging Regulation Section, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan; Department of Nephrology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan; Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mattson DL. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am J Physiol Renal Physiol 2014; 307:F499-508. [PMID: 25007871 DOI: 10.1152/ajprenal.00258.2014] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The importance of the immune system in hypertension, vascular disease, and renal disease has been appreciated for over 50 years. Recent experimental advances have led to a greater appreciation of the mechanisms whereby inflammation and immunity participate in cardiovascular disease. In addition to the experimental data, multiple studies in patients have demonstrated a strong correlation between the observations made in animals and humans. Of great interest is the development of salt-sensitive hypertension in humans with the concurrent increase in albumin excretion rate. Experiments in our laboratory have demonstrated that feeding a high-NaCl diet to Dahl salt-sensitive (SS) rats results in a significant infiltration of T lymphocytes into the kidney that is accompanied by the development of hypertension and renal disease. The development of disease in the Dahl SS closely resembles observations made in patients; studies were therefore performed to investigate the pathological role of infiltrating immune cells in the kidney in hypertension and renal disease. Pharmacological and genetic studies indicate that immune cell infiltration into the kidney amplifies the disease process. Further experiments demonstrated that infiltrating T cells may accentuate the Dahl SS phenotype by increasing intrarenal ANG II and oxidative stress. From these and other data, we hypothesize that infiltrating immune cells, which surround the blood vessels and tubules, can serve as a local source of bioactive molecules which mediate vascular constriction, increase tubular sodium reabsorption, and mediate the retention of sodium and water to amplify sodium-sensitive hypertension. Multiple experiments remain to be performed to refine and clarify this hypothesis.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
27
|
Human renal fibroblasts generate dendritic cells with a unique regulatory profile. Immunol Cell Biol 2014; 92:688-98. [PMID: 24913322 DOI: 10.1038/icb.2014.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 12/18/2022]
Abstract
Fibroblasts reside within the renal interstitium in close proximity to neighbouring dendritic cells (DCs). It is likely that these cells have a central role in the maintenance and function of resident and infiltrating renal DCs, though studies to confirm this have been lacking. We investigated whether renal fibroblasts influence human DC generation and function. We found that co-culture with renal fibroblasts led to the generation of monocyte-derived dendritic cells (Fibro-DCs), with significantly reduced CD80, CD83 and CD86 but elevated B7H1 and B7DC expression. In addition, these Fibro-DCs displayed a reduced capacity to produce interleukin (IL)-12p40 and IL-12p70 but maintained normal levels of IL-23 and IL-27. Furthermore, IL-10 production was elevated, which together resulted in a regulatory DC population with a reduced capacity to stimulate allogenic T-cell proliferation and interferon γ production, while preserving IL-17A. Supernatant transfer experiments suggested that a soluble mediator from the fibroblasts was sufficient to inhibit the immunogenic capability of DCs. Further experiments demonstrated that IL-6 was at least partially responsible for the modulating effect of renal fibroblasts on DC generation and subsequent function. In summary, renal fibroblasts may have a crucial decisive role in regulating local DC immune responses in vivo. Better understanding of this cell population and their mechanisms of action may have therapeutic relevance in many immune-driven renal diseases.
Collapse
|
28
|
The immunogenicity of cells derived from induced pluripotent stem cells. Cell Mol Immunol 2013; 11:14-6. [PMID: 24336164 DOI: 10.1038/cmi.2013.60] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023] Open
Abstract
With their ability to undergo unlimited self-renewal in culture and to differentiate into all cell types in the body, human embryonic stem cells (hESCs) hold great potential for the treatment of currently incurable diseases. Two hESC-based cell therapies for spinal cord injury and macular degeneration have been advanced into human clinical trials. Despite this rapid progress, one key challenge of hESC-based cell therapy is the allogeneic immune rejection of hESC-derived cells by recipients. This problem could be mitigated by a recent breakthrough in the technology of induced pluripotent stem cells (iPSCs) by nuclear reprogramming of patient-specific somatic cells with defined factors, which could become a renewable source of autologous cells for cell therapy. However, recent studies revealing the abnormal epigenetics, genomic stability and immunogenicity of iPSCs have raised safety concerns over iPSC-based therapy. Recent findings related to the immunogenicity of iPSC derivatives will be summarized in this review.
Collapse
|
29
|
Peripheral blood CD8αα+CD11c+MHC-II+CD3- cells attenuate autoimmune glomerulonephritis in rats. Kidney Int 2013; 85:1078-90. [PMID: 24257693 PMCID: PMC4008668 DOI: 10.1038/ki.2013.456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 08/27/2013] [Accepted: 09/05/2013] [Indexed: 12/30/2022]
Abstract
In an anti-GBM glomerulonephritis (GN) model, GN-resistant Lewis rats naturally recover from early glomerular inflammation. Here we investigated recovery mechanisms for development of a potential immunotherapy for autoimmune GN. Our previous studies suggested that glomeruli-infiltrating leukocytes with a phenotype of CD8αα+CD11c+MHC−II+CD3− (GIL CD8αα+ cells) were responsible for recovery through induction of T cell apoptosis. Now, we identified peripheral blood CD8αα+CD11c+MHC−II+CD3− cells (PBMC CD8αα+CD3− cells), which shared 9 markers with GIL CD8αα+ cells. Upon incubation, PBMC CD8αα+CD3− cells displayed a morphology resembling that of dendritic cells. Similar to GIL CD8αα+ cells, PBMC CD8αα+CD3− cells were capable of inducing T cell apoptosis in vitro. Hence, PBMC CD8αα+CD3− cells were likely the precursor of GIL CD8αα+ cells. We next tested their potential in vivo function. PBMC CD8αα+CD3− cells were able to infiltrate inflamed but not normal glomeruli. Isolated PBMC CD8αα+CD3− cells of Lewis rats were transferred into GN-prone Wistar Kyoto rats at early inflammatory stage (day 17–25). When examined at day 45, both histopathology and BUN/serum creatinine level showed significantly attenuated GN in 80% of cell recipient Wistar Kyoto rats. Separate experiments verified infiltration of transferred Lewis PBMC CD8αα+CD3− into the glomeruli, accompanied with apoptotic CD4+ T cells in the glomeruli of the recipient Wistar Kyoto rats. Thus, PBMC CD8αα+CD3− cells of Lewis rats were able to terminate ongoing autoimmune inflammation in the glomeruli.
Collapse
|
30
|
Danger control programs cause tissue injury and remodeling. Int J Mol Sci 2013; 14:11319-46. [PMID: 23759985 PMCID: PMC3709734 DOI: 10.3390/ijms140611319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/12/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023] Open
Abstract
Are there common pathways underlying the broad spectrum of tissue pathologies that develop upon injuries and from subsequent tissue remodeling? Here, we explain the pathophysiological impact of a set of evolutionary conserved danger control programs for tissue pathology. These programs date back to the survival benefits of the first multicellular organisms upon traumatic injuries by launching a series of danger control responses, i.e., 1. Haemostasis, or clotting to control bleeding; 2. Host defense, to control pathogen entry and spreading; 3. Re-epithelialisation, to recover barrier functions; and 4. Mesenchymal, to repair to regain tissue stability. Taking kidney pathology as an example, we discuss how clotting, inflammation, epithelial healing, and fibrosis/sclerosis determine the spectrum of kidney pathology, especially when they are insufficiently activated or present in an overshooting and deregulated manner. Understanding the evolutionary benefits of these response programs may refine the search for novel therapeutic targets to limit organ dysfunction in acute injuries and in progressive chronic tissue remodeling.
Collapse
|
31
|
Gentle ME, Shi S, Daehn I, Zhang T, Qi H, Yu L, D'Agati VD, Schlondorff DO, Bottinger EP. Epithelial cell TGFβ signaling induces acute tubular injury and interstitial inflammation. J Am Soc Nephrol 2013; 24:787-99. [PMID: 23539761 DOI: 10.1681/asn.2012101024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
TGFβ signaling plays a central role in the development of acute and chronic kidney diseases. Previous in vivo studies involved systemic alteration of TGFβ signaling, however, limiting conclusions about the direct role of TGFβ in tubular cell injury. Here, we generated a double transgenic mouse that inducibly expresses a ligand-independent constitutively active TGFβ receptor type 1 (TβR1) kinase specifically in tubular epithelial cells, with expression restricted by the Pax8 promoter. In this model, activation of TGFβ signaling in the tubular epithelium alone was sufficient to cause AKI characterized by marked tubular cell apoptosis and necrosis, oxidative stress, dedifferentiation and regenerative cell proliferation, reduced renal function, and interstitial accumulation of inflammatory cells. This tubular injury was associated with mitochondrial-derived generation of reactive oxygen species (ROS), but cell damage and apoptosis were partially independent of mitochondrial-derived ROS. TβR1 signaling-induced tubular injury also associated with significant leukocyte infiltration consisting of F4/80(+) macrophages, CD11c(+) F4/80(+) dendritic cells, CD11c(+) F4/80(-) Ly6C(high) dendritic cells/monocytes, and T cells. Inhibition of mitochondrial-derived ROS significantly reduced accumulation of CD11c(+) F4/80(+) dendritic cells and T cells, suggesting a role for ROS in the activation and recruitment of the adaptive immune response to tubular injury. Taken together, these results suggest that TGFβ signaling in the tubular epithelium alone is sufficient to cause acute tubular injury and inflammation; therefore, TGFβ may be a mechanistic link between acute injury and chronic progression of kidney disease.
Collapse
Affiliation(s)
- Madeleine E Gentle
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tourneur E, Ben Mkaddem S, Chassin C, Bens M, Goujon JM, Charles N, Pellefigues C, Aloulou M, Hertig A, Monteiro RC, Girardin SE, Philpott DJ, Rondeau E, Elbim C, Werts C, Vandewalle A. Cyclosporine A impairs nucleotide binding oligomerization domain (Nod1)-mediated innate antibacterial renal defenses in mice and human transplant recipients. PLoS Pathog 2013; 9:e1003152. [PMID: 23382681 PMCID: PMC3561241 DOI: 10.1371/journal.ppat.1003152] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/08/2012] [Indexed: 12/12/2022] Open
Abstract
Acute pyelonephritis (APN), which is mainly caused by uropathogenic Escherichia coli (UPEC), is the most common bacterial complication in renal transplant recipients receiving immunosuppressive treatment. However, it remains unclear how immunosuppressive drugs, such as the calcineurin inhibitor cyclosporine A (CsA), decrease renal resistance to UPEC. Here, we investigated the effects of CsA in host defense against UPEC in an experimental model of APN. We show that CsA-treated mice exhibit impaired production of the chemoattractant chemokines CXCL2 and CXCL1, decreased intrarenal recruitment of neutrophils, and greater susceptibility to UPEC than vehicle-treated mice. Strikingly, renal expression of Toll-like receptor 4 (Tlr4) and nucleotide-binding oligomerization domain 1 (Nod1), neutrophil migration capacity, and phagocytic killing of E. coli were significantly reduced in CsA-treated mice. CsA inhibited lipopolysaccharide (LPS)-induced, Tlr4-mediated production of CXCL2 by epithelial collecting duct cells. In addition, CsA markedly inhibited Nod1 expression in neutrophils, macrophages, and renal dendritic cells. CsA, acting through inhibition of the nuclear factor of activated T-cells (NFATs), also markedly downregulated Nod1 in neutrophils and macrophages. Silencing the NFATc1 isoform mRNA, similar to CsA, downregulated Nod1 expression in macrophages, and administration of the 11R-VIVIT peptide inhibitor of NFATs to mice also reduced neutrophil bacterial phagocytosis and renal resistance to UPEC. Conversely, synthetic Nod1 stimulating agonists given to CsA-treated mice significantly increased renal resistance to UPEC. Renal transplant recipients receiving CsA exhibited similar decrease in NOD1 expression and neutrophil phagocytosis of E. coli. The findings suggest that such mechanism of NFATc1-dependent inhibition of Nod1-mediated innate immune response together with the decrease in Tlr4-mediated production of chemoattractant chemokines caused by CsA may contribute to sensitizing kidney grafts to APN.
Collapse
Affiliation(s)
- Emilie Tourneur
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Université Paris 7 - Denis Diderot, Paris, France
| | - Sanae Ben Mkaddem
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | - Cécilia Chassin
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | - Marcelle Bens
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Université Paris 7 - Denis Diderot, Paris, France
| | - Jean-Michel Goujon
- Université de Poitiers, CHU Poitiers; Service d'Anatomie et Cytologie Pathologiques, Poitiers, France
| | - Nicolas Charles
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | | | - Meryem Aloulou
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | - Alexandre Hertig
- Service Urgences Néphrologiques et Transplantation Rénale and INSERM U702, Hôpital Tenon; Université Paris 6 - Pierre et Marie Curie, Paris, France
| | - Renato C. Monteiro
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | - Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Eric Rondeau
- Service Urgences Néphrologiques et Transplantation Rénale and INSERM U702, Hôpital Tenon; Université Paris 6 - Pierre et Marie Curie, Paris, France
| | - Carole Elbim
- INSERM UMR-S 945, Hôpital Pitié-Salpêtrière, Université Paris 6 - Pierre et Marie Curie, Paris, France
| | - Catherine Werts
- Institut Pasteur, G5 Biologie et Génétique des Parois Bactériennes, Paris, France
| | - Alain Vandewalle
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Université Paris 7 - Denis Diderot, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne) 2013; 4:7. [PMID: 23390421 PMCID: PMC3565176 DOI: 10.3389/fendo.2013.00007] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022] Open
Abstract
Kidney disease associated with diabetes mellitus is a major health problem worldwide. Although established therapeutic strategies, such as appropriate blood glucose control, blood pressure control with renin-angiotensin system blockade, and lipid lowering with statins, are used to treat diabetes, the contribution of diabetic end-stage kidney disease to the total number of cases requiring hemodialysis has increased tremendously in the past two decades. Once renal function starts declining, it can result in a higher frequency of renal and extra-renal events, including cardiovascular events. Therefore, slowing renal function decline is one of the main areas of focus in diabetic nephropathy research, and novel strategies are urgently needed to prevent diabetic kidney disease progression. Regardless of the type of injury and etiology, kidney fibrosis is the commonly the final outcome of progressive kidney diseases, and it results in significant destruction of normal kidney structure and accompanying functional deterioration. Kidney fibrosis is caused by prolonged injury and dysregulation of the normal wound-healing process in association with excess extracellular matrix deposition. Kidney fibroblasts play an important role in the fibrotic process, but the origin of the fibroblasts remains elusive. In addition to the activation of residential fibroblasts, other important sources of fibroblasts have been proposed, such as pericytes, fibrocytes, and fibroblasts originating from epithelial-to-mesenchymal and endothelial-to-mesenchymal transition. Inflammatory cells and cytokines play a vital role In the process of fibroblast activation. In this review, we will analyze the contribution of inflammation to the process of tissue fibrosis, the type of fibroblast activation and the therapeutic strategies targeting the inflammatory pathways in an effort to slow the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Division of Diabetology and Endocrinology, Kanazawa Medical UniversityKahoku, Japan
- *Correspondence: Keizo Kanasaki and Daisuke Koya, Division of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku Ishikawa 920-0293, Japan. e-mail: ; ; Gangadhar Taduri, Department of Nephrology, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad 500082, Andhra Pradesh, India. e-mail:
| | - Gangadhar Taduri
- Department of Nephrology, Nizam’s Institute of Medical SciencesHyderabad, India
- *Correspondence: Keizo Kanasaki and Daisuke Koya, Division of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku Ishikawa 920-0293, Japan. e-mail: ; ; Gangadhar Taduri, Department of Nephrology, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad 500082, Andhra Pradesh, India. e-mail:
| | - Daisuke Koya
- Division of Diabetology and Endocrinology, Kanazawa Medical UniversityKahoku, Japan
- *Correspondence: Keizo Kanasaki and Daisuke Koya, Division of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku Ishikawa 920-0293, Japan. e-mail: ; ; Gangadhar Taduri, Department of Nephrology, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad 500082, Andhra Pradesh, India. e-mail:
| |
Collapse
|
34
|
Tissues use resident dendritic cells and macrophages to maintain homeostasis and to regain homeostasis upon tissue injury: the immunoregulatory role of changing tissue environments. Mediators Inflamm 2012; 2012:951390. [PMID: 23251037 PMCID: PMC3518145 DOI: 10.1155/2012/951390] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/25/2012] [Indexed: 01/07/2023] Open
Abstract
Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries.
Collapse
|
35
|
Weidenbusch M, Anders HJ. Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis. J Innate Immun 2012; 4:463-77. [PMID: 22507825 DOI: 10.1159/000336717] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/23/2012] [Indexed: 12/17/2022] Open
Abstract
Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and an-tiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more anti-inflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair.
Collapse
Affiliation(s)
- Marc Weidenbusch
- Medizinische Klinik IV, Klinikum der Universität München-LMU, München, Deutschland
| | | |
Collapse
|
36
|
Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease. Kidney Int 2012; 81:892-902. [PMID: 22318423 PMCID: PMC3325597 DOI: 10.1038/ki.2011.471] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasmacytoid dendritic cells play important roles in inducing immune tolerance, preventing allograft rejection, and regulating immune responses in both autoimmune disease and graft-versus-host disease. In order to evaluate a possible protective effect of plasmacytoid dendritic cells against renal inflammation and injury, we purified these cells from mouse spleens and adoptively transferred lipopolysaccharide (LPS)-treated cells, modified ex vivo, into mice with adriamycin nephropathy. These LPS-treated cells localized to the kidney cortex and the lymph nodes draining the kidney, and protected the kidney from injury during adriamycin nephropathy. Glomerulosclerosis, tubular atrophy, interstitial expansion, proteinuria, and creatinine clearance were significantly reduced in mice with adriamycin nephropathy subsequently treated with LPS-activated plasmacytoid dendritic cells as compared to the kidney injury in mice given naive plasmacytoid dendritic cells. In addition, LPS-pretreated cells, but not naive plasmacytoid dendritic cells, convert CD4+CD25− T cells into Foxp3+ regulatory T cells and suppress the proinflammatory cytokine production of endogenous renal macrophages. This may explain their ability to protect against renal injury in adriamycin nephropathy.
Collapse
|
37
|
The loss of renal dendritic cells and activation of host adaptive immunity are long-term effects of ischemia/reperfusion injury following syngeneic kidney transplantation. Kidney Int 2012; 81:1015-1025. [PMID: 22278023 PMCID: PMC3340432 DOI: 10.1038/ki.2011.458] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ischemia/reperfusion injury associated with kidney transplantation induces profound acute injury, influences early graft function and affects long-term graft outcomes. To determine whether renal dendritic cells play any role during initial innate ischemia/reperfusion injury and the subsequent development of adaptive immune responses, we studied the behavior and function of renal graft and host infiltrating dendritic cells during early and late phases of renal ischemia/reperfusion injury. Wild type to GFP-transgenic rat kidney transplantation was performed with and without 24 hours cold storage. Ischemia/reperfusion injury in cold stored grafts resulted in histopathological changes of interstitial fibrosis and tubular atrophy by 10 weeks accompanied by upregulation of mRNAs of mediators of interstitial fibrosis and inflammation. In normal rat kidneys we identified two populations of renal dendritic cells, predominant CD103−CD11b/c+ and minor CD103+CD11b/c+ cells. After transplantation without cold storage, grafts maintained CD103− but not CD103+ GFP-negative renal dendritic cells for 10 weeks. In contrast, both cell subsets disappeared from cold stored grafts, which associated with a significant GFP-expressing host CD11b/c+ cell infiltration that included CD103+ dendritic cells with a TNF-α producing phenotype. These changes in graft/host dendritic cell populations were associated with progressive infiltration of host CD4+ T cells with effector/effector-memory phenotypes and IFN-γ secretion. Thus, renal graft ischemia/reperfusion injury causes graft dendritic cell loss and was associated with progressive host dendritic cell and T cell recruitment. Renal resident dendritic cells might function as a protective regulatory network.
Collapse
|
38
|
Nelson PJ, Rees AJ, Griffin MD, Hughes J, Kurts C, Duffield J. The renal mononuclear phagocytic system. J Am Soc Nephrol 2011; 23:194-203. [PMID: 22135312 DOI: 10.1681/asn.2011070680] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The renal mononuclear phagocytic system, conventionally composed of macrophages (Mø) and dendritic cells (DCs), plays a central role in health and disease of the kidney. Overlapping definitions of renal DCs and Mø, stemming from historically separate research tracks and the lack of experimental tools to specifically study the roles of these cells in vivo, have generated confusion and controversy, however, regarding their immunologic function in the kidney. This brief review provides an appraisal of the current state of knowledge of the renal mononuclear phagocytic system interpreted from the perspective of immunologic function. Physical characteristics, ontogeny, and known functions of the main subsets of renal mononuclear phagocytes as they relate to homeostasis, surveillance against injury and infection, and immune-mediated inflammatory injury and repair within the kidney are described. Gaps and inconsistencies in current knowledge are used to create a roadmap of key questions to be answered in future research.
Collapse
|
39
|
Anders HJ, Kurts C. Innate Immunity and Dendritic Cells in Kidney Disease and the Nobel Prize. J Am Soc Nephrol 2011; 22:2139-41. [DOI: 10.1681/asn.2011100975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
40
|
Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 2011; 121:4210-21. [PMID: 22045571 DOI: 10.1172/jci45161] [Citation(s) in RCA: 1402] [Impact Index Per Article: 100.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic kidney injury often occurs in the context of multiple organ failure and sepsis. Here, we review the major components of this dynamic process, which involves hemodynamic alterations, inflammation, and endothelial and epithelial cell injury, followed by repair that can be adaptive and restore epithelial integrity or maladaptive, leading to chronic kidney disease. Better understanding of the cellular pathophysiological processes underlying kidney injury and repair will hopefully result in the design of more targeted therapies to prevent the injury, hasten repair, and minimize chronic progressive kidney disease.
Collapse
Affiliation(s)
- Joseph V Bonventre
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
41
|
Abstract
Renal fibrosis, particularly tubulointerstitial fibrosis, is the common final outcome of almost all progressive chronic kidney diseases. Renal fibrosis is also a reliable predictor of prognosis and a major determinant of renal insufficiency. Irrespective of the initial causes, renal fibrogenesis is a dynamic and converging process that consists of four overlapping phases: priming, activation, execution and progression. Nonresolving inflammation after a sustained injury sets up the fibrogenic stage (priming) and triggers the activation and expansion of matrix-producing cells from multiple sources through diverse mechanisms, including activation of interstitial fibroblasts and pericytes, phenotypic conversion of tubular epithelial and endothelial cells and recruitment of circulating fibrocytes. Upon activation, matrix-producing cells assemble a multicomponent, integrin-associated protein complex that integrates input from various fibrogenic signals and orchestrates the production of matrix components and their extracellular assembly. Multiple cellular and molecular events, such as tubular atrophy, microvascular rarefaction and tissue hypoxia, promote scar formation and ensure a vicious progression to end-stage kidney failure. This Review outlines our current understanding of the cellular and molecular mechanisms of renal fibrosis, which could offer novel insights into the development of new therapeutic strategies.
Collapse
|
42
|
Machida Y, Kitamoto K, Izumi Y, Shiota M, Uchida J, Kira Y, Nakatani T, Miura K. Renal fibrosis in murine obstructive nephropathy is attenuated by depletion of monocyte lineage, not dendritic cells. J Pharmacol Sci 2010; 114:464-73. [PMID: 21127386 DOI: 10.1254/jphs.10246fp] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The role of renal dendritic cells (DCs) in renal fibrosis is unknown. The present study was conducted to examine the relative role of renal DCs and macrophages in the development of renal fibrosis in murine obstructive nephropathy. CD11c-diphtheria toxin receptor (DTR) transgenic mice and CD11b-DTR transgenic mice were subjected to unilateral ureteral obstruction. To conditionally and selectively deplete DCs or macrophages, DT was given to these mice and kidneys were harvested on day 5. Ureteral obstruction elicited renal fibrosis characterized by tubulointerstitial collagen III deposition and accumulation of α-smooth muscle actin-positive cells. Flow cytometric analysis revealed a marked increase in cell counts of F4/80(+) macrophages, F4/80(+) DCs, as well as neutrophils and T cells in the obstructed kidney. DT administration to CD11c-DTR mice led to selective depletion of renal CD11c(+) DCs, but did not affect renal fibrosis. In contrast, administration of DT to CD11b-DTR mice resulted in ablation of all monocyte lineages including macrophages and DCs and attenuated renal fibrosis. Our results do not support the role of renal DCs, but confirm the importance of monocyte lineage cells other than DCs in the development of the early phase of renal fibrosis following ureteral obstruction in mice.
Collapse
Affiliation(s)
- Yuichi Machida
- Department of Urology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tumor antigen cross-presentation and the dendritic cell: where it all begins? Clin Dev Immunol 2010; 2010:539519. [PMID: 20976125 PMCID: PMC2957101 DOI: 10.1155/2010/539519] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that are critical for the generation of effective cytotoxic T lymphocyte (CTL) responses; however, their function and phenotype are often defective or altered in tumor-bearing hosts, which may limit their capacity to mount an effective tumor-specific CTL response. In particular, the manner in which exogenous tumor antigens are acquired, processed, and cross-presented to CD8 T cells by DCs in tumor-bearing hosts is not well understood, but may have a profound effect on antitumor immunity. In this paper, we have examined the role of DCs in the cross-presentation of tumor antigen in terms of their subset, function, migration, and location with the intention of examining the early processes that contribute to the development of an ineffective anti-tumor immune response.
Collapse
|
44
|
Abstract
The pathologic paradigm for renal progression is advancing tubulointerstitial fibrosis. Whereas mechanisms underlying fibrogenesis have grown in scope and understanding in recent decades, effective human treatment to directly halt or even reverse fibrosis remains elusive. Here, we examine key features mediating the molecular and cellular basis of tubulointerstitial fibrosis and highlight new insights that may lead to novel therapies. How to prevent chronic kidney disease from progressing to renal failure awaits even deeper biochemical understanding.
Collapse
Affiliation(s)
- Michael Zeisberg
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
45
|
Abstract
The two most common HIV-associated renal diseases, HIV-associated nephropathy and HIV immune-complex kidney disease, share the common pathologic finding of hyperplasia within the glomerulus. Podocyte injury is central to the pathogenesis of these diseases; however, the source of the proliferating glomerular epithelial cell remains a topic of debate. Parenchymal injury has been linked to direct infection of renal epithelial cells by HIV-1, although the mechanism of viral entry into this non-lymphoid compartment is unclear. Although transgenic rodent models have provided insight into viral proteins responsible for inducing renal disease, such models have substantial limitations. Rodent HIV-1 models, for instance, cannot replicate all features of immune activation, a process that could have an important role in the pathogenesis of the HIV-associated renal diseases.
Collapse
|
46
|
Viral protein determinants of Lassa virus entry and release from polarized epithelial cells. J Virol 2010; 84:3178-88. [PMID: 20071570 DOI: 10.1128/jvi.02240-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epithelium plays a key role in the spread of Lassa virus. Transmission from rodents to humans occurs mainly via inhalation or ingestion of droplets, dust, or food contaminated with rodent urine. Here, we investigated Lassa virus infection in cultured epithelial cells and subsequent release of progeny viruses. We show that Lassa virus enters polarized Madin-Darby canine kidney (MDCK) cells mainly via the basolateral route, consistent with the basolateral localization of the cellular Lassa virus receptor alpha-dystroglycan. In contrast, progeny virus was efficiently released from the apical cell surface. Further, we determined the roles of the glycoprotein, matrix protein, and nucleoprotein in directed release of nascent virus. To do this, a virus-like-particle assay was developed in polarized MDCK cells based on the finding that, when expressed individually, both the glycoprotein GP and matrix protein Z form virus-like particles. We show that GP determines the apical release of Lassa virus from epithelial cells, presumably by recruiting the matrix protein Z to the site of virus assembly, which is in turn essential for nucleocapsid incorporation into virions.
Collapse
|
47
|
Sung SS, Bolton WK. T cells and dendritic cells in glomerular disease: the new glomerulotubular feedback loop. Kidney Int 2009; 77:393-9. [PMID: 20032960 DOI: 10.1038/ki.2009.489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A newly described glomerulotubular feedback loop may explain the relationship between glomerular damage, epitope spreading, tubulointerstitial nephritis, proteinuria as a progression factor, and the importance of the local milieu in kidney damage. It also opens the horizons for exciting innovative approaches to therapy of both acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Sun-Sang Sung
- Division of Nephrology, University of Virginia, Charlottesville, Virginia 22908-0133, USA
| | | |
Collapse
|
48
|
Kitamoto K, Machida Y, Uchida J, Izumi Y, Shiota M, Nakao T, Iwao H, Yukimura T, Nakatani T, Miura K. Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J Pharmacol Sci 2009; 111:285-92. [PMID: 19893275 DOI: 10.1254/jphs.09227fp] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Although liposome-encapsulated clodronate has been used as a means to deplete macrophages from certain tissues, target leukocyte subtypes within the kidney are not clearly known under normal and pathologic conditions. The present study was therefore conducted to examine the effects of liposome clodronate on renal infiltrating cell type following unilateral ureteral obstruction (UUO) and tried to correlate these changes to the mechanisms of early development of renal fibrosis. Renal infiltrating leukocyte subtypes and counts were determined by using multicolor flow cytometric analysis of cell suspensions from obstructed kidneys. UUO for 5 days elicited renal tubular apoptosis and renal fibrosis and showed 4-fold increase in renal leukocytes including monocytes/macrophages, dendritic cells, and T-cells. Repeated administration of liposome clodronate selectively depleted F4/80+ monocytes/macrophages and F4/80+ dendritic cells but not F4/80(-) dendritic cells or other cell types in both obstructed and non-obstructed kidneys. Tubular apoptosis and renal fibrosis were also significantly attenuated by liposome clodronate. Increased gene expression of TNF-alpha and TGF-beta observed in obstructed kidneys were markedly attenuated by depletion of renal mononuclear phagocytes. These findings suggest that F4/80+ monocytes/macrophages and/or F4/80+ dendritic cells play a pivotal role in the development of obstruction-induced tubular apoptosis and renal fibrosis, possibly through TNF-alpha and TGF-beta dependent mechanisms.
Collapse
|
49
|
Matsumoto K, Fukuda N, Abe M, Fujita T. Dendritic cells and macrophages in kidney disease. Clin Exp Nephrol 2009; 14:1-11. [PMID: 19688180 DOI: 10.1007/s10157-009-0218-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 07/09/2009] [Indexed: 01/25/2023]
Affiliation(s)
- Koichi Matsumoto
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kami-Machi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | | | | | | |
Collapse
|
50
|
|