1
|
Yerukala Sathipati S, Jeong S, Sharma P, Mayer J, Sharma R, Ho SY, Hebbring S. Exploring prognostic implications of miRNA signatures and telomere maintenance genes in kidney cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200874. [PMID: 39399813 PMCID: PMC11467672 DOI: 10.1016/j.omton.2024.200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024]
Abstract
Kidney cancer, particularly clear cell renal cell carcinoma (KIRC), presents significant challenges in disease-specific survival. This study investigates the prognostic potential of microRNAs (miRNAs) in kidney cancers, including KIRC and kidney papillary cell carcinoma (KIRP), focusing on their interplay with telomere maintenance genes. Utilizing data from The Cancer Genome Atlas, miRNA expression profiles of 166 KIRC and 168 KIRP patients were analyzed. An evolutionary learning-based kidney survival estimator identified robust miRNA signatures predictive of 5-year survival for both cancer types. For KIRC, a 37-miRNA signature showed a correlation coefficient (R) of 0.82 and mean absolute error (MAE) of 0.65 years. Similarly, for KIRP, a 23-miRNA signature exhibited an R of 0.82 and MAE of 0.64 years, demonstrating comparable predictive accuracy. These signatures also displayed diagnostic potential with receiver operating characteristic curve values between 0.70 and 0.94. Bioinformatics analysis revealed targeting of key telomere-associated genes such as TERT, DKC1, CTC1, and RTEL1 by these miRNAs, implicating crucial pathways such as cellular senescence and proteoglycans in cancer. This study highlights the significant link between miRNAs and telomere genes in kidney cancer survival, offering insights for therapeutic targets and improved prognostic markers.
Collapse
Affiliation(s)
| | - Sohyun Jeong
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Param Sharma
- Department of Cardiology, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - John Mayer
- Office of Research Computing and Analytics, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Rohit Sharma
- Department of Surgical Oncology, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| |
Collapse
|
2
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Ma N, Xu C, Wang Y, Cui K, Kuang H. Telomerase reverse transcriptase protects against diabetic kidney disease by promoting AMPK/PGC-1a-regulated mitochondrial energy homeostasis. Chem Biol Interact 2024; 403:111238. [PMID: 39265716 DOI: 10.1016/j.cbi.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Disordered glucose and lipid metabolism, coupled with disturbed mitochondrial bioenergetics, are pivotal in the initiation and development of diabetic kidney disease (DKD). While the essential role of telomerase reverse transcriptase (TERT) in regulating mitochondrial function in the cardiovascular system has been recognized, its specific function in maintaining mitochondrial homeostasis in DKD remains unclear. This study aimed to explore how TERT regulates mitochondrial function and the underlying mechanisms. In vitro, human renal proximal tubular HK-2 cells exposed to high glucose/high fat (HG/HF) presented significant downregulation of TERT and AMPK dephosphorylation. This led to decreased ATP production, altered NAD+/NADH ratios, reduced mitochondrial complex activities, increased mitochondrial dysfunction, lipid accumulation, and reactive oxygen species (ROS) production. Knockdown of TERT (si-TERT) further exacerbated mitochondrial dysfunction, decreased mitochondrial membrane potential, and lowered levels of cellular oxidative phosphorylation and glycolysis, as determined via a Seahorse X24 flux analyzer. Conversely, mitochondrial dysfunction was significantly alleviated after pcDNA-TERT plasmid transfection and adeno-associated virus (AAV) 9-TERT gene therapy in vivo. Notably, treatment with an AMPK inhibitor, activator, and si-PGC-1a (peroxisome proliferator-activated receptor γ coactivator-1α), resulted in mitochondrial dysfunction and decreased expression of genes related to energy metabolism and mitochondrial biogenesis. Our findings reveal that TERT protects mitochondrial function and homeostasis by partially activating the AMPK/PGC-1a signaling pathway. These results establish a crucial foundation for understanding TERT's critical role inmitochondrial regulation and its protective effect on DKD.
Collapse
Affiliation(s)
- Nan Ma
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengye Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Cui
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Saraswati S, Martínez P, Serrano R, Mejías D, Graña-Castro O, Álvarez Díaz R, Blasco MA. Renal fibroblasts are involved in fibrogenic changes in kidney fibrosis associated with dysfunctional telomeres. Exp Mol Med 2024; 56:2216-2230. [PMID: 39349834 PMCID: PMC11541748 DOI: 10.1038/s12276-024-01318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 10/03/2024] Open
Abstract
Tubulointerstitial fibrosis associated with chronic kidney disease (CKD) represents a global health care problem. We previously reported that short and dysfunctional telomeres lead to interstitial renal fibrosis; however, the cell-of-origin of kidney fibrosis associated with telomere dysfunction is currently unknown. We induced telomere dysfunction by deleting the Trf1 gene encoding a telomere-binding factor specifically in renal fibroblasts in both short-term and long-term life-long experiments in mice to identify the role of fibroblasts in renal fibrosis. Short-term Trf1 deletion in renal fibroblasts was not sufficient to trigger kidney fibrosis but was sufficient to induce inflammatory responses, ECM deposition, cell cycle arrest, fibrogenesis, and vascular rarefaction. However, long-term persistent deletion of Trf1 in fibroblasts resulted in kidney fibrosis accompanied by an elevated urinary albumin-to-creatinine ratio (uACR) and a decrease in mouse survival. These cellular responses lead to the macrophage-to-myofibroblast transition (MMT), endothelial-to-mesenchymal transition (EndMT), and partial epithelial-to-mesenchymal transition (EMT), ultimately causing kidney fibrosis at the humane endpoint (HEP) when the deletion of Trf1 in fibroblasts is maintained throughout the lifespan of mice. Our findings contribute to a better understanding of the role of dysfunctional telomeres in the onset of the profibrotic alterations that lead to kidney fibrosis.
Collapse
Affiliation(s)
- Sarita Saraswati
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Diego Mejías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ruth Álvarez Díaz
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
5
|
Ismail M, Abdelhamid N, Hasanin HM, Hamed HM, Motawie AA, Kamel S, Hassan EM, Iraqy RS. Early Diagnostic and Prognostic Value of the Urinary TIMP-2 and IGFBP-7 in Acute Kidney Injury in Critically Ill Children. Indian J Crit Care Med 2024; 28:970-976. [PMID: 39411289 PMCID: PMC11471991 DOI: 10.5005/jp-journals-10071-24815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background Acute kidney injury (AKI) is a hidden complication among children within pediatric intensive care units (PICU). Aim To evaluate the early predictive and diagnostic value of Urinary [TIMP-2][IGFBP7] to detect AKI in PICU patients. Methods A case-control study was conducted on 112 children (72 admitted to PICU and 40 healthy controls) Urinary [TIMP-2][IGFBP7] was measured within 24 hours of PICU admission. Results Acute kidney injury developed in 52 (72.2%) out of 72 critically ill patients. The AKI group had significantly higher serum creatinine, CRP, and pediatric sequential organ failure assessment score (pSOFA) score (p = 0.001, 0.01, and 0.001, respectively) and significantly lower estimated creatinine clearance (eCCl) (p = 0.001). Urinary [TIMP-2][IGFBP7] was significantly higher in the AKI group as compared with the non-AKI group (p = 0.007). The duration of the PICU stay was 1.8-fold higher in the AKI group (p = 0.004). At the time of study enrollment, 7 (13.5%) patients had normal initial eCCl. 26 patients (50.0%) fulfilled the "Risk," 18 patients (34.6%) the "Injury," 1 patient (1.9%) the "Failure" and 0 patient (0%) the "Loss" criteria. Nine (17%) patients progressed to the next higher pediatrics risk, injury, failure, loss, end-stage renal disease (pRIFLE) stage. Urinary [TIMP-2][IGFBP7] was significantly higher in the "Failure" stage followed by "Injury," stage then the "Risk," stage (p = 0.001). Hypovolemia/dehydration had the highest [TIMP-2][IGFBP7] values followed by sepsis. Urinary [TIMP-2][IGFBP7] was significantly increased in mechanically ventilated and patients who received inotropic medications. Conclusions [TIMP-2]·[IGFBP7] was higher in AKI patients compared with non-AKI ones especially cases with hypovolemia and sepsis. It may predict severe morbidity and mortality because its higher levels in mechanically ventilated children and those on positive inotropic support. How to cite this article Ismail M, Abdelhamid N, Hasanin HM, Hamed HM, Motawie A, Kamel S, et al. Early Diagnostic and Prognostic Value of the Urinary TIMP-2 and IGFBP-7 in Acute Kidney Injury in Critically Ill Children. Indian J Crit Care Med 2024;28(10):970-976.
Collapse
Affiliation(s)
- Mervat Ismail
- Department of Pediatrics, Institute of Medical Research and Clinical studies, National Research Center, Cairo, Egypt
| | - Nehal Abdelhamid
- Department of Pediatrics, Institute of Medical Research and Clinical studies, National Research Center, Cairo, Egypt
| | - Hasanin M Hasanin
- Department of Pediatrics, Institute of Medical Research and Clinical studies, National Research Center, Cairo, Egypt
| | - Hanan M Hamed
- Department of Pediatrics, Institute of Medical Research and Clinical studies, National Research Center, Cairo, Egypt
| | - Ayat A Motawie
- Department of Pediatrics, Institute of Medical Research and Clinical studies, National Research Center, Cairo, Egypt
| | - Solaf Kamel
- Department of Clinical Pathology, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Eman M Hassan
- Department of Clinical Pathology, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Radwa S Iraqy
- Departments of Pediatrics, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Sanderson KR, Wekon-Kemeni C, Charlton JR. From premature birth to premature kidney disease: does accelerated aging play a role? Pediatr Nephrol 2024; 39:2001-2013. [PMID: 37947901 PMCID: PMC11082067 DOI: 10.1007/s00467-023-06208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
As the limits of fetal viability have increased over the past 30 years, there has been a growing body of evidence supporting the idea that chronic disease should be taken into greater consideration in addition to survival after preterm birth. Accumulating evidence also suggests there is early onset of biologic aging after preterm birth. Similarly, chronic kidney disease (CKD) is also associated with a phenotype of advanced biologic age which exceeds chronologic age. Yet, significant knowledge gaps remain regarding the link between premature biologic age after preterm birth and kidney disease. This review summarizes the four broad pillars of aging, the evidence of premature aging following preterm birth, and in the setting of CKD. The aim is to provide additional plausible biologic mechanisms to explore the link between preterm birth and CKD. There is a need for more research to further elucidate the biologic mechanisms of the premature aging paradigm and kidney disease after preterm birth. Given the emerging research on therapies for premature aging, this paradigm could create pathways for prevention of advanced CKD.
Collapse
Affiliation(s)
- Keia R Sanderson
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA.
| | - Christel Wekon-Kemeni
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
- Division of Pediatric Nephrology, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Melk A, Sugianto RI, Zhang X, Dahhou M, Döhler B, Süsal C, Sapir-Pichhadze R, Wong G, Foster BJ. Influence of donor sex and age on graft outcome in kidney transplantation. Nephrol Dial Transplant 2024; 39:607-617. [PMID: 37596063 PMCID: PMC10966323 DOI: 10.1093/ndt/gfad181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND There is a known recipient sex-dependent association between donor sex and kidney transplant survival. We hypothesized that donor age also modifies the association between donor sex and graft survival. METHODS First, deceased donor kidney transplant recipients (1988-2019, n = 461 364) recorded in the Scientific Registry of Transplant Recipients, the Australia and New Zealand Dialysis and Transplant Registry and the Collaborative Transplant Study were analyzed. We used multivariable Cox regression models to estimate the association between donor sex and death censored graft loss, accounting for the modifying effects of recipient sex and donor age; donor age was categorized as 5-19, 20-34, 35-49, 50-59 and ≥60 years. Results from cohort-specific Cox models were combined using individual patient data meta-analysis. RESULTS Among female recipients of donors aged <60 years, graft loss hazards did not differ by donor sex; recipients of female donors ≥60 years showed significantly lower graft loss hazards than recipients of male donors of the same age [combined adjusted hazard ratio (aHR) 0.90, 95% CI 0.86-0.94]. Among male recipients, female donors aged <50 years were associated with significantly higher graft loss hazards than same-aged male donors (5-19 years: aHR 1.11, 95% CI 1.02-1.21; 20-34 years: aHR 1.08, 95% CI 1.02-1.15; 35-49 years: aHR 1.07, 95% CI 1.04-1.10). There were no significant differences in graft loss by donor sex among male recipients of donors aged ≥50 years. CONCLUSION Donor age modifies the association between donor sex and graft survival. Older female donors were associated with similar or lower hazards of graft failure than older male donors in both male and female recipients, suggesting a better functional reserve of older female donor kidneys.
Collapse
Affiliation(s)
- Anette Melk
- Children's Hospital, Hannover Medical School, Hannover, Germany
| | | | - Xun Zhang
- Research Institute of the McGill University Health Centre, Centre for Outcomes Research and Evaluation, Montréal, QC, Canada
| | - Mourad Dahhou
- Research Institute of the McGill University Health Centre, Centre for Outcomes Research and Evaluation, Montréal, QC, Canada
| | - Bernd Döhler
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Caner Süsal
- Transplant Immunology Research Center of Excellence, Koç University, Istanbul, Turkey
| | - Ruth Sapir-Pichhadze
- Research Institute of the McGill University Health Centre, Centre for Outcomes Research and Evaluation, Montréal, QC, Canada
- Department of Medicine, Division of Nephrology, McGill University, Montréal, QC, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, QC, Canada
| | - Germaine Wong
- School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bethany J Foster
- Research Institute of the McGill University Health Centre, Centre for Outcomes Research and Evaluation, Montréal, QC, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Pediatrics, Division of Nephrology, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Chen J, Zhang H, Yi X, Dou Q, Yang X, He Y, Chen J, Chen K. Cellular senescence of renal tubular epithelial cells in acute kidney injury. Cell Death Discov 2024; 10:62. [PMID: 38316761 PMCID: PMC10844256 DOI: 10.1038/s41420-024-01831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Cellular senescence represents an irreversible state of cell-cycle arrest during which cells secrete senescence-associated secretory phenotypes, including inflammatory factors and chemokines. Additionally, these cells exhibit an apoptotic resistance phenotype. Cellular senescence serves a pivotal role not only in embryonic development, tissue regeneration, and tumor suppression but also in the pathogenesis of age-related degenerative diseases, malignancies, metabolic diseases, and kidney diseases. The senescence of renal tubular epithelial cells (RTEC) constitutes a critical cellular event in the progression of acute kidney injury (AKI). RTEC senescence inhibits renal regeneration and repair processes and, concurrently, promotes the transition of AKI to chronic kidney disease via the senescence-associated secretory phenotype. The mechanisms underlying cellular senescence are multifaceted and include telomere shortening or damage, DNA damage, mitochondrial autophagy deficiency, cellular metabolic disorders, endoplasmic reticulum stress, and epigenetic regulation. Strategies aimed at inhibiting RTEC senescence, targeting the clearance of senescent RTEC, or promoting the apoptosis of senescent RTEC hold promise for enhancing the renal prognosis of AKI. This review primarily focuses on the characteristics and mechanisms of RTEC senescence, and the impact of intervening RTEC senescence on the prognosis of AKI, aiming to provide a foundation for understanding the pathogenesis and providing potentially effective approaches for AKI treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, 400042, Chongqing, China
| | - Xiangling Yi
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Qian Dou
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Xin Yang
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China.
| |
Collapse
|
9
|
Hill C, Duffy S, Kettyle LM, McGlynn L, Sandholm N, Salem RM, Thompson A, Swan EJ, Kilner J, Rossing P, Shiels PG, Lajer M, Groop PH, Maxwell AP, McKnight AJ. Differential Methylation of Telomere-Related Genes Is Associated with Kidney Disease in Individuals with Type 1 Diabetes. Genes (Basel) 2023; 14:genes14051029. [PMID: 37239390 DOI: 10.3390/genes14051029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) represents a major global health problem. Accelerated ageing is a key feature of DKD and, therefore, characteristics of accelerated ageing may provide useful biomarkers or therapeutic targets. Harnessing multi-omics, features affecting telomere biology and any associated methylome dysregulation in DKD were explored. Genotype data for nuclear genome polymorphisms in telomere-related genes were extracted from genome-wide case-control association data (n = 823 DKD/903 controls; n = 247 end-stage kidney disease (ESKD)/1479 controls). Telomere length was established using quantitative polymerase chain reaction. Quantitative methylation values for 1091 CpG sites in telomere-related genes were extracted from epigenome-wide case-control association data (n = 150 DKD/100 controls). Telomere length was significantly shorter in older age groups (p = 7.6 × 10-6). Telomere length was also significantly reduced (p = 6.6 × 10-5) in DKD versus control individuals, with significance remaining after covariate adjustment (p = 0.028). DKD and ESKD were nominally associated with telomere-related genetic variation, with Mendelian randomisation highlighting no significant association between genetically predicted telomere length and kidney disease. A total of 496 CpG sites in 212 genes reached epigenome-wide significance (p ≤ 10-8) for DKD association, and 412 CpG sites in 193 genes for ESKD. Functional prediction revealed differentially methylated genes were enriched for Wnt signalling involvement. Harnessing previously published RNA-sequencing datasets, potential targets where epigenetic dysregulation may result in altered gene expression were revealed, useful as potential diagnostic and therapeutic targets for intervention.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Laura M Kettyle
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast BT9 7AE, UK
| | - Liane McGlynn
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Thompson
- School of Medicine, The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Elizabeth J Swan
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Jill Kilner
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Peter Rossing
- Nordsjaellands Hospital, Hilleroed, Denmark and Health, Aarhus University, 8000 Aarhus, Denmark
- Steno Diabetes Center, 2730 Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Paul G Shiels
- School of Molecular Biosciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria Lajer
- Steno Diabetes Center, 2730 Gentofte, Denmark
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
10
|
Kim JE, Cho MH. Effects of Multiwall Carbon Nanotubes on Premature Kidney Aging: Biochemical and Histological Analysis. TOXICS 2023; 11:373. [PMID: 37112600 PMCID: PMC10143039 DOI: 10.3390/toxics11040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Carbon nanotubes (CNTs) have gained much attention due to their superb properties, which make them promising options for the reinforcing composite materials with desirable mechanical properties. However, little is known about the linkage between lung exposure to nanomaterials and kidney disease. In this study, we compared the effects on the kidneys and aging for two different types of multiwall carbon nanotubes (MWCNTs): pristine MWCNTs (PMWCNTs) and acid-treated MWCNTs (TMWCNTs), with TMWCNTs being the preferred form for use as a composite material due to its superior dispersion properties. We used tracheal instillation and maximum tolerated dose (MTD) for both types of CNTs. MTD was determined as a 10% weight loss dose in a 3-month subchronic study, and the appropriate dosage for 1-year exposure was 0.1 mg/mouse. Serum and kidney samples were analyzed using ELISA, Western blot, and immunohistochemistry after 6 months and 1 year of treatment. PMWCNT-administered mice showed the activation of pathways for inflammation, apoptosis, and insufficient autophagy, as well as decreased serum Klotho levels and increased serum levels of DKK-1, FGF-23, and sclerostin, while TMWCNTs did not. Our study suggests that lung exposure to PMWCNTs can induce premature kidney aging and highlights a possible toxic effect of using MWCNTs on the kidneys in the industrial field, further highlighting that dispersibility can affect the toxicity of the nanotubes.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- RNABIO, Seongnam 13201, Republic of Korea
| |
Collapse
|
11
|
Chen Y, Zhang C, Du Y, Yang X, Liu M, Yang W, Lei G, Wang G. Exosomal transfer of microRNA-590-3p between renal tubular epithelial cells after renal ischemia-reperfusion injury regulates autophagy by targeting TRAF6. Chin Med J (Engl) 2022; 135:2467-2477. [PMID: 36449688 PMCID: PMC9945297 DOI: 10.1097/cm9.0000000000002377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in patients, especially elderly patients, who undergo cardiac surgery with cardiopulmonary bypass. Studies have indicated a protective role of autophagy in AKI. However, the mechanisms underlying the regulatory effect of autophagy in AKI among patients undergoing cardiac surgeries are poorly understood. In this study, we aimed to test the hypothesis that exosomal microRNAs (miRNAs) regulate autophagy in tubular epithelial cells after AKI. METHODS Plasma exosomal RNA was extracted from young and elderly AKI patients undergoing cardiac surgery, and the miRNAs expression during the perioperative period were analyzed using next-generation sequencing. The screened miRNAs and their target genes were subjected to gene oncology function and Kyoto Encyclopedia of Genes and Genome enrichment analyses. Renal tubular epithelial cell line (HK-2 cells) was cultured and hypoxia/reoxygenation (H/R) model was established, which is an in vitro renal ischemia/reperfusion (I/R) model. We used Western blot analysis, cell viability assay, transfection, luciferase assay to investigate the mechanisms underlying the observed increases in the levels of renal I/R injury-mediated exosomal miRNAs and their roles in regulating HK-2 cells autophagy. RESULTS miR-590-3p was highly enriched in the plasma exosomes of young AKI patients after cardiac surgery. Increased levels of miR-590-3p led to the increases in the expression of autophagy marker proteins, including Beclin-1 and microtubule associated protein 1 light chain 3 beta (LC3II), and prolonged the autophagic response in HK-2 cells after H/R treatment. These effects were achieved mainly via increases in the exosomal miR-590-3p levels, and the tumor necrosis factor receptor-associated factor 6 protein was shown to play a key role in I/R injury-mediated autophagy induction. CONCLUSION Exosomes released from HK-2 cells after renal I/R injury regulate autophagy by transferring miR-590-3p in a paracrine manner, which suggests that increasing the miR-590-3p levels in HK-2 cell-derived exosomes may increase autophagy and protect against kidney injury after renal I/R injury.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Congya Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yingjie Du
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiying Yang
- Weifang Medical University, School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang, Shandong 261053, China
| | - Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wenjing Yang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Guiyu Lei
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
12
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 385] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Akinnibosun OA, Maier MC, Eales J, Tomaszewski M, Charchar FJ. Telomere therapy for chronic kidney disease. Epigenomics 2022; 14:1039-1054. [PMID: 36177720 DOI: 10.2217/epi-2022-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect almost 10% of individuals worldwide and is one of the leading causes of morbidity and mortality. Renal fibrosis, a central pathway in CKD progression (irrespective of etiology), is associated with shortened or dysfunctional telomeres in animal studies. Telomeres are specialized nucleoprotein structures located at the chromosome end that maintain genomic integrity. The mechanisms of associations between telomere length and CKD have not yet been fully elucidated, however, CKD patients with shorter telomere length may have decreased renal function and a higher mortality rate. A plethora of ongoing research has focused on possible therapeutic applications of telomeres with the overall goal to preserve telomere length as a therapy to treat CKD.
Collapse
Affiliation(s)
| | - Michelle C Maier
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Victoria, Australia
| | - James Eales
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Victoria, Australia.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Zhao JL, Qiao XH, Mao JH, Liu F, Fu HD. The interaction between cellular senescence and chronic kidney disease as a therapeutic opportunity. Front Pharmacol 2022; 13:974361. [PMID: 36091755 PMCID: PMC9459105 DOI: 10.3389/fphar.2022.974361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/03/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasingly serious public health problem in the world, but the effective therapeutic approach is quite limited at present. Cellular senescence is characterized by the irreversible cell cycle arrest, senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Renal senescence shares many similarities with CKD, including etiology, mechanism, pathological change, phenotype and outcome, however, it is difficult to judge whether renal senescence is a trigger or a consequence of CKD, since there is a complex correlation between them. A variety of cellular signaling mechanisms are involved in their interactive association, which provides new potential targets for the intervention of CKD, and then extends the researches on senotherapy. Our review summarizes the common features of renal senescence and CKD, the interaction between them, the strategies of senotherapy, and the open questions for future research.
Collapse
Affiliation(s)
- Jing-Li Zhao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women and Children’s Hospital, Ningbo, China
| | - Jian-Hua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jian-Hua Mao,
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hai-Dong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
15
|
Hu Q, Liu X, Liu Z, Liu Z, Zhang H, Zhang Q, Huang Y, Chen Q, Wang W, Zhang X. Dexmedetomidine reduces enteric glial cell injury induced by intestinal ischaemia-reperfusion injury through mitochondrial localization of TERT. J Cell Mol Med 2022; 26:2594-2606. [PMID: 35366055 PMCID: PMC9077307 DOI: 10.1111/jcmm.17261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/30/2022] Open
Abstract
This study was performed to uncover the effects of dexmedetomidine on oxidative stress injury induced by mitochondrial localization of telomerase reverse transcriptase (TERT) in enteric glial cells (EGCs) following intestinal ischaemia-reperfusion injury (IRI) in rat models. Following establishment of intestinal IRI models by superior mesenteric artery occlusion in Wistar rats, the expression and distribution patterns of TERT were detected. The IRI rats were subsequently treated with low or high doses of dexmedetomidine, followed by detection of ROS, MDA and GSH levels. Calcein cobalt and rhodamine 123 staining were also carried out to detect mitochondrial permeability transition pore (MPTP) and the mitochondrial membrane potential (MMP), respectively. Moreover, oxidative injury of mtDNA was determined, in addition to analyses of EGC viability and apoptosis. Intestinal tissues and mitochondria of EGCs were badly damaged in the intestinal IRI group. In addition, there was a reduction in mitochondrial localization of TERT, oxidative stress, whilst apoptosis of EGCs was increased and proliferation was decreased. On the other hand, administration of dexmedetomidine was associated with promotion of mitochondrial localization of TERT, whilst oxidative stress, MPTP and mtDNA in EGCs, and EGC apoptosis were all inhibited, and the MMP and EGC viability were both increased. A positive correlation was observed between different doses of dexmedetomidine and protective effects. Collectively, our findings highlighted the antioxidative effects of dexmedetomidine on EGCs following intestinal IRI, as dexmedetomidine alleviated mitochondrial damage by enhancing the mitochondrial localization of TERT.
Collapse
Affiliation(s)
- Qian Hu
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiao‐Ming Liu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zheng‐Ren Liu
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhi‐Yi Liu
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huai‐Gen Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qin Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yuan‐Lu Huang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qiu‐Hong Chen
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wen‐Xiang Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - XueKang Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
16
|
Rossiello F, Jurk D, Passos JF, d'Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol 2022; 24:135-147. [PMID: 35165420 PMCID: PMC8985209 DOI: 10.1038/s41556-022-00842-x] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Ageing organisms accumulate senescent cells that are thought to contribute to body dysfunction. Telomere shortening and damage are recognized causes of cellular senescence and ageing. Several human conditions associated with normal ageing are precipitated by accelerated telomere dysfunction. Here, we systematize a large body of evidence and propose a coherent perspective to recognize the broad contribution of telomeric dysfunction to human pathologies.
Collapse
Affiliation(s)
- Francesca Rossiello
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy.
| |
Collapse
|
17
|
Gurung RL, Dorajoo R, M Y, Wang L, Liu S, Liu JJ, Shao YM, Chen Y, Sim X, Ang K, Subramaniam T, Tang WE, Sum CF, Liu JJ, Lim SC. Association of leukocyte telomere length with chronic kidney disease in East Asians with type 2 diabetes: a Mendelian randomization study. Clin Kidney J 2021; 14:2371-2376. [PMID: 34754432 PMCID: PMC8573005 DOI: 10.1093/ckj/sfab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Chronic kidney disease (CKD) is common among people with type 2 diabetes (T2D), and increases the risk of kidney failure and cardiovascular diseases. Shorter leukocyte telomere length (LTL) is associated with CKD in patients with T2D. We previously reported single-nucleotide polymorphisms (SNPs) associated with LTL in an Asian population. In this study, we elucidated the association of these SNPs with CKD in patients with T2D using the Mendelian randomization (MR) approach. Methods The cross-sectional association of 16 LTL SNPs with CKD, defined as an estimated glomerular filtration rate of <60 mL/min/1.73 m2, was assessed among 4768 (1628 cases and 3140 controls) participants in the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in T2D and Diabetic Nephropathy cohorts. MR analysis was performed using the random-effect inverse-variance weighted (IVW) method, the weighted median, MR-Egger and Radial MR adjusted for age and sex-stratified by cohorts and ethnicity (Chinese and Malays), then meta-analyzed. Results Genetically determined shorter LTL was associated with increased risk of CKD in patients with T2D (meta-IVW adjusted odds ratio = 1.51, 95% confidence interval 1.12–2.12, P = 0.007, Phet = 0.547). Similar results were obtained following sensitivity analysis. MR-Egger analysis (intercept) suggested no evidence of horizontal pleiotropy (β = 0.010, P = 0.751). Conclusions Our findings suggest that genetically determined LTL is associated with CKD in patients with T2D. Further studies are warranted to elucidate the causal role of telomere length in CKD progression.
Collapse
Affiliation(s)
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yuqing Chen
- Saw Swee Hock School of Public Health, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Jian-Jun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| |
Collapse
|
18
|
Shankland SJ, Wang Y, Shaw AS, Vaughan JC, Pippin JW, Wessely O. Podocyte Aging: Why and How Getting Old Matters. J Am Soc Nephrol 2021; 32:2697-2713. [PMID: 34716239 PMCID: PMC8806106 DOI: 10.1681/asn.2021050614] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/26/2021] [Indexed: 02/04/2023] Open
Abstract
The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.
Collapse
Affiliation(s)
- Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, Washington
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Yuliang Wang
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Andrey S. Shaw
- Department of Research Biology, Genentech, South San Francisco, California
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Oliver Wessely
- Lerner Research Institute, Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
19
|
Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging. Int J Mol Sci 2021; 22:ijms22158258. [PMID: 34361023 PMCID: PMC8348580 DOI: 10.3390/ijms22158258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.
Collapse
|
20
|
Induction of Stress-Induced Renal Cellular Senescence In Vitro: Impact of Mouse Strain Genetic Diversity. Cells 2021; 10:cells10061437. [PMID: 34201242 PMCID: PMC8229707 DOI: 10.3390/cells10061437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence, a stress-induced state of irreversible cell cycle arrest, is associated with organ dysfunction and age-related disease. While immortalized cell lines bypass key pathways of senescence, important mechanisms of cellular senescence can be studied in primary cells. Primary tubular epithelial cells (PTEC) derived from mouse kidney are highly susceptible to develop cellular senescence, providing a valuable tool for studying such mechanisms. Here, we tested whether genetic differences between mouse inbred strains have an impact on the development of stress-induced cellular senescence in cultured PTEC. Kidneys from 129S1, B6, NOD, NZO, CAST, and WSB mice were used to isolate PTEC. Cells were monitored for expression of typical senescence markers (SA-β-galactosidase, γ-H2AX+/Ki67−, expression levels of CDKN2A, lamin B1, IL-1a/b, IL-6, G/M-CSF, IFN-g, and KC) at 3 and 10 days after pro-senescent gamma irradiation. Clear differences were found between PTEC from different strains with the highest senescence values for PTEC from WSB mice and the lowest for PTEC from 129S1 mice. PTEC from B6 mice, the most commonly used inbred strain in senescence research, had a senescence score lower than PTEC from WSB and CAST mice but higher than PTEC from NZO and 129S1 mice. These data provide new information regarding the influence of genetic diversity and help explain heterogeneity in existing data. The observed differences should be considered when designing new experiments and will be the basis for further investigation with the goal of identifying candidate loci driving pro- or anti-senescent pathways.
Collapse
|
21
|
Rossi M, Korpak K, Doerfler A, Zouaoui Boudjeltia K. Deciphering the Role of Heme Oxygenase-1 (HO-1) Expressing Macrophages in Renal Ischemia-Reperfusion Injury. Biomedicines 2021; 9:biomedicines9030306. [PMID: 33809696 PMCID: PMC8002311 DOI: 10.3390/biomedicines9030306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). Renal IRI combines major events, including a strong inflammatory immune response leading to extensive cell injuries, necrosis and late interstitial fibrosis. Macrophages act as key players in IRI-induced AKI by polarizing into proinflammatory M1 and anti-inflammatory M2 phenotypes. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1), mediates protection against renal IRI and modulates macrophage polarization by enhancing a M2 subset. Hereafter, we review the dual effect of macrophages in the pathogenesis of IRI-induced AKI and discuss the critical role of HO-1 expressing macrophages.
Collapse
Affiliation(s)
- Maxime Rossi
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| | - Kéziah Korpak
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Department of Geriatric Medicine, CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium
| | - Arnaud Doerfler
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| |
Collapse
|
22
|
Campion CG, Verissimo T, Cossette S, Tremblay J. Does Subtelomeric Position of COMMD5 Influence Cancer Progression? Front Oncol 2021; 11:642130. [PMID: 33768002 PMCID: PMC7985453 DOI: 10.3389/fonc.2021.642130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
The COMMD proteins are a family of ten pleiotropic factors which are widely conserved throughout evolution and are involved in the regulation of many cellular and physiological processes. COMMD proteins are mainly expressed in adult tissue and their downregulation has been correlated with tumor progression and poor prognosis in cancer. Among this family, COMMD5 emerged as a versatile modulator of tumor progression. Its expression can range from being downregulated to highly up regulated in a variety of cancer types. Accordingly, two opposing functions could be proposed for COMMD5 in cancer. Our studies supported a role for COMMD5 in the establishment and maintenance of the epithelial cell phenotype, suggesting a tumor suppressor function. However, genetic alterations leading to amplification of COMMD5 proteins have also been observed in various types of cancer, suggesting an oncogenic function. Interestingly, COMMD5 is the only member of this family that is located at the extreme end of chromosome 8, near its telomere. Here, we review some data concerning expression and role of COMMD5 and propose a novel rationale for the potential link between the subtelomeric position of COMMD5 on chromosome 8 and its contrasting functions in cancer.
Collapse
Affiliation(s)
- Carole G Campion
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Thomas Verissimo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Suzanne Cossette
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Johanne Tremblay
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
23
|
Wang Y, Wang Y, Yang M, Ma X. Implication of cellular senescence in the progression of chronic kidney disease and the treatment potencies. Biomed Pharmacother 2021; 135:111191. [PMID: 33418306 DOI: 10.1016/j.biopha.2020.111191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing major public health problem worldwide. And CKD shares numerous phenotypic similarities with kidney as well as systemic ageing. Cellular senescence is mainly characterized by a stable cell cycle arrest, senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Herein, the regulations and the internal mechanisms of cellular senescence will be discussed. Meanwhile, efforts are made to give a comprehensive overview of the recent advances of the implication of cellular senescence in CKD. To date, numerous studies have focused on the effects of ageing risk factors in kidney and thereby trying to interrupt the kidney ageing processes with senolytics. Interestingly, some of them showed enormous clinical application potentials. Therefore, senotherapeutics can be applied as novel potential strategies for the treatment of CKD.
Collapse
Affiliation(s)
- Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Wang
- Department of Endocrinology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ming Yang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xingjie Ma
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
24
|
Zhao L, Hu C, Han F, Chen D, Ma Y, Wang J, Chen J. Cellular senescence, a novel therapeutic target for mesenchymal stem cells in acute kidney injury. J Cell Mol Med 2021. [PMCID: PMC7812305 DOI: 10.1111/jcmm.16163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cellular senescence is a widespread cellular programme that is characterized by permanent cell cycle arrest. Senescent cells adopt a changed secretory phenotype that can alter cellular function. For years, cellular senescence has been thought to be a protective factor against cancer; however, it is now recognized that it has a dual effect on individuals. Co‐ordinated activation of cellular senescence provides advantages during embryogenesis, wound healing, tissue repair and inhibition of tumorigenesis. On the other hand, the aberrant generation and accumulation of abnormal senescent cells lead to the development of age‐related conditions and tissue deterioration. During acute kidney injury (AKI), the kidney faces multiple types of stressors and challenges, which can easily drive cellular senescence. How to appropriately progress through the cell cycle and minimize long‐term damage is of great importance to the acquisition of adaptive repair considering that no available therapeutic interventions can reliably limit injury, speedy recovery or improve the prognosis of this syndrome. Whether the manipulation of cellular senescence can become a novel therapeutic target in AKI and reignite clinical and research interest remains to be determined. Here, we share our current understanding of the role of cellular senescence in AKI, along with examples of the application of mesenchymal stem cells (MSCs) for targeting this disorder during its treatment.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Fei Han
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Dajin Chen
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Yanhong Ma
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Junni Wang
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Jianghua Chen
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| |
Collapse
|
25
|
Li H, Wang B, Li D, Li J, Luo Y, Dan J. Roles of telomeres and telomerase in age‑related renal diseases (Review). Mol Med Rep 2020; 23:96. [PMID: 33300081 PMCID: PMC7723152 DOI: 10.3892/mmr.2020.11735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023] Open
Abstract
Age‑related renal diseases, which account for various progressive renal disorders associated with cellular and organismal senescence, are becoming a substantial public health burden. However, their aetiologies are complicated and their pathogeneses remain poorly understood. Telomeres and telomerase are known to be essential for maintaining the integrity and stability of eukaryotic genomes and serve crucial roles in numerous related signalling pathways that activate renal functions, such as repair and regeneration. Previous studies have reported that telomere dysfunction served a role in various types of age‑related kidney disease through various different molecular pathways. The present review aimed to summarise the current knowledge of the association between telomeres and ageing‑related kidney diseases and explored the contribution of dysfunctional telomeres to these diseases. The findings may help to provide novel strategies for treating patients with renal disease.
Collapse
Affiliation(s)
- Haili Li
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Boyuan Wang
- The Key Lab of Sports and Rehabilitation, Faculty of Physical Education, Yuxi Normal University, Yuxi, Yunnan 653100, P.R. China
| | - Daoqun Li
- Department of Human Anatomy, School of Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250014, P.R. China
| | - Jinyuan Li
- Department of General Surgery, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
26
|
Schroth J, Thiemermann C, Henson SM. Senescence and the Aging Immune System as Major Drivers of Chronic Kidney Disease. Front Cell Dev Biol 2020; 8:564461. [PMID: 33163486 PMCID: PMC7581911 DOI: 10.3389/fcell.2020.564461] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) presents an ever-growing disease burden for the world's aging population. It is characterized by numerous changes to the kidney, including a decrease in renal mass, renal fibrosis, and a diminished glomerular filtration rate. The premature aging phenotype observed in CKD is associated with cellular senescence, particularly of renal tubular epithelial cells (TECs), which contributes to chronic inflammation through the production of a proinflammatory senescence associated secretory phenotype (SASP). When coupled with changes in immune system composition and progressive immune dysfunction, the accumulation of senescent kidney cells acts as a driver for the progression of CKD. The targeting of senescent cells may well present an attractive therapeutic avenue for the treatment of CKD. We propose that the targeting of senescent cells either by direct inhibition of pro-survival pathways (senolytics) or through the inhibition of their proinflammatory secretory profile (senomorphics) together with immunomodulation to enhance immune system surveillance of senescent cells could be of benefit to patients with CKD.
Collapse
Affiliation(s)
| | | | - Siân M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
27
|
Yoo KH, Yim HE, Bae ES. Angiotensin inhibition and cellular senescence in the developing rat kidney. Exp Mol Pathol 2020; 117:104551. [PMID: 33010296 DOI: 10.1016/j.yexmp.2020.104551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
Cellular senescence is important for the maintenance of tissue homeostasis during normal development. In this study, we aimed to investigate the effect of renin angiotensin system (RAS) blockade on renal cell senescence in the developing rat kidney. Newborn rat pups were treated with enalapril (30 mg/kg/day) or vehicle for seven days after birth. We investigated the intrarenal expressions of cell cycle regulators p21 and p16 with immunoblots and immunohistochemistry at postnatal day 8. For the determination of renal cellular senescence, immunostaining for senescence-associated β-galactosidase (SA-β-gal) and telomerase reverse transcriptase (TERT) was also performed. Enalapril treatment showed significant alterations in cellular senescence in neonatal rat kidneys. In the enalapril-treated group, intrarenal p16 and p21 protein expressions decreased compared to controls. The expressions of both p21 and p16 were reduced throughout the renal cortex and medulla of enalapril-treated rats. The immunoreactivity of TERT in enalapril-treated kidneys was also weaker than that in control kidneys. Control kidneys revealed a clear positive SA-β-gal signal in the cortical tubules; however, SA-β-gal activity was noticeably lower in the enalapril-treated kidneys than in control kidneys. Interruption of the RAS during postnatal nephrogenesis may disrupt physiologic renal cellular senescence in the developing rat kidney.
Collapse
Affiliation(s)
- Kee Hwan Yoo
- Department of Pediatrics, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Eun Yim
- Department of Pediatrics, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Soo Bae
- Department of Pediatrics, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
28
|
Jiang P, Chamberlain CS, Vanderby R, Thomson JA, Stewart R. TimeMeter assesses temporal gene expression similarity and identifies differentially progressing genes. Nucleic Acids Res 2020; 48:e51. [PMID: 32123905 PMCID: PMC7229845 DOI: 10.1093/nar/gkaa142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 01/02/2023] Open
Abstract
Comparative time series transcriptome analysis is a powerful tool to study development, evolution, aging, disease progression and cancer prognosis. We develop TimeMeter, a statistical method and tool to assess temporal gene expression similarity, and identify differentially progressing genes where one pattern is more temporally advanced than the other. We apply TimeMeter to several datasets, and show that TimeMeter is capable of characterizing complicated temporal gene expression associations. Interestingly, we find: (i) the measurement of differential progression provides a novel feature in addition to pattern similarity that can characterize early developmental divergence between two species; (ii) genes exhibiting similar temporal patterns between human and mouse during neural differentiation are under strong negative (purifying) selection during evolution; (iii) analysis of genes with similar temporal patterns in mouse digit regeneration and axolotl blastema differentiation reveals common gene groups for appendage regeneration with potential implications in regenerative medicine.
Collapse
Affiliation(s)
- Peng Jiang
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI 53707, USA
| | - Connie S Chamberlain
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI 53706, USA
| | - Ray Vanderby
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI 53706, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - James A Thomson
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI 53707, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Ron Stewart
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI 53707, USA
| |
Collapse
|
29
|
Abstract
Kidney diseases secondary to several pathogeneses affect millions of people worldwide and have become increasingly recognized as a global public health problem. Recent evidence suggests that cellular senescence plays an important role in the pathogenesis of different forms of renal damage, including acute and chronic kidney disease, and renal transplantation. Renal senescence involves cell cycle arrest and affects several cellular pathways, manifesting in downregulation of klotho, elevated expression of cyclin-dependent kinase inhibitors, cellular telomere shortening, and oxidative stress. Furthermore, senescent cells might induce kidney injury by paracrine release of inflammatory factors. Yet, cellular senescence may be renoprotective during development and in some models of renal diseases, reflecting the yin/yang duality of cellular senescence. This review provides an overview of the role of this emerging player in renal injury, with emphasis on new findings of cellular senescence.
Collapse
Affiliation(s)
- Yongxin Li
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (Y.L., L.O.L.).,Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, PR China (Y.L.)
| | - Lilach O Lerman
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (Y.L., L.O.L.)
| |
Collapse
|
30
|
ALSHINNAWY AS, EL-SAYED WM, TAHA AM, SAYED AA, SALEM AM. Astragalus membranaceus and Punica granatum alleviate infertility and kidney dysfunction induced by aging in male rats. Turk J Biol 2020; 44:166-175. [PMID: 32922124 PMCID: PMC7478130 DOI: 10.3906/biy-2001-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
By aging, male fertility and kidney function decline. Therefore, the investigation of health span-extending agents becomes more urgent to overcome aging-induced infertility and kidney dysfunction. The current research was undertaken to investigate the antiaging efficacy of Astragalus membranaceus telomerase activator-65 (Ta-65) and pomegranate supplements. Forty male Wistar rats were divided into young rats, aged rats, aged rats treated with Ta-65 (500mg/kg/day), and aged rats treated with pomegranate (250mg/kg/day). Testosterone, FSH, LH, and kidney functions were measured in serum. Sperm analysis as well as testicular histological examination was performed. Aging caused an imbalance in male sex hormones resulting in sperm abnormality and reductions in the sperm count and motility. Elevations in serum creatinine, uric acid, sodium, and potassium were reported in aged rats. Treatment with Ta-65 or pomegranate effectively ameliorated all the deteriorations induced by normal aging in male fertility and renal function. Ta-65 and pomegranate possessed strong antiaging activity by alleviating aging-induced male infertility through reestablishing the hormonal balance and testis architecture. They also alleviated the kidney dysfunction. On comparing Ta-65 with pomegranate, the improvement in FSH, LH, and sperm abnormalities caused by Ta-65 was much better than that caused by pomegranate.
Collapse
Affiliation(s)
- Ameera S. ALSHINNAWY
- Department of Biochemistry, Faculty of Science, Ain Shams University, CairoEgypt
| | - Wael M. EL-SAYED
- Department of Zoology, Faculty of Science, Ain Shams University, CairoEgypt
| | - AlShaimaa M. TAHA
- Department of Biochemistry, Faculty of Science, Ain Shams University, CairoEgypt
| | - Ahmed A. SAYED
- Department of Biochemistry, Faculty of Science, Ain Shams University, CairoEgypt
- Children’s Cancer Hospital, CairoEgypt
| | - Ahmed M. SALEM
- Department of Biochemistry, Faculty of Science, Ain Shams University, CairoEgypt
| |
Collapse
|
31
|
Dickson KM, Martins PN. Implications of liver donor age on ischemia reperfusion injury and clinical outcomes. Transplant Rev (Orlando) 2020; 34:100549. [PMID: 32498978 DOI: 10.1016/j.trre.2020.100549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
The aging process causes detrimental changes in a variety of organ systems. These changes include: lesser ability to cope with stress, impaired repair mechanisms and decreased cellular functional reserve capacity. Not surprisingly, aging has been associated with increased susceptibility of donor heart and kidneys grafts to ischemia reperfusion injury (IRI). In the context of liver transplantation, however, the effect of donor age seems to be less influential in predisposing the graft to IRI. In fact, a widely comprehensive understanding of IRI in the aged liver has yet to be agreed upon in the literature. Nevertheless, there have been many reported implications of increased liver donor age with poor clinical outcomes besides IRI. These other poor outcomes include: earlier HCV recurrence, increased rates of acute rejection and greater resistance to tolerance induction. While these other correlations have been identified, it is important to re-emphasize the fact that a unified consensus in regard to liver donor age and IRI has not yet been reached among researchers in this field. Many researchers have even demonstrated that the extent of IRI in aged livers can be ameliorated by careful donor selection, strict allocation or novel therapeutic modalities to decrease IRI. Thus, the goals of this review paper are twofold: 1) To delineate and summarize the conflicting data in regard to liver donor age and IRI. 2) Suggest that careful donor selection, appropriate allocation and strategic effort to minimize IRI can reduce the frequency of a variety of poor outcomes with aged liver donations.
Collapse
Affiliation(s)
- Kevin M Dickson
- Department of Surgery, Division of Transplantation, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA 01605, USA.
| | - Paulo N Martins
- Department of Surgery, Division of Transplantation, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
Ahmadi A, Rad NK, Ezzatizadeh V, Moghadasali R. Kidney Regeneration: Stem Cells as a New Trend. Curr Stem Cell Res Ther 2020; 15:263-283. [DOI: 10.2174/1574888x15666191218094513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Renal disease is a major worldwide public health problem that affects one in ten people.
Renal failure is caused by the irreversible loss of the structural and functional units of kidney (nephrons)
due to acute and chronic injuries. In humans, new nephrons (nephrogenesis) are generated until
the 36th week of gestation and no new nephron develops after birth. However, in rodents, nephrogenesis
persists until the immediate postnatal period. The postnatal mammalian kidney can partly repair
their nephrons. The kidney uses intrarenal and extra-renal cell sources for maintenance and repair.
Currently, it is believed that dedifferentiation of surviving tubular epithelial cells and presence of resident
stem cells have important roles in kidney repair. Many studies have shown that stem cells obtained
from extra-renal sites such as the bone marrow, adipose and skeletal muscle tissues, in addition
to umbilical cord and amniotic fluid, have potential therapeutic benefits. This review discusses the
main mechanisms of renal regeneration by stem cells after a kidney injury.
Collapse
Affiliation(s)
- Amin Ahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar K. Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
33
|
Morais M, Dias F, Teixeira AL, Medeiros R. Telomere Length in Renal Cell Carcinoma: The Jekyll and Hyde Biomarker of Ageing of the Kidney. Cancer Manag Res 2020; 12:1669-1679. [PMID: 32184670 PMCID: PMC7064280 DOI: 10.2147/cmar.s211225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022] Open
Abstract
Renal cell carcinoma (RCC) is a heterogeneous group of cancers where the clear cell (ccRCC) is the most common and the most lethal. The absence of accurate diagnostic and follow-up biomarkers along with the time-limited response to therapies may explain the lethality and shows the necessity of new sensitive and specific biomarkers. One of the most studied molecules are the telomeres: specialized ribonucleoprotein structures that keep the structural integrity of the genome. Among other features, telomere length (TL) has been widely studied in several tumor models regarding its biomarker potential, due to the easy detection and quantification. The scope of this review was to analyze all the information about this parameter in RCC. There was some disparity in the results of the studies, since some pointed to an association between short TL and risk or poor outcome of RCC; others between long TL and RCC outcome and some did not find any association. We propose some epidemiological and biological explanations to these differences. The telomeres may play a dual role during RCC carcinogenesis in the early stages, short telomeres may increase RCC risk and in late carcinogenesis, long telomeres seem to be associated with tumor prognosis. However, the controversy of the results along with the lack of specificity are some problems that need to be clarified for the usage of TL as a prognostic biomarker.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
- Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto4200-172, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto4200-072, Portugal
- Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto4200-172, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, Porto4200-319, Portugal
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto4249-004, Portugal
| |
Collapse
|
34
|
Andrianova NV, Buyan MI, Zorova LD, Pevzner IB, Popkov VA, Babenko VA, Silachev DN, Plotnikov EY, Zorov DB. Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. Int J Mol Sci 2019; 20:ijms20246326. [PMID: 31847447 PMCID: PMC6941132 DOI: 10.3390/ijms20246326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a “progenitor phenotype” during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina I. Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
35
|
Guan Y, Nakano D, Zhang Y, Li L, Tian Y, Nishiyama A. A mouse model of renal fibrosis to overcome the technical variability in ischaemia/reperfusion injury among operators. Sci Rep 2019; 9:10435. [PMID: 31320707 PMCID: PMC6639321 DOI: 10.1038/s41598-019-46994-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022] Open
Abstract
The ischaemia-reperfusion (I/R) model is a widely used model of acute kidney injury (AKI) and renal fibrosis. However, the ischaemia duration that is long enough to cause broad fibrosis shows that a high mortality rate and a short ischaemia duration does not cause fibrosis, resulting in a large variation in fibrosis progression in this experimental model. Inter-operator variation occurs for I/R injury severity because the I/R procedure is complex, which results in poor reproducibility of subsequent fibrosis in the model. In the present study, we developed a renal fibrosis model in which the fibrosis progression for 8 weeks is predictable within 8 days. Three operators independently performed I/R followed by uninephrectomy at day 7 in mice. The aim was to create a model that would show a blood urea nitrogen (BUN) level >100 mg/dL at day 8 after I/R (day 1 after uninephrectomy). Although the ischaemia duration to satisfy this BUN criterion differed among operators, the mice developed anaemia, polyuria, and fibrosis in a similar manner under the same BUN criterion with a low mortality rate. Interstitial fibrosis had developed at week 8, which was strongly correlated with the BUN at day 8. This protocol allows operators to adjust the ischaemia duration based on the BUN criterion and to separate mice into the desired number of groups based on the BUN to study interventions against renal fibrosis.
Collapse
Affiliation(s)
- Yu Guan
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan.,Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan.
| | - Yifan Zhang
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan.,Department of No.2 Orthopedics, Shijiazhuang City No.1 Hospital, Shijiazhuang, Hebei, China
| | - Lei Li
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| |
Collapse
|
36
|
Young donors with severe acute kidney injury offer an opportunity to expand the donor pool. Am J Surg 2019; 218:7-13. [DOI: 10.1016/j.amjsurg.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/18/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
|
37
|
Wei SY, Pan SY, Li B, Chen YM, Lin SL. Rejuvenation: Turning back the clock of aging kidney. J Formos Med Assoc 2019; 119:898-906. [PMID: 31202499 DOI: 10.1016/j.jfma.2019.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Aging is inevitable in life. It is defined as impaired adaptive capacity to environmental or internal stresses with growing rates of disease and death. Aging is also an important risk factor for various kidney diseases such as acute kidney injury and chronic kidney disease. Patients older than 65 years have nearly 28% risk of failing recovery of kidney function when suffering from acute kidney injury. It is reported that more than a third of population aged 65 years and older have chronic kidney disease in Taiwan, and the occurrence of multiple age-related disorders is predicted to increase in parallel. Renal aging is a complex, multifactorial process characterized by many anatomical and functional changes. Several factors are involved in renal aging, such as loss of telomeres, cell cycle arrest, chronic inflammation, activation of renin-angiotensin system, decreased klotho expression, and development of tertiary lymphoid tissues. These changes can also be observed in many other different types of renal injury. Recent studies suggested that young blood may rejuvenate aged organs, including the kidneys. In order to develop new therapeutic strategies for renal aging, the mechanisms underlying renal aging and by which young blood can halt or reverse aging process warrants further study.
Collapse
Affiliation(s)
- Shi-Yao Wei
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Szu-Yu Pan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bing Li
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
38
|
Cañadas-Garre M, Anderson K, Cappa R, Skelly R, Smyth LJ, McKnight AJ, Maxwell AP. Genetic Susceptibility to Chronic Kidney Disease - Some More Pieces for the Heritability Puzzle. Front Genet 2019; 10:453. [PMID: 31214239 PMCID: PMC6554557 DOI: 10.3389/fgene.2019.00453] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem with an increasing prevalence partly driven by aging population structure. Both genomic and environmental factors contribute to this complex heterogeneous disease. CKD heritability is estimated to be high (30-75%). Genome-wide association studies (GWAS) and GWAS meta-analyses have identified several genetic loci associated with CKD, including variants in UMOD, SHROOM3, solute carriers, and E3 ubiquitin ligases. However, these genetic markers do not account for all the susceptibility to CKD, and the causal pathways remain incompletely understood; other factors must be contributing to the missing heritability. Less investigated biological factors such as telomere length; mitochondrial proteins, encoded by nuclear genes or specific mitochondrial DNA (mtDNA) encoded genes; structural variants, such as copy number variants (CNVs), insertions, deletions, inversions and translocations are poorly covered and may explain some of the missing heritability. The sex chromosomes, often excluded from GWAS studies, may also help explain gender imbalances in CKD. In this review, we outline recent findings on molecular biomarkers for CKD (telomeres, CNVs, mtDNA variants, sex chromosomes) that typically have received less attention than gene polymorphisms. Shorter telomere length has been associated with renal dysfunction and CKD progression, however, most publications report small numbers of subjects with conflicting findings. CNVs have been linked to congenital anomalies of the kidney and urinary tract, posterior urethral valves, nephronophthisis and immunoglobulin A nephropathy. Information on mtDNA biomarkers for CKD comes primarily from case reports, therefore the data are scarce and diverse. The most consistent finding is the A3243G mutation in the MT-TL1 gene, mainly associated with focal segmental glomerulosclerosis. Only one GWAS has found associations between X-chromosome and renal function (rs12845465 and rs5987107). No loci in the Y-chromosome have reached genome-wide significance. In conclusion, despite the efforts to find the genetic basis of CKD, it remains challenging to explain all of the heritability with currently available methods and datasets. Although additional biomarkers have been investigated in less common suspects such as telomeres, CNVs, mtDNA and sex chromosomes, hidden heritability in CKD remains elusive, and more comprehensive approaches, particularly through the integration of multiple -"omics" data, are needed.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Kerry Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ryan Skelly
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Laura Jane Smyth
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Alexander Peter Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|
39
|
Baisantry A, Berkenkamp B, Rong S, Bhayadia R, Sörensen-Zender I, Schmitt R, Melk A. Time-dependent p53 inhibition determines senescence attenuation and long-term outcome after renal ischemia-reperfusion. Am J Physiol Renal Physiol 2019; 316:F1124-F1132. [PMID: 30785352 DOI: 10.1152/ajprenal.00333.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inhibition of p53 has been shown to be an efficient strategy for ameliorating kidney ischemia-reperfusion (I/R) injury in experimental models. The therapeutic value of p53 siRNA-based inhibition for I/R in renal transplantation is currently being evaluated in clinical studies. While the major rationale for these studies is the suppression of proapoptotic properties, there are more equally important injury response pathways regulated by p53. A p53-dependent pathway shown to be crucial for renal long-term outcome is cellular senescence. In this study, we tested the hypothesis that p53 siRNA reduces I/R-induced senescence and thereby improves kidney outcome. By comparing the impact of different treatment durations in a mouse model of renal I/R, we found that repetitive administration of p53 siRNA during the first 14 days after I/R reduced the senescence load and ameliorated the postischemic phenotype. Prolonged application of p53 siRNA over a 26-day period after I/R, however, did not provide any additional benefit for senescence reduction but reversed some of the renoprotective effects of the early treatment. These data suggest a time-dependent role of p53 activity supporting the current therapeutic concept of a short-term inhibition, while advocating against a prolonged treatment after I/R.
Collapse
Affiliation(s)
- Arpita Baisantry
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School , Hannover , Germany
| | - Birgit Berkenkamp
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School , Hannover , Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School , Hannover , Germany
| | - Raj Bhayadia
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School , Hannover , Germany
| | - Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Hannover Medical School , Hannover , Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School , Hannover , Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School , Hannover , Germany
| |
Collapse
|
40
|
Li C, Xie N, Li Y, Liu C, Hou FF, Wang J. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation. Free Radic Biol Med 2019; 130:512-527. [PMID: 30447351 DOI: 10.1016/j.freeradbiomed.2018.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
The mechanism underlying the development of chronic kidney disease (CKD) after acute kidney injury (AKI) remains unclear. Maladaptive repair has been considered an important mechanism of CKD post AKI. Renal tubular cells under maladaptive repair have characteristics of premature senescence. These premature senescent cells can generate profibrotic factors that promote organ fibrosis. The purpose of this study was to investigate whether cisplatin induces premature renal senescence and the role of premature renal senescence in the progression of CKD post AKI. As oxidative stress is a major cause of senescence, we further evaluated whether antioxidant therapy could protect renal tubular cells from cisplatin-induced premature senescence and retard the progression of CKD post AKI. The molecular mechanism of this protection was also investigated. We found that cisplatin induced premature renal senescence in vitro and in vivo. In a multiple-cisplatin-treatment murine model, renal interstitial fibrosis was accompanied by premature renal senescence. N-acetylcysteine (NAC), an antioxidant, attenuated premature senescence and decreased renal fibrosis, and its effects were dependent on sirtuin1 (SIRT1) activation and p53 deacetylation. These results indicate that cisplatin can induce premature renal senescence, which is associated with the development of CKD post cisplatin-induced AKI. SIRT1 activation and p53 deacetylation might be identified as potential targets for attenuating premature renal senescence and retarding the progression of CKD post AKI.
Collapse
Affiliation(s)
- Caizhen Li
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Na Xie
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yan Li
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Chongbin Liu
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Fan Fan Hou
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Jun Wang
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
41
|
Telomere maintenance during anterior regeneration and aging in the freshwater annelid Aeolosoma viride. Sci Rep 2018; 8:18078. [PMID: 30584242 PMCID: PMC6305377 DOI: 10.1038/s41598-018-36396-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Aging is a complex process involving declines in various cellular and physical functionalities, including regenerative ability. Telomere maintenance is thought to be necessary for regeneration, and telomere attrition is one mechanism that contributes to aging. However, it is unclear if aging affects regeneration owing to deterioration of telomeric maintenance. We introduce Aeolosoma viride—a freshwater annelid with strong regenerative abilities—as a new model for studying the effects of aging on telomere functions and regeneration. We show that the anterior regenerative ability of A. viride declines with age. We characterized the A. viride telomere sequence as being composed of TTAGGG repeats and identifyied the telomerase gene Avi-tert. In adult A. viride, telomerase was constantly active and telomere lengths were similar among different body sections and stably maintained with age. Notably, we found that regeneration did not result in telomere shortening at regenerating sites. Moreover, transient up-regulation of Avi-tert expression and telomerase activity was observed at regenerating sites, which might promote telomere lengthening to counteract telomere erosion resulting from cell proliferation. Our study suggests that although aging affects A. viride regeneration independent of steady-state telomere length, timely regulation of telomerase functions is critical for the regeneration process in A. viride.
Collapse
|
42
|
Andrade L, Rodrigues CE, Gomes SA, Noronha IL. Acute Kidney Injury as a Condition of Renal Senescence. Cell Transplant 2018; 27:739-753. [PMID: 29701108 PMCID: PMC6047270 DOI: 10.1177/0963689717743512] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI), characterized by a sharp drop in glomerular filtration, continues to be a significant health burden because it is associated with high initial mortality, morbidity, and substantial health-care costs. There is a strong connection between AKI and mechanisms of senescence activation. After ischemic or nephrotoxic insults, a wide range of pathophysiological events occur. Renal tubular cell injury is characterized by cell membrane damage, cytoskeleton disruption, and DNA degradation, leading to tubular cell death by necrosis and apoptosis. The senescence mechanism involves interstitial fibrosis, tubular atrophy, and capillary rarefaction, all of which impede the morphological and functional recovery of the kidneys, suggesting a strong link between AKI and the progression of chronic kidney disease. During abnormal kidney repair, tubular epithelial cells can assume a senescence-like phenotype. Cellular senescence can occur as a result of cell cycle arrest due to increased expression of cyclin kinase inhibitors (mainly p21), downregulation of Klotho expression, and telomere shortening. In AKI, cellular senescence is aggravated by other factors including oxidative stress and autophagy. Given this scenario, the main question is whether AKI can be repaired and how to avoid the senescence process. Stem cells might constitute a new therapeutic approach. Mesenchymal stem cells (MSCs) can ameliorate kidney injury through angiogenesis, immunomodulation, and fibrosis pathway blockade, as well as through antiapoptotic and promitotic processes. Young umbilical cord–derived MSCs are better at increasing Klotho levels, and thus protecting tissues from senescence, than are adipose-derived MSCs. Umbilical cord–derived MSCs improve glomerular filtration and tubular function to a greater degree than do those obtained from adult tissue. Although senescence-related proteins and microRNA are upregulated in AKI, they can be downregulated by treatment with umbilical cord–derived MSCs. In summary, stem cells derived from young tissues, such as umbilical cord–derived MSCs, could slow the post-AKI senescence process.
Collapse
Affiliation(s)
- Lucia Andrade
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Camila E Rodrigues
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Samirah A Gomes
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Irene L Noronha
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| |
Collapse
|
43
|
Kang DH, Park YS, Lee DY. Senotherapy for attenuation of cellular senescence in aging and organ implantation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Rowland J, Akbarov A, Maan A, Eales J, Dormer J, Tomaszewski M. Tick-Tock Chimes the Kidney Clock - from Biology of Renal Ageing to Clinical Applications. Kidney Blood Press Res 2018; 43:55-67. [PMID: 29402805 DOI: 10.1159/000486907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
Ageing of the kidney is a multi-dimensional process that occurs simultaneously at the molecular, cellular, histological, anatomical and physiological level. Nephron number and renal cortical volume decline, renal tubules become atrophic and glomeruli become sclerotic with age. These structural changes are accompanied by a decline in glomerular filtration rate, decreased sodium reabsorption and potassium excretion, reduced urinary concentrating capacity and alterations in the endocrine activity of the kidney. However, the pace of progression of these changes is not identical in everyone - individuals of the same age and seemingly similar clinical profile often exhibit stark differences in the age-related decline in renal health. Thus, chronological age poorly reflects the time-dependent changes that occur in the kidney. An ideal measure of renal vitality is biological kidney age - a measure of the age-related changes in physiological function. Replacing chronological age with biological age could provide numerous clinical benefits including improved prognostic accuracy in renal transplantation, better stratification of risk and identification of those who are on a fast trajectory to an age-related drop in kidney health.
Collapse
Affiliation(s)
- Joshua Rowland
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
| | - James Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
| | - John Dormer
- University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom.,Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
45
|
Mazidi M, Rezaie P, Covic A, Malyszko J, Rysz J, Kengne AP, Banach M. Telomere attrition, kidney function, and prevalent chronic kidney disease in the United States. Oncotarget 2017; 8:80175-80181. [PMID: 29113293 PMCID: PMC5655188 DOI: 10.18632/oncotarget.20706] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/06/2017] [Indexed: 01/01/2023] Open
Abstract
Background Telomere length is an emerging novel biomarker of biologic age, cardiovascular risk and chronic medical conditions. Few studies have focused on the association between telomere length (TL) and kidney function. Objective We investigated the association between TL and kidney function/prevalent chronic kidney disease (CKD) in US adults. Methods The National Health and Nutrition Examination Survey (NHANES) participants with measured data on kidney function and TL from 1999 to 2002 were included. Estimated glomerular filtration rate (eGFR) was based on CKD Epidemiology Collaboration (CKD-EPI) equation. Urinary albumin excretion was assessed using urinary albumin-creatinine ratio (ACR). We used multivariable adjusted linear and logistic regression models, accounting for the survey design and sample weights. Results Of the 10568 eligible participants, 48.0% (n=5020) were men. Their mean age was 44.1 years. eGFR significantly decreased and ACR significantly increased across increasing quarters of TL (all p<0.001). The association between TL and kidney function remained robust even after adjusting for potential confounding factors, but the association between TL and ACR was only borderline significant (β-coefficient= -0.012, p=0.056). Conclusion The association of kidney function with a marker of cellular senescence suggests an underlying mechanism influencing the progression of nephropathy.
Collapse
Affiliation(s)
- Moshen Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Genetics and Developmental Biology, International College, University of Chinese Academy of Science, Beijing, China
| | - Peyman Rezaie
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Genetics and Developmental Biology, International College, University of Chinese Academy of Science, Beijing, China
| | - Adriac Covic
- Nephrology Clinic, Parhon University Hospital, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Jolanta Malyszko
- Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego, Lodz, Poland
| | - Andre Pascal Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
46
|
Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int 2017; 92:569-579. [DOI: 10.1016/j.kint.2017.02.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
|
47
|
Susnik N, Sen P, Melk A, Schmitt R. Aging, Cellular Senescence, and Kidney Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Specific expression of heme oxygenase-1 by myeloid cells modulates renal ischemia-reperfusion injury. Sci Rep 2017; 7:197. [PMID: 28298633 PMCID: PMC5428056 DOI: 10.1038/s41598-017-00220-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a major risk factor for delayed graft function in renal transplantation. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1) mediates protection against IRI. However, the role of myeloid HO-1 during IRI remains poorly characterized. Mice with myeloid-restricted deletion of HO-1 (HO-1M-KO), littermate (LT), and wild-type (WT) mice were subjected to renal IRI or sham procedures and sacrificed after 24 hours or 7 days. In comparison to LT, HO-1M-KO exhibited significant renal histological damage, pro-inflammatory responses and oxidative stress 24 hours after reperfusion. HO-1M-KO mice also displayed impaired tubular repair and increased renal fibrosis 7 days after IRI. In WT mice, HO-1 induction with hemin specifically upregulated HO-1 within the CD11b+ F4/80lo subset of the renal myeloid cells. Prior administration of hemin to renal IRI was associated with significant increase of the renal HO-1+ CD11b+ F4/80lo myeloid cells in comparison to control mice. In contrast, this hemin-mediated protection was abolished in HO-1M-KO mice. In conclusion, myeloid HO-1 appears as a critical protective pathway against renal IRI and could be an interesting therapeutic target in renal transplantation.
Collapse
|
49
|
Abstract
Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis-age-associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom;
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and.,Renal and.,Biomedical Engineering Divisions, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Eymael J, Smeets B. Origin and fate of the regenerating cells of the kidney. Eur J Pharmacol 2016; 790:62-73. [DOI: 10.1016/j.ejphar.2016.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
|