1
|
Kim JH, Yang H, Kim MW, Cho KS, Kim DS, Yim HE, Atala Z, Ko IK, Yoo JJ. The Delivery of the Recombinant Protein Cocktail Identified by Stem Cell-Derived Secretome Analysis Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury. Front Bioeng Biotechnol 2022; 10:848679. [PMID: 35646873 PMCID: PMC9130839 DOI: 10.3389/fbioe.2022.848679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in cell therapy have shown the potential to treat kidney diseases. As the treatment effects of the cell therapies are mainly attributed to secretomes released from the transplanted cells, the delivery of secretomes or conditioned medium (CM) has emerged as a promising treatment option for kidney disease. We previously demonstrated that the controlled delivery of human placental stem cells (hPSC)-derived CM using platelet-rich plasma (PRP) ameliorated renal damages and restored kidney function in an acute kidney injury (AKI) model in rats. The proteomics study of the hPSC-CM revealed that hPSC secrets several proteins that contribute to kidney tissue repair. Based on our results, this study proposed that the proteins expressed in the hPSC-CM and effective for kidney repair could be used as a recombinant protein cocktail to treat kidney diseases as an alternative to CM. In this study, we analyzed the secretome profile of hPSC-CM and identified five proteins (follistatin, uPAR, ANGPLT4, HGF, VEGF) that promote kidney repair. We investigated the feasibility of delivering the recombinant protein cocktail to improve structural and functional recovery after AKI. The pro-proliferative and anti-apoptotic effects of the protein cocktail on renal cells are demonstrated in vitro and in vivo. The intrarenal delivery of these proteins with PRP ameliorates the renal tubular damage and improved renal function in the AKI-induced rats, yielding similar therapeutic effects compared to the CM delivery. These results indicate that our strategy may provide a therapeutic solution to many challenges associated with kidney repair resulting from the lack of suitable off-the-shelf regenerative medicine products.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Heejo Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Michael W Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kang Su Cho
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Doo Sang Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Hyung Eun Yim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Pediatrics, Korea University College of Medicine, Seoul, South Korea
| | - Zachary Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
2
|
Kim SH, Jung J, Cho KJ, Choi JH, Lee HS, Kim GJ, Lee SG. Immunomodulatory Effects of Placenta-derived Mesenchymal Stem Cells on T Cells by Regulation of FoxP3 Expression. Int J Stem Cells 2018; 11:196-204. [PMID: 30343549 PMCID: PMC6285290 DOI: 10.15283/ijsc18031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022] Open
Abstract
The immunomodulatory effects of mesenchymal stem cells (MSCs) are an important mediator of their therapeutic effects in stem cell therapy and regenerative medicine. The regulation mechanism of MSCs is orchestrated by several factors in both intrinsic and extrinsic events. Recent studies have shown that the dynamic expression of cytokines secreted from MSCs control T cell function and maturation by regulating the expression of FoxP3, which figures prominently in T cell differentiation. However, there is no evidence that placenta-derived mesenchymal stem cells (PD-MSCs) have strong immunomodulatory effects on T cell function and maturation via FoxP3 expression. Therefore, we compared the expression of FoxP3 in activated T cells isolated from peripheral blood and co-cultured with PD-MSCs or bone marrow-derived mesenchymal stem cells (BM-MSCs) and analyzed their effect on T cell proliferation and cytokine profiles. Additionally, we verified the immunomodulatory function of PD-MSCs by siRNA-mediated silencing of FoxP3. MSCs, including PD-MSCs and BM-MSCs, promoted differentiation of naive peripheral blood T cells into CD4+CD25+FoxP3+ regulatory T (Treg) cells. Intriguingly, the population of CD4+CD25+FoxP3+ Treg cells co-cultured with PD-MSCs was significantly expanded in comparison to those co-cultured with BM-MSCs or WI38 cells (p<0.05, p<0.001). Dynamic expression patterns of several cytokines, including anti- and pro-inflammatory cytokines and members of the transforming growth factor-beta (TGF-β) family secreted from PD-MSCs according to FoxP3 expression were observed. The results suggest that PD-MSCs have an immunomodulatory effect on T cells by regulating FoxP3 expression.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul,
Korea
- Department of Biomedical Laboratory Science, Gimcheon University, Gimcheon,
Korea
| | - Jieun Jung
- Placenta Research Laboratory, Department of Biomedical Science, CHA University, Seongnam,
Korea
| | - Kyung Jin Cho
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul,
Korea
- Faculty of Health and Environmental Science, College of Health Science, Korea University, Seoul,
Korea
| | - Jong-Ho Choi
- Placenta Research Laboratory, Department of Biomedical Science, CHA University, Seongnam,
Korea
| | - Hyeong Seon Lee
- Department of Biomedical Laboratory Science, Jungwon University, Goesan,
Korea
| | - Gi Jin Kim
- Placenta Research Laboratory, Department of Biomedical Science, CHA University, Seongnam,
Korea
| | - Seung Gwan Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul,
Korea
- Faculty of Health and Environmental Science, College of Health Science, Korea University, Seoul,
Korea
| |
Collapse
|
3
|
Nguyen P, Gao W, Patel SD, Siddiqui Z, Weiner S, Shimizu E, Sarkar B, Kumar VA. Self-Assembly of a Dentinogenic Peptide Hydrogel. ACS OMEGA 2018; 3:5980-5987. [PMID: 30023936 PMCID: PMC6045409 DOI: 10.1021/acsomega.8b00347] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/02/2018] [Indexed: 05/19/2023]
Abstract
Current standard of care for treating infected dental pulp, root canal therapy, retains the physical properties of the tooth to a large extent, but does not aim to rejuvenate the pulp tissue. Tissue-engineered acellular biomimetic hydrogels have great potential to facilitate the regeneration of the tissue through the recruitment of autologous stem cells. We propose the use of a dentinogenic peptide that self-assembles into β-sheet-based nanofibers that constitute a biodegradable and injectable hydrogel for support of dental pulp stem cells. The peptide backbone contains a β-sheet-forming segment and a matrix extracellular phosphoglycoprotein mimic sequence at the C-terminus. The high epitope presentation of the functional moiety in the self-assembled nanofibers may enable recapitulation of a functional niche for the survival and proliferation of autologous cells. We elucidated the hierarchical self-assembly of the peptide through biophysical techniques, including scanning electron microscopy and atomic force microscopy. The material property of the self-assembled hydrogel was probed though oscillatory rheometry, demonstrating its thixotropic nature. We also demonstrate the cytocompatibility of the hydrogel with respect to fibroblasts and dental pulp stem cells. The self-assembled peptide platform holds promise for guided dentinogenesis and it can be tailored to a variety of applications in soft tissue engineering and translational medicine in the future.
Collapse
Affiliation(s)
- Peter
K. Nguyen
- Department
of Biomedical Engineering and Department of Chemical, Biological
and Pharmaceutical Engineering, New Jersey
Institute of Technology, Newark, New Jersey 07102, United States
| | - William Gao
- Department
of Biomedical Engineering and Department of Chemical, Biological
and Pharmaceutical Engineering, New Jersey
Institute of Technology, Newark, New Jersey 07102, United States
| | - Saloni D. Patel
- Department
of Biomedical Engineering and Department of Chemical, Biological
and Pharmaceutical Engineering, New Jersey
Institute of Technology, Newark, New Jersey 07102, United States
| | - Zain Siddiqui
- Department
of Biomedical Engineering and Department of Chemical, Biological
and Pharmaceutical Engineering, New Jersey
Institute of Technology, Newark, New Jersey 07102, United States
| | - Saul Weiner
- Department of Restorative Dentistry and Department of Oral Biology, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| | - Emi Shimizu
- Department of Restorative Dentistry and Department of Oral Biology, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| | - Biplab Sarkar
- Department
of Biomedical Engineering and Department of Chemical, Biological
and Pharmaceutical Engineering, New Jersey
Institute of Technology, Newark, New Jersey 07102, United States
- E-mail: (B.S.)
| | - Vivek A. Kumar
- Department
of Biomedical Engineering and Department of Chemical, Biological
and Pharmaceutical Engineering, New Jersey
Institute of Technology, Newark, New Jersey 07102, United States
- Department of Restorative Dentistry and Department of Oral Biology, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
- E-mail: (V.A.K.)
| |
Collapse
|
4
|
Raik S, Kumar A, Bhattacharyya S. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant". Biotechnol Appl Biochem 2017; 65:104-118. [PMID: 28321921 DOI: 10.1002/bab.1561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/02/2017] [Indexed: 12/16/2022]
Abstract
Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, India
| | | |
Collapse
|
5
|
La nanotecnología ofrece un enfoque terapéutico prometedor para el tratamiento de la hipertensión. HIPERTENSION Y RIESGO VASCULAR 2017; 34:120-127. [DOI: 10.1016/j.hipert.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
|
6
|
Moore AN, Hartgerink JD. Self-Assembling Multidomain Peptide Nanofibers for Delivery of Bioactive Molecules and Tissue Regeneration. Acc Chem Res 2017; 50:714-722. [PMID: 28191928 PMCID: PMC5462487 DOI: 10.1021/acs.accounts.6b00553] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Multidomain peptides (MDPs) are a class of self-assembling
peptides
that are organized in a β-sheet motif, resulting in a nanofibrous
architecture. This structure is stabilized by hydrophobic packing
in the fiber core and a hydrogen-bonding network down the fiber long
axis. Under easily controllable conditions, regulated by electrostatic
interactions between the peptides and the pH and salt composition
of the solvent, the nanofiber length can be dramatically extended,
resulting in fiber entanglement and hydrogel formation. One of the
chief strengths of this supramolecular material is that the design
criteria governing its structure and assembly are robust and permit
a wide range of modifications without disruption. This allows the
MDPs to be tailored to suit a wide range of applications, particularly
in biomedical engineering. For example, delivery of small molecules,
proteins, and cells is easily achievable. These materials can be trapped
within the matrices of the hydrogel or trapped within the hydrophobic
core of the nanofiber, depending on the cargo and the design of the
MDP. Interactions between the nanofibers and their cargo can be tailored
to alter the release profile, and in the most sophisticated cases,
different cargos can be released in a cascading time-dependent fashion.
The MDP hydrogel and its cargo can be targeted to specific locations,
as the thixotropic nature of the hydrogel allows it to be easily aspirated
into a syringe and then delivered from a narrow-bore needle. The sequence
of amino acids making up the MDP can also be modified to permit cross-linking
or enzymatic degradation. Selection of sequences with or without these
modifications allows one to control the rate of degradation in vivo
from as rapidly as 1 week to well over 6 weeks as the MDP nanofibers
are degraded to their amino acid components. MDP sequences can also
be modified to add biomimetic sequences derived from growth factors
and other signaling proteins. These chemical signals are displayed
at a very high density on the fibers’ surface, where they contribute
to the modification of cellular behavior. We have used this approach
to drive blood vessel formation, which is critical for tissue regeneration
generally and more specifically for the treatment of diseases related
to poor blood flow. MDPs represent an ideal case of bottom-up design
where control of chemical structure leads to control of self-assembly
and nanostructure and thereby control of material properties that
collectively can control biological function.
Collapse
Affiliation(s)
- Amanda N. Moore
- Department
of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Department
of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Foster AA, Marquardt LM, Heilshorn SC. The Diverse Roles of Hydrogel Mechanics in Injectable Stem Cell Transplantation. Curr Opin Chem Eng 2017; 15:15-23. [PMID: 29085771 PMCID: PMC5659597 DOI: 10.1016/j.coche.2016.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stem cell delivery by local injection has tremendous potential as a regenerative therapy but has seen limited clinical success. Several mechanical challenges hinder therapeutic efficacy throughout all stages of cell transplantation, including mechanical forces during injection and loss of mechanical support post-injection. Recent studies have begun exploring the use of biomaterials, in particular hydrogels, to enhance stem cell transplantation by addressing the often-conflicting mechanical requirements associated with each stage of the transplantation process. This review explores recent biomaterial approaches to improve the therapeutic efficacy of stem cells delivered through local injection, with a focus on strategies that specifically address the mechanical challenges that result in cell death and/or limit therapeutic function throughout the stages of transplantation.
Collapse
Affiliation(s)
- Abbygail A Foster
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
8
|
Matsumoto K, Xavier S, Chen J, Kida Y, Lipphardt M, Ikeda R, Gevertz A, Caviris M, Hatzopoulos AK, Kalajzic I, Dutton J, Ratliff BB, Zhao H, Darzynkiewicz Z, Rose‐John S, Goligorsky MS. Instructive Role of the Microenvironment in Preventing Renal Fibrosis. Stem Cells Transl Med 2016; 6:992-1005. [PMID: 28297566 PMCID: PMC5442777 DOI: 10.5966/sctm.2016-0095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
Accumulation of myofibroblasts is a hallmark of renal fibrosis. A significant proportion of myofibroblasts has been reported to originate via endothelial‐mesenchymal transition. We initially hypothesized that exposing myofibroblasts to the extract of endothelial progenitor cells (EPCs) could reverse this transition. Indeed, in vitro treatment of transforming growth factor‐β1 (TGF‐β1)‐activated fibroblasts with EPC extract prevented expression of α‐smooth muscle actin (α‐SMA); however, it did not enhance expression of endothelial markers. In two distinct models of renal fibrosis—unilateral ureteral obstruction and chronic phase of folic acid‐induced nephropathy—subcapsular injection of EPC extract to the kidney prevented and reversed accumulation of α‐SMA‐positive myofibroblasts and reduced fibrosis. Screening the composition of EPC extract for cytokines revealed that it is enriched in leukemia inhibitory factor (LIF) and vascular endothelial growth factor. Only LIF was capable of reducing fibroblast‐to‐myofibroblast transition of TGF‐β1‐activated fibroblasts. In vivo subcapsular administration of LIF reduced the number of myofibroblasts and improved the density of peritubular capillaries; however, it did not reduce the degree of fibrosis. A receptor‐independent ligand for the gp130/STAT3 pathway, hyper‐interleukin‐6 (hyper‐IL‐6), not only induced a robust downstream increase in pluripotency factors Nanog and c‐Myc but also exhibited a powerful antifibrotic effect. In conclusion, EPC extract prevented and reversed fibroblast‐to‐myofibroblast transition and renal fibrosis. The component of EPC extract, LIF, was capable of preventing development of the contractile phenotype of activated fibroblasts but did not eliminate TGF‐β1‐induced collagen synthesis in cultured fibroblasts and models of renal fibrosis, whereas a receptor‐independent gp130/STAT3 agonist, hyper‐IL‐6, prevented fibrosis. In summary, these studies, through the evolution from EPC extract to LIF and then to hyper‐IL‐6, demonstrate the instructive role of microenvironmental cues and may provide in the future a facile strategy to prevent and reverse renal fibrosis. Stem Cells Translational Medicine2017;6:992–1005
Collapse
Affiliation(s)
- Kei Matsumoto
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
- Showa University, Tokyo, Japan
| | - Sandhya Xavier
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Jun Chen
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Yujiro Kida
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Mark Lipphardt
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Reina Ikeda
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
- Okayama University, Okayama, Japan
| | - Annie Gevertz
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Mario Caviris
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | | | - Ivo Kalajzic
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - James Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian B. Ratliff
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Hong Zhao
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Zbygniew Darzynkiewicz
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
- Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Stefan Rose‐John
- Institute of Biochemistry, Christian‐Albrechts University, Kiel, Germany
| | - Michael S. Goligorsky
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
9
|
Marquardt LM, Heilshorn SC. Design of Injectable Materials to Improve Stem Cell Transplantation. CURRENT STEM CELL REPORTS 2016; 2:207-220. [PMID: 28868235 PMCID: PMC5576562 DOI: 10.1007/s40778-016-0058-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cell-based therapies are steadily gaining traction for regenerative medicine approaches to treating disease and injury throughout the body. While a significant body of work has shown success in preclinical studies, results often fail to translate in clinical settings. One potential cause is the massive transplanted cell death that occurs post injection, preventing functional integration with host tissue. Therefore, current research is focusing on developing injectable hydrogel materials to protect cells during delivery and to stimulate endogenous regeneration through interactions of transplanted cells and host tissue. This review explores the design of targeted injectable hydrogel systems for improving the therapeutic potential of stem cells across a variety of tissue engineering applications with a focus on hydrogel materials that have progressed to the stage of preclinical testing.
Collapse
Affiliation(s)
- Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
10
|
Kumar VA, Liu Q, Wickremasinghe NC, Shi S, Cornwright TT, Deng Y, Azares A, Moore AN, Acevedo-Jake AM, Agudo NR, Pan S, Woodside DG, Vanderslice P, Willerson JT, Dixon RA, Hartgerink JD. Treatment of hind limb ischemia using angiogenic peptide nanofibers. Biomaterials 2016; 98:113-9. [PMID: 27182813 DOI: 10.1016/j.biomaterials.2016.04.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
For a proangiogenic therapy to be successful, it must promote the development of mature vasculature for rapid reperfusion of ischemic tissue. Whole growth factor, stem cell, and gene therapies have yet to achieve the clinical success needed to become FDA-approved revascularization therapies. Herein, we characterize a biodegradable peptide-based scaffold engineered to mimic VEGF and self-assemble into a nanofibrous, thixotropic hydrogel, SLanc. We found that this injectable hydrogel was rapidly infiltrated by host cells and could be degraded while promoting the generation of neovessels. In mice with induced hind limb ischemia, this synthetic peptide scaffold promoted angiogenesis and ischemic tissue recovery, as shown by Doppler-quantified limb perfusion and a treadmill endurance test. Thirteen-month-old mice showed significant recovery within 7 days of treatment. Biodistribution studies in healthy mice showed that the hydrogel is safe when administered intramuscularly, subcutaneously, or intravenously. These preclinical studies help establish the efficacy of this treatment for peripheral artery disease due to diminished microvascular perfusion, a necessary step before clinical translation. This peptide-based approach eliminates the need for cell transplantation or viral gene transfection (therapies currently being assessed in clinical trials) and could be a more effective regenerative medicine approach to microvascular tissue engineering.
Collapse
Affiliation(s)
- Vivek A Kumar
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, USA
| | - Qi Liu
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | | | - Siyu Shi
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, USA
| | - Toya T Cornwright
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Yuxiao Deng
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Alon Azares
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Amanda N Moore
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, USA
| | - Amanda M Acevedo-Jake
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, USA
| | - Noel R Agudo
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Su Pan
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Darren G Woodside
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Peter Vanderslice
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - James T Willerson
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Richard A Dixon
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA.
| | - Jeffrey D Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Cyclin-dependent kinase 2 protects podocytes from apoptosis. Sci Rep 2016; 6:21664. [PMID: 26876672 PMCID: PMC4753499 DOI: 10.1038/srep21664] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN.
Collapse
|
12
|
Abstract
Controlling perioperative bleeding is of critical importance to minimize hemorrhaging and fatality. Patients on anticoagulant therapy such as heparin have diminished clotting potential and are at risk for hemorrhaging. Here we describe a self-assembling nanofibrous peptide hydrogel (termed SLac) that on its own can act as a physical barrier to blood loss. SLac was loaded with snake-venom derived Batroxobin (50 μg/mL) yielding a drug-loaded hydrogel (SB50). SB50 was potentiated to enhance clotting even in the presence of heparin. In vitro evaluation of fibrin and whole blood clotting helped identify appropriate concentrations for hemostasis in vivo. Batroxobin-loaded hydrogels rapidly (within 20s) stop bleeding in both normal and heparin-treated rats in a lateral liver incision model. Compared to standard of care, Gelfoam, and investigational hemostats such as Puramatrix, only SB50 showed rapid liver incision hemostasis post surgical application. This snake venom-loaded peptide hydrogel can be applied via syringe and conforms to the wound site resulting in hemostasis. This demonstrates a facile method for surgical hemostasis even in the presence of anticoagulant therapies.
Collapse
Affiliation(s)
- Vivek A Kumar
- Departments of Chemistry and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77030, United States
| | - Navindee C Wickremasinghe
- Departments of Chemistry and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77030, United States
| | - Siyu Shi
- Departments of Chemistry and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Departments of Chemistry and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77030, United States
| |
Collapse
|
13
|
Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2015; 93:1-49. [PMID: 27134415 PMCID: PMC4847551 DOI: 10.1016/j.mser.2015.04.001] [Citation(s) in RCA: 585] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry.
Collapse
Affiliation(s)
- Michael C. Koetting
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jonathan T. Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephanie D. Steichen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
14
|
Kumar VA, Shi S, Wang BK, Li IC, Jalan AA, Sarkar B, Wickremasinghe NC, Hartgerink JD. Drug-triggered and cross-linked self-assembling nanofibrous hydrogels. J Am Chem Soc 2015; 137:4823-30. [PMID: 25831137 DOI: 10.1021/jacs.5b01549] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Self-assembly of multidomain peptides (MDP) can be tailored to carry payloads that modulate the extracellular environment. Controlled release of growth factors, cytokines, and small-molecule drugs allows for unique control of in vitro and in vivo responses. In this study, we demonstrate this process of ionic cross-linking of peptides using multivalent drugs to create hydrogels for sustained long-term delivery of drugs. Using phosphate, heparin, clodronate, trypan, and suramin, we demonstrate the utility of this strategy. Although all multivalent anions result in good hydrogel formation, demonstrating the generality of this approach, suramin led to the formation of the best hydrogels per unit concentration and was studied in greater detail. Suramin ionically cross-linked MDP into a fibrous meshwork as determined by scanning and transmission electron microscopy. We measured material storage and loss modulus using rheometry and showed a distinct increase in G' and G″ as a function of suramin concentration. Release of suramin from scaffolds was determined using UV spectroscopy and showed prolonged release over a 30 day period. Suramin bioavailability and function were demonstrated by attenuated M1 polarization of THP-1 cells compared to positive control. Overall, this design strategy has allowed for the development of a novel class of polymeric delivery vehicles with generally long-term release and, in the case of suramin, cross-linked hydrogels that can modulate cellular phenotype.
Collapse
Affiliation(s)
- Vivek A Kumar
- †Department of Chemistry and ‡Department of Bioengineering, Rice University, Mail Stop 602, 6100 Main Street, Houston, Texas 77030, United States
| | - Siyu Shi
- †Department of Chemistry and ‡Department of Bioengineering, Rice University, Mail Stop 602, 6100 Main Street, Houston, Texas 77030, United States
| | - Benjamin K Wang
- †Department of Chemistry and ‡Department of Bioengineering, Rice University, Mail Stop 602, 6100 Main Street, Houston, Texas 77030, United States
| | - I-Che Li
- †Department of Chemistry and ‡Department of Bioengineering, Rice University, Mail Stop 602, 6100 Main Street, Houston, Texas 77030, United States
| | - Abhishek A Jalan
- †Department of Chemistry and ‡Department of Bioengineering, Rice University, Mail Stop 602, 6100 Main Street, Houston, Texas 77030, United States
| | - Biplab Sarkar
- †Department of Chemistry and ‡Department of Bioengineering, Rice University, Mail Stop 602, 6100 Main Street, Houston, Texas 77030, United States
| | - Navindee C Wickremasinghe
- †Department of Chemistry and ‡Department of Bioengineering, Rice University, Mail Stop 602, 6100 Main Street, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- †Department of Chemistry and ‡Department of Bioengineering, Rice University, Mail Stop 602, 6100 Main Street, Houston, Texas 77030, United States
| |
Collapse
|
15
|
Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci Rep 2015; 5:8718. [PMID: 25732721 PMCID: PMC4346809 DOI: 10.1038/srep08718] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/27/2015] [Indexed: 02/05/2023] Open
Abstract
Conditioned medium from mesenchymal stem cells (MSC-CM) may represent a promising alternative to MSCs transplantation, however, the low concentrations of growth factors in non-activated MSC-CM hamper its clinical application. Recent data indicated that the paracrine potential of MSCs could be enhanced by inflammatory factors. Herein, we pre-activated bone-marrow-derived MSCs under radiation-induced inflammatory condition (MSCIEC-6(IR)) and investigated the evidence and mechanism for the differential effects of MSC-CMIEC-6(IR) and non-activated MSC-CM on radiation-induced intestinal injury (RIII). Systemic infusion of MSC-CMIEC-6(IR), but not non-activated MSC-CM, dramatically improved intestinal damage and survival of irradiated rats. Such benefits may involve the modulation of epithelial regeneration and inflammation, as indicated by the regeneration of intestinal epithelial/stem cells, the regulation of the pro-/anti-inflammatory cytokine balance. The mechanism for the superior paracrine efficacy of MSCIEC-6(IR) is related to a higher secretion of regenerative, immunomodulatory and trafficking molecules, including the pivotal factor IGF-1, induced by TNF-α, IL-1β and nitric oxide partially via a heme oxygenase-1 dependent mechanism. Together, our findings suggest that pre-activation of MSCs with TNF-α, IL-1β and nitric oxide enhances its paracine effects on RIII via a heme oxygenase-1 dependent mechanism, which may help us to maximize the paracrine potential of MSCs.
Collapse
|
16
|
Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 2015; 82-83:1-11. [PMID: 25451858 DOI: 10.1016/j.addr.2014.10.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are a unique cell population defined by their ability to indefinitely self-renew, differentiate into multiple cell lineages, and form clonal cell populations. It was originally thought that this ability for broad plasticity defined the therapeutic potential of MSCs. However, an expanding body of recent literature has brought growing awareness to the remarkable array of bioactive molecules produced by stem cells. This protein milieu or "secretome" comprises a diverse host of cytokines, chemokines, angiogenic factors, and growth factors. The autocrine/paracrine role of these molecules is being increasingly recognized as key to the regulation of many physiological processes including directing endogenous and progenitor cells to sites of injury as well as mediating apoptosis, scarring, and tissue revascularization. In fact, the immunomodulatory and paracrine role of these molecules may predominantly account for the therapeutic effects of MSCs given that many in vitro and in vivo studies have demonstrated limited stem cell engraftment at the site of injury. While the study of such a vast protein array remains challenging, technological advances in the field of proteomics have greatly facilitated our ability to analyze and characterize the stem cell secretome. Thus, stem cells can be considered as tunable pharmacological storehouses useful for combinatorial drug manufacture and delivery. As a cell-free option for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including the restoration of function in cardiovascular, neurodegenerative, oncologic, and genitourinary pathologies.
Collapse
|
17
|
Kumar VA, Taylor NL, Shi S, Wickremasinghe NC, D'Souza RN, Hartgerink JD. Self-assembling multidomain peptides tailor biological responses through biphasic release. Biomaterials 2015; 52:71-8. [PMID: 25818414 DOI: 10.1016/j.biomaterials.2015.01.079] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/25/2015] [Accepted: 01/25/2015] [Indexed: 01/08/2023]
Abstract
Delivery of small molecules and drugs to tissues is a mainstay of several tissue engineering strategies. Next generation treatments focused on localized drug delivery offer a more effective means in dealing with refractory healing when compared to systemic approaches. Here we describe a novel multidomain peptide hydrogel that capitalizes on synthetic peptide chemistry, supramolecular self-assembly and cytokine delivery to tailor biological responses. This material is biomimetic, shows shear stress recovery and offers a nanofibrous matrix that sequesters cytokines. The biphasic pattern of cytokine release results in the spatio-temporal activation of THP-1 monocytes and macrophages. Furthermore, macrophage-material interactions are promoted without generation of a proinflammatory environment. Subcutaneous implantation of injectable scaffolds showed a marked increase in macrophage infiltration and polarization dictated by cytokine loading as early as 3 days, with complete scaffold resorption by day 14. Macrophage interaction and response to the peptide composite facilitated the (i) recruitment of monocytes/macrophages, (ii) sustained residence of immune cells until degradation, and (iii) promotion of a pro-resolution M2 environment. Our results suggest the potential use of this injectable cytokine loaded hydrogel scaffold in a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Vivek A Kumar
- Department of Chemistry, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Nichole L Taylor
- Department of Chemistry, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Siyu Shi
- Department of Chemistry, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Navindee C Wickremasinghe
- Department of Chemistry, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Supramolecular Hydrogels for Regenerative Medicine. ADVANCES IN POLYMER SCIENCE 2015. [DOI: 10.1007/978-3-319-15404-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
19
|
Hudalla GA, Sun T, Gasiorowski JZ, Han H, Tian YF, Chong AS, Collier JH. Gradated assembly of multiple proteins into supramolecular nanomaterials. NATURE MATERIALS 2014; 13:829-36. [PMID: 24930032 PMCID: PMC4180598 DOI: 10.1038/nmat3998] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 04/29/2014] [Indexed: 04/14/2023]
Abstract
Biomaterials exhibiting precise ratios of different bioactive protein components are critical for applications ranging from vaccines to regenerative medicine, but their design is often hindered by limited choices and cross-reactivity of protein conjugation chemistries. Here, we describe a strategy for inducing multiple different expressed proteins of choice to assemble into nanofibres and gels with exceptional compositional control. The strategy employs 'βTail' tags, which allow for good protein expression in bacteriological cultures, yet can be induced to co-assemble into nanomaterials when mixed with additional β-sheet fibrillizing peptides. Multiple different βTail fusion proteins could be inserted into peptide nanofibres alone or in combination at predictable, smoothly gradated concentrations, providing a simple yet versatile route to install precise combinations of proteins into nanomaterials. The technology is illustrated by achieving precisely targeted hues using mixtures of fluorescent proteins, by creating nanofibres bearing enzymatic activity, and by adjusting antigenic dominance in vaccines.
Collapse
Affiliation(s)
| | - Tao Sun
- Department of Surgery, University of Chicago
| | | | - Huifang Han
- Department of Surgery, University of Chicago
| | - Ye F. Tian
- Department of Surgery, University of Chicago
- Illinois Institute of Technology, Department of Biomedical Engineering
| | - Anita. S. Chong
- Department of Surgery, University of Chicago
- Committee on Immunology, University of Chicago
| | - Joel H. Collier
- Department of Surgery, University of Chicago
- Committee on Molecular Medicine, University of Chicago
- Committee on Immunology, University of Chicago
- Author to whom correspondence and requests for materials should be addressed: Joel H. Collier Associate Professor Department of Surgery, Committee on Immunology, Committee on Molecular Medicine University of Chicago 5841 S. Maryland Ave ML 5032 Chicago, IL 60637 Tel: 773-834-4161 Fax: 773-834-4546
| |
Collapse
|
20
|
Makridakis M, Roubelakis MG, Vlahou A. Stem cells: Insights into the secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2380-4. [DOI: 10.1016/j.bbapap.2013.01.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 01/06/2023]
|
21
|
Zonca MR, Yune PS, Williams JK, Gu M, Unser AM, Imbrogno J, Belfort G, Xie Y. Enhanced stem cell pluripotency in surface-modified electrospun fibrous matrices. Macromol Biosci 2013; 14:215-24. [PMID: 24105973 DOI: 10.1002/mabi.201300252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/08/2013] [Indexed: 12/27/2022]
Abstract
A previously screened "hit chemistry" (N-[3-(dimethylamino)propyl] methacrylamide) that supports strong attachment and long-term self-renewal of ES cells is selected and grafted to poly(ether sulfone) (PES) fibrous matrices through plasma-induced graft polymerization. The 3D modified fibers exhibit higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D membranes. It is the first demonstration of scaling up an optimal synthetic surface chemistry in 2D using a high throughput synthesis, screening, and selection method to 3D that strongly influences pluripotent stem cell growth.
Collapse
Affiliation(s)
- Michael R Zonca
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu Y, Ye H, Satkunendrarajah K, Yao GS, Bayon Y, Fehlings MG. A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury. Acta Biomater 2013; 9:8075-88. [PMID: 23770224 DOI: 10.1016/j.actbio.2013.06.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 05/23/2013] [Accepted: 06/03/2013] [Indexed: 01/22/2023]
Abstract
The pathophysiology of spinal cord injury (SCI) involves post-traumatic inflammation and glial scarring which interfere with repair and recovery. Self-assembling peptides (SAPs) are molecules designed for tissue engineering. Here, we tested the performance of K2(QL)6K2 (QL6), a SAP that attenuates inflammation and glial scarring, and facilitates functional recovery. We injected QL6 into the spinal cord tissue of rats 24 h after clip compression SCI. QL6 led to a significant reduction in post-traumatic apoptosis, inflammation and astrogliosis. It also resulted in significant tissue preservation as determined by quantitative histomorphometry. Furthermore, QL6 promoted axonal preservation/regeneration, demonstrated by BDA anterograde and Fluorogold retrograde tracing. In vitro experiments found that a QL6 scaffold enhanced neuronal differentiation and suppressed astrocytic development. The electrophysiology confirmed that QL6 led to significant functional improvement of axons, including increased conduction velocity, reduced refractoriness and enhanced high-frequency conduction. These neuroanatomical and electrophysiological improvements were associated with significant neurobehavioral recovery as assessed by the Basso-Beattie-Bresnahan technique. As the first detailed examination of the pathophysiological properties of QL6 in SCI, this work reveals the therapeutic potential of SAPs, and may suggest an approach for the reconstruction of the injured spinal cord.
Collapse
Affiliation(s)
- Yang Liu
- Department of Genetics and Development, Toronto Western Research Institute and Spinal Program, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S. The stem cell secretome and its role in brain repair. Biochimie 2013; 95:2271-85. [PMID: 23827856 PMCID: PMC4061727 DOI: 10.1016/j.biochi.2013.06.020] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/19/2013] [Indexed: 12/16/2022]
Abstract
Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS.
Collapse
Affiliation(s)
- Denise Drago
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neurosciences, San Raffaele Scientific Institute, 20132 Milan, Italy; Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The subject of organ regeneration has attracted substantial investigative attention and has been extensively reviewed. Therefore, I shall focus on several only recently emerged issues and on those aspects of stem cell-mediated regeneration which, although are important in my opinion, have nevertheless evaded the radar of scientific pursuit. Specifically, I shall describe the recent work on the prominence of local lineage-restricted stem cells, as opposed to the bone marrow-derived or circulating ones, in regeneration. This will be followed by an attempt to re-interpret a bulk of published data on the beneficial effects of cell therapy with the focus on the secretome of stem cells. Multiple factors that conspire to cause insufficient or failed regeneration in adult mammals will be screened with emphasis placed on the mechanical forces, senescence and exhaustion, each leading to phenotypical switch and/or stem cell incompetence. Finally, I shall enumerate several potential pathways to induce or restore stem cell competence. Although a significant amount of work has been performed in the non-renal field, I would hope that some of the mechanisms and concepts discussed herein will eventually trickle into kidney regeneration.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
25
|
Bakota EL, Sensoy O, Ozgur B, Sayar M, Hartgerink JD. Self-assembling multidomain peptide fibers with aromatic cores. Biomacromolecules 2013; 14:1370-8. [PMID: 23480446 PMCID: PMC3654057 DOI: 10.1021/bm4000019] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembling multidomain peptides have been shown to have desirable properties, such as the ability to form hydrogels that rapidly recover following shear-thinning and the potential to be tailored by amino acid selection to vary their elasticity and encapsulate and deliver proteins and cells. Here we describe the effects of substitution of aliphatic hydrophobic amino acids in the central domain of the peptide for the aromatic amino acids phenylalanine, tyrosine, and tryptophan. While the basic nanofibrous morphology is retained in all cases, selection of the particular core residues results in switching from antiparallel hydrogen bonding to parallel hydrogen bonding in addition to changes in nanofiber morphology and in hydrogel rheological properties. Peptide nanofiber assemblies are investigated by circular dichroism polarimetry, infrared spectroscopy, atomic force microscopy, transmission and scanning electron microscopy, oscillatory rheology, and molecular dynamics simulations. Results from this study will aid in designing next generation cell scaffolding materials.
Collapse
Affiliation(s)
- Erica L. Bakota
- Department of Chemistry, Rice University, 6100 South Main St., Houston, TX 77005
| | - Ozge Sensoy
- Department of Mechanical Engineering and Chemical and Biological Engineering Koc University, Istanbul, Turkey
| | - Beytullah Ozgur
- Department of Mechanical Engineering and Chemical and Biological Engineering Koc University, Istanbul, Turkey
| | - Mehmet Sayar
- Department of Mechanical Engineering and Chemical and Biological Engineering Koc University, Istanbul, Turkey
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 South Main St., Houston, TX 77005
- Department of Bioengineering, Rice University, 6100 South Main St., Houston, TX 77005
| |
Collapse
|
26
|
Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A. Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate. Chem Rev 2013; 113:3297-328. [DOI: 10.1021/cr300426x] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials
Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura,
Setagaya-ku, Tokyo 157-8535, Japan
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
- Institute of Systems Biology
and Bioinformatics, National Central University, No. 300 Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung-Bei Rd., Jhongli, Taoyuan 320, Taiwan
| | - Shih-Tien Hsu
- Taiwan Landseed Hospital, 77 Kuangtai Road, Pingjen City, Tao-Yuan
County 32405, Taiwan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura,
Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
27
|
Sharif A, Borrows R. Delayed graft function after kidney transplantation: the clinical perspective. Am J Kidney Dis 2013; 62:150-8. [PMID: 23391536 DOI: 10.1053/j.ajkd.2012.11.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/14/2012] [Indexed: 11/11/2022]
Abstract
Delayed graft function continues to pose a significant challenge to clinicians in the context of kidney transplantation. With the present disparity between supply and demand for organs, transplantation is proceeding with more marginal kidneys and therefore the problem of delayed graft function is likely to increase in the future. Although our understanding of the mechanism and risk factors for delayed graft function has improved, translation of this understanding into targeted clinical therapy to attenuate or manage established delayed graft function has been elusive. Based on current trends, the use of kidneys from expanded criteria or cardiac death donors will continue to expand, which will increase the prevalence of delayed graft function in the immediate postoperative setting. The aim of this article is to discuss and critique the available clinical evidence for targeted intervention in the prevention and management of delayed graft function and review emerging and experimental therapies.
Collapse
Affiliation(s)
- Adnan Sharif
- Department of Nephrology and Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
28
|
Stastna M, Van Eyk JE. Secreted proteins as a fundamental source for biomarker discovery. Proteomics 2012; 12:722-35. [PMID: 22247067 DOI: 10.1002/pmic.201100346] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/26/2011] [Accepted: 08/10/2011] [Indexed: 12/18/2022]
Abstract
The proteins secreted by various cells (the secretomes) are a potential rich source of biomarkers as they reflect various states of the cells at real time and at given conditions. To have accessible, sufficient and reliable protein markers is desirable as they mark various stages of disease development and their presence/absence can be used for diagnosis, prognosis, risk stratification and therapeutic monitoring. As direct analysis of blood/plasma, a common and noninvasive patient screening method, can be difficult for candidate protein biomarker identification, the alternative/complementary approaches are required, one of them is the analysis of secretomes in cell conditioned media in vitro. As the proteins secreted by cells as a response to various stimuli are most likely secreted into blood/plasma, the identification and pre-selection of candidate protein biomarkers from cell secretomes with subsequent validation of their presence at higher levels in serum/plasma is a promising approach. In this review, we discuss the proteins secreted by three progenitor cell types (smooth muscle, endothelial and cardiac progenitor cells) and two adult cell types (neonatal rat ventrical myocytes and smooth muscle cells) which can be relevant to cardiovascular research and which have been recently published in the literature. We found, at least for secretome studies included in this review, that secretomes of progenitor and adult cells overlap by 48% but the secretomes are very distinct among progenitor cell themselves as well as between adult cells. In addition, we compared secreted proteins to protein identifications listed in the Human Plasma PeptideAtlas and in two reports with cardiovascular-related proteins and we performed the extensive literature search to find if any of these secreted proteins were identified in a biomarker study. As expected, many proteins have been identified as biomarkers in cancer but 18 proteins (out of 62) have been tested as biomarkers in cardiovascular diseases as well.
Collapse
Affiliation(s)
- Miroslava Stastna
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA.
| | | |
Collapse
|
29
|
Benigni A, Remuzzi G. Cells for treating organ damage: how long will we need them? J Am Soc Nephrol 2011; 22:590-2. [PMID: 21415159 DOI: 10.1681/asn.2011020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|