1
|
Livkisa D, Lee TL, Yeh WT, Jaimes MSV, Szomolay B, Liao CT, Lundy DJ. Distinct immunomodulation elicited by young versus aged extracellular vesicles in bone marrow-derived macrophages. Immun Ageing 2024; 21:72. [PMID: 39434100 PMCID: PMC11492788 DOI: 10.1186/s12979-024-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Previous research has indicated that extracellular vesicles (EVs) potentially play significant roles in multiple ageing phenotypes. This study uses a factorial experimental design to explore the interactions between circulating EVs and bone marrow-derived macrophages (BMDMs) isolated from young (7-12 weeks) and aged (70-90 weeks) mice. RESULTS In this study, plasma EVs from young (Y_EV) and aged (O_EV) mice were isolated and compared based on abundance, size, and miRNA cargo. Compared to some previous studies, we found relatively few differences in EV miRNA cargo between Y_EVs and O_EVs. Young and old EVs were then used to stimulate naïve BMDMs isolated from young (Y_BMDM) and aged (O_BMDM) mice. A panel of five "M1" and six "M2" macrophage markers were used to assess the degree of polarisation. Our results revealed differences in the immunomodulatory effects of Y_EVs and O_EVs in Y_BMDMs and O_BMDMs. Y_EVs induced less pro-inflammatory gene expression, while O_EVs exhibited a more varied impact, promoting both pro- and anti-inflammatory markers. However, neither EV population induced a clearly defined 'M1' or 'M2' macrophage phenotype. We also report that EVs elicited responses that differed markedly from those induced by whole plasma. Plasma from old mice had strong pro-inflammatory effects on Y_BMDMs, increasing Il1b, Nlrp3 and Tnfa. However, O_EVs did not have these effects, supporting current evidence that EVs are a separate component of circulating factors during ageing. More research is needed to elucidate specific factors involved in inflammageing processes. CONCLUSIONS Our findings reveal age-related differences in EV cargo and function, with young EVs tending to suppress inflammatory markers more effectively than aged EVs. However, this is not straightforward, and EVs often promoted both M1 and M2 markers. These results suggest that EVs are a distinct component of circulating factors and hold potential for therapeutic strategies aimed at mitigating age-related inflammation and immune dysregulation.
Collapse
Affiliation(s)
- Dora Livkisa
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan
| | - Tsung-Lin Lee
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Wei-Ting Yeh
- School of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan
| | - Manuel S V Jaimes
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235603, Taiwan.
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan.
| | - David J Lundy
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan.
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan.
- Cell Therapy Center, Taipei Medical University Hospital, 250 Wuxing Street, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Zhang Y, Yu C, Li X. Kidney Aging and Chronic Kidney Disease. Int J Mol Sci 2024; 25:6585. [PMID: 38928291 PMCID: PMC11204319 DOI: 10.3390/ijms25126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Antiaging Strategies and Remedies: A Landscape of Research Progress and Promise. ACS Chem Neurosci 2024; 15:408-446. [PMID: 38214973 PMCID: PMC10853939 DOI: 10.1021/acschemneuro.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Aging is typified by a gradual loss of physiological fitness and accumulation of cellular damage, leading to deteriorated functions and enhanced vulnerability to diseases. Antiaging research has a long history throughout civilization, with many efforts put forth to understand and prevent the effects of aging. Multiple strategies aiming to promote healthy aging and extend the lifespan have been developed including lifestyle adjustments, medical treatments, and social programs. A multitude of antiaging medicines and remedies have also been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent research related to antiaging strategies and treatments. We review the recent advances and delineate trends in research headway of antiaging knowledge and practice across time, geography, and development pipelines. We further assess the state-of-the-art antiaging approaches and explore their correlations with age-related diseases. The landscape of antiaging drugs has been outlined and explored. Well-recognized and novel, currently evaluated antiaging agents have also been summarized. Finally, we review clinical applications of antiaging products with their development pipelines. The objective of this review is to summarize current knowledge on preventive strategies and treatment remedies in the field of aging, to outline challenges and evaluate growth opportunities, in order to further efforts to solve the problems that remain.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
4
|
Wei SY, Chou YH, Chang FC, Huang SY, Lai CF, Lin SL. Young Plasma Attenuated Chronic Kidney Disease Progression after Acute Kidney Injury by Inhibiting Inflammation in Mice. Aging Dis 2023; 15:2786-2798. [PMID: 38421825 DOI: 10.14336/ad.2023.1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024] Open
Abstract
In the aged patients suffering from acute kidney injury, the risk for progression to chronic kidney disease and mortality is high. Aging accompanied by glomerulosclerosis, interstitial inflammation, and fibrosis might be one of the underlying mechanisms for vulnerability. In addition to sustained activation of the renin-angiotensin system, persistent chronic inflammation with tertiary lymphoid tissue formation is more common and is associated with disease progression in the aged kidney after acute injury. Based on recent laboratory evidence that young blood can rejuvenate the brain, muscle, and heart, we were intrigued by the possible protective effect of young plasma on acute kidney injury in aged mice. Here, we demonstrated that young plasma from 2-month-old mice could attenuate chronic kidney disease progression in 15-month-old mice subjected to acute kidney injury induced by ischemia-reperfusion. In the aged mice after acute kidney injury, young plasma administration decreased tubulointerstitial injury, fibrosis, and tertiary lymphoid tissue formation in kidneys assessed on day 28 after acute injury despite no significant beneficial effect on injury severity and survival. Mechanistically, young plasma inhibited angiotensin II-activated chemokines in pericytes that were responsible for tertiary lymphoid tissue formation. In summary, our data provide evidence that young plasma attenuates the transition from acute kidney injury to chronic kidney disease in aged mice. The therapeutic potential of young plasma infusion or exchange in the aged patients suffering acute kidney injury needs to be addressed in clinical trials.
Collapse
Affiliation(s)
- Shi-Yao Wei
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Fu Lai
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Hollwedel FD, Maus R, Stolper J, Jonigk D, Hildebrand CB, Welte T, Brandenberger C, Maus UA. Neutrophilic Pleuritis Is a Severe Complication of Klebsiella pneumoniae Pneumonia in Old Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2172-2180. [PMID: 36426980 DOI: 10.4049/jimmunol.2200413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
The pathomechanisms underlying the frequently observed fatal outcome of Klebsiella pneumoniae pneumonia in elderly patients are understudied. In this study, we examined the early antibacterial immune response in young mice (age 2-3 mo) as compared with old mice (age 18-19 mo) postinfection with K. pneumoniae. Old mice exhibited significantly higher bacterial loads in lungs and bacteremia as early as 24 h postinfection compared with young mice, with neutrophilic pleuritis nearly exclusively developing in old but not young mice. Moreover, we observed heavily increased cytokine responses in lungs and pleural spaces along with increased mortality in old mice. Mechanistically, Nlrp3 inflammasome activation and caspase-1-dependent IL-1β secretion contributed to the observed hyperinflammation, which decreased upon caspase-1 inhibitor treatment of K. pneumoniae-infected old mice. Irradiated old mice transplanted with the bone marrow of young mice did not show hyperinflammation or early bacteremia in response to K. pneumoniae. Collectively, the accentuated lung pathology observed in K. pneumoniae-infected old mice appears to be due to regulatory defects of the bone marrow but not the lung, while involving dysregulated activation of the Nlrp3/caspase-1/IL-1β axis.
Collapse
Affiliation(s)
- Femke D Hollwedel
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany
| | | | - Tobias Welte
- German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,Clinic for Pneumology, Hannover Medical School, Hannover, Germany; and
| | - Christina Brandenberger
- German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,Institute of Functional Anatomy, Charité University Medicine, Berlin, Germany
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany
| |
Collapse
|
6
|
DeFreitas MJ, Katsoufis CP, Benny M, Young K, Kulandavelu S, Ahn H, Sfakianaki A, Abitbol CL. Educational Review: The Impact of Perinatal Oxidative Stress on the Developing Kidney. Front Pediatr 2022; 10:853722. [PMID: 35844742 PMCID: PMC9279889 DOI: 10.3389/fped.2022.853722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress occurs when there is an imbalance between reactive oxygen species/reactive nitrogen species and antioxidant systems. The interplay between these complex processes is crucial for normal pregnancy and fetal development; however, when oxidative stress predominates, pregnancy related complications and adverse fetal programming such as preterm birth ensues. Understanding how oxidative stress negatively impacts outcomes for the maternal-fetal dyad has allowed for the exploration of antioxidant therapies to prevent and/or mitigate disease progression. In the developing kidney, the negative impact of oxidative stress has also been noted as it relates to the development of hypertension and kidney injury mostly in animal models. Clinical research addressing the implications of oxidative stress in the developing kidney is less developed than that of the neurodevelopmental and respiratory conditions of preterm infants and other vulnerable neonatal groups. Efforts to study the oxidative stress pathway along the continuum of the perinatal period using a team science approach can help to understand the multi-organ dysfunction that the maternal-fetal dyad sustains and guide the investigation of antioxidant therapies to ameliorate the global toxicity. This educational review will provide a comprehensive and multidisciplinary perspective on the impact of oxidative stress during the perinatal period in the development of maternal and fetal/neonatal complications, and implications on developmental programming of accelerated aging and cardiovascular and renal disease for a lifetime.
Collapse
Affiliation(s)
- Marissa J DeFreitas
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States
| | - Chryso P Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States
| | - Merline Benny
- Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States.,Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Karen Young
- Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States.,Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Hyunyoung Ahn
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Anna Sfakianaki
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States
| |
Collapse
|
7
|
Ahn E, Lee J, Han J, Lee SM, Kwon KS, Hwang GS. Glutathione is an aging-related metabolic signature in the mouse kidney. Aging (Albany NY) 2021; 13:21009-21028. [PMID: 34492635 PMCID: PMC8457589 DOI: 10.18632/aging.203509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
The ability to maintain systemic metabolic homeostasis through various mechanisms represents a crucial strength of kidneys in the study of metabolic syndrome or aging. Moreover, age-associated kidney failure has been widely accepted. However, efforts to demonstrate aging-dependent renal metabolic rewiring have been limited. In the present study, we investigated aging-related renal metabolic determinants by integrating metabolomic and transcriptomic data sets from kidneys of young (3 months, n = 7 and 3 for respectively) and old (24 months, n = 8 and 3 for respectively) naive C57BL/6 male mice. Metabolite profiling analysis was conducted, followed by data processing via network and pathway analyses, to identify differential metabolites. In the aged group, the levels of glutathione and oxidized glutathione were significantly increased, but the levels of gamma-glutamyl amino acids, amino acids combined with the gamma-glutamyl moiety from glutathione by membrane transpeptidases, and circulating glutathione levels were decreased. In transcriptomic analysis, differential expression of metabolic enzymes is consistent with the hypothesis of aging-dependent rewiring in renal glutathione metabolism; pathway and network analyses further revealed the increased expression of immune-related genes in the aged group. Collectively, our integrative analysis results revealed that defective renal glutathione metabolism is a signature of renal aging. Therefore, we hypothesize that restraining renal glutathione metabolism might alleviate or delay age-associated renal metabolic deterioration, and aberrant activation of the renal immune system.
Collapse
Affiliation(s)
- Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jisu Han
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
- Aventi Inc., Yuseong-Gu, Daejeon 34141, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seodaemun-Gu, Seoul 03760, Korea
| |
Collapse
|
8
|
Cao D, Wang Y, Zhang Y, Zhang Y, Huang Q, Yin Z, Cai G, Chen X, Sun X. Regulation of connective tissue growth factor expression by miR-133b for the treatment of renal interstitial fibrosis in aged mice with unilateral ureteral obstruction. Stem Cell Res Ther 2021; 12:171. [PMID: 33691785 PMCID: PMC7944614 DOI: 10.1186/s13287-021-02210-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/03/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Renal interstitial fibrosis, an important pathological feature of kidney aging and chronic renal failure, is regulated by mesenchymal stem cells (MSCs). We have previously demonstrated low expression of miR-133b in MSC-derived extracellular vesicles (MSC-EVs) in aged rats. However, miR-133b can mediate the inhibition of epithelial-mesenchymal transition (EMT) of renal tubules induced by transforming growth factor-β1 (TGF-β1). We investigated the effect of miR-133b for the treatment of geriatric renal interstitial fibrosis and evaluated its target genes. Methods We performed real-time polymerase chain reaction to detect miR-133b expression induced during EMT of HK2 cells by TGF-β1 at different concentrations (0, 6, 8, and 10 ng/mL) and at different time points (0, 24, 48, and 72 h). The target genes of miR-133b were validated using the dual-luciferase reporter assay. In vitro experiments were performed to evaluate mRNA and protein expression of miR-133b targets, E-cadherin, α-smooth muscle actin (SMA), fibronectin, and collagen 3A1 (Col3A1), in HK2 cells transfected with miR-133b under TGF-β1 stimulation. A 24-month-old unilateral ureteral obstruction (UUO) mouse model was established and injected with transfection reagent and miR-133b into the caudal vein. The target gene of miR-133b and other parameters mentioned above such as mRNA and protein expression levels and renal interstitial fibrosis were detected at 7 and 14 days. Results miR-133b expression gradually decreased with an increase in TGF-β1 concentration and treatment time, and the miR-133b mimic downregulated connective tissue growth factor (CTGF) expression. The dual-luciferase reporter assay confirmed CTGF as a direct target of miR-133b. Transfection of the miR-133b mimic inhibited TGF-β1-induced EMT of HK2 cells; this effect was reversed by CTGF overexpression. miRNA-133b expression significantly increased (approximately 70–100 times) in mouse kidney tissues after injection of the miRNA-133b overexpression complex, which significantly alleviated renal interstitial fibrosis in mice with UUO. Conclusion miR-133b exerted targeted inhibitory effects on CTGF expression, which consequently reduced TGF-β1-induced EMT of HK2 cells and renal interstitial fibrosis in aged mice with UUO. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02210-2.
Collapse
Affiliation(s)
- Dan Cao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Yuan Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Yingjie Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Yinping Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Qi Huang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Zhong Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China.
| |
Collapse
|
9
|
Wang Y, Wang Y, Yang M, Ma X. Implication of cellular senescence in the progression of chronic kidney disease and the treatment potencies. Biomed Pharmacother 2021; 135:111191. [PMID: 33418306 DOI: 10.1016/j.biopha.2020.111191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing major public health problem worldwide. And CKD shares numerous phenotypic similarities with kidney as well as systemic ageing. Cellular senescence is mainly characterized by a stable cell cycle arrest, senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Herein, the regulations and the internal mechanisms of cellular senescence will be discussed. Meanwhile, efforts are made to give a comprehensive overview of the recent advances of the implication of cellular senescence in CKD. To date, numerous studies have focused on the effects of ageing risk factors in kidney and thereby trying to interrupt the kidney ageing processes with senolytics. Interestingly, some of them showed enormous clinical application potentials. Therefore, senotherapeutics can be applied as novel potential strategies for the treatment of CKD.
Collapse
Affiliation(s)
- Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Wang
- Department of Endocrinology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ming Yang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xingjie Ma
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
10
|
Zhao L, Hu C, Han F, Chen D, Ma Y, Wang J, Chen J. Cellular senescence, a novel therapeutic target for mesenchymal stem cells in acute kidney injury. J Cell Mol Med 2021. [PMCID: PMC7812305 DOI: 10.1111/jcmm.16163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cellular senescence is a widespread cellular programme that is characterized by permanent cell cycle arrest. Senescent cells adopt a changed secretory phenotype that can alter cellular function. For years, cellular senescence has been thought to be a protective factor against cancer; however, it is now recognized that it has a dual effect on individuals. Co‐ordinated activation of cellular senescence provides advantages during embryogenesis, wound healing, tissue repair and inhibition of tumorigenesis. On the other hand, the aberrant generation and accumulation of abnormal senescent cells lead to the development of age‐related conditions and tissue deterioration. During acute kidney injury (AKI), the kidney faces multiple types of stressors and challenges, which can easily drive cellular senescence. How to appropriately progress through the cell cycle and minimize long‐term damage is of great importance to the acquisition of adaptive repair considering that no available therapeutic interventions can reliably limit injury, speedy recovery or improve the prognosis of this syndrome. Whether the manipulation of cellular senescence can become a novel therapeutic target in AKI and reignite clinical and research interest remains to be determined. Here, we share our current understanding of the role of cellular senescence in AKI, along with examples of the application of mesenchymal stem cells (MSCs) for targeting this disorder during its treatment.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Fei Han
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Dajin Chen
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Yanhong Ma
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Junni Wang
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Jianghua Chen
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| |
Collapse
|
11
|
Fang Y, Gong AY, Haller ST, Dworkin LD, Liu Z, Gong R. The ageing kidney: Molecular mechanisms and clinical implications. Ageing Res Rev 2020; 63:101151. [PMID: 32835891 PMCID: PMC7595250 DOI: 10.1016/j.arr.2020.101151] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
As human life expectancy keeps increasing, ageing populations present a growing challenge for clinical practices. Human ageing is associated with molecular, structural, and functional changes in a variety of organ systems, including the kidney. During the ageing process, the kidney experiences progressive functional decline as well as macroscopic and microscopic histological alterations, which are accentuated by systemic comorbidities like hypertension and diabetes mellitus, or by preexisting or underlying kidney diseases. Although ageing per se does not cause kidney injury, physiologic changes associated with normal ageing processes are likely to impair the reparative capacity of the kidney and thus predispose older people to acute kidney disease, chronic kidney disease and other renal diseases. Mechanistically, cell senescence plays a key role in renal ageing, involving a number of cellular signaling mechanisms, many of which may be harnessed as international targets for slowing or even reversing kidney ageing. This review summarizes the clinical characteristics of renal ageing, highlights the latest progresses in deciphering the role of cell senescence in renal ageing, and envisages potential interventional strategies and novel therapeutic targets for preventing or improving renal ageing in the hope of maintaining long-term kidney health and function across the life course.
Collapse
Affiliation(s)
- Yudong Fang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Athena Y Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Steven T Haller
- Division of Cardiology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Lance D Dworkin
- Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Rujun Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio, USA; Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA.
| |
Collapse
|
12
|
Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L, Castellano G. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage. Front Immunol 2020; 11:734. [PMID: 32457738 PMCID: PMC7221190 DOI: 10.3389/fimmu.2020.00734] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The aberrant activation of complement system in several kidney diseases suggests that this pillar of innate immunity has a critical role in the pathophysiology of renal damage of different etiologies. A growing body of experimental evidence indicates that complement activation contributes to the pathogenesis of acute kidney injury (AKI) such as delayed graft function (DGF) in transplant patients. AKI is characterized by the rapid loss of the kidney's excretory function and is a complex syndrome currently lacking a specific medical treatment to arrest or attenuate progression in chronic kidney disease (CKD). Recent evidence suggests that independently from the initial trigger (i.e., sepsis or ischemia/reperfusions injury), an episode of AKI is strongly associated with an increased risk of subsequent CKD. The AKI-to-CKD transition may involve a wide range of mechanisms including scar-forming myofibroblasts generated from different sources, microvascular rarefaction, mitochondrial dysfunction, or cell cycle arrest by the involvement of epigenetic, gene, and protein alterations leading to common final signaling pathways [i.e., transforming growth factor beta (TGF-β), p16 ink4a , Wnt/β-catenin pathway] involved in renal aging. Research in recent years has revealed that several stressors or complications such as rejection after renal transplantation can lead to accelerated renal aging with detrimental effects with the establishment of chronic proinflammatory cellular phenotypes within the kidney. Despite a greater understanding of these mechanisms, the role of complement system in the context of the AKI-to-CKD transition and renal inflammaging is still poorly explored. The purpose of this review is to summarize recent findings describing the role of complement in AKI-to-CKD transition. We will also address how and when complement inhibitors might be used to prevent AKI and CKD progression, therefore improving graft function.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
13
|
Goligorsky MS. New Trends in Regenerative Medicine: Reprogramming and Reconditioning. J Am Soc Nephrol 2019; 30:2047-2051. [PMID: 31540964 DOI: 10.1681/asn.2019070722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Michael S Goligorsky
- Departments of Medicine, .,Pharmacology, and.,Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, New York
| |
Collapse
|
14
|
Wei SY, Pan SY, Li B, Chen YM, Lin SL. Rejuvenation: Turning back the clock of aging kidney. J Formos Med Assoc 2019; 119:898-906. [PMID: 31202499 DOI: 10.1016/j.jfma.2019.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Aging is inevitable in life. It is defined as impaired adaptive capacity to environmental or internal stresses with growing rates of disease and death. Aging is also an important risk factor for various kidney diseases such as acute kidney injury and chronic kidney disease. Patients older than 65 years have nearly 28% risk of failing recovery of kidney function when suffering from acute kidney injury. It is reported that more than a third of population aged 65 years and older have chronic kidney disease in Taiwan, and the occurrence of multiple age-related disorders is predicted to increase in parallel. Renal aging is a complex, multifactorial process characterized by many anatomical and functional changes. Several factors are involved in renal aging, such as loss of telomeres, cell cycle arrest, chronic inflammation, activation of renin-angiotensin system, decreased klotho expression, and development of tertiary lymphoid tissues. These changes can also be observed in many other different types of renal injury. Recent studies suggested that young blood may rejuvenate aged organs, including the kidneys. In order to develop new therapeutic strategies for renal aging, the mechanisms underlying renal aging and by which young blood can halt or reverse aging process warrants further study.
Collapse
Affiliation(s)
- Shi-Yao Wei
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Szu-Yu Pan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bing Li
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Docherty MH, O'Sullivan ED, Bonventre JV, Ferenbach DA. Cellular Senescence in the Kidney. J Am Soc Nephrol 2019; 30:726-736. [PMID: 31000567 DOI: 10.1681/asn.2018121251] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Senescent cells have undergone permanent growth arrest, adopt an altered secretory phenotype, and accumulate in the kidney and other organs with ageing and injury. Senescence has diverse physiologic roles and experimental studies support its importance in nephrogenesis, successful tissue repair, and in opposing malignant transformation. However, recent murine studies have shown that depletion of chronically senescent cells extends healthy lifespan and delays age-associated disease-implicating senescence and the senescence-associated secretory phenotype as drivers of organ dysfunction. Great interest is therefore focused on the manipulation of senescence as a novel therapeutic target in kidney disease. In this review, we examine current knowledge and areas of ongoing uncertainty regarding senescence in the human kidney and experimental models. We summarize evidence supporting the role of senescence in normal kidney development and homeostasis but also senescence-induced maladaptive repair, renal fibrosis, and transplant failure. Recent studies using senescent cell manipulation and depletion as novel therapies to treat renal disease are discussed, and we explore unanswered questions for future research.
Collapse
Affiliation(s)
| | - Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; and
| | - Joseph V Bonventre
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK; .,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; and
| |
Collapse
|
16
|
Toba H, Lindsey ML. Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther 2019; 193:99-120. [PMID: 30149103 PMCID: PMC6309764 DOI: 10.1016/j.pharmthera.2018.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whereas hypertension, diabetes, and dyslipidemia are age-related risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), aging alone is an independent risk factor. With advancing age, the heart and kidney gradually but significantly undergo inflammation and subsequent fibrosis, which eventually results in an irreversible decline in organ physiology. Through cardiorenal network interactions, cardiac dysfunction leads to and responds to renal injury, and both facilitate aging effects. Thus, a comprehensive strategy is needed to evaluate the cardiorenal aging network. Common hallmarks shared across systems include extracellular matrix (ECM) accumulation, along with upregulation of matrix metalloproteinases (MMPs) including MMP-9. The wide range of MMP-9 substrates, including ECM components and inflammatory cytokines, implicates MMP-9 in a variety of pathological and age-related processes. In particular, there is strong evidence that inflammatory cell-derived MMP-9 exacerbates cardiorenal aging. This review explores the potential therapeutic targets against CVD and CKD in the elderly, focusing on ECM and MMP roles.
Collapse
Affiliation(s)
- Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
17
|
Grosjean F, Yubero-Serrano EM, Zheng F, Esposito V, Swamy S, Elliot SJ, Cai W, Vlassara H, Salem F, Striker GE. Pharmacologic control of oxidative stress and inflammation determines whether diabetic glomerulosclerosis progresses or decreases: A pilot study in sclerosis-prone mice. PLoS One 2018; 13:e0204366. [PMID: 30252878 PMCID: PMC6155507 DOI: 10.1371/journal.pone.0204366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is characterized by progressive glomerulosclerosis (GS). ROP mice have a sclerosis-prone phenotype. However, they develop severe, rapidly progressive GS when rendered diabetic. Since GS also develops in aged C57Bl6 mice, and can be reversed using bone marrow from young mice which have lower oxidative stress and inflammation (OS/Infl), we postulated that this might also apply to DKD. Therefore, this pilot study asked whether reducing OS/Infl in young adult sclerosis-prone (ROP) diabetic mice leads to resolution of existing GS in early DKD using safe, FDA-approved drugs.After 4 weeks of stable streptozotocin-induced hyperglycemia 8-12 week-old female mice were randomized and treated for 22 weeks as follows: 1) enalapril (EN) (n = 8); 2) pyridoxamine (PYR)+EN (n = 8); 3) pentosan polysulfate (PPS)+EN (n = 7) and 4) PPS+PYR+EN (n = 7). Controls were untreated (non-DB, n = 7) and hyperglycemic (DB, n = 8) littermates. PPS+PYR+EN reduced albuminuria and reversed GS in DB. Treatment effects: 1) Anti-OS/Infl defenses: a) PPS+PYR+EN increased the levels of SIRT1, Nrf2, estrogen receptor α (ERα) and advanced glycation endproduct-receptor1 (AGER1) levels; and b) PYR+EN increased ERα and AGER1 levels. 2) Pro-OS/Infl factors: a) PPS+PYR+EN reduced sTNFR1, b) all except EN reduced MCP1, c) RAGE was reduced by all treatments. In summary, PYR+PPS+EN modulated GS in sclerosis-prone hyperglycemic mice. PYR+PPS+EN also decreased albuminuria, OS/Infl and the sclerosis-prone phenotype. Thus, reducing OS/Infl may reverse GS in early diabetes in patients, and albuminuria may allow early detection of the sclerosis-prone phenotype.
Collapse
Affiliation(s)
- Fabrizio Grosjean
- Division of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| | - Feng Zheng
- Division of Nephrology and Basic Science Laboratory, Union Hospital Fujian Medical University, Fuzhou, Fujian, China
| | - Vittoria Esposito
- Unit of Nephrology and Dialysis, Fondazione IRCCS Salvatore Maugeri, Pavia, Italy
| | - Shobha Swamy
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Sharon J. Elliot
- Department of Surgery, School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Weijing Cai
- Division of Experimental Diabetes and Aging, Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Helen Vlassara
- Division of Experimental Diabetes and Aging, Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Annenberg 15–235, New York, New York, United States of America
| | - Gary E. Striker
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
18
|
Burmeister DM, McIntyre MK, Montgomery RK, Gómez BI, Dubick MA. Isolation and Characterization of Multipotent CD24+ Cells From the Renal Papilla of Swine. Front Med (Lausanne) 2018; 5:250. [PMID: 30283781 PMCID: PMC6156461 DOI: 10.3389/fmed.2018.00250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022] Open
Abstract
Over 100,000 patients in the United States are currently waiting for a kidney transplant. With just over 10,000 cadaveric kidneys transplanted annually, it is of the utmost importance to optimize kidney viability upon transplantation. One exciting avenue may be xenotransplantation, which has rejuvenated interest after advanced gene editing techniques have been successfully used in swine. Simultaneously, acute kidney injury (AKI) is associated with high morbidity and mortality and currently lacks effective treatment. Animal models have been used extensively to address both of these issues, with recent emphasis on renal progenitor cells (RPCs). Due to anatomical similarities to humans we aimed to examine progenitor cells from the renal papillae of swine kidneys. To do this, RPCs were dissected from the renal papillae of healthy swine. Cell surface marker expression, proliferation, and differentiation of the RPCs were tested in vitro. Additionally, a mixed lymphocyte reaction was performed to examine immunomodulatory properties. RPCs displayed spindle shaped morphology with limited self-renewing capacity. Isolated RPCs were positive for CD24 and CD133 at early passages, but lost expression with subsequent passaging. Similarly, RPCs displayed myogenic, osteogenic, and adipogenic differentiation capacities at passage 2, but largely lost this by passage 6. Lastly, direct contact of RPCs with human lymphocytes increased release of IL6 and IL8. Taken together, RPCs from the papilla of porcine kidneys display transient stem cell properties that are lost with passaging, and either represent multiple types of progenitor cells, or a multipotent progenitor population. In instances of ischemic insult, augmentation of/with RPCs may potentiate regenerative properties of the kidney. While the use of swine for transplantation and ischemia studies confers obvious advantages, the populations of different progenitor cell populations within pig kidneys warrants further investigation. Ultimately, while gene editing techniques enhance the potential for xenotransplantation of organs or cells, the ultimate success of this strategy may be determined by the (dis)similarities of RPCs from different species.
Collapse
Affiliation(s)
- David M Burmeister
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| | - Matthew K McIntyre
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| | - Robbie K Montgomery
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| | - Belinda I Gómez
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| | - Michael A Dubick
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| |
Collapse
|
19
|
Sato Y, Yanagita M. Immune cells and inflammation in AKI to CKD progression. Am J Physiol Renal Physiol 2018; 315:F1501-F1512. [PMID: 30156114 DOI: 10.1152/ajprenal.00195.2018] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical state resulting from pathogenic conditions such as ischemic and toxic insults. The pathophysiology of AKI shares common pathogenic denominators including cell death/injury, inflammation, and fibrosis, regardless of the initiating insults. Recent clinical studies have shown that a single episode of AKI can lead to subsequent chronic kidney disease (CKD). Although the involvement of multiple types of cells in the pathophysiology of AKI is becoming increasingly clear, the precise mechanisms for this "AKI to CKD progression" are still unknown, and no drug has been shown to halt this progression. An increasing number of epidemiological studies have also revealed that the presence of aging greatly increases the risk of AKI to CKD progression, and chronic inflammation is increasingly recognized as an important determinant factor for this progression. In this review article, we first describe the current understanding of the pathophysiology of AKI to CKD progression based on multiple types of cells. In particular, we will highlight the recent findings in regard to the mechanisms for chronic inflammation after AKI. Subsequently, we will focus on the mechanisms responsible for the increased risk of AKI to CKD progression in the elderly. Finally, we highlight our recent finding of age-dependent tertiary lymphoid tissue formation and its roles in AKI to CKD progression and speculate on the potential therapeutic opportunities that come from targeting aberrant inflammation after AKI.
Collapse
Affiliation(s)
- Yuki Sato
- Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University , Kyoto , Japan.,Department of Nephrology, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| |
Collapse
|
20
|
Aging alters the immunological response to ischemic stroke. Acta Neuropathol 2018; 136:89-110. [PMID: 29752550 PMCID: PMC6015099 DOI: 10.1007/s00401-018-1859-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/21/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
The peripheral immune system plays a critical role in aging and in the response to brain injury. Emerging data suggest inflammatory responses are exacerbated in older animals following ischemic stroke; however, our understanding of these age-related changes is poor. In this work, we demonstrate marked differences in the composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke compared to young male mice. Blood neutrophilia and neutrophil invasion into the brain were increased in aged animals. Relative to infiltrating monocyte populations, brain-invading neutrophils had reduced phagocytic potential, and produced higher levels of reactive oxygen species and extracellular matrix-degrading enzymes (i.e., MMP-9), which were further exacerbated with age. Hemorrhagic transformation was more pronounced in aged versus young mice relative to infarct size. High numbers of myeloperoxidase-positive neutrophils were found in postmortem human brain samples of old (> 71 years) acute ischemic stroke subjects compared to non-ischemic controls. Many of these neutrophils were found in the brain parenchyma. A large proportion of these neutrophils expressed MMP-9 and positively correlated with hemorrhage and hyperemia. MMP-9 expression and hemorrhagic transformation after stroke increased with age. These changes in the myeloid response to stroke with age led us to hypothesize that the bone marrow response to stroke is altered with age, which could be important for the development of effective therapies targeting the immune response. We generated heterochronic bone marrow chimeras as a tool to determine the contribution of peripheral immune senescence to age- and stroke-induced inflammation. Old hosts that received young bone marrow (i.e., Young → Old) had attenuation of age-related reductions in bFGF and VEGF and showed improved locomotor activity and gait dynamics compared to isochronic (Old → Old) controls. Microglia in young heterochronic mice (Old → Young) developed a senescent-like phenotype. After stroke, aged animals reconstituted with young marrow had reduced behavioral deficits compared to isochronic controls, and had significantly fewer brain-infiltrating neutrophils. Increased rates of hemorrhagic transformation were seen in young mice reconstituted with aged bone marrow. This work suggests that age alters the immunological response to stroke, and that this can be reversed by manipulation of the peripheral immune cells in the bone marrow.
Collapse
|
21
|
Yamaguchi S, Horie N, Satoh K, Ishikawa T, Mori T, Maeda H, Fukuda Y, Ishizaka S, Hiu T, Morofuji Y, Izumo T, Nishida N, Matsuo T. Age of donor of human mesenchymal stem cells affects structural and functional recovery after cell therapy following ischaemic stroke. J Cereb Blood Flow Metab 2018; 38:1199-1212. [PMID: 28914133 PMCID: PMC6434451 DOI: 10.1177/0271678x17731964] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell transplantation therapy offers great potential to improve impairments after stroke. However, the importance of donor age on therapeutic efficacy is unclear. We investigated the regenerative capacity of transplanted cells focusing on donor age (young vs. old) for ischaemic stroke. The quantities of human mesenchymal stem cell (hMSC) secreted brain-derived neurotrophic factor in vitro and of monocyte chemotactic protein-1 at day 7 in vivo were both significantly higher for young hMSC compared with old hMSC. Male Sprague-Dawley rats subjected to transient middle cerebral artery occlusion that received young hMSC (trans-arterially at 24 h after stroke) showed better behavioural recovery with prevention of brain atrophy compared with rats that received old hMSC. Histological analysis of the peri-infarct cortex showed that rats treated with young hMSC had significantly fewer microglia and more vessels covered with pericytes. Interestingly, migration of neural stem/progenitor cells expressing Musashi-1 positively correlated with astrocyte process alignment, which was more pronounced for young hMSC. Aging of hMSC may be a critical factor that affects cell therapy outcomes, and transplantation of young hMSC appears to provide better functional recovery through anti-inflammatory effects, vessel maturation, and neurogenesis potentially by the dominance of trophic factor secretion.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nobutaka Horie
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuya Satoh
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Ishikawa
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Mori
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hajime Maeda
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuhtaka Fukuda
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shunsuke Ishizaka
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Hiu
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoichi Morofuji
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Izumo
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriyuki Nishida
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Matsuo
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
22
|
Liu D, Lun L, Huang Q, Ning Y, Zhang Y, Wang L, Yin Z, Zhang Y, Xia L, Yin Z, Fu B, Cai G, Sun X, Chen X. Youthful systemic milieu alleviates renal ischemia-reperfusion injury in elderly mice. Kidney Int 2018; 94:268-279. [PMID: 29935950 DOI: 10.1016/j.kint.2018.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023]
Abstract
The incidence of acute kidney injury (AKI) is high in elderly people, and is difficult to prevent and treat. One of its major causes is renal ischemia-reperfusion injury (IRI). A young systemic environment may prevent the senescence of old organs. However, it is unknown whether a young milieu may reduce renal IRI in the elderly. To examine this question, bilateral renal IRI was induced in old (24 months) mice three weeks after parabiosis model establishment. At 24 hours after IRI, compared to old wild-type mice, the old mice with IRI had significantly damaged renal histology, decreased renal function, increased oxidative stress, inflammation, and apoptosis. However, there was no increase in autophagy. Compared to old mice with IRI, old-old parabiosis mice with IRI did not show differences in renal histological damage, oxidative stress, inflammation, apoptosis, or autophagy, but did exhibit improved renal function. Compared to the old-old parabiosis mice with IRI, the old mice with IRI in the young (12 week)-old parabiosis showed less renal histological injury and better renal function. Renal oxidative stress, inflammation, and apoptosis were significantly decreased, and autophagy was significantly increased. Thus, a youthful systemic milieu may decrease oxidative stress, inflammation, and apoptosis, and increase autophagy in old mice with IRI. These effects ameliorated IRI injuries in old mice. Our study provides new ideas for effectively preventing and treating AKI in the elderly.
Collapse
Affiliation(s)
- Dong Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China; Department of Nephrology, Air Force General Hospital, Chinese PLA, Beijing, China
| | - Lide Lun
- Department of Nephrology, Air Force General Hospital, Chinese PLA, Beijing, China
| | - Qi Huang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yichun Ning
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China; Department of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Ying Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Linna Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Zhiwei Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yinping Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Lihua Xia
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Zhong Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| |
Collapse
|
23
|
Andrade L, Rodrigues CE, Gomes SA, Noronha IL. Acute Kidney Injury as a Condition of Renal Senescence. Cell Transplant 2018; 27:739-753. [PMID: 29701108 PMCID: PMC6047270 DOI: 10.1177/0963689717743512] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI), characterized by a sharp drop in glomerular filtration, continues to be a significant health burden because it is associated with high initial mortality, morbidity, and substantial health-care costs. There is a strong connection between AKI and mechanisms of senescence activation. After ischemic or nephrotoxic insults, a wide range of pathophysiological events occur. Renal tubular cell injury is characterized by cell membrane damage, cytoskeleton disruption, and DNA degradation, leading to tubular cell death by necrosis and apoptosis. The senescence mechanism involves interstitial fibrosis, tubular atrophy, and capillary rarefaction, all of which impede the morphological and functional recovery of the kidneys, suggesting a strong link between AKI and the progression of chronic kidney disease. During abnormal kidney repair, tubular epithelial cells can assume a senescence-like phenotype. Cellular senescence can occur as a result of cell cycle arrest due to increased expression of cyclin kinase inhibitors (mainly p21), downregulation of Klotho expression, and telomere shortening. In AKI, cellular senescence is aggravated by other factors including oxidative stress and autophagy. Given this scenario, the main question is whether AKI can be repaired and how to avoid the senescence process. Stem cells might constitute a new therapeutic approach. Mesenchymal stem cells (MSCs) can ameliorate kidney injury through angiogenesis, immunomodulation, and fibrosis pathway blockade, as well as through antiapoptotic and promitotic processes. Young umbilical cord–derived MSCs are better at increasing Klotho levels, and thus protecting tissues from senescence, than are adipose-derived MSCs. Umbilical cord–derived MSCs improve glomerular filtration and tubular function to a greater degree than do those obtained from adult tissue. Although senescence-related proteins and microRNA are upregulated in AKI, they can be downregulated by treatment with umbilical cord–derived MSCs. In summary, stem cells derived from young tissues, such as umbilical cord–derived MSCs, could slow the post-AKI senescence process.
Collapse
Affiliation(s)
- Lucia Andrade
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Camila E Rodrigues
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Samirah A Gomes
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Irene L Noronha
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| |
Collapse
|
24
|
Hodes RJ, Sierra F, Austad SN, Epel E, Neigh GN, Erlandson KM, Schafer MJ, LeBrasseur NK, Wiley C, Campisi J, Sehl ME, Scalia R, Eguchi S, Kasinath BS, Halter JB, Cohen HJ, Demark-Wahnefried W, Ahles TA, Barzilai N, Hurria A, Hunt PW. Disease drivers of aging. Ann N Y Acad Sci 2017; 1386:45-68. [PMID: 27943360 DOI: 10.1111/nyas.13299] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
It has long been known that aging, at both the cellular and organismal levels, contributes to the development and progression of the pathology of many chronic diseases. However, much less research has examined the inverse relationship-the contribution of chronic diseases and their treatments to the progression of aging-related phenotypes. Here, we discuss the impact of three chronic diseases (cancer, HIV/AIDS, and diabetes) and their treatments on aging, putative mechanisms by which these effects are mediated, and the open questions and future research directions required to understand the relationships between these diseases and aging.
Collapse
Affiliation(s)
| | | | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elissa Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
| | | | | | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging and Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging and Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California
| | - Mary E Sehl
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Rosario Scalia
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Balakuntalam S Kasinath
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, South Texas Veterans Health Care System, San Antonio, Texas
| | - Jeffrey B Halter
- Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Tim A Ahles
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, New York, New York
| | - Arti Hurria
- City of Hope National Medical Center, Duarte, California
| | - Peter W Hunt
- University of California, San Francisco, School of Medicine, San Francisco, California
| |
Collapse
|
25
|
Rodrigues CE, Capcha JMC, de Bragança AC, Sanches TR, Gouveia PQ, de Oliveira PAF, Malheiros DMAC, Volpini RA, Santinho MAR, Santana BAA, Calado RDT, Noronha IDL, Andrade L. Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury. Stem Cell Res Ther 2017; 8:19. [PMID: 28129785 PMCID: PMC5273809 DOI: 10.1186/s13287-017-0475-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 01/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) represent an option for the treatment of acute kidney injury (AKI). It is known that young stem cells are better than are aged stem cells at reducing the incidence of the senescent phenotype in the kidneys. The objective of this study was to determine whether AKI leads to premature, stress-induced senescence, as well as whether human umbilical cord-derived MSCs (huMSCs) can prevent ischaemia/reperfusion injury (IRI)-induced renal senescence in rats. Methods By clamping both renal arteries for 45 min, we induced IRI in male rats. Six hours later, some rats received 1 × 106 huMSCs or human adipose-derived MSCs (aMSCs) intraperitoneally. Rats were euthanised and studied on post-IRI days 2, 7 and 49. Results On post-IRI day 2, the kidneys of huMSC-treated rats showed improved glomerular filtration, better tubular function and higher expression of aquaporin 2, as well as less macrophage infiltration. Senescence-related proteins (β-galactosidase, p21Waf1/Cip1, p16INK4a and transforming growth factor beta 1) and microRNAs (miR-29a and miR-34a) were overexpressed after IRI and subsequently downregulated by the treatment. The IRI-induced pro-oxidative state and reduction in Klotho expression were both reversed by the treatment. In comparison with huMSC treatment, the treatment with aMSCs improved renal function to a lesser degree, as well as resulting in a less pronounced increase in the renal expression of Klotho and manganese superoxide dismutase. Treatment with huMSCs ameliorated long-term kidney function after IRI, minimised renal fibrosis, decreased β-galactosidase expression and increased the expression of Klotho. Conclusions Our data demonstrate that huMSCs attenuate the inflammatory and oxidative stress responses occurring in AKI, as well as reducing the expression of senescence-related proteins and microRNAs. Our findings broaden perspectives for the treatment of AKI. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0475-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Eleuterio Rodrigues
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil.
| | - José Manuel Condor Capcha
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Ana Carolina de Bragança
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Talita Rojas Sanches
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Priscila Queiroz Gouveia
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | | | | | - Rildo Aparecido Volpini
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | | | - Bárbara Amélia Aparecida Santana
- Department of Internal Medicine, Division of Haematology, University of São Paulo at Ribeirão Preto School of Medicine, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - Rodrigo do Tocantins Calado
- Department of Internal Medicine, Division of Haematology, University of São Paulo at Ribeirão Preto School of Medicine, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - Irene de Lourdes Noronha
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Lúcia Andrade
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| |
Collapse
|
26
|
Zhong J, Yang HC, Fogo AB. A perspective on chronic kidney disease progression. Am J Physiol Renal Physiol 2016; 312:F375-F384. [PMID: 27974318 DOI: 10.1152/ajprenal.00266.2016] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 11/29/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) will progress to end stage without treatment, but the decline of renal function may not be linear. Compared with glomerular filtration rate and proteinuria, new surrogate markers, such as kidney injury molecule-1, neutrophil gelatinase-associated protein, apolipoprotein A-IV, and soluble urokinase receptor, may allow potential intervention and treatment in the earlier stages of CKD, which could be useful for clinical trials. New omic-based technologies reveal potential new genomic and epigenomic mechanisms that appear different from those causing the initial disease. Various clinical studies also suggest that acute kidney injury is a major risk for progressive CKD. To ameliorate the progression of CKD, the first step is optimizing renin-angiotensin-aldosterone system blockade. New drugs targeting endothelin, transforming growth factor-β, oxidative stress, and inflammatory- and cell-based regenerative therapy may have add-on benefit.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; .,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee; and.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
27
|
Kohanski RA, Deeks SG, Gravekamp C, Halter JB, High K, Hurria A, Fuldner R, Green P, Huebner R, Macchiarini F, Sierra F. Reverse geroscience: how does exposure to early diseases accelerate the age-related decline in health? Ann N Y Acad Sci 2016; 1386:30-44. [PMID: 27907230 DOI: 10.1111/nyas.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Aging is the major risk factor for both the development of chronic diseases and loss of functional capacity. Geroscience provides links among the biology of aging, the biology of disease, and the physiology of frailty, three fields where enormous progress has been made in the last few decades. While, previously, the focus was on the role of aging in susceptibility to disease and disability, the other side of this relationship, which is the contribution of disease to aging, has been less explored at the molecular/cellular level. Indeed, the role of childhood or early adulthood exposure to chronic disease and/or treatment on accelerating aging phenotypes is well known in epidemiology, but the biological basis is poorly understood. A recent summit co-organized by the National Institutes of Health GeroScience Interest Group and the New York Academy of Sciences explored these relationships, using three chronic diseases as examples: cancer, HIV/AIDS, and diabetes. The epidemiological literature clearly indicates that early exposure to any of these diseases and/or their treatments results in an acceleration of the appearance of aging phenotypes, including loss of functional capacity and accelerated appearance of clinical symptoms of aging-related diseases not obviously related to the earlier event. The discussions at the summit focused on the molecular and cellular relationships between each of these diseases and the recently defined molecular and cellular pillars of aging. Two major conclusions from the meeting include the desire to refine an operational definition of aging and to concomitantly develop biomarkers of aging, in order to move from chronological to physiological age. The discussion also opened a dialogue on the possibility of improving late-life outcomes in patients affected by chronic disease by including age-delaying modalities along with the standard care for the disease in question.
Collapse
Affiliation(s)
- Ronald A Kohanski
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey B Halter
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - Kevin High
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Arti Hurria
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California
| | - Rebecca Fuldner
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| | - Paige Green
- Biobehavioral and Psychologic Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robin Huebner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Felipe Sierra
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| |
Collapse
|
28
|
Abstract
Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis-age-associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom;
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and.,Renal and.,Biomedical Engineering Divisions, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Cóndor JM, Rodrigues CE, Sousa Moreira RD, Canale D, Volpini RA, Shimizu MHM, Camara NOS, Noronha IDL, Andrade L. Treatment With Human Wharton's Jelly-Derived Mesenchymal Stem Cells Attenuates Sepsis-Induced Kidney Injury, Liver Injury, and Endothelial Dysfunction. Stem Cells Transl Med 2016; 5:1048-57. [PMID: 27280799 PMCID: PMC4954445 DOI: 10.5966/sctm.2015-0138] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/16/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED : The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks. Downregulation of endothelial nitric oxide synthase contributes to sepsis-induced endothelial dysfunction. Human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are known to reduce expression of proinflammatory cytokines and markers of apoptosis. We hypothesized that treatment with WJ-MSCs would protect renal, hepatic, and endothelial function in a cecal ligation and puncture (CLP) model of sepsis in rats. Rats were randomly divided into three groups: sham-operated rats; rats submitted to CLP and left untreated; and rats submitted to CLP and intraperitoneally injected, 6 hours later, with 1 × 10(6) WJ-MSCs. The glomerular filtration rate (GFR) was measured at 6 and 24 hours after CLP or sham surgery. All other studies were conducted at 24 hours after CLP or sham surgery. By 6 hours, GFR had decreased in the CLP rats. At 24 hours, Klotho renal expression significantly decreased. Treatment with WJ-MSCs improved the GFR; improved tubular function; decreased the CD68-positive cell count; decreased the fractional interstitial area; decreased expression of nuclear factor κB and of cytokines; increased expression of eNOS, vascular endothelial growth factor, and Klotho; attenuated renal apoptosis; ameliorated hepatic function; increased glycogen deposition in the liver; and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate. Klotho protein expression was higher in WJ-MSCs than in human adipose-derived MSCs. Because WJ-MSCs preserve renal and hepatic function, they might play a protective role in sepsis. SIGNIFICANCE Sepsis is the leading cause of death in intensive care units. Although many different treatments for sepsis have been tested, sepsis-related mortality rates remain high. It was hypothesized in this study that treatment with human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) would protect renal, hepatic, and endothelial function in a model of sepsis in rats. Treatment with WJ-MSCs improved the glomerular filtration rate, improved tubular function, decreased expression of nuclear factor κB and of cytokines, increased expression of eNOS and of Klotho, attenuated renal apoptosis, and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate.
Collapse
Affiliation(s)
- José M Cóndor
- Division of Nephrology, University of São Paulo, São Paulo, Brazil School of Medical Technology, National University of San Marcos, Lima, Peru
| | | | | | - Daniele Canale
- Division of Nephrology, University of São Paulo, São Paulo, Brazil
| | - Rildo A Volpini
- Division of Nephrology, University of São Paulo, São Paulo, Brazil
| | | | - Niels O S Camara
- Immunology Department, University of São Paulo, São Paulo, Brazil
| | | | - Lúcia Andrade
- Division of Nephrology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 2015; 11:264-76. [PMID: 25643664 DOI: 10.1038/nrneph.2015.3] [Citation(s) in RCA: 567] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute kidney injury is an increasingly common complication of hospital admission and is associated with high levels of morbidity and mortality. A hypotensive, septic, or toxic insult can initiate a cascade of events, resulting in impaired microcirculation, activation of inflammatory pathways and tubular cell injury or death. These processes ultimately result in acutely impaired kidney function and initiation of a repair response. This Review explores the various mechanisms responsible for the initiation and propagation of acute kidney injury, the prototypic mechanisms by which a substantially damaged kidney can regenerate its normal architecture, and how the adaptive processes of repair can become maladaptive. These mechanisms, which include G2/M cell-cycle arrest, cell senescence, profibrogenic cytokine production, and activation of pericytes and interstitial myofibroblasts, contribute to the development of progressive fibrotic kidney disease. The end result is a state that mimics accelerated kidney ageing. These mechanisms present important opportunities for the design of targeted therapeutic strategies to promote adaptive renal recovery and minimize progressive fibrosis and chronic kidney disease after acute insults.
Collapse
|
31
|
Abstract
Glomerulosclerosis and interstitial fibrosis increase in the aging kidney, and glomerular filtration rate (GFR) decreases with increasing age. Decreases in stem cell number and function contribute to renal aging. High-dose angiotensin receptor blocker (ARB) not only slows the progression of glomerular and vascular sclerosis in aging but can also induce regression of these processes independently of its hemodynamic actions. By using new interventions, such as peroxisome proliferator activator receptor gamma (PPARγ) agonist, we can manipulate the process of renal aging by regulating stem cells and other mechanisms.
Collapse
|
32
|
Bai Y, Lu H, Wu C, Liang Y, Wang S, Lin C, Chen B, Xia P. Resveratrol inhibits epithelial-mesenchymal transition and renal fibrosis by antagonizing the hedgehog signaling pathway. Biochem Pharmacol 2014; 92:484-93. [PMID: 25219324 DOI: 10.1016/j.bcp.2014.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a biologic process in which tubular cells lose their epithelial phenotypes and acquire new characteristic features of mesenchymal properties, is increasingly recognized as an integral part of renal tissue fibrogenesis. Recent studies indicate that resveratrol, a botanical compound derived mainly from the skins of red grapes, may have anti-fibrotic effects in many tissues, but the potential molecular mechanism remains unknown. In the present study, we identified that resveratrol inhibits the induction of EMT and deposition of extracellular matrix (ECM) through antagonizing the hedgehog pathway in vitro and in vivo. In rats with unilateral ureteral obstruction (UUO), administration of resveratrol (20mg/kg/day) significantly reduced serum creatinine. Resveratrol also decreased expression of TGF-β1, and inhibited the phenotypic transition from epithelial cells to mesenchymal cells, and the deposition of ECM in UUO rats. In cultured renal tubular epithelial cells (NRK-52E), TGF-β1-induced EMT and ECM synthesis was abolished with the treatment of resveratrol. The induction of EMT was associated with the activation of the hedgehog pathway. Resveratrol treatment markedly inhibited the over-activity of the hedgehog pathway in the obstructed kidney and in TGF-β1-treated NRK-52E cells, resulted in reduction of cellular proliferation, EMT and ECM accumulation. Thus, these results suggest that resveratrol is able to inhibit EMT and fibrosis in vivo and in vitro through antagonizing the hedgehog pathway, and resveratrol may have therapeutic potential for patients with fibrotic kidney diseases.
Collapse
Affiliation(s)
- Yongheng Bai
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cunzao Wu
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Liang
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Silu Wang
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengcheng Lin
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Xia
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
33
|
Klinkhammer BM, Kramann R, Mallau M, Makowska A, van Roeyen CR, Rong S, Buecher EB, Boor P, Kovacova K, Zok S, Denecke B, Stuettgen E, Otten S, Floege J, Kunter U. Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential. PLoS One 2014; 9:e92115. [PMID: 24667162 PMCID: PMC3965415 DOI: 10.1371/journal.pone.0092115] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has the potential for organ repair. Nevertheless, some factors might lessen the regenerative potential of MSCs, e.g. donor age or systemic disease. It is thus important to carefully assess the patient's suitability for autologous MSC transplantation. Here we investigated the effects of chronic kidney disease (CKD) on MSC function. We isolated bone marrow MSCs from remnant kidney rats (RK) with CKD (CKD-RK-MSC) and found signs of premature senescence: spontaneous adipogenesis, reduced proliferation capacity, active senescence-associated-β-galactosidase, accumulation of actin and a modulated secretion profile. The functionality of CKD-RK-MSCs in vivo was tested in rats with acute anti-Thy1.1-nephritis, where healthy MSCs have been shown to be beneficial. Rats received healthy MSCs, CKD-RK-MSC or medium by injection into the left renal artery. Kidneys receiving healthy MSCs exhibited accelerated healing of glomerular lesions, whereas CKD-RK-MSC or medium exerted no benefit. The negative influence of advanced CKD/uremia on MSCs was confirmed in a second model of CKD, adenine nephropathy (AD). MSCs from rats with adenine nephropathy (CKD-AD-MSC) also exhibited cellular modifications and functional deficits in vivo. We conclude that CKD leads to a sustained loss of in vitro and in vivo functionality in MSCs, possibly due to premature cellular senescence. Considering autologous MSC therapy in human renal disease, studies identifying uremia-associated mechanisms that account for altered MSC function are urgently needed.
Collapse
Affiliation(s)
| | - Rafael Kramann
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Monika Mallau
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Anna Makowska
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Song Rong
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eva Bettina Buecher
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Katarina Kovacova
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Stephanie Zok
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Esther Stuettgen
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Simon Otten
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Juergen Floege
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Uta Kunter
- Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
- * E-mail:
| |
Collapse
|
34
|
Gong M, Yu B, Wang YG, Xu M. Bone marrow rejuvenation. An excellent potential therapy for age-related endothelial dysfunction. Circ J 2013; 77:2886-8. [PMID: 24132244 DOI: 10.1253/circj.cj-13-1219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Min Gong
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center
| | | | | | | |
Collapse
|
35
|
Haines DD, Juhasz B, Tosaki A. Management of multicellular senescence and oxidative stress. J Cell Mol Med 2013; 17:936-57. [PMID: 23789967 PMCID: PMC3780549 DOI: 10.1111/jcmm.12074] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/18/2013] [Indexed: 12/15/2022] Open
Abstract
Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs' apoptosis, necrosis, autophagy and 'necroapoptophagy'. The concept of 'necroapoptophagy' is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a unique form of cellular regeneration, potentially conferring open-ended lifespans.
Collapse
Affiliation(s)
- David D Haines
- Department of Pharmacology, Faculty of Pharmacy, Health and Science Center, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
36
|
Li Y, Wingert RA. Regenerative medicine for the kidney: stem cell prospects & challenges. Clin Transl Med 2013; 2:11. [PMID: 23688352 PMCID: PMC3665577 DOI: 10.1186/2001-1326-2-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/14/2013] [Indexed: 12/22/2022] Open
Abstract
The kidney has key roles in maintaining human health. There is an escalating medical crisis in nephrology as growing numbers of patients suffer from kidney diseases that culminate in organ failure. While dialysis and transplantation provide life-saving treatments, these therapies are rife with limitations and place significant burdens on patients and healthcare systems. It has become imperative to find alternative ways to treat existing kidney conditions and preemptive means to stave off renal dysfunction. The creation of innovative medical approaches that utilize stem cells has received growing research attention. In this review, we discuss the regenerative and maladaptive cellular responses that occur during acute and chronic kidney disease, the emerging evidence about renal stem cells, and some of the issues that lie ahead in bridging the gap between basic stem cell biology and regenerative medicine for the kidney.
Collapse
Affiliation(s)
- Yue Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
37
|
Verghese E, Johnson C, Bertram JF, Ricardo SD, Deane JA. The fate of bone marrow-derived cells carrying a Polycystic Kidney Disease mutation in the genetically normal kidney. BMC Nephrol 2012; 13:91. [PMID: 22931547 PMCID: PMC3502565 DOI: 10.1186/1471-2369-13-91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 08/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycystic Kidney Disease (PKD) is a genetic condition in which dedifferentiated and highly proliferative epithelial cells form renal cysts and is frequently treated by renal transplantation. Studies have reported that bone marrow-derived cells give rise to renal epithelial cells, particularly following renal injury as often occurs during transplantation. This raises the possibility that bone marrow-derived cells from a PKD-afflicted recipient could populate a transplanted kidney and express a disease phenotype. However, for reasons that are not clear the reoccurrence of PKD has not been reported in a genetically normal renal graft. We used a mouse model to examine whether PKD mutant bone marrow-derived cells are capable of expressing a disease phenotype in the kidney. METHODS Wild type female mice were transplanted with bone marrow from male mice homozygous for a PKD-causing mutation and subjected to renal injury. Y chromosome positive, bone marrow-derived cells in the kidney were assessed for epithelial markers. RESULTS Mutant bone marrow-derived cells were present in the kidney. Some mutant cells were within the bounds of the tubule or duct, but none demonstrated convincing evidence of an epithelial phenotype. CONCLUSIONS Bone marrow-derived cells appear incapable of giving rise to genuine epithelial cells and this is the most likely reason cysts do not reoccur in kidneys transplanted into PKD patients.
Collapse
Affiliation(s)
- Elizabeth Verghese
- Biomedical and Health Sciences, Victoria University, St Albans, Australia
| | | | | | | | | |
Collapse
|
38
|
Striker GE. The Aging Kidney Phenotype and Systemically Derived Stem Cells. J Am Soc Nephrol 2011; 22:1958-60. [DOI: 10.1681/asn.2011090946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|