1
|
Miao J, Zand L. Genotype-Phenotype Correlations with TRPC6-Associated Podocytopathy. J Am Soc Nephrol 2025:00001751-990000000-00521. [PMID: 39774909 DOI: 10.1681/asn.0000000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Affiliation(s)
- Jing Miao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
2
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Yu T, Ji Y, Cui X, Liang N, Wu S, Xiang C, Li Y, Tao H, Xie Y, Zuo H, Wang W, Khan N, Ullah K, Xu F, Zhang Y, Lin C. Novel Pathogenic Mutation of P209L in TRPC6 Gene Causes Adult Focal Segmental Glomerulosclerosis. Biochem Genet 2024; 62:4432-4445. [PMID: 38315264 DOI: 10.1007/s10528-023-10651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a leading kidney disease, clinically associated with proteinuria and progressive renal failure. The occurrence of this disease is partly related to gene mutations. We describe a single affected family member who presented with FSGS. We used high-throughput sequencing, sanger sequencing to identify the pathogenic mutations, and a systems genetics analysis in the BXD mice was conducted to explore the genetic regulatory mechanisms of pathogenic genes in the development of FSGS. We identified high urinary protein (++++) and creatinine levels (149 μmol/L) in a 29-year-old male diagnosed with a 5-year history of grade 2 hypertension. Histopathology of the kidney biopsy showed stromal hyperplasia at the glomerular segmental sclerosis and endothelial cell vacuolation degeneration. Whole-exome sequencing followed by Sanger sequencing revealed a heterozygous missense mutation (c.643C > T) in exon 2 of TRPC6, leading to the substitution of arginine with tryptophan at position 215 (p.Arg215Trp). Systems genetics analysis of the 53 BXD mice kidney transcriptomes identified Pygm as the upstream regulator of Trpc6. Those two genes are jointly involved in the regulation of FSGS mainly via Wnt and Hippo signaling pathways. We present a novel variant in the TRPC6 gene that causes FSGS. Moreover, our data suggested TRPC6 works with PYGM, as well as Wnt and Hippo signaling pathways to regulate renal function, which could guide future clinical prevention and targeted treatment for FSGS outcomes.
Collapse
Affiliation(s)
- Tianxi Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xin Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Ning Liang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Shuang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Chongjun Xiang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yue Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Huiying Tao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yaqi Xie
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongwei Zuo
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenting Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Nauman Khan
- Department of Biology, Faculty of Biological and Biomedical Sciences, The University of Haripur, Haripur, KP, Pakistan
| | - Kamran Ullah
- Department of Biology, Faculty of Biological and Biomedical Sciences, The University of Haripur, Haripur, KP, Pakistan
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yan Zhang
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
4
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Wooden B, Beenken A, Martinelli E, Saida K, Knob AL, Ke J, Pisani I, Jin G, Lane B, Mitrotti A, Colby E, Lim TY, Guglielmi F, Osborne AJ, Ahram DF, Wang C, Armand F, Zanoni F, Bomback AS, Delsante M, Appel GB, Ferrari MRA, Martino J, Sahdeo S, Breckenridge D, Petrovski S, Paul DS, Hall G, Magistroni R, Murtas C, Feriozzi S, Rampino T, Esposito P, Helmuth ME, Sampson MG, Kretzler M, Kiryluk K, Shril S, Gesualdo L, Maggiore U, Fiaccadori E, Gbadegesin R, Santoriello D, D'Agati VD, Saleem MA, Gharavi AG, Hildebrandt F, Pollak MR, Goldstein DB, Sanna-Cherchi S. Natural History and Clinicopathological Associations of TRPC6-Associated Podocytopathy. J Am Soc Nephrol 2024:00001751-990000000-00433. [PMID: 39352759 DOI: 10.1681/asn.0000000501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Key Points
We conducted a clinical, genetic, and pathological analysis on 64 cases from 39 families with TRPC6-associated podocytopathy (TRPC6-AP).Analysis of 37,542 individuals excluded a major contribution of loss-of-function variants to TRPC6-AP, legitimating current drug discovery approaches.This study identifies key features of disease that can help intervention studies design and suggests similarities between TRPC6-AP and primary FSGS.
Background
Understanding the genetic basis of human diseases has become integral to drug development and precision medicine. Recent advancements have enabled the identification of molecular pathways driving diseases, leading to targeted treatment strategies. The increasing investment in rare diseases by the biotech industry underscores the importance of genetic evidence in drug discovery and approval processes. Here we studied a monogenic Mendelian kidney disease, TRPC6-associated podocytopathy (TRPC6-AP), to present its natural history, genetic spectrum, and clinicopathological associations in a large cohort of patients with causal variants in TRPC6 to help define the specific features of disease and further facilitate drug development and clinical trials design.
Methods
The study involved 64 individuals from 39 families with TRPC6 causal missense variants. Clinical data, including age of onset, laboratory results, response to treatment, kidney biopsy findings, and genetic information, were collected from multiple centers nationally and internationally. Exome or targeted sequencing was performed, and variant classification was based on strict criteria. Structural and functional analyses of TRPC6 variants were conducted to understand their effect on protein function. In-depth reanalysis of light and electron microscopy specimens for nine available kidney biopsies was conducted to identify pathological features and correlates of TRPC6-AP.
Results
Large-scale sequencing data did not support causality for TRPC6 protein-truncating variants. We identified 21 unique TRPC6 missense variants, clustering in three distinct regions of the protein, and with different effects on TRPC6 3D protein structure. Kidney biopsy analysis revealed FSGS patterns of injury in most cases, along with distinctive podocyte features including diffuse foot process effacement and swollen cell bodies. Most patients presented in adolescence or early adulthood but with ample variation (average 22, SD ±14 years), with frequent progression to kidney failure but with variability in time between presentation and kidney failure.
Conclusions
This study provides insights into the genetic spectrum, clinicopathological associations, and natural history of TRPC6-AP.
Clinical Trial registry name and registration number:
A Study to Test BI 764198 in People With a Type of Kidney Disease Called Focal Segmental Glomerulosclerosis, NCT05213624.
Collapse
Affiliation(s)
- Benjamin Wooden
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Elena Martinelli
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ken Saida
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Andrea L Knob
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Juntao Ke
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Isabella Pisani
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gina Jin
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Brandon Lane
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Adele Mitrotti
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Elizabeth Colby
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Francesca Guglielmi
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amy J Osborne
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Dina F Ahram
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Chen Wang
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Farid Armand
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Francesca Zanoni
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Divisione di Nefrologia, Dialisi e Trapianti di Rene, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Andrew S Bomback
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Marco Delsante
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Massimo R A Ferrari
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | | | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R D, AstraZeneca, Cambridge, United Kingdom
| | - Dirk S Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R D, AstraZeneca, Cambridge, United Kingdom
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Riccardo Magistroni
- Section of Nephrology, Surgical, Medical and Dental Department of Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, Modena, Italy
| | - Corrado Murtas
- Division of Nephrology and Dialysis, Belcolle Hospital, Viterbo, Italy
| | - Sandro Feriozzi
- Division of Nephrology and Dialysis, Belcolle Hospital, Viterbo, Italy
| | - Teresa Rampino
- Unit of Nephrology, Department of Internal Medicine, Pavia University, Dialysis and Transplantation Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Esposito
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Nephrology, Dialysis and Transplantation Clinics, IRCCS Policlinico San Martino, Genova, Italy
| | - Margaret E Helmuth
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Shirlee Shril
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Umberto Maggiore
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Dominick Santoriello
- The Renal Pathology Laboratory of the Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Vivette D D'Agati
- The Renal Pathology Laboratory of the Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Moin A Saleem
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Friedhelm Hildebrandt
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Martin R Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
6
|
Staruschenko A, Alexander RT, Caplan MJ, Ilatovskaya DV. Calcium signalling and transport in the kidney. Nat Rev Nephrol 2024; 20:541-555. [PMID: 38641658 DOI: 10.1038/s41581-024-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans Hospital, Tampa, FL, USA.
| | - R Todd Alexander
- Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
- Women's and Children's Health Institute, Edmonton, AB, Canada
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
7
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
8
|
Rios FJ, Sarafian RD, Camargo LL, Montezano AC, Touyz RM. Recent Advances in Understanding the Mechanistic Role of Transient Receptor Potential Ion Channels in Patients With Hypertension. Can J Cardiol 2023; 39:1859-1873. [PMID: 37865227 DOI: 10.1016/j.cjca.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023] Open
Abstract
The transient receptor potential (TRP) channel superfamily is a group of nonselective cation channels that function as cellular sensors for a wide range of physical, chemical, and environmental stimuli. According to sequence homology, TRP channels are categorized into 6 subfamilies: TRP canonical, TRP vanilloid, TRP melastatin, TRP ankyrin, TRP mucolipin, and TRP polycystin. They are widely expressed in different cell types and tissues and have essential roles in various physiological and pathological processes by regulating the concentration of ions (Ca2+, Mg2+, Na+, and K+) and influencing intracellular signalling pathways. Human data and experimental models indicate the importance of TRP channels in vascular homeostasis and hypertension. Furthermore, TRP channels have emerged as key players in oxidative stress and inflammation, important in the pathophysiology of cardiovascular diseases, including hypertension. In this review, we present an overview of the TRP channels with a focus on their role in hypertension. In particular, we highlight mechanisms activated by TRP channels in vascular smooth muscle and endothelial cells and discuss their contribution to processes underlying vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Raquel D Sarafian
- Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Mukhopadhyay D, Goel HL, Xiong C, Goel S, Kumar A, Li R, Zhu LJ, Clark JL, Brehm MA, Mercurio AM. The calcium channel TRPC6 promotes chemotherapy-induced persistence by regulating integrin α6 mRNA splicing. Cell Rep 2023; 42:113347. [PMID: 37910503 PMCID: PMC10872598 DOI: 10.1016/j.celrep.2023.113347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.
Collapse
Affiliation(s)
- Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L Clark
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael A Brehm
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
10
|
Batool L, Hariharan K, Xu Y, Kaßmann M, Tsvetkov D, Gohlke BO, Kaden S, Gossen M, Nürnberg B, Kurtz A, Gollasch M. An inactivating human TRPC6 channel mutation without focal segmental glomerulosclerosis. Cell Mol Life Sci 2023; 80:265. [PMID: 37615749 PMCID: PMC10449997 DOI: 10.1007/s00018-023-04901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Transient receptor potential cation channel-6 (TRPC6) gene mutations cause familial focal segmental glomerulosclerosis (FSGS), which is inherited as an autosomal dominant disease. In patients with TRPC6-related FSGS, all mutations map to the N- or C-terminal TRPC6 protein domains. Thus far, the majority of TRPC6 mutations are missense resulting in increased or decreased calcium influx; however, the fundamental molecular mechanisms causing cell injury and kidney pathology are unclear. We report a novel heterozygous TRPC6 mutation (V691Kfs*) in a large kindred with no signs of FSGS despite a largely truncated TRPC6 protein. We studied the molecular effects of V691Kfs* TRPC6 mutant using the tridimensional cryo-EM structure of the tetrameric TRPC6 protein. The results indicated that V691 is localized at the pore-forming transmembrane region affecting the ion conduction pathway, and predicted that V691Kfs* causes closure of the ion-conducting pathway leading to channel inactivation. We assessed the impact of V691Kfs* and two previously reported TRPC6 disease mutants (P112Q and G757D) on calcium influx in cells. Our data show that the V691Kfs* fully inactivated the TRCP6 channel-specific calcium influx consistent with a complete loss-of-function phenotype. Furthermore, the V691Kfs* truncation exerted a dominant negative effect on the full-length TRPC6 proteins. In conclusion, the V691Kfs* non-functional truncated TRPC6 is not sufficient to cause FSGS. Our data corroborate recently characterized TRPC6 loss-of-function and gain-of-function mutants suggesting that one defective TRPC6 gene copy is not sufficient to cause FSGS. We underscore the importance of increased rather than reduced calcium influx through TRPC6 for podocyte cell death.
Collapse
Affiliation(s)
- Lilas Batool
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Krithika Hariharan
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Fraunhofer-Institute for Biomedical Engineering (IBMT), Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - Yao Xu
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Mario Kaßmann
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Dmitry Tsvetkov
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Björn-Oliver Gohlke
- Department of Information Technology, Science-IT, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Kaden
- Electron Microscopy Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institut für Aktive Polymere, Hereon TeltowAbteilung Stammzellmodifikation und Biomaterialien, Teltow, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, Tübingen, Germany
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Biomedical Data and Bioethics, Fraunhofer-Institute for Biomedical Engineering (IBMT), Berlin, Germany.
| | - Maik Gollasch
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany.
- Klinik für Nephrologie und Internistische Intensivmedizin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
11
|
May CJ, Chesor M, Hunter SE, Hayes B, Barr R, Roberts T, Barrington FA, Farmer L, Ni L, Jackson M, Snethen H, Tavakolidakhrabadi N, Goldstone M, Gilbert R, Beesley M, Lennon R, Foster R, Coward R, Welsh GI, Saleem MA. Podocyte protease activated receptor 1 stimulation in mice produces focal segmental glomerulosclerosis mirroring human disease signaling events. Kidney Int 2023; 104:265-278. [PMID: 36940798 PMCID: PMC7616342 DOI: 10.1016/j.kint.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.
Collapse
Affiliation(s)
- Carl J May
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Bryony Hayes
- Bristol Renal, University of Bristol, Bristol, UK
| | - Rachel Barr
- Bristol Renal, University of Bristol, Bristol, UK
| | - Tim Roberts
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Lan Ni
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | | | | | - Rodney Gilbert
- Renal Medicine and Nephrology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Matt Beesley
- Pathology Department, Gloucestershire Royal Hospital, Gloucester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medical and Health Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Richard Coward
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | | | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK.
| |
Collapse
|
12
|
Polat OK, Isaeva E, Sudhini YR, Knott B, Zhu K, Noben M, Suresh Kumar V, Endlich N, Mangos S, Reddy TV, Samelko B, Wei C, Altintas MM, Dryer SE, Sever S, Staruschenko A, Reiser J. The small GTPase regulatory protein Rac1 drives podocyte injury independent of cationic channel protein TRPC5. Kidney Int 2023; 103:1056-1062. [PMID: 36750145 PMCID: PMC10200725 DOI: 10.1016/j.kint.2023.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Transient receptor potential canonical channels (TRPCs) are non-selective cationic channels that play a role in signal transduction, especially in G -protein-mediated signaling cascades. TRPC5 is expressed predominantly in the brain but also in the kidney. However, its role in kidney physiology and pathophysiology is controversial. Some studies have suggested that TRPC5 drives podocyte injury and proteinuria, particularly after small GTPase Rac1 activation to induce the trafficking of TRPC5 to the plasma membrane. Other studies using TRPC5 gain-of-function transgenic mice have questioned the pathogenic role of TRPC5 in podocytes. Here, we show that TRPC5 over-expression or inhibition does not ameliorate proteinuria induced by the expression of constitutively active Rac1 in podocytes. Additionally, single-cell patch-clamp studies did not detect functional TRPC5 channels in primary cultures of podocytes. Thus, we conclude that TRPC5 plays a role redundant to that of TRPC6 in podocytes and is unlikely to be a useful therapeutic target for podocytopathies.
Collapse
Affiliation(s)
- Onur K Polat
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yashwanth R Sudhini
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Brenna Knott
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ke Zhu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Manuel Noben
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Varsha Suresh Kumar
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany; Center of High-End Imaging, NIPOKA GmbH, Greifswald, Germany
| | - Steve Mangos
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Beata Samelko
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA; Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas, USA
| | - Sanja Sever
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
13
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
14
|
Jiang S, Gu L, Hu Y, Ren Y, Yang Z, Chai C, Yu B, Ge H, Cao Z, Zhao F. Inhibition of TRPC6 suppressed TGFβ-induced fibroblast-myofibroblast transdifferentiation in renal interstitial NRK-49F cells. Exp Cell Res 2022; 421:113374. [PMID: 36206825 DOI: 10.1016/j.yexcr.2022.113374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/29/2022]
Abstract
Renal fibrosis is a global health concern with limited curative treatment. Canonical transient receptor potential channel 6 (TRPC6), a nonselective cation channel, has been shown to regulate the renal fibrosis in murine models. However, the molecular mechanism is unclear. Fibroblast-myofibroblast transdifferentiation is one of the critical steps in the progression of renal fibrosis. In the present study, we demonstrate that transforming growth factor (TGF)-β1 exposure significantly increases the TRPC6 expression in renal interstitial fibroblast NRK-49F cells. Pharmacological inhibition of TRPC6 and knockdown of Trpc6 by siRNA alleviate TGF-β1-increased expression levels of α-smooth muscle actin (α-SMA) and collagen I, two key markers of myofibroblasts. Although direct activation of TRPC6 by 1-oleoyl-2-acetyl-sn-glycerol (OAG) does not affect the expression of α-SMA and collagen I, OAG potentiates TGF-β1-induced fibroblast-myofibroblast transdifferentiation. Further study demonstrates that TGF-β1 exposure increases the phosphorylation level of p38 and Yes-associated protein (YAP) translocation into the nuclei. Inhibition of p38 and YAP decreases TGF-β1-enhanced TRPC6 and α-SMA expression. In conclusion, we demonstrate that TRPC6 is a key regulator of TGF-β1-induced fibroblast-myofibroblast transdifferentiation and provides the mechanism of how TGF-β1 exposure regulates TRPC6 expression in NRK-49F fibroblasts.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lifei Gu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Yixin Hu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhao Yang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chengzhi Chai
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Haitao Ge
- Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Taizhou, Jiangsu, 225500, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
15
|
Dryer SE, Kim EY. The Effects of TRPC6 Knockout in Animal Models of Kidney Disease. Biomolecules 2022; 12:1710. [PMID: 36421724 PMCID: PMC9687984 DOI: 10.3390/biom12111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2023] Open
Abstract
Diseases that induce a loss of renal function affect a substantial portion of the world's population and can range from a slight decline in the glomerular filtration rate or microalbuminuria to complete kidney failure. Kidney disorders can be acute or chronic, but any significant reduction in renal function is associated with increased all-cause morbidity and mortality, especially when the conditions become chronic. There is an urgent need for new therapeutic approaches to slow or halt the progression of kidney disease. One potential target of considerable interest is the canonical transient receptor potential-6 (TRPC6) channel. TRCP6 is a cationic channel with a significant permeability to Ca2+. It is expressed in several tissues, including in multiple cell types of the kidney in glomeruli, microvasculature, and tubules. Here, we will describe TRPC6 channels and their roles in signal transduction, with an emphasis on renal cells, and the studies implicating TRPC6 channels in the progression of inherited and acquired kidney diseases. We then describe studies using TRPC6 knockout mice and rats subjected to treatments that model human diseases, including nephrotic syndromes, diabetic nephropathy, autoimmune glomerulonephritis, and acute kidney injuries induced by renal ischemia and by obstruction of the urinary tract. TRPC6 knockout has been shown to reduce glomerular manifestations of disease in several of these models and reduces renal fibrosis caused by urinary tract obstruction. TRPC6 knockout has proven to be less effective at reducing diabetic nephropathy in mouse and rat models. We also summarize the implications of these studies for drug development.
Collapse
Affiliation(s)
- Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204-5001, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
16
|
Lu T, Sun X, Necela BM, Lee HC, Norton N. TRPC6 N338S is a gain-of-function mutant identified in patient with doxorubicin-induced cardiotoxicity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166505. [PMID: 35882306 PMCID: PMC10858733 DOI: 10.1016/j.bbadis.2022.166505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/23/2023]
Abstract
The canonical transient receptor potential 6 gene, TRPC6, has been implicated as a putative risk gene for chemotherapy-induced congestive heart failure, but knowledge of specific risk variants is lacking. Following our genome-wide association study and subsequent fine-mapping, a rare missense mutant of TRPC6 N338S, was identified in a breast cancer patient who received anthracycline-containing chemotherapy regiments and developed congestive heart failure. However, the function of N338S mutant has not been examined. Using intracellular Ca2+ imaging, patch clamp recording and molecular docking techniques, we assessed the function of N338S mutant heterologously expressed in HEK293 cells and HL-1 cardiac cells. We found that expression of TRPC6 N338S significantly increased intracellular Ca2+ levels ([Ca2+]i) and current densities in response to 50 μM 1-oleoyl 2-acetyl-sn-glycerol (OAG), an activator of TRPC6 channels, compared to those of TRPC6 WT. A 24-h pretreatment with 0.5 μM doxorubicin (DOX) further potentiated the OAG effects on TRPC6 N338S current densities and [Ca2+]i, and these effects were abolished by 1 μM BI-749327, a highly selective TRPC6 inhibitor. Moreover, DOX treatment significantly upregulated the mRNA and protein expressions of TRPC6 N338S, compared to those of TRPC6 WT. Molecular docking and dynamics simulation showed that OAG binds to the pocket constituted by the pore-helix, S5 and S6 domains of TRPC6. However, the N338S mutation strengthened the interaction with OAG, therefore stabilizing the OAG-TRPC6 N338S complex and enhancing OAG binding affinity. Our results indicate that TRPC6 N338S is a gain-of-function mutant that may contribute to DOX-induced cardiotoxicity by increasing Ca2+ influx and [Ca2+]i in cardiomyocytes.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Xiaojing Sun
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brian M Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
17
|
Mao L, Ding Y, Yu D, Yin J, Yu J. Tetrandrine Attenuates Podocyte Injury by Inhibiting TRPC6-Mediated RhoA/ROCK1 Pathway. Anal Cell Pathol (Amst) 2022; 2022:7534181. [PMID: 36247873 PMCID: PMC9553700 DOI: 10.1155/2022/7534181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 01/19/2023] Open
Abstract
Tetrandrine (Tet), a compound found in a traditional Chinese medicine, presents the protective effect for kidney function. Our study is aimed at clarifying the efficacy and underlying mechanism of Tet on podocyte injury. In this study, podocyte injury was induced in rats with adriamycin (ADR), and MPC5 podocytes were constructed with TRPC6 overexpression. We found that Tet treatment reduced the levels of proteinuria, serum creatinine, and blood urea nitrogen and increased plasma albumin levels in ADR-induced rats. Tet reduced intracellular Ca2+ influx and apoptosis in MPC5 podocytes overexpressing TRPC6. Tet downregulated the expression of renal TRPC6, RhoA, and ROCK1 and upregulated the expression of synaptopodin; meanwhile, it reduced calcineurin activity in vivo and in vitro. In conclusion, Tet protects against podocyte by affecting TRPC6 and its downstream RhoA/ROCK1 signaling pathway.
Collapse
Affiliation(s)
- Lichan Mao
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Yin Ding
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Dongrong Yu
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Jiazhen Yin
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Jin Yu
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| |
Collapse
|
18
|
Sambharia M, Rastogi P, Thomas CP. Monogenic focal segmental glomerulosclerosis: A conceptual framework for identification and management of a heterogeneous disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:377-398. [PMID: 35894442 PMCID: PMC9796580 DOI: 10.1002/ajmg.c.31990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 01/29/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a disease, rather a pattern of histological injury occurring from a variety of causes. The exact pathogenesis has yet to be fully elucidated but is likely varied based on the type of injury and the primary target of that injury. However, the approach to treatment is often based on the degree of podocyte foot process effacement and clinical presentation without sufficient attention paid to etiology. In this regard, there are many monogenic causes of FSGS with variable presentation from nephrotic syndrome with histological features of primary podocytopathy to more modest degrees of proteinuria with limited evidence of podocyte foot process injury. It is likely that genetic causes are largely underdiagnosed, as the role and the timing of genetic testing in FSGS is not established and genetic counseling, testing options, and interpretation of genotype in the context of phenotype may be outside the scope of practice for both nephrologists and geneticists. Yet most clinicians believe that a genetic diagnosis can lead to targeted therapy, limit the use of high-dose corticosteroids as a therapeutic trial, and allow the prediction of the natural history and risk for recurrence in the transplanted kidney. In this manuscript, we emphasize that genetic FSGS is not monolithic in its presentation, opine on the importance of genetic testing and provide an algorithmic approach to deployment of genetic testing in a timely fashion when faced with a patient with FSGS.
Collapse
Affiliation(s)
- Meenakshi Sambharia
- Division of Nephrology, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Prerna Rastogi
- Department of PathologyUniversity of IowaIowa CityIowaUSA
| | - Christie P. Thomas
- Division of Nephrology, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA,Department of PediatricsUniversity of IowaIowa CityIowaUSA,The Iowa Institute of Human GeneticsUniversity of IowaIowa CityIowaUSA,Medical ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| |
Collapse
|
19
|
In Vivo Inhibition of TRPC6 by SH045 Attenuates Renal Fibrosis in a New Zealand Obese (NZO) Mouse Model of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23126870. [PMID: 35743312 PMCID: PMC9224794 DOI: 10.3390/ijms23126870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Metabolic syndrome is a significant worldwide public health challenge and is inextricably linked to adverse renal and cardiovascular outcomes. The inhibition of the transient receptor potential cation channel subfamily C member 6 (TRPC6) has been found to ameliorate renal outcomes in the unilateral ureteral obstruction (UUO) of accelerated renal fibrosis. Therefore, the pharmacological inhibition of TPRC6 could be a promising therapeutic intervention in the progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome. In the present study, we hypothesized that the novel selective TRPC6 inhibitor SH045 (larixyl N-methylcarbamate) ameliorates UUO-accelerated renal fibrosis in a New Zealand obese (NZO) mouse model, which is a polygenic model of metabolic syndrome. The in vivo inhibition of TRPC6 by SH045 markedly decreased the mRNA expression of pro-fibrotic markers (Col1α1, Col3α1, Col4α1, Acta2, Ccn2, Fn1) and chemokines (Cxcl1, Ccl5, Ccr2) in UUO kidneys of NZO mice compared to kidneys of vehicle-treated animals. Renal expressions of intercellular adhesion molecule 1 (ICAM-1) and α-smooth muscle actin (α-SMA) were diminished in SH045- versus vehicle-treated UUO mice. Furthermore, renal inflammatory cell infiltration (F4/80+ and CD4+) and tubulointerstitial fibrosis (Sirius red and fibronectin staining) were ameliorated in SH045-treated NZO mice. We conclude that the pharmacological inhibition of TRPC6 might be a promising antifibrotic therapeutic method to treat progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome.
Collapse
|
20
|
Hermann C, Treder A, Näher M, Geiseler R, Gudermann T, Mederos Y Schnitzler M, Storch U. The normalized slope conductance as a tool for quantitative analysis of current-voltage relations. Biophys J 2022; 121:1435-1448. [PMID: 35300969 PMCID: PMC9072577 DOI: 10.1016/j.bpj.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
The patch-clamp method which was rewarded with the Nobel Prize in 1991 is a well-established and indispensable method to study ion channels in living cells and to biophysically characterize non-voltage-gated ion channels that comprise about 70% of all ion channels in the human genome. To investigate the biophysical properties of non-voltage-gated ion channels, whole-cell measurements with application of continuous voltage-ramps are routinely conducted to obtain current-voltage (IV) relationships. However, adequate tools for detailed and quantitative analysis of IV curves are still missing. We use the example of the transient receptor potential classical (TRPC) channel family to elucidate whether the normalized slope conductance (NSC) is an appropriate tool for a reliable discrimination of the IV curves of diverse TRPC channels that differ in their individual curve progression. We provide a robust calculation method for the NSC, and by applying this method we find that TRPC channel activators and modulators can evoke different NSC progressions independent from their expression levels which is pointing to distinguishable active channel states. TRPC6 mutations of patients suffering from focal segmental glomerulosclerosis (FSGS) resulted in distinct NSC progressions suggesting that the NSC is suitable to investigate structure-function relations and might help unravel the unknown pathomechanisms leading to FSGS. Altogether, the NCS represents an effective algorithm for extended biophysical characterization of non-voltage-gated ion channels.
Collapse
Affiliation(s)
- Christian Hermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Aaron Treder
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marius Näher
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Roman Geiseler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany;; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Michael Mederos Y Schnitzler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany;; DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
| | - Ursula Storch
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany;; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, 80336 Munich, Germany.
| |
Collapse
|
21
|
Zheng Z, Tsvetkov D, Bartolomaeus TUP, Erdogan C, Krügel U, Schleifenbaum J, Schaefer M, Nürnberg B, Chai X, Ludwig FA, N'diaye G, Köhler MB, Wu K, Gollasch M, Markó L. Role of TRPC6 in kidney damage after acute ischemic kidney injury. Sci Rep 2022; 12:3038. [PMID: 35194063 PMCID: PMC8864023 DOI: 10.1038/s41598-022-06703-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential channel subfamily C, member 6 (TRPC6), a non-selective cation channel that controls influx of Ca2+ and other monovalent cations into cells, is widely expressed in the kidney. TRPC6 gene variations have been linked to chronic kidney disease but its role in acute kidney injury (AKI) is unknown. Here we aimed to investigate the putative role of TRPC6 channels in AKI. We used Trpc6-/- mice and pharmacological blockade (SH045 and BI-749327), to evaluate short-term AKI outcomes. Here, we demonstrate that neither Trpc6 deficiency nor pharmacological inhibition of TRPC6 influences the short-term outcomes of AKI. Serum markers, renal expression of epithelial damage markers, tubular injury, and renal inflammatory response assessed by the histological analysis were similar in wild-type mice compared to Trpc6-/- mice as well as in vehicle-treated versus SH045- or BI-749327-treated mice. In addition, we also found no effect of TRPC6 modulation on renal arterial myogenic tone by using blockers to perfuse isolated kidneys. Therefore, we conclude that TRPC6 does not play a role in the acute phase of AKI. Our results may have clinical implications for safety and health of humans with TRPC6 gene variations, with respect to mutated TRPC6 channels in the response of the kidney to acute ischemic stimuli.
Collapse
Affiliation(s)
- Zhihuang Zheng
- Department of Nephrology/Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dmitry Tsvetkov
- Department of Nephrology/Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany. .,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany.
| | - Theda Ulrike Patricia Bartolomaeus
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cem Erdogan
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Krügel
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Johanna Schleifenbaum
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Xiaoning Chai
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Gabriele N'diaye
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - May-Britt Köhler
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kaiyin Wu
- Department of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maik Gollasch
- Department of Nephrology/Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany. .,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany.
| | - Lajos Markó
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. .,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites. Neuron 2022; 110:1023-1035.e5. [PMID: 35051376 DOI: 10.1016/j.neuron.2021.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
TRPC3 and TRPC6 channels are calcium-permeable non-selective cation channels that are involved in many physiological processes. The gain-of-function (GOF) mutations of TRPC6 lead to familial focal segmental glomerulosclerosis (FSGS) in humans, but their pathogenic mechanism remains elusive. Here, we report the cryo-EM structures of human TRPC3 in both high-calcium and low-calcium conditions. Based on these structures and accompanying electrophysiological studies, we identified both inhibitory and activating calcium-binding sites in TRPC3 that couple intracellular calcium concentrations to the basal channel activity. These calcium sensors are also structurally and functionally conserved in TRPC6. We uncovered that the GOF mutations of TRPC6 activate the channel by allosterically abolishing the inhibitory effects of intracellular calcium. Furthermore, structures of human TRPC6 in complex with two chemically distinct inhibitors bound at different ligand-binding pockets reveal different conformations of the transmembrane domain, providing templates for further structure-based drug design targeting TRPC6-related diseases such as FSGS.
Collapse
|
23
|
Mutations in trpγ, the homologue of TRPC6 autism candidate gene, causes autism-like behavioral deficits in Drosophila. Mol Psychiatry 2022; 27:3328-3342. [PMID: 35501408 PMCID: PMC9708601 DOI: 10.1038/s41380-022-01555-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.
Collapse
|
24
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
25
|
Ding Y, Tang X, Wang Y, Yu D, Zhu C, Yu J. Tetrandrine alleviates podocyte injury via calcium-dependent calpain-1 signaling blockade. BMC Complement Med Ther 2021; 21:296. [PMID: 34906112 PMCID: PMC8670271 DOI: 10.1186/s12906-021-03469-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/26/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Podocytes have become a crucial target for interventions in proteinuric kidney diseases. Many studies have reported that overexpression of transient receptor potential cation channel protein 6 (TRPC6) in podocyte injury upregulates intracellular Ca2+ influx and stimulates Ca2+-dependent protease calpain-1 signaling. The traditional Chinese drug, tetrandrine, a nonselective Ca2+ channel blocker, has long been used to treat chronic kidney disease. This research aimed to explore the possible mechanisms underlying the anti-proteinuric properties of tetrandrine. METHODS We investigated the involvement of tetrandrine in Ca2+ dependent calpain-1 signaling in mouse podocytes and adriamycin-induced nephropathy rats. Cyclosporine A (CsA) and U73122 were used as positive controls. Cell viability, cytotoxicity, Ca2+ concentration, calpain activity, and mRNA and protein expression levels of calpain-1 signaling pathways were examined. The clinical and pathological changes were measured. RESULTS Tetrandrine decreased intracellular Ca2+ influx in cultured TRPC6-overexpressing podocytes. In both in vitro and in vivo studies, the administration of tetrandrine downregulated calpain activity and the expression of calpain-1 and restored the expression of downstream Talin-1 and nephrin. Compared to CsA, tetrandrine treatment exhibited superior inhibitory effects on calpain activity and calpain-1 expression. CONCLUSIONS Tetrandrine has therapeutic potential in podocyte damage by blocking Ca2+-dependent activation of the calpain-1 signaling pathway. Tetrandrine reduced proteinuria, improved renal function, and alleviate renal pathological damage.
Collapse
Affiliation(s)
- Yin Ding
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Xuanli Tang
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Yuhui Wang
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Dongrong Yu
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Caifeng Zhu
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China
| | - Jin Yu
- Department of Nephrology (Key laboratory of Management of Kidney Disease in Zhejiang Province), Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road 453, Hangzhou, 310007, People's Republic of China.
| |
Collapse
|
26
|
Zhou Y, Kim C, Pablo JLB, Zhang F, Jung JY, Xiao L, Bazua-Valenti S, Emani M, Hopkins CR, Weins A, Greka A. TRPC5 Channel Inhibition Protects Podocytes in Puromycin-Aminonucleoside Induced Nephrosis Models. Front Med (Lausanne) 2021; 8:721865. [PMID: 34621762 PMCID: PMC8490698 DOI: 10.3389/fmed.2021.721865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Podocyte injury and the appearance of proteinuria are key features of several progressive kidney diseases. Genetic deletion or selective inhibition of TRPC5 channels with small-molecule inhibitors protects podocytes in rodent models of kidney disease, but less is known about the human relevance and translatability of TRPC5 inhibition. Here, we investigate the effect of TRPC5 inhibition in puromycin aminonucleoside (PAN)-treated rats, human iPSC-derived podocytes, and kidney organoids. We first established that systemic administration of the TRPC5 inhibitor AC1903 was sufficient to protect podocyte cytoskeletal proteins and suppress proteinuria in PAN-induced nephrosis rats, an established model of podocyte injury. TRPC5 current was recorded in the human iPSC-derived podocytes and was blocked by AC1903. PAN treatment caused podocyte injury in human iPSC-derived podocytes and kidney organoids. Inhibition of TRPC5 channels reversed the effects of PAN-induced injury in human podocytes in both 2D and 3D culture systems. Taken together, these results revealed the relevance of TRPC5 channel inhibition in puromycin-aminonucleoside induced nephrosis models, highlighting the potential of this therapeutic strategy for patients.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Choah Kim
- Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Juan Lorenzo B Pablo
- Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Fan Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ji Yong Jung
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Incheon, South Korea
| | - Li Xiao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Silvana Bazua-Valenti
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Maheswarareddy Emani
- Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
27
|
Thakor JM, Parmar G, Mistry KN, Gang S, Rank DN, Joshi CG. Mutational landscape of TRPC6, WT1, LMX1B, APOL1, PTPRO, PMM2, LAMB2 and WT1 genes associated with Steroid resistant nephrotic syndrome. Mol Biol Rep 2021; 48:7193-7201. [PMID: 34546508 DOI: 10.1007/s11033-021-06711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Nephrotic syndrome appears as a group of symptoms like proteinuria, edema and hyperlipidemia. Identification of monogenic forms revealed the physiology and pathogenesis of the SRNS. METHODS AND RESULTS We performed Illumina panel sequencing of seven genes in 90 Indian patients to determine the role of these genetic mutations in nephrotic syndrome prognosis. Samtool was used for variants calling, and SnpEff and Snpsift did variants annotation. Clinical significance and variant classification were performed by the ClinVar database. In SSNS and SRNS patients, we found 0.78% pathogenic and 3.41% likely pathogenic mutations. Pathogenic mutations were found in LAMB2, LMX1B and WT1 genes, while likely pathogenic mutations were found in (6/13) LAMB2, (2/13) LMX1B, (2/13) TRPC6, (2/13) PTPRO and (1/13) PMM2 genes. Approximately 46% likely pathogenic mutations were contributed to the LAMB2 gene in SSNS and SRNS patients. We also detect 30 VUS (variants of uncertain significance), which were found (17/30) pathogenic and (13/30) likely pathogenic by different prediction tools. CONCLUSIONS Multigene panels were used for genetic screening of heterogeneous disorders like nephrotic syndrome in the Indian population. We found pathogenic, likely pathogenic and certain VUS, which were responsible for the pathogenesis of the disease. Therefore, mutational analysis of SSNS and SRNS is necessary to avoid adverse effects of corticosteroids, modify the intensity of immunosuppressing agents, and prevent the disease's progression.
Collapse
Affiliation(s)
- Jinal M Thakor
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India
| | - Glory Parmar
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India
| | - Kinnari N Mistry
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India.
| | - Sishir Gang
- Muljibhai Patel Urological Hospital, Dr. V.V. Desai Road, Nadiad, 387001, Gujarat, India
| | - Dharamshibhai N Rank
- Department of Animal Breeding and Genetics, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, 388110, Gujarat, India
| |
Collapse
|
28
|
Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov 2021; 21:41-59. [PMID: 34526696 PMCID: PMC8442523 DOI: 10.1038/s41573-021-00268-4] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are multifunctional signalling molecules with many roles in sensory perception and cellular physiology. Therefore, it is not surprising that TRP channels have been implicated in numerous diseases, including hereditary disorders caused by defects in genes encoding TRP channels (TRP channelopathies). Most TRP channels are located at the cell surface, which makes them generally accessible drug targets. Early drug discovery efforts to target TRP channels focused on pain, but as our knowledge of TRP channels and their role in health and disease has grown, these efforts have expanded into new clinical indications, ranging from respiratory disorders through neurological and psychiatric diseases to diabetes and cancer. In this Review, we discuss recent findings in TRP channel structural biology that can affect both drug development and clinical indications. We also discuss the clinical promise of novel TRP channel modulators, aimed at both established and emerging targets. Last, we address the challenges that these compounds may face in clinical practice, including the need for carefully targeted approaches to minimize potential side-effects due to the multifunctional roles of TRP channels.
Collapse
|
29
|
Liu Z, Zhang H, Zhao S, Zhang Q, Zhang R, Han Y, Shao L, Zhao X. Novel gain-of-function mutation of TRPC6 Q134P contributes to late onset focal segmental glomerulosclerosis in a Chinese pedigree. Nephrology (Carlton) 2021; 26:1018-1025. [PMID: 34387384 DOI: 10.1111/nep.13963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/06/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS, OMIM®#603 965) is an overriding cause that leads to end-stage renal disease (ESRD). As a member of TRP superfamily, mutations of TRPC6 gene are closely linked to FSGS. By now, 20 missense mutations have been reported, among them, nine gain-of-function (GOF), and five loss-of-function (LOF) mutations have been recognized according to the effect on TRPC6 channel activity. Systematic investigations of functional mutations will provide valuable evidences for understanding the pathophysiology of TRPC6 involved in FSGS. The aim of this study is to investigate the pathogenicity of a novel TRPC6 mutation p.Q134P in FSGS. METHODS High-throughput sequencing was performed to analyse 436 genes which are associated with hereditary kidney diseases in a Chinese pedigree. Then we constructed TRPC6 expression plasmids of wide type and variant. Immunofluorescence, cell-surface biotinylation assays and electrophysiology were used to analyse the localization, cell surface expression, and calcium transport activity of TRPC6. RESULTS A novel variant c.401A>C (p.Q134P) in exon 2 of TRPC6 gene was found. There was no significant difference between the expression levels of p.Q134P mutant and WT TRPC6 protein in the whole cell lysate and cell-surface fraction. Q134P mutant-bearing TRPC6 elicited much higher Ca+ current amplitude than WT. CONCLUSION We identified a novel GOF mutation p.Q134P of TRPC6 which contributed to late-onset FSGS. Our study expands the mutational spectrum of TRPC6 associated with FSGS and furtherly supports the hypothesis of calcium dose-response dependency that a moderate increased calcium influx elicited a mild FSGS phenotype.
Collapse
Affiliation(s)
- Zhiying Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Haiyan Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shipeng Zhao
- Department of Physiology, Qingdao University, Qingdao, China
| | - Qian Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yue Han
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 2021; 20:770-788. [PMID: 34262140 PMCID: PMC8278373 DOI: 10.1038/s41573-021-00242-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB). Specialized podocyte cells maintain the GFB, and structure-function experiments and studies of intercellular communication between the podocytes and other GFB cells, combined with advances from genetics and genomics, have laid the groundwork for a new generation of therapies that directly intervene at the GFB. These include inhibitors of apolipoprotein L1 (APOL1), short transient receptor potential channels (TRPCs), soluble fms-like tyrosine kinase 1 (sFLT1; also known as soluble vascular endothelial growth factor receptor 1), roundabout homologue 2 (ROBO2), endothelin receptor A, soluble urokinase plasminogen activator surface receptor (suPAR) and substrate intermediates for coenzyme Q10 (CoQ10). These molecular targets converge on two key components of GFB biology: mitochondrial function and the actin-myosin contractile machinery. This Review discusses therapies and developments focused on maintaining GFB integrity, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeremy S Duffield
- Research and Development, Prime Medicine, Cambridge, MA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
31
|
Abstract
The transient receptor potential (TRP) channel superfamily consists of a large group of non-selective cation channels that serve as cellular sensors for a wide spectrum of physical and environmental stimuli. The 28 mammalian TRPs, categorized into six subfamilies, including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin) and TRPP (polycystin), are widely expressed in different cells and tissues. TRPs exhibit a variety of unique features that not only distinguish them from other superfamilies of ion channels, but also confer diverse physiological functions. Located at the plasma membrane or in the membranes of intracellular organelles, TRPs are the cellular safeguards that sense various cell stresses and environmental stimuli and translate this information into responses at the organismal level. Loss- or gain-of-function mutations of TRPs cause inherited diseases and pathologies in different physiological systems, whereas up- or down-regulation of TRPs is associated with acquired human disorders. In this Cell Science at a Glance article and the accompanying poster, we briefly summarize the history of the discovery of TRPs, their unique features, recent advances in the understanding of TRP activation mechanisms, the structural basis of TRP Ca2+ selectivity and ligand binding, as well as potential roles in mammalian physiology and pathology.
Collapse
Affiliation(s)
- Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Role of Rho GTPase Interacting Proteins in Subcellular Compartments of Podocytes. Int J Mol Sci 2021; 22:ijms22073656. [PMID: 33915776 PMCID: PMC8037304 DOI: 10.3390/ijms22073656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
The first step of urine formation is the selective filtration of the plasma into the urinary space at the kidney structure called the glomerulus. The filtration barrier of the glomerulus allows blood cells and large proteins such as albumin to be retained while eliminating the waste products of the body. The filtration barrier consists of three layers: fenestrated endothelial cells, glomerular basement membrane, and podocytes. Podocytes are specialized epithelial cells featured by numerous, actin-based projections called foot processes. Proteins on the foot process membrane are connected to the well-organized intracellular actin network. The Rho family of small GTPases (Rho GTPases) act as intracellular molecular switches. They tightly regulate actin dynamics and subsequent diverse cellular functions such as adhesion, migration, and spreading. Previous studies using podocyte-specific transgenic or knockout animal models have established that Rho GTPases are crucial for the podocyte health and barrier function. However, little attention has been paid regarding subcellular locations where distinct Rho GTPases contribute to specific functions. In the current review, we discuss cellular events involving the prototypical Rho GTPases (RhoA, Rac1, and Cdc42) in podocytes, with particular focus on the subcellular compartments where the signaling events occur. We also provide our synthesized views of the current understanding and propose future research directions.
Collapse
|
33
|
Chai XN, Ludwig FA, Müglitz A, Schaefer M, Yin HY, Brust P, Regenthal R, Krügel U. Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice. Pharmaceuticals (Basel) 2021; 14:ph14030259. [PMID: 33805686 PMCID: PMC8000919 DOI: 10.3390/ph14030259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
TRPC6 (transient receptor potential cation channels; canonical subfamily C, member 6) is widespread localized in mammalian tissues like kidney and lung and associated with progressive proteinuria and pathophysiological pulmonary alterations, e.g., reperfusion edema or lung fibrosis. However, the understanding of TRPC6 channelopathies is still at the beginning stages. Recently, by chemical diversification of (+)-larixol originating from Larix decidua resin traditionally used for inhalation, its methylcarbamate congener, named SH045, was obtained and identified in functional assays as a highly potent, subtype-selective inhibitor of TRPC6. To pave the way for use of SH045 in animal disease models, this study aimed at developing a capable bioanalytical method and to provide exploratory pharmacokinetic data for this promising derivative. According to international guidelines, a robust and selective LC-MS/MS method based on MRM detection in positive ion mode was established and validated for quantification of SH045 in mice plasma, whereby linearity and accuracy were demonstrated for the range of 2–1600 ng/mL. Applying this method, the plasma concentration time course of SH045 following single intraperitoneal administration (20 mg/kg body weight) revealed a short half-life of 1.3 h. However, the pharmacological profile of SH045 is promising, as five hours after administration, plasma levels still remained sufficiently higher than published low nanomolar IC50 values. Summarizing, the LC-MS/MS method and exploratory pharmacokinetic data provide essential prerequisites for experimental pharmacological TRPC6 modulation and translational treatment of TRPC6 channelopathies.
Collapse
Affiliation(s)
- Xiao-Ning Chai
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
- Acupuncture and Tuina School, Chengdu University of Traditional, Chinese Medicine, Chengdu 610075, China;
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (F.-A.L.); (P.B.)
| | - Anne Müglitz
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
| | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional, Chinese Medicine, Chengdu 610075, China;
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (F.-A.L.); (P.B.)
| | - Ralf Regenthal
- Clinical Pharmacology, Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany;
| | - Ute Krügel
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
- Correspondence:
| |
Collapse
|
34
|
Norton N, Crook JE, Wang L, Olson JE, Kachergus JM, Serie DJ, Necela BM, Borgman PG, Advani PP, Ray JC, Landolfo C, Di Florio DN, Hill AR, Bruno KA, Fairweather D. Association of Genetic Variants at TRPC6 With Chemotherapy-Related Heart Failure. Front Cardiovasc Med 2020; 7:142. [PMID: 32903434 PMCID: PMC7438395 DOI: 10.3389/fcvm.2020.00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Our previous GWAS identified genetic variants at six novel loci that were associated with a decline in left ventricular ejection fraction (LVEF), p < 1 × 10−5 in 1,191 early breast cancer patients from the N9831 clinical trial of chemotherapy plus trastuzumab. In this study we sought replication of these loci. Methods: We tested the top loci from the GWAS for association with chemotherapy-related heart failure (CRHF) using 26 CRHF cases from N9831 and 984 patients from the Mayo Clinic Biobank which included CRHF cases (N = 12) and control groups of patients treated with anthracycline +/– trastuzumab without HF (N = 282) and patients with HF that were never treated with anthracycline or trastuzumab (N = 690). We further examined associated loci in the context of gene expression and rare coding variants using a TWAS approach in heart left ventricle and Sanger sequencing, respectively. Doxorubicin-induced apoptosis and cardiomyopathy was modeled in human iPSC-derived cardiomyocytes and endothelial cells and a mouse model, respectively, that were pre-treated with GsMTx-4, an inhibitor of TRPC6. Results:TRPC6 5′ flanking variant rs57242572-T was significantly more frequent in cases compared to controls, p = 0.031, and rs61918162-T showed a trend for association, p = 0.065. The rs61918162 T-allele was associated with higher TRPC6 expression in the heart left ventricle. We identified a single TRPC6 rare missense variant (rs767086724, N338S, prevalence 0.0025% in GnomAD) in one of 38 patients (2.6%) with CRHF. Pre-treatment of cardiomyocytes and endothelial cells with GsMTx4 significantly reduced doxorubicin-induced apoptosis. Similarly, mice treated with GsMTx4 had significantly improved doxorubicin-induced cardiac dysfunction. Conclusions: Genetic variants that are associated with increased TRPC6 expression in the heart and rare TRPC6 missense variants may be clinically useful as risk factors for CRHF. GsMTx-4 may be a cardioprotective agent in patients with TRPC6 risk variants. Replication of the genetic associations in larger well-characterized samples and functional studies are required.
Collapse
Affiliation(s)
- Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Julia E Crook
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, United States
| | - Liwei Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | | | - Daniel J Serie
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, United States
| | - Brian M Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Paul G Borgman
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Pooja P Advani
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Jordan C Ray
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Carolyn Landolfo
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Damian N Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States.,Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - Anneliese R Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States.,Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States.,Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
35
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
36
|
Gu LF, Ge HT, Zhao L, Wang YJ, Zhang F, Tang HT, Cao ZY, Yu BY, Chai CZ. Huangkui Capsule Ameliorates Renal Fibrosis in a Unilateral Ureteral Obstruction Mouse Model Through TRPC6 Dependent Signaling Pathways. Front Pharmacol 2020; 11:996. [PMID: 32719603 PMCID: PMC7350529 DOI: 10.3389/fphar.2020.00996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Renal fibrosis is the final common pathological manifestation of almost all progressive chronic kidney diseases (CKD). Transient receptor potential canonical (TRPC) channels, especially TRPC3/6, were proposed to be essential therapeutic targets for kidney injury. Huangkui capsule (HKC), an important adjuvant therapy for CKD, showed superior efficacy for CKD at stages 1–2 in clinical practice. However, its anti-fibrotic effect and the underlying mechanisms remain to be investigated. In the present study, we evaluated the efficacy of HKC on renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO) and explored the potential underlying mechanism. Administration of HKC by intragastric gavage dose-dependently suppressed UUO-induced kidney injury and tubulointerstitial fibrosis. Similarly, HKC suppressed the expression level of α-smooth muscle actin (α-SMA), increased the expression of E-cadherin, and suppressed the mRNA expression of a plethora of proinflammatory mediators that are necessary for the progression of renal fibrosis. Mechanistically, HKC suppressed both canonical and non-canonical TGF-β signaling pathways in UUO mice as well as the TRPC6/calcineurin A (CnA)/nuclear factor of activated T cells (NFAT) signaling axis. In addition, TRPC6 knockout mice and HKC treated wild type mice displayed comparable protection on UUO-triggered kidney tubulointerstitial injury, interstitial fibrosis, and α-SMA expression. More importantly, HKC had no additional protective effect on UUO-triggered kidney tubulointerstitial injury and interstitial fibrosis in TRPC6 knockout mouse. Further investigation demonstrated that HKC could directly suppress TRPC3/6 channel activities. Considered together, these data demonstrated that the protective effect of HKC on renal injury and interstitial fibrosis is dependent on TRPC6, possibly through direct inhibition of TRPC6 channel activity and indirect suppression of TRPC6 expression.
Collapse
Affiliation(s)
- Li-Fei Gu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hai-Tao Ge
- Institute of Huanghui, Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Lei Zhao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jing Wang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hai-Tao Tang
- Institute of Huanghui, Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Zheng-Yu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo-Yang Yu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Zhi Chai
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
37
|
Blaine J, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes. Cells 2020; 9:cells9071700. [PMID: 32708597 PMCID: PMC7408282 DOI: 10.3390/cells9071700] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.
Collapse
Affiliation(s)
- Judith Blaine
- Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - James Dylewski
- Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +303-724-4841
| |
Collapse
|
38
|
Formoso K, Susperreguy S, Freichel M, Birnbaumer L. RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways. Sci Rep 2020; 10:7227. [PMID: 32350291 PMCID: PMC7190874 DOI: 10.1038/s41598-020-61177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The seven-member transient receptor potential canonical genes (TRPC1-7) encode cation channels linked to several human diseases. There is little understanding of the participation of each TRPC in each pathology, considering functional redundancy. Also, most of the inhibitors available are not specific. Thus, we developed mice that lack all of the TRPCs and performed a transcriptome analysis in eight tissues. The aim of this research was to address the impact of the absence of all TRPC channels on gene expression. We obtained a total of 4305 differentially expressed genes (DEGs) in at least one tissue where spleen showed the highest number of DEGs (1371). Just 21 genes were modified in all the tissues. Performing a pathway enrichment analysis, we found that many important signaling pathways were modified in more than one tissue, including PI3K (phosphatidylinositol 3-kinase/protein kinase-B) signaling pathway, cytokine-cytokine receptor interaction, extracellular matrix (ECM)-receptor interaction and circadian rhythms. We describe for the first time the changes at the transcriptome level due to the lack of all TRPC proteins in a mouse model and provide a starting point to understand the function of TRPC channels and their possible roles in pathologies.
Collapse
Affiliation(s)
- Karina Formoso
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Sebastian Susperreguy
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Marc Freichel
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Lutz Birnbaumer
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina. .,Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
39
|
Fan G, Kaßmann M, Cui Y, Matthaeus C, Kunz S, Zhong C, Zhu S, Xie Y, Tsvetkov D, Daumke O, Huang Y, Gollasch M. Age attenuates the T-type Ca V 3.2-RyR axis in vascular smooth muscle. Aging Cell 2020; 19:e13134. [PMID: 32187825 PMCID: PMC7189999 DOI: 10.1111/acel.13134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/26/2022] Open
Abstract
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2−/− mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.
Collapse
Affiliation(s)
- Gang Fan
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Mario Kaßmann
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Yingqiu Cui
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Claudia Matthaeus
- Crystallography Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
| | - Séverine Kunz
- Electron Microscopy Facility Max Delbrück Center for Molecular Medicine (MDC) Berlin Germany
| | - Cheng Zhong
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Shuai Zhu
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Yu Xie
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Oliver Daumke
- Crystallography Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Yu Huang
- Institute of Vascular Medicine and School of Biomedical Sciences Chinese University of Hong Kong Hong Kong China
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
- Medical Clinic for Nephrology and Internal Intensive Care Charité – Universitätsmedizin Berlin Berlin Germany
- Department of Geriatrics University Medicine Greifswald Greifswald Germany
| |
Collapse
|
40
|
Kawachi H, Fukusumi Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin Exp Nephrol 2020; 24:193-204. [PMID: 32020343 PMCID: PMC7040068 DOI: 10.1007/s10157-020-01854-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022]
Abstract
Dysfunction of slit diaphragm, a cell–cell junction of glomerular podocytes, is involved in the development of proteinuria in several glomerular diseases. Slit diaphragm should be a target of a novel therapy for proteinuria. Nephrin, NEPH1, P-cadherin, FAT, and ephrin-B1 were reported to be extracellular components forming a molecular sieve of the slit diaphragm. Several cytoplasmic proteins such as ZO-1, podocin, CD2AP, MAGI proteins and Par-complex molecules were identified as scaffold proteins linking the slit diaphragm to the cytoskeleton. In this article, new insights into these molecules and the pathogenic roles of the dysfunction of these molecules were introduced. The slit diaphragm functions not only as a barrier but also as a signaling platform transfer the signal to the inside of the cell. For maintaining the slit diaphragm function properly, the phosphorylation level of nephrin is strictly regulated. The recent studies on the signaling pathway from nephrin, NEPH1, and ephrin-B1 were reviewed. Although the mechanism regulating the function of the slit diaphragm had remained unclear, recent studies revealed TRPC6 and angiotensin II-regulating mechanisms play a critical role in regulating the barrier function of the slit diaphragm. In this review, recent investigations on the regulation of the slit diaphragm function were reviewed, and a strategy for the establishment of a novel therapy for proteinuria was proposed.
Collapse
Affiliation(s)
- Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
41
|
Yu J, Zhu C, Yin J, Yu D, Wan F, Tang X, Jiang X. Tetrandrine Suppresses Transient Receptor Potential Cation Channel Protein 6 Overexpression- Induced Podocyte Damage via Blockage of RhoA/ROCK1 Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:361-370. [PMID: 32095070 PMCID: PMC6995298 DOI: 10.2147/dddt.s234262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Abstract
Objective Podocyte damage is common in many renal diseases characterized by proteinuria. Transient receptor potential cation channel protein 6 (TRPC6) plays an important role in renal function through its regulation of intracellular Ca2+ influx and RhoA/ROCK pathways. Chinese herb Stephania tetrandra, with the main active component being tetrandrine, has been used for the treatment of various kidney diseases for several years and has shown a positive effect. This study aimed at investigating the effect and mechanism of tetrandrine in podocyte damage induced by high expression of TRPC6. Methods Immortalized, differentiated murine podocytes, MPC5 were treated with valsartan (0–800 μM) and tetrandrine (0–40 μM) for 48 h. The maximum safe concentrations of valsartan and tetrandrine were selected using a cell viability assay. MPC5 podocytes stably expressing TRPC6 were constructed using a lentivirus packaging system, followed by treatment with valsartan, tetrandrine, and Y-27632 for 48 h and U73122 (10 μM) for 10 min. The RhoA/ROCK pathway and podocyte-specific proteins (nephrin and synaptopodin) levels were quantified. Podocyte apoptosis and intracellular Ca2+ concentration were measured. Results Maximum safe concentrations of 100 μM valsartan and 10 μM tetrandrine showed no observable toxicity in podocytes. MPC5 podocytes stably expressing TRPC6 had higher intracellular Ca2+ influx, apoptotic percentages, and expression of RhoA/ROCK proteins, but lower expression of nephrin and synaptopodin proteins. U73122 treatment for 10 min did not inhibit TRPC6, but suppressed RhoA/ROCK protein. Y-27632 decreased ROCK1 expression, but did not influence the expression of TRPC6 protein. Both 100 μM valsartan and 10 μM tetrandrine for 48 h significantly inhibited intracellular Ca2+ influx, apoptosis, and RhoA/ROCK pathway, and increased nephrin and synaptopodin proteins in podocytes stably expressing TRPC6. Conclusion Elevated TRPC6 expression can lead to podocyte injury by inducing intracellular Ca2+ influx and apoptosis of podocytes, and this effect may be mediated by activation of the RhoA/ROCK1 pathway. Tetrandrine can alleviate podocyte injury induced by TRPC6 expression through inhibition of the RhoA/ROCK pathway, suggesting a protective role in podocyte damage.
Collapse
Affiliation(s)
- Jin Yu
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Caifeng Zhu
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Jiazhen Yin
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Dongrong Yu
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Feng Wan
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Xuanli Tang
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| | - Xue Jiang
- Department of Nephrology, Guangxing Hospital Affiliated to ZheJiang Chinese Medical University (Key Laboratory of Zhejiang Province, Management of Kidney Disease), Hangzhou 310007, People's Republic of China
| |
Collapse
|
42
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Post-Translational Modification and Natural Mutation of TRPC Channels. Cells 2020; 9:cells9010135. [PMID: 31936014 PMCID: PMC7016788 DOI: 10.3390/cells9010135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transient Receptor Potential Canonical (TRPC) channels are homologues of Drosophila TRP channel first cloned in mammalian cells. TRPC family consists of seven members which are nonselective cation channels with a high Ca2+ permeability and are activated by a wide spectrum of stimuli. These channels are ubiquitously expressed in different tissues and organs in mammals and exert a variety of physiological functions. Post-translational modifications (PTMs) including phosphorylation, N-glycosylation, disulfide bond formation, ubiquitination, S-nitrosylation, S-glutathionylation, and acetylation play important roles in the modulation of channel gating, subcellular trafficking, protein-protein interaction, recycling, and protein architecture. PTMs also contribute to the polymodal activation of TRPCs and their subtle regulation in diverse physiological contexts and in pathological situations. Owing to their roles in the motor coordination and regulation of kidney podocyte structure, mutations of TRPCs have been implicated in diseases like cerebellar ataxia (moonwalker mice) and focal and segmental glomerulosclerosis (FSGS). The aim of this review is to comprehensively integrate all reported PTMs of TRPCs, to discuss their physiological/pathophysiological roles if available, and to summarize diseases linked to the natural mutations of TRPCs.
Collapse
|
44
|
Wang Q, Tian X, Wang Y, Wang Y, Li J, Zhao T, Li P. Role of Transient Receptor Potential Canonical Channel 6 (TRPC6) in Diabetic Kidney Disease by Regulating Podocyte Actin Cytoskeleton Rearrangement. J Diabetes Res 2020; 2020:6897390. [PMID: 31998809 PMCID: PMC6964719 DOI: 10.1155/2020/6897390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 01/19/2023] Open
Abstract
Podocyte injury is an important pathogenesis step causing proteinuric kidney diseases such as diabetic kidney disease (DKD). Actin cytoskeleton rearrangement in podocyte induced by multiple pathogenic factors is believed to be the key process resulting in glomerular injury. Many studies have recently shown that transient receptor potential canonical channel 6 (TRPC6) in podocyte plays a critical role in the development and progression of proteinuric kidney disease by regulating its actin cytoskeleton rearrangement. This review is aimed at summarizing the role of TRPC6 on DKD by regulating the podocyte actin cytoskeleton rearrangement, thereby help further broaden our views and understanding on the mechanism of DKD and provide a theoretic basis for exploring new therapeutic targets for DKD patients.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuyang Wang
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Jialin Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tingting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
45
|
Hall G, Wang L, Spurney RF. TRPC Channels in Proteinuric Kidney Diseases. Cells 2019; 9:cells9010044. [PMID: 31877991 PMCID: PMC7016871 DOI: 10.3390/cells9010044] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Over a decade ago, mutations in the gene encoding TRPC6 (transient receptor potential cation channel, subfamily C, member 6) were linked to development of familial forms of nephrosis. Since this discovery, TRPC6 has been implicated in the pathophysiology of non-genetic forms of kidney disease including focal segmental glomerulosclerosis (FSGS), diabetic nephropathy, immune-mediated kidney diseases, and renal fibrosis. On the basis of these findings, TRPC6 has become an important target for the development of therapeutic agents to treat diverse kidney diseases. Although TRPC6 has been a major focus for drug discovery, more recent studies suggest that other TRPC family members play a role in the pathogenesis of glomerular disease processes and chronic kidney disease (CKD). This review highlights the data implicating TRPC6 and other TRPC family members in both genetic and non-genetic forms of kidney disease, focusing on TRPC3, TRPC5, and TRPC6 in a cell type (glomerular podocytes) that plays a key role in proteinuric kidney diseases.
Collapse
|
46
|
Fiedler S, Storch U, Erdogmus S, Gudermann T, Mederos Y Schnitzler M, Dietrich A. Small Fluorescein Arsenical Hairpin-Based Förster Resonance Energy Transfer Analysis Reveals Changes in Amino- to Carboxyl-Terminal Interactions upon OAG Activation of Classical Transient Receptor Potential 6. Mol Pharmacol 2019; 96:90-98. [PMID: 31171574 DOI: 10.1124/mol.119.115949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/02/2019] [Indexed: 01/19/2023] Open
Abstract
Although the overall structure of many classical transient receptor potential proteins (TRPC), including human and murine TRPC6, were recently resolved by cryoelectron microscopy analysis, structural changes during channel activation by 1-oleoyl-1-acetyl-sn-glycerol (OAG), the membrane-permeable analog of diacylglycerol, were not defined. Moreover, data on carboxyl- and amino-terminal interactions were not provided, as the amino-terminal regions of murine and human TRPC6 were not resolved. Therefore, we employed a Förster resonance energy transfer (FRET) approach using a small fluorescein arsenical hairpin (FlAsH) targeted to a short tetracysteine sequence at the unresolved amino-terminus and cerulean, a cyan fluorescent protein, as a tag at the carboxyl-terminus of the murine TRPC6 protein. After OAG as well as GSK-1702934A activation, FRET efficiency was simultaneously and significantly reduced, indicating a decreased interaction between the amino to carboxyl termini in the functional tagged murine TRPC6 tetramer (TRPC6 WT) heterologously expressed in human embryonic kidney 293T cells. There was a significant reduction in the FRET signal obtained from analysis of murine TRPC6 FRET constructs with homologous amino-terminal mutations (M131T, G108S) that had been identified in human patients with inherited focal segmental glomerulosclerosis, a condition that can lead to end-stage renal disease. A novel, designed loss-of-function TRPC6 mutation (N109A) in the amino-terminus in close proximity to the carboxyl-terminus produced similar FRET ratios. SIGNIFICANCE STATEMENT: Our data show for the first time that FlAsH-tagging of ion channels is a promising tool to study conformational changes after channel opening and may significantly advance the analysis of ion channel activation as well as their mutants involved in channelopathies.
Collapse
Affiliation(s)
- Susanne Fiedler
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL) (S.F., U.S., S.E., T.G., M.M.S., A.D.) and Institute for Cardiovascular Prevention (IPEK) (U.S.), Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (T.G., M.M.S.); and Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany (T.G., A.D.)
| | - Ursula Storch
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL) (S.F., U.S., S.E., T.G., M.M.S., A.D.) and Institute for Cardiovascular Prevention (IPEK) (U.S.), Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (T.G., M.M.S.); and Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany (T.G., A.D.)
| | - Serap Erdogmus
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL) (S.F., U.S., S.E., T.G., M.M.S., A.D.) and Institute for Cardiovascular Prevention (IPEK) (U.S.), Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (T.G., M.M.S.); and Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany (T.G., A.D.)
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL) (S.F., U.S., S.E., T.G., M.M.S., A.D.) and Institute for Cardiovascular Prevention (IPEK) (U.S.), Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (T.G., M.M.S.); and Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany (T.G., A.D.)
| | - Michael Mederos Y Schnitzler
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL) (S.F., U.S., S.E., T.G., M.M.S., A.D.) and Institute for Cardiovascular Prevention (IPEK) (U.S.), Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (T.G., M.M.S.); and Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany (T.G., A.D.)
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL) (S.F., U.S., S.E., T.G., M.M.S., A.D.) and Institute for Cardiovascular Prevention (IPEK) (U.S.), Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (T.G., M.M.S.); and Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany (T.G., A.D.)
| |
Collapse
|
47
|
Pablo JL, Greka A. Charting a TRP to Novel Therapeutic Destinations for Kidney Diseases. Trends Pharmacol Sci 2019; 40:911-918. [PMID: 31704171 DOI: 10.1016/j.tips.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022]
Abstract
Ion channels are critical to kidney function, and their dysregulation leads to several distinct kidney diseases. Of the diversity of ion channels in kidney cells, the transient receptor potential (TRP) superfamily of proteins plays important and varied roles in both maintaining homeostasis as well as in causing disease. Recent work showed that TRPC5 blockers could successfully protect critical components of the kidney filter both in vitro and in vivo, thus revealing TRPC5 as a tractable therapeutic target for focal and segmental glomerulosclerosis (FSGS), a common cause of kidney failure. Human genetics point to three additional TRP channels as plausible therapeutic targets: TRPC6 in FSGS, PKD2 in polycystic kidney disease, and TRPM6 in familial hypomagnesemia with secondary hypocalcemia (HSH). We conclude that targeting TRP channels could pave the way for much needed therapies for kidney diseases.
Collapse
Affiliation(s)
- Juan Lorenzo Pablo
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Talbot BE, Vandorpe DH, Stotter BR, Alper SL, Schlondorff JS. Transmembrane insertases and N-glycosylation critically determine synthesis, trafficking, and activity of the nonselective cation channel TRPC6. J Biol Chem 2019; 294:12655-12669. [PMID: 31266804 PMCID: PMC6709635 DOI: 10.1074/jbc.ra119.008299] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential cation channel subfamily C member 6 (TRPC6) is a widely expressed ion channel. Gain-of-function mutations in the human TRPC6 channel cause autosomal-dominant focal segmental glomerulosclerosis, but the molecular components involved in disease development remain unclear. Here, we found that overexpression of gain-of-function TRPC6 channel variants is cytotoxic in cultured cells. Exploiting this phenotype in a genome-wide CRISPR/Cas screen for genes whose inactivation rescues cells from TRPC6-associated cytotoxicity, we identified several proteins essential for TRPC6 protein expression, including the endoplasmic reticulum (ER) membrane protein complex transmembrane insertase. We also identified transmembrane protein 208 (TMEM208), a putative component of a signal recognition particle-independent (SND) ER protein-targeting pathway, as being necessary for expression of TRPC6 and several other ion channels and transporters. TRPC6 expression was also diminished by loss of the previously uncharacterized WD repeat domain 83 opposite strand (WDR83OS), which interacted with both TRPC6 and TMEM208. Additionally enriched among the screen hits were genes involved in N-linked protein glycosylation. Deletion of the mannosyl (α-1,3-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase (MGAT1), necessary for the generation of complex N-linked glycans, abrogated TRPC6 gain-of-function variant-mediated Ca2+ influx and extracellular signal-regulated kinase activation in HEK cells, but failed to diminish cytotoxicity in cultured podocytes. However, mutating the two TRPC6 N-glycosylation sites abrogated the cytotoxicity of mutant TRPC6 and reduced its surface expression. These results expand the targets of TMEM208-mediated ER translocation to include multipass transmembrane proteins and suggest that TRPC6 N-glycosylation plays multiple roles in modulating channel trafficking and activity.
Collapse
Affiliation(s)
- Brianna E Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - David H Vandorpe
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Brian R Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Johannes S Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
49
|
Farmer LK, Rollason R, Whitcomb DJ, Ni L, Goodliff A, Lay AC, Birnbaumer L, Heesom KJ, Xu SZ, Saleem MA, Welsh GI. TRPC6 Binds to and Activates Calpain, Independent of Its Channel Activity, and Regulates Podocyte Cytoskeleton, Cell Adhesion, and Motility. J Am Soc Nephrol 2019; 30:1910-1924. [PMID: 31416818 DOI: 10.1681/asn.2018070729] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/17/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mutations in the transient receptor potential channel 6 (TRPC6) gene are associated with an inherited form of FSGS. Despite widespread expression, patients with TRPC6 mutations do not present with any other pathologic phenotype, suggesting that this protein has a unique yet unidentified role within the target cell for FSGS, the kidney podocyte. METHODS We generated a stable TRPC6 knockout podocyte cell line from TRPC6 knockout mice. These cells were engineered to express wild-type TRPC6, a dominant negative TRPC6 mutation, or either of two disease-causing mutations of TRPC6, G109S or K874*. We extensively characterized these cells using motility, detachment, and calpain activity assays; immunofluorescence; confocal or total internal reflection fluorescence microscopy; and western blotting. RESULTS Compared with wild-type cells, TRPC6-/- podocytes are less motile and more adhesive, with an altered actin cytoskeleton. We found that TRPC6 binds to ERK1/2 and the actin regulatory proteins, caldesmon (a calmodulin- and actin-binding protein) and calpain 1 and 2 (calcium-dependent cysteine proteases that control the podocyte cytoskeleton, cell adhesion, and motility via cleavage of paxillin, focal adhesion kinase, and talin). Knockdown or expression of the truncated K874* mutation (but not expression of the gain-of-function G019S mutation or dominant negative mutant of TRPC6) results in the mislocalization of calpain 1 and 2 and significant downregulation of calpain activity; this leads to altered podocyte cytoskeleton, motility, and adhesion-characteristics of TRPC6 -/- podocytes. CONCLUSIONS Our data demonstrate that independent of TRPC6 channel activity, the physical interaction between TRPC6 and calpain in the podocyte is important for cell motility and detachment and demonstrates a scaffolding role of the TRPC6 protein in disease.
Collapse
Affiliation(s)
| | | | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, and
| | - Lan Ni
- Bristol Renal, Bristol Medical School
| | | | | | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.,Faculty of Medical Sciences, Institute of Biomedical Research, Catholic University of Argentina, Buenos Aires, Argentina; and
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Shang-Zhong Xu
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | | |
Collapse
|
50
|
TRPC6 in diabetic kidney disease: good guy or bad guy? Kidney Int 2019; 95:256-258. [PMID: 30665563 DOI: 10.1016/j.kint.2018.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
An association of altered activity of transient receptor potential cation channel C6 (TRPC6) with the development of various diabetic complications was previously reported. In this issue, Wang et al. tested the contribution of TRPC6 in type 1 diabetes setting by breeding Akita mice with TRPC6 knockout mice. The authors revealed that the knockout of TRPC6 decreased proteinuria and attenuated tubule injury but promoted mesangial expansion in Akita mice. Therefore, TRPC6 has both beneficial and detrimental effects on glomeruli function.
Collapse
|