1
|
Dousdampanis P, Aggeletopoulou I, Mouzaki A. The role of M1/M2 macrophage polarization in the pathogenesis of obesity-related kidney disease and related pathologies. Front Immunol 2025; 15:1534823. [PMID: 39867890 PMCID: PMC11758166 DOI: 10.3389/fimmu.2024.1534823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function. Among the immune cells of the innate and adaptive immune response involved in the pathogenesis of obesity-related diseases, macrophages play a crucial role in the inflammation associated with CKD. In obese individuals, macrophages enter a pro-inflammatory state known as M1 polarization, which contributes to chronic inflammation. This polarization promotes tissue damage, inflammation and fibrosis, leading to progressive loss of kidney function. In addition, macrophage-induced oxidative stress is a key feature of CKD as it also promotes cell damage and inflammation. Macrophages also contribute to insulin resistance in type 2 diabetes by releasing inflammatory molecules that impair glucose metabolism, complicating the management of diabetes in obese patients. Hypertension and atherosclerosis, which are often associated with obesity, also contribute to the progression of CKD via immune and inflammatory pathways. Macrophages influence blood pressure regulation and contribute to vascular inflammation, particularly via the renin-angiotensin system. In atherosclerosis, macrophages accumulate in arterial plaques, leading to chronic inflammation and plaque instability, which may increase the risk of CVD in CKD patients. This review focuses on the involvement of macrophages in CKD and highlights their role as a critical link between CKD and other pathologies. Targeting macrophage polarization and the ensuing macrophage-induced inflammation could be an effective therapeutic strategy for CKD and related diseases and improve outcomes for patients with obesity-related kidney disease.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Visca D, Ardesi F, Zappa M, Pignatti P, Grossi S, Vanetti M, Migliori GB, Centis R, Angeli F, Spanevello A. Asthma and hypertension: the role of airway inflammation. Front Med (Lausanne) 2024; 11:1451625. [PMID: 39450103 PMCID: PMC11499200 DOI: 10.3389/fmed.2024.1451625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Asthma is a chronic inflammatory respiratory disease often associated with comorbidities. Among cardiovascular comorbidities, arterial hypertension seems to create an additional health burden in asthmatics. However, evidence on this relationship is lacking. Objective Our study aims to evaluate the characteristics of hypertensive asthmatics, focusing on the role of inflammation as a possible link between these diseases. Methods We conducted a monocentric retrospective analysis consecutively including asthmatics who underwent induced sputum (IS) at our asthma referral center. Patients were divided in two groups according to presence or absence of history of hypertension. Clinical, functional, and inflammatory (airway and systemic) data were collected. Results Data on two hundred and sixty asthmatic patients were analyzed. Seventy-nine (30.4%) of them had a diagnosis of hypertension requiring a specific pharmacological treatment. Asthmatics with hypertension were more frequently male (p = 0.047), older (p < 0.001), and with higher body max index (BMI) (p < 0.001) when compared to normotensive patients. No difference concerning asthma control, severity and pharmacological treatment was observed between the two groups (all p > 0.05); distribution of comorbidities and lung function impairment (forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC); all p < 0.05) were statistically different between groups. Mixed granulocytic airway inflammation was prevalent in the hypertensive asthmatics (p = 0.014). Interestingly, a multivariable analysis revealed that age ≥ 65 years and an increased percentage of sputum neutrophils (≥61%) were independent predictors of hypertensive status (p < 0.001). Conclusion Our data suggest that neutrophilic airway inflammation (as evaluated by induced sputum) is strictly associated with hypertension. In clinical practice, phenotyping asthmatic patients with comorbidities like hypertension could be useful also from a therapeutic point of view. Additional studies are mandatory to further elucidate the role of neutrophilic airway inflammation in asthma with cardiovascular diseases.
Collapse
Affiliation(s)
- Dina Visca
- Department of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesco Ardesi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Sarah Grossi
- Department of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Marco Vanetti
- Department of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Fabio Angeli
- Department of Medicine and Technological Innovation (DiMIT), University of Insubria, Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Antonio Spanevello
- Department of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
3
|
De Pascalis A, Tomassetti A, Vetrano D, Tringali E, Di Lullo L, Napoli M, La Manna G, Cianciolo G. Hypertension in Cardiovascular and Kidney Disease: Recent Trends - Treating Two Diseases as One. Cardiorenal Med 2024; 14:581-587. [PMID: 39374593 DOI: 10.1159/000541876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Hypertension and chronic kidney disease (CKD) are closely interlinked pathophysiologic states, such that high blood pressure (BP) is an independent risk factor for disease progression in both adult and pediatric patients with kidney disorders and progressive decline in kidney function can conversely lead to worsening BP control. SUMMARY Hypertension in CKD is not only associated with GFR loss, but increases cardiovascular risk, which is the leading source of mortality and morbidity in this population. Given this complex relationship between hypertension, CKD, and CVD, an optimal management of BP in CKD is mandatory to break an established vicious pathophysiological cycle that leads to adverse outcomes. KEY MESSAGES New promising molecules for the treatment of CKD, with interesting mechanisms, particularly regarding their pathophysiological interactions with arterial hypertension, are available or under development and in the very next future they may change the way we treat high BP in CKD patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcello Napoli
- Nephrology, Dialysis Unit, Vito Fazzi Hospital, Lecce, Italy
| | - Gaetano La Manna
- Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Nephrology, Dialysis, Hypertension Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Nephrology, Dialysis, Hypertension Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Dreher L, Bode M, Ehnert N, Meyer-Schwesinger C, Wiech T, Köhl J, Huber TB, Freiwald T, Herrnstadt GR, Wenzel UO. Role of the Anaphylatoxin Receptor C5aR2 in Angiotensin II-Induced Hypertension and Hypertensive End-Organ Damage. Am J Hypertens 2024; 37:810-825. [PMID: 38934290 DOI: 10.1093/ajh/hpae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKROUND Complement activation may facilitate hypertension through its effects on immune responses. The anaphylatoxin C5a, a major inflammatory effector, binds to the C5a receptors 1 and 2 (C5aR1, C5aR2). We have recently shown that C5aR1-/- mice have reduced hypertensive renal injury. The role of C5aR2 in hypertension is unknown. METHODS For examination of C5aR2 expression on infiltrating and resident renal cells a tandem dye Tomato-C5aR2 knock-in reporter mouse was used. Human C5aR2 expression was analyzed in a single-cell RNAseq data set from the kidneys of hypertensive patients. Finally, we examined the effect of angiotensin II-induced hypertension in C5aR2-deficient mice. RESULTS Flow cytometric analysis of leukocytes isolated from kidneys of the reporter mice showed that dendritic cells are the major C5aR2-expressing population (34%) followed by monocyte/macrophages (30%) and neutrophils (14%). Using confocal microscopy C5aR2 was not detected in resident renal or cardiac cells. In the human kidney, C5aR2 was also mainly found in monocytes, macrophages, and dendritic cells with a significantly higher expression in hypertension (P < 0.05). Unilateral nephrectomy was performed followed by infusion of Ang II (0.75 ng/g/min) and a high salt diet in wildtype (n = 18) and C5aR2-deficient mice (n = 14). Blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation), and cardiac injury (cardiac fibrosis, heart weight, gene expression) did not differ between hypertensive wildtype and C5aR2-/- mice. CONCLUSIONS In summary, C5aR2 is mainly expressed in myeloid cells in the kidney in mice and humans but its deficiency has no effect on Ang II-induced hypertensive injury.
Collapse
Affiliation(s)
- Leonie Dreher
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolas Ehnert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Section of Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, Lübeck., Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tilo Freiwald
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg R Herrnstadt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Peter JK, Umene R, Wu CH, Nakamura Y, Washimine N, Yamamoto R, Ngugi C, Linge K, Kweri JK, Inoue T. Renal macrophages induce hypertension and kidney fibrosis in Angiotensin II salt mice model. Biochem Biophys Res Commun 2024; 715:149997. [PMID: 38678782 DOI: 10.1016/j.bbrc.2024.149997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The immune system is involved in hypertension development with different immune cells reported to have either pro or anti-hypertensive effects. In hypertension, immune cells have been thought to infiltrate blood pressure-regulating organs, resulting in either elevation or reduction of blood pressure. There is controversy over whether macrophages play a detrimental or beneficial role in the development of hypertension, and the few existing studies have yielded conflicting results. This study aimed to determine the effects of angiotensin II (Ang II) salt-induced hypertension on renal immune cells and to determine whether renal macrophages are involved in the induction of hypertension. Hypertension was induced by administration of Ang II and saline for two weeks. The effects of hypertension on kidney immune cells were assessed using flow cytometry. Macrophage infiltration in the kidney was assessed by immunohistochemistry and kidney fibrosis was assessed using trichrome stain and kidney real time-qPCR. Liposome encapsulated clodronate was used to deplete macrophages in C57BL/6J mice and investigate the direct role of macrophages in hypertension induction. Ang II saline mice group developed hypertension, had increased renal macrophages, and had increased expression of Acta2 and Col1a1 and kidney fibrotic areas. Macrophage depletion blunted hypertension development and reduced the expression of Acta2 and Col1a1 in the kidney and kidney fibrotic areas in Ang II saline group. The results of this study demonstrate that macrophages infiltrate the kidneys and increase kidney fibrosis in Ang II salt-induced hypertension, and depletion of macrophages suppresses the development of hypertension and decreases kidney fibrosis. This indicates that macrophages play a direct role in hypertension development. Hence macrophages have a potential to be considered as therapeutic target in hypertension management.
Collapse
Affiliation(s)
- Joseph Kasyoki Peter
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Japan; Department of Medical Physiology, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Kenya; Department of Clinical Medicine, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Japan; Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Norito Washimine
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Japan; Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Ryoko Yamamoto
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Caroline Ngugi
- Department of Medical Microbiology, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Kavoo Linge
- Department of Medical Physiology, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Joseph K Kweri
- Department of Human Anatomy, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| |
Collapse
|
6
|
Maaliki D, Itani M, Jarrah H, El-Mallah C, Ismail D, El Atie YE, Obeid O, Jaffa MA, Itani HA. Dietary High Salt Intake Exacerbates SGK1-Mediated T Cell Pathogenicity in L-NAME/High Salt-Induced Hypertension. Int J Mol Sci 2024; 25:4402. [PMID: 38673987 PMCID: PMC11050194 DOI: 10.3390/ijms25084402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Sodium chloride (NaCl) activates Th17 and dendritic cells in hypertension by stimulating serum/glucocorticoid kinase 1 (SGK1), a sodium sensor. Memory T cells also play a role in hypertension by infiltrating target organs and releasing proinflammatory cytokines. We tested the hypothesis that the role of T cell SGK1 extends to memory T cells. We employed mice with a T cell deletion of SGK1, SGK1fl/fl × tgCD4cre mice, and used SGK1fl/fl mice as controls. We treated the mice with L-NAME (0.5 mg/mL) for 2 weeks and allowed a 2-week washout interval, followed by a 3-week high-salt (HS) diet (4% NaCl). L-NAME/HS significantly increased blood pressure and memory T cell accumulation in the kidneys and bone marrow of SGK1fl/fl mice compared to knockout mice on L-NAME/HS or groups on a normal diet (ND). SGK1fl/fl mice exhibited increased albuminuria, renal fibrosis, and interferon-γ levels after L-NAME/HS treatment. Myography demonstrated endothelial dysfunction in the mesenteric arterioles of SGK1fl/fl mice. Bone marrow memory T cells were adoptively transferred from either mouse strain after L-NAME/HS administration to recipient CD45.1 mice fed the HS diet for 3 weeks. Only the mice that received cells from SGK1fl/fl donors exhibited increased blood pressure and renal memory T cell infiltration. Our data suggest a new therapeutic target for decreasing hypertension-specific memory T cells and protecting against hypertension.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Maha Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Hala Jarrah
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Carla El-Mallah
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 1107, Lebanon; (C.E.-M.); (O.O.)
| | - Diana Ismail
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Yara E. El Atie
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 1107, Lebanon; (C.E.-M.); (O.O.)
| | - Miran A. Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut 1107, Lebanon;
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Agrawal S, Tran MT, Jennings TSK, Soliman MMH, Heo S, Sasson B, Rahmatpanah F, Agrawal A. Changes in the innate immune response to SARS-CoV-2 with advancing age in humans. Immun Ageing 2024; 21:21. [PMID: 38515147 PMCID: PMC10956333 DOI: 10.1186/s12979-024-00426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Advancing age is a major risk factor for respiratory viral infections. The infections are often prolonged and difficult to resolve resulting hospitalizations and mortality. The recent COVID-19 pandemic has highlighted this as elderly subjects have emerged as vulnerable populations that display increased susceptibility and severity to SARS-CoV-2. There is an urgent need to identify the probable mechanisms underlying this to protect against future outbreaks of such nature. Innate immunity is the first line of defense against viruses and its decline impacts downstream immune responses. This is because dendritic cells (DCs) and macrophages are key cellular elements of the innate immune system that can sense and respond to viruses by producing inflammatory mediators and priming CD4 and CD8 T-cell responses. RESULTS We investigated the changes in innate immune responses to SARS-CoV-2 as a function of age. Our results using human PBMCs from aged, middle-aged, and young subjects indicate that the activation of DCs and monocytes in response to SARS-CoV-2 is compromised with age. The impairment is most apparent in pDCs where both aged and middle-aged display reduced responses. The secretion of IL-29 that confers protection against respiratory viruses is also decreased in both aged and middle-aged subjects. In contrast, inflammatory mediators associated with severe COVID-19 including CXCL-8, TREM-1 are increased with age. This is also apparent in the gene expression data where pathways related host defense display an age dependent decrease with a concomitant increase in inflammatory pathways. Not only are the inflammatory pathways and mediators increased after stimulation with SARS-CoV-2 but also at homeostasis. In keeping with reduced DC activation, the induction of cytotoxic CD8 T cells is also impaired in aged subjects. However, the CD8 T cells from aged subjects display increased baseline activation in accordance with the enhanced baseline inflammation. CONCLUSIONS Our results demonstrate a decline in protective anti-viral immune responses and increase in damaging inflammatory responses with age indicating that dysregulated innate immune responses play a significant role in the increased susceptibility of aged subjects to COVID-19. Furthermore, the dysregulation in immune responses develops early on as middle-aged demonstrate several of these changes.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Michelle Thu Tran
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Marlaine Maged Hosny Soliman
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Sally Heo
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Bobby Sasson
- Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Farah Rahmatpanah
- Department of Pathology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Zach DK, Schwegel N, Santner V, Winkelbauer L, Hoeller V, Kolesnik E, Gollmer J, Seggewiss H, Batzner A, Perl S, Wallner M, Reiter U, Rainer PP, Zirlik A, Ablasser K, Verheyen N. Low-grade systemic inflammation and left ventricular dysfunction in hypertensive compared to non-hypertensive hypertrophic cardiomyopathy. Int J Cardiol 2024; 399:131661. [PMID: 38158132 DOI: 10.1016/j.ijcard.2023.131661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Arterial hypertension (HTN) is associated with excess mortality in hypertrophic cardiomyopathy (HCM), but underlying mechanisms are largely elusive. The objective of this study was to investigate the association between HTN and markers of left ventricular (LV) dysfunction and low-grade systemic inflammation in a HCM cohort. METHODS This was a single-center cross-sectional case-control study comparing echocardiographic and plasma-derived indices of LV dysfunction and low-grade systemic inflammation between 30 adult patients with HCM and HTN (HTN+) and 30 sex- and age-matched HCM patients without HTN (HTN-). Echocardiographic measures were assessed using post-processing analyses by blinded investigators. RESULTS Mean age of the study population was 55.1 ± 10.4 years, 30% were women. Echocardiographic measures of systolic and diastolic dysfunction, including speckle-tracking derived parameters, did not differ between HTN+ and HTN-. Moreover, levels of N-terminal pro B-type natriuretic peptide were balanced between cases and controls. Compared with HTN-, HTN+ patients exhibited a higher white blood cell count [8.1 ± 1.8 109/l vs. 6.4 ± 1.6 109/l; p < 0.001] as well as higher plasma levels of interleukin-6 [2.8 pg/ml (2.0, 5.4) vs. 2.1 pg/ml (1.5, 3.4); p = 0.008] and high-sensitivity C-reactive protein [2.6 mg/l (1.4, 6.5) vs. 1.1 mg/l (0.9, 2.4); p = 0.004]. CONCLUSION This study demonstrates that HTN is associated with indices of low-grade systemic inflammation among HCM patients. Moreover, this analysis indicates that the adverse impact of HTN in HCM patients is a consequence of systemic effects rather than alterations of cardiac function, as measures of LV systolic and diastolic dysfunction did not differ between HTN+ and HTN-.
Collapse
Affiliation(s)
- David K Zach
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Nora Schwegel
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Viktoria Santner
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Larissa Winkelbauer
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Viktoria Hoeller
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Gollmer
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hubert Seggewiss
- Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Angelika Batzner
- Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Sabine Perl
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Markus Wallner
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ursula Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Peter P Rainer
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Andreas Zirlik
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Klemens Ablasser
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nicolas Verheyen
- University Heart Center, Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
9
|
Koubar SH, Garcia-Rivera A, Mohamed MMB, Hall JE, Hall ME, Hassanein M. Underlying Mechanisms and Treatment of Hypertension in Glomerular Diseases. Curr Hypertens Rep 2024; 26:119-130. [PMID: 37982994 DOI: 10.1007/s11906-023-01287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the underlying mechanisms that lead to hypertension in glomerular diseases and the advancements in treatment strategies and to provide clinicians with valuable insights into the pathophysiological mechanisms and evidence-based therapeutic approaches for managing hypertension in patients with glomerular diseases. RECENT FINDINGS In recent years, there have been remarkable advancements in our understanding of the immune and non-immune mechanisms that are involved in the pathogenesis of hypertension in glomerular diseases. Furthermore, this review will encompass the latest data on management strategies, including RAAS inhibition, endothelin receptor blockers, SGLT2 inhibitors, and immune-based therapies. Hypertension (HTN) and cardiovascular diseases are leading causes of mortality in glomerular diseases. The latter are intricately related with hypertension and share common pathophysiological mechanisms. Hypertension in glomerular disease represents a complex and multifaceted interplay between kidney dysfunction, immune-mediated, and non-immune-mediated pathology. Understanding the complex mechanisms involved in this relationship has evolved significantly over the years, shedding light on the pathophysiological processes underlying the development and progression of glomerular disease-associated HTN, and is crucial for developing effective therapeutic strategies and improving patients' outcomes.
Collapse
Affiliation(s)
- Sahar H Koubar
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alejandro Garcia-Rivera
- Department of Nephrology. Hospital General Regional 46, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Muner M B Mohamed
- Department of Nephrology, Ochsner Health System, New Orleans, LA, USA
- Ochsner Clinical School, The University of Queensland, Brisbane, QLD, Australia
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Division of Cardiovascular Disease, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mohamed Hassanein
- Division of Nephrology and Hypertension, Department of Medicine, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
| |
Collapse
|
10
|
Lu Y, Luo Q, Liu Y, Wang H. Relationships between inflammation markers and the risk of hypertension in primary Sjögren's syndrome: A retrospective cohort study. Mod Rheumatol 2024; 34:369-375. [PMID: 36976576 DOI: 10.1093/mr/road032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES The association of inflammation markers with hypertension (HTN) in primary Sjögren's syndrome (pSS) remains controversial. We aimed to investigate whether inflammation markers are at increased risk of developing HTN in pSS patients. METHODS A retrospective cohort study included pSS patients (n = 380) between May 2011 and May 2020 from the Third People's Hospital of Chengdu. Multivariable Cox regression analyses were used to estimate hazard ratios (HRs) of the potential inflammation markers for pSS-HTN. Subsequently, the dose-response relationships were also used. RESULTS Out of 380 pSS patients, 171 (45%) developed HTN, and the median follow-up period was 4.16 years. Univariable Cox regression analysis showed that the erythrocyte sedimentation rate (ESR) and neutrophils were significantly associated with the incident HTN (P < 0.05). After adjustment for covariates, this association between ESR (adjusted HR 1.017, 95%CI: 1.005-1.027, P = .003), neutrophils (adjusted HR 1.356, 95%CI: 1.113-1.653, P = .003), and HTN remained significant. The dose-effect relationship was also found between ESR, neutrophils, and HTN (P = .001). CONCLUSIONS Inflammation markers may play an important role in the incident HTN in pSS.
Collapse
Affiliation(s)
- Yan Lu
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
- Department of Geriatrics, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiang Luo
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yaping Liu
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
- Department of Geriatrics, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Bode M, Diemer JN, Luu TV, Ehnert N, Teigeler T, Wiech T, Lindenmeyer MT, Herrnstadt GR, Bülow J, Huber TB, Tomas NM, Wenzel UO. Complement component C3 as a new target to lower albuminuria in hypertensive kidney disease. Br J Pharmacol 2023; 180:2412-2435. [PMID: 37076314 DOI: 10.1111/bph.16097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Complement activation may drive hypertension through its effects on immunity and tissue integrity. EXPERIMENTAL APPROACH We examined expression of C3, the central protein of the complement cascade, in hypertension. KEY RESULTS Increased C3 expression was found in kidney biopsies and micro-dissected glomeruli of patients with hypertensive nephropathy. Renal single cell RNA sequence data from normotensive and hypertensive patients confirmed expression of C3 in different cellular compartments of the kidney. In angiotensin II (Ang II) induced hypertension renal C3 expression was up-regulated. C3-/- mice revealed a significant lower albuminuria in the early phase of hypertension. However, no difference was found for blood pressure, renal injury (histology, glomerular filtration rate, inflammation) and cardiac injury (fibrosis, weight, gene expression) between C3-/- and wildtype mice after Ang II infusion. Also, in deoxycorticosterone acetate (DOCA) salt hypertension, a significantly lower albuminuria was found in the first weeks of hypertension in C3 deficient mice but no significant difference in renal and cardiac injury. Down-regulation of C3 by C3 targeting GalNAc (n-acetylgalactosamine) small interfering RNA (siRNA) conjugate decreased C3 in the liver by 96% and lowered albuminuria in the early phase but showed no effect on blood pressure and end-organ damage. Inhibition of complement C5 by siRNA showed no effect on albuminuria. CONCLUSION AND IMPLICATIONS Increased C3 expression is found in the kidneys of hypertensive mice and men. Genetic and therapeutic knockdown of C3 improved albuminuria in the early phase of hypertension but did not ameliorate arterial blood pressure nor renal and cardiac injury.
Collapse
Affiliation(s)
- Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Niklas Diemer
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - The Vinh Luu
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolas Ehnert
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Teresa Teigeler
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Pathology, Section Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg R Herrnstadt
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Bülow
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Figueroa SM, Bertocchio JP, Nakamura T, El-Moghrabi S, Jaisser F, Amador CA. The Mineralocorticoid Receptor on Smooth Muscle Cells Promotes Tacrolimus-Induced Renal Injury in Mice. Pharmaceutics 2023; 15:pharmaceutics15051373. [PMID: 37242615 DOI: 10.3390/pharmaceutics15051373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Tacrolimus (Tac) is a calcineurin inhibitor commonly used as an immunosuppressor after solid organ transplantation. However, Tac may induce hypertension, nephrotoxicity, and an increase in aldosterone levels. The activation of the mineralocorticoid receptor (MR) is related to the proinflammatory status at the renal level. It modulates the vasoactive response as they are expressed on vascular smooth muscle cells (SMC). In this study, we investigated whether MR is involved in the renal damage generated by Tac and if the MR expressed in SMC is involved. Littermate control mice and mice with targeted deletion of the MR in SMC (SMC-MR-KO) were administered Tac (10 mg/Kg/d) for 10 days. Tac increased the blood pressure, plasma creatinine, expression of the renal induction of the interleukin (IL)-6 mRNA, and expression of neutrophil gelatinase-associated lipocalin (NGAL) protein, a marker of tubular damage (p < 0.05). Our study revealed that co-administration of spironolactone, an MR antagonist, or the absence of MR in SMC-MR-KO mice mitigated most of the unwanted effects of Tac. These results enhance our understanding of the involvement of MR in SMC during the adverse reactions of Tac treatment. Our findings provided an opportunity to design future studies considering the MR antagonism in transplanted subjects.
Collapse
Affiliation(s)
- Stefanny M Figueroa
- Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Jean-Philippe Bertocchio
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Toshifumi Nakamura
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Soumaya El-Moghrabi
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Frédéric Jaisser
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Cristián A Amador
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7510156, Chile
| |
Collapse
|
13
|
Li Q, Mei A, Qian H, Min X, Yang H, Zhong J, Li C, Xu H, Chen J. The role of myeloid-derived immunosuppressive cells in cardiovascular disease. Int Immunopharmacol 2023; 117:109955. [PMID: 36878043 DOI: 10.1016/j.intimp.2023.109955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population found in the bone marrow, peripheral blood, and tumor tissue. Their role is mainly to inhibit the monitoring function of innate and adaptive immune cells, which leads to the escape of tumor cells and promotes tumor development and metastasis. Moreover, recent studies have found that MDSCs are therapeutic in several autoimmune disorders due to their strong immunosuppressive ability. Additionally, studies have found that MDSCs have an important role in the formation and progression of other cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, and hypertension. In this review, we will discuss the role of MDSCs in the pathogenesis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| |
Collapse
|
14
|
Herrock OT, Deer E, Amaral LM, Campbell N, Lemon J, Ingram N, Cornelius DC, Turner TW, Fitzgerald S, Ibrahim T, Dechend R, Wallukat G, LaMarca B. B2 cells contribute to hypertension and natural killer cell activation possibly via AT1-AA in response to placental ischemia. Am J Physiol Renal Physiol 2023; 324:F179-F192. [PMID: 36417275 PMCID: PMC9844978 DOI: 10.1152/ajprenal.00190.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Preeclampsia, new onset hypertension during pregnancy, is associated with activated T helper cells (Th) and B cells secreting agonistic autoantibodies against the angiotensin II type 1 receptor (AT1-AA). The reduced uterine perfusion pressure (RUPP) model of placental ischemia recapitulates these characteristics. We have shown that Th-B cell communication contributes to AT1-AA and symptoms of preeclampsia in the RUPP rat. B2 cells are classical B cells that communicate with Th cells and are then transformed into memory B cells. We hypothesize that B2 cells cause hypertension, natural killer (NK) cell activation, and complement activation during pregnancy through the production of AT1-AA. To test this hypothesis, total splenic B cells and B2 cells were isolated from normal pregnant (NP) or RUPP rats on gestational day (GD)19 and adoptively transferred into GD12 NP rats. A group of recipient rats was treated with a specific inhibitor peptide of AT1-AA. On GD19, mean arterial pressure was measured, tissues were collected, activated NK cells were measured by flow cytometry, and AT1-AA was measured by cardiomyocyte assay. NP recipients of RUPP B cells or RUPP B2 cells had increased mean arterial pressure, AT1-AA, and circulating activated NK cells compared with recipients of NP B cells. Hypertension in NP recipients of RUPP B cells or RUPP B2 was attenuated with AT1-AA blockade. This study demonstrates that B cells and B2 cells from RUPP rats cause hypertension and increased AT1-AA and NK cell activation in response to placental ischemia during pregnancy.NEW & NOTEWORTHY This study demonstrates that placental ischemia-stimulated B2 cells induce hypertension and circulating natural killer cell activation and angiotensin II type 1 receptor production in normal pregnant rats.
Collapse
Affiliation(s)
- Owen T Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lorena M Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - James Lemon
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nicole Ingram
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ty W Turner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sarah Fitzgerald
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ralf Dechend
- Experimental and Clinical Research Center, HELIOS Clinic, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Gerd Wallukat
- Experimental and Clinical Research Center, HELIOS Clinic, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
15
|
Könnecke H, Schnabel RB, Walther C, Lamprecht R, Heydecke G, Seedorf U, Jagodzinski A, Borof K, Zeller T, Beikler T, Smeets R, Gosau M, Behrendt CA, Wenzel U, Börschel CS, Karakas M, Blankenberg S, Aarabi G. Cross-sectional study on the association of periodontitis with arterial hypertension in the Hamburg City Health Study. Eur J Med Res 2022; 27:181. [PMID: 36114562 PMCID: PMC9479239 DOI: 10.1186/s40001-022-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/05/2022] [Indexed: 09/05/2024] Open
Abstract
AIM Aim of this study was to investigate the association between periodontitis and arterial hypertension, both of which show correlations with classical cardiovascular risk factors and inflammatory activity. MATERIALS AND METHODS A cross-sectional analysis of data from a large population-based health survey (the Hamburg City Health Study, HCHS) including 5934 participants with complete periodontal examination and blood pressure data, of whom 5735 had medical records regarding anti-hypertensive medication, was performed. Probing depths, gingival recessions, bleeding on probing (BOP), dental plaque, and decayed-missing-filled teeth (DMFT) indices were recorded as measures of oral health. Clinical attachment loss (CAL) per tooth was calculated and periodontitis was staged into three groups (no/mild, moderate, severe). Arterial hypertension was diagnosed based on the participants' medication history and systolic and diastolic blood pressure values. Logistic regression models were constructed accounting for a set of potential confounders (age, sex, smoking, body mass index (BMI), diabetes, educational level, alcohol intake) and high sensitivity-C-reactive protein (hsCRP). RESULTS The odds of arterial hypertension increased significantly along with periodontitis severity (OR for severe periodontitis: 2.19; 95% CI 1.85-2.59; p < 0.001; OR for moderate periodontitis: 1.65; 95% CI 1.45-1.87; p < 0.001). Participants with moderate or severe periodontitis also had significantly higher age- and sex-adjusted odds of arterial hypertension, which was slightly weakened when additionally adjusted for BMI, diabetes, smoking, educational level, and alcohol intake (OR for severe PD: 1.28, 95% CI 1.04-1.59, p = 0.02; OR for moderate PD: 1.30, 95% CI 1.11-1.52, p = 0.001). The fraction of participants with undertreated hypertension (untreated and poorly controlled hypertension) was considerably larger in participants with severe periodontitis than in those with no/mild periodontitis (50.1% vs. 37.4% for no/mild periodontitis). CONCLUSIONS The study shows an association between periodontitis and arterial hypertension that is independent of age, sex, diabetes, BMI, smoking, educational level, and alcohol intake. In addition, undertreatment of hypertension was more common in people with severe periodontitis compared with periodontally more healthy people.
Collapse
Affiliation(s)
- Henrieke Könnecke
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany
| | - Carolin Walther
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ragna Lamprecht
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany
| | - Guido Heydecke
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany
| | - Udo Seedorf
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Jagodzinski
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Borof
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of "Regenerative Orofacial Medicine", University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ulrich Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin S Börschel
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany
| | - Mahir Karakas
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg, Kiel, Lübeck, Germany
| | - Ghazal Aarabi
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany.
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
17
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
18
|
Lu X, Crowley SD. Actions of Dendritic Cells in the Kidney during Hypertension. Compr Physiol 2022; 12:4087-4101. [PMID: 35950656 DOI: 10.1002/cphy.c210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immune response plays a critical role in the pathogenesis of hypertension, and immune cell populations can promote blood pressure elevation via actions in the kidney. Among these cell lineages, dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in regulating immune response during hypertension and kidney disease. DCs have different subtypes, and renal DCs are comprised of the CD103+ CD11b- and CD103- CD11b+ subsets. DCs become mature and express costimulatory molecules on their surface once they encounter antigen. Isolevuglandin-modified proteins function as antigens to activate DCs and trigger them to stimulate T cells. Activated T cells accumulate in the hypertensive kidney, release effector cytokines, promote renal oxidative stress, and promote renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha, interleukin-17A, and interferon-gamma, each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. Fms-like tyrosine kinase 3 ligand-dependent classical DCs are required to sustain the full hypertensive response, but C-X3 -C chemokine receptor 1 positive DCs do not regulate blood pressure. Excess sodium enters the DC through transporters to activate DCs, whereas the ubiquitin editor A20 in dendritic cells constrains blood pressure elevation by limiting T cell activation. By contrast, activation of the salt sensing kinase, serum/glucocorticoid kinase 1 in DCs exacerbates salt-sensitive hypertension. This article discusses recent studies illustrating mechanisms through which DC-T cell interactions modulate levels of pro-hypertensive mediators to regulate blood pressure via actions in the kidney. © 2022 American Physiological Society. Compr Physiol 12:1-15, 2022.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
19
|
Ateya AM, El Hakim I, Shahin SM, El Borolossy R, Kreutz R, Sabri NA. Effects of Ramipril on Biomarkers of Endothelial Dysfunction and Inflammation in Hypertensive Children on Maintenance Hemodialysis: the SEARCH Randomized Placebo-Controlled Trial. Hypertension 2022; 79:1856-1865. [PMID: 35686561 DOI: 10.1161/hypertensionaha.122.19312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertension, endothelial dysfunction, and inflammation are associated with increased cardiovascular mortality in end-stage kidney disease. We evaluated the effects of ACE (angiotensin-converting enzyme) inhibition on biomarkers of endothelial dysfunction and inflammation in hypertensive children with end-stage kidney disease on maintenance hemodialysis. METHODS In a randomized, double-blind, placebo-controlled trial, 135 (72 males/63 females) children and adolescents (age 7-15 years) were randomly assigned to treatment with either 2.5 mg once daily ramipril (n=68) or placebo (n=67) for 16 weeks. Primary outcome were the serum concentrations of asymmetrical dimethylarginine, a marker of endothelial dysfunction and hs-CRP (high-sensitivity C-reactive protein), a marker of inflammation. Changes in IL-6 (interleukin-6), TNF-α (tumor necrosis factor-alpha), systolic (S), and diastolic (D) blood pressure were secondary outcomes. Change in potassium levels and incidence of hyperkalemia were among the safety parameters. RESULTS Ramipril, but not placebo, significantly reduced serum levels of asymmetrical dimethylarginine (-79.6%; P<0.001), hs-CRP (-46.5%; P<0.001), IL-6 (-27.1%; P<0.001), and TNF-α (-51.7%; P<0.001). Systolic blood pressure and diastolic blood pressure were significantly lowered in both groups with a greater reduction in children receiving ramipril (median between-group differences -12.0 [95% CI -18.0 to -9.5] and -9.0 [95% CI -12.0 to -4.5]; P<0.001, respectively). Changes in asymmetrical dimethylarginine, hs-CRP, IL-6, or TNF-α in the ramipril group did not significantly correlate with blood pressure reductions. No severe cases of hyperkalemia or other serious treatment-associated adverse events were observed. CONCLUSIONS Ramipril improves biomarkers of endothelial dysfunction and inflammation in hypertensive children on maintenance hemodialysis in addition to its efficacious and safe potential to lower blood pressure. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04582097.
Collapse
Affiliation(s)
- Areej Mohamed Ateya
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt (A.M.A., S.M.S., R.E.B., N.A.S.).,Charité - Universitätsmedizin Berlin, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany (A.M.A., R.K.)
| | - Ihab El Hakim
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt (I.E.H.)
| | - Sara Mahmoud Shahin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt (A.M.A., S.M.S., R.E.B., N.A.S.)
| | - Radwa El Borolossy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt (A.M.A., S.M.S., R.E.B., N.A.S.)
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany (A.M.A., R.K.)
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt (A.M.A., S.M.S., R.E.B., N.A.S.)
| |
Collapse
|
20
|
Aronoff JE, Quinn EB, Forde AT, Glover LM, Reiner A, McDade TW, Sims M. Associations between perceived discrimination and immune cell composition in the Jackson Heart Study. Brain Behav Immun 2022; 103:28-36. [PMID: 35381348 PMCID: PMC9149129 DOI: 10.1016/j.bbi.2022.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023] Open
Abstract
African American adults suffer disproportionately from several non-communicable and infectious diseases. Among numerous contributing factors, perceived discrimination is considered a stressor for members of historically marginalized groups that contributes to health risk, although biological pathways are incompletely understood. Previous studies have reported associations between stress and both an up-regulation of non-specific (innate) inflammation and down-regulation of specific (adaptive) immunity. While associations between perceived discrimination and markers of inflammation have been explored, it is unclear if this is part of an overall shift that also includes down-regulated adaptive immunity. Relying on a large cross-section of African American adults (n = 3,319) from the Jackson Heart Study (JHS) in Jackson, Mississippi, we tested whether perceived everyday and lifetime discrimination as well as perceived burden from lifetime discrimination were associated with counts of neutrophils (innate), monocytes (innate), lymphocytes (adaptive), and the neutrophil-to-lymphocyte ratio (NLR), derived from complete white blood cell counts with differential. In addition, DNA methylation (DNAm) was measured on the EPIC array in a sub-sample (n = 1,023) of participants, allowing estimation of CD4T, CD8T and B lymphocyte proportions. Unexpectedly, high lifetime discrimination compared to low was significantly associated with lower neutrophils (b : -0.14, [95% CI: -0.24, -0.04]) and a lower NLR (b : -0.15, [95% CI: -0.25, -0.05]) after controlling for confounders. However, high perceived burden from lifetime discrimination was significantly associated with higher neutrophils (b : 0.17, [95% CI: 0.05, 0.30]) and a higher NLR (b : 0.16, [95% CI: 0.03, 0.29]). High perceived burden was also associated with lower lymphocytes among older men, which our analysis suggested might have been attributable to differences in CD4T cells. These findings highlight immune function as a potentially important pathway linking perceived discrimination to health outcomes.
Collapse
Affiliation(s)
- Jacob E Aronoff
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| | - Edward B Quinn
- Department of Anthropology, University of Florida, Gainesville, FL, USA
| | - Allana T Forde
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Láshauntá M Glover
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas W McDade
- Department of Anthropology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
21
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
22
|
Lu X, Crowley SD. The Immune System in Hypertension: a Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension 2022; 79:1339-1347. [PMID: 35545942 DOI: 10.1161/hypertensionaha.122.18554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The seminal observations of Dr Lewis Dahl regarding renal mechanisms of hypertension remain highly relevant in light of more recent experiments showing that immune system dysfunction contributes to hypertension pathogenesis. Dr Dahl established that inappropriate salt retention in the kidney plays a central role via Ohm's Law in permitting blood pressure elevation. Nevertheless, inflammatory cytokines whose expression is induced in the early stages of hypertension can alter renal blood flow and sodium transporter expression and activity to foster renal sodium retention. By elaborating these cytokines and reactive oxygen species, myeloid cells and T lymphocytes can connect systemic inflammatory signals to aberrant kidney functions that allow sustained hypertension. By activating T lymphocytes, antigen-presenting cells such as dendritic cells represent an afferent sensing mechanism triggering T cell activation, cytokine generation, and renal salt and water reabsorption. Manipulating these inflammatory signals to attenuate hypertension without causing prohibitive systemic immunosuppression will pose a challenge, but disrupting actions of inflammatory mediators locally within the kidney may offer a path through which to target immune-mediated mechanisms of hypertension while capitalizing on Dr Dahl's key recognition of the kidney's importance in blood pressure regulation.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| |
Collapse
|
23
|
Yin B, Wang YB, Li X, Hou XW. β‑aminoisobutyric acid ameliorates hypertensive vascular remodeling via activating the AMPK/SIRT1 pathway in VSMCs. Bioengineered 2022; 13:14382-14401. [PMID: 36694438 PMCID: PMC9995136 DOI: 10.1080/21655979.2022.2085583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play a fundamental role in the pathogenesis of hypertension-related vascular remodeling. β-aminoisobutyric acid (BAIBA) is a nonprotein β-amino acid with multiple pharmacological actions. Recently, BAIBA has been shown to attenuate salt‑sensitive hypertension, but the role of BAIBA in hypertension-related vascular remodeling has yet to be fully clarified. This study examined the potential roles and underlying mechanisms of BAIBA in VSMC proliferation and migration induced by hypertension. Primary VSMCs were cultured from the aortas of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Our results showed that BAIBA pretreatment obviously alleviated the phenotypic transformation, proliferation, and migration of SHR-derived VSMCs. Exogenous BAIBA significantly inhibited the release of inflammatory cytokines by diminishing phosphorylation and nuclear translocation of p65 NFκB, retarding IκBα phosphorylation and degradation, as well as erasing STAT3 phosphorylation in VSMCs. Supplementation of BAIBA triggered Nrf2 dissociation from Keap1 and inhibited oxidative stress in VSMCs from SHR. Mechanistically, activation of the AMPK/sirtuin 1 (SIRT1) axis was required for BAIBA to cube hypertension-induced VSMC proliferation, migration, oxidative damage and inflammatory response. Most importantly, exogenous BAIBA alleviated hypertension, ameliorated vascular remodeling and fibrosis, abated vascular oxidative burst and inflammation in SHR, an effect that was abolished by deficiency of AMPKα1 and SIRT1. BAIBA might serve as a novel therapeutic agent to prevent vascular remodeling in the context of hypertension.
Collapse
Affiliation(s)
- Bo Yin
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu-Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiang Li
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xu-Wei Hou
- Department of Human Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
24
|
Hengel FE, Benitah JP, Wenzel UO. Mosaic theory revised: inflammation and salt play central roles in arterial hypertension. Cell Mol Immunol 2022; 19:561-576. [PMID: 35354938 PMCID: PMC9061754 DOI: 10.1038/s41423-022-00851-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The mosaic theory of hypertension was advocated by Irvine Page ~80 years ago and suggested that hypertension resulted from the close interactions of different causes. Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by the proposed mechanisms that result in hemodynamic injury. Inflammation plays an important role in the pathophysiology and contributes to the deleterious consequences of arterial hypertension. Sodium intake is indispensable for normal body function but can be detrimental when it exceeds dietary requirements. Recent data show that sodium levels also modulate the function of monocytes/macrophages, dendritic cells, and different T-cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome due to high-salt intake. The purpose of this review is to propose a revised and extended version of the mosaic theory by summarizing and integrating recent advances in salt, immunity, and hypertension research. Salt and inflammation are placed in the middle of the mosaic because both factors influence each of the remaining pieces.
Collapse
Affiliation(s)
- Felicitas E Hengel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Pierre Benitah
- Inserm UMR-S 1180, Faculty of Pharmacy, University Paris Saclay, Gif-sur-Yvette, France
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
25
|
Zhang J, Chen R, Zhang G, Wang Y, Peng J, Hu R, Li R, Gu W, Zhang L, Sun Q, Liu C. PM 2.5 increases mouse blood pressure by activating toll-like receptor 3. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113368. [PMID: 35247710 DOI: 10.1016/j.ecoenv.2022.113368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Plenty of literature has documented that fine particulate matter (PM2.5) exposure is related to blood pressure (BP) elevation. Vascular dysfunction is the initiation of cardiovascular diseases, such as hypertension. This thesis set out to assess the role of Toll-like receptor 3 (TLR3) in the increase in BP induced by PM2.5. METHODS C57BL/6 and TLR3 deficient (TLR3-/-) male mice were randomly allocated to filtered air chamber or real-world inhaled concentrated PM2.5 chamber. BP was evaluated using non-invasive BP recordings. After euthanasia, the aortas and small mesenteric arteries (SMAs) were isolated, and vascular tone was measured using a wire myograph. Leucocytes were detached to assess myeloid-derived suppressor cells using flow cytometry. siRNA transfection was performed to silence TLR3 expression in the human vascular endothelial cells incubated with PM2.5. The gene expression levels of inflammation, adhesion molecules, and oxidative stress in the aortas were assessed by quantitative PCR. RESULTS Exposure to PM2.5 increased mouse BP, and TLR3 deficiency protected against PM2.5 exposure-induced BP increase. Additionally, the injury of vascular function in the aortas and SMAs was inhibited in TLR3-/- mice. The intercellular adhesion molecule-1 (ICAM-1) was attenuated in TLR3-/- mice, accompanied by the inhibition of inflammatory and oxidized genes of the aortas, such as F4/80, interleukin-6, interleukin-1 beta, and NADPH oxidase 4. In vitro, the enhanced mRNA expression of genes encoding inflammation, oxidative stress, and ICAM-1 by PM2.5 was inhibited by TLR3 silence as well. CONCLUSIONS PM2.5 exposure increased BP via TLR3 activation and impaired vascular function.
Collapse
Affiliation(s)
- Jinna Zhang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoqing Zhang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yixuan Wang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Peng
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Renjie Hu
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ran Li
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijia Gu
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
26
|
Bouchard J, Valookaran AF, Aloud BM, Raj P, Malunga LN, Thandapilly SJ, Netticadan T. Impact of oats in the prevention/management of hypertension. Food Chem 2022; 381:132198. [PMID: 35123221 DOI: 10.1016/j.foodchem.2022.132198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Oats are a rich source of a soluble fibre, beta-glucan, phenolic compounds, as well as functional lipid and protein components that could potentially aid in preventing and managing hypertension. Processing techniques commonly used to manufacture oat based foods have been shown to improve its physiological efficacy. Hypertension is a common condition that is a risk factor for cardiovascular disease, a primary cause of mortality worldwide. Though exercise and pharmacological interventions are often used in the management of hypertension, diet is an incredibly important factor. One preclinical study and a handful of clinical studies have shown that oat components/products are effective in lowering blood pressure. However, research in this area is limited and more studies are needed to elucidate the anti-hypertensive potential of oats.
Collapse
Affiliation(s)
- Jenny Bouchard
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Aleena Francis Valookaran
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | | | - Pema Raj
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | - Lovemore Nkhata Malunga
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Sijo Joseph Thandapilly
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada.
| | - Thomas Netticadan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
27
|
van der Heijden CDCC, Bode M, Riksen NP, Wenzel UO. The role of the mineralocorticoid receptor in immune cells in in cardiovascular disease. Br J Pharmacol 2021; 179:3135-3151. [PMID: 34935128 DOI: 10.1111/bph.15782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic low-grade inflammation and immune cell activation are important mechanisms in the pathophysiology of cardiovascular disease (CVD). Therefore, targeted immunosuppression is a promising novel therapy to lower cardiovascular risk. In this review, we identify the mineralocorticoid receptor (MR) on immune cells as a potential target to modulate inflammation. The MR is present in almost all cells of the cardiovascular system, including immune cells. Activation of the MR in innate and adaptive immune cells induces inflammation which can contribute to CVD, by inducing endothelial dysfunction and hypertension. Moreover, it accelerates atherosclerotic plaque formation and destabilization and impairs tissue regeneration after ischemic events. Identifying the molecular targets for these non-renal actions of the MR provide promising novel cardiovascular drug targets for mineralocorticoid receptor antagonists (MRAs), which are currently mainly applied in hypertension and heart failure.
Collapse
Affiliation(s)
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, GA, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, GA, The Netherlands
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmun Rev 2021; 21:103014. [PMID: 34896651 DOI: 10.1016/j.autrev.2021.103014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is an increasing cause of morbidity and mortality worldwide. Besides the higher prevalence of diabetes, hypertension and aging worldwide, immune mediated disorders remain an important cause of kidney disease and are especially prevalent in young adults. Regardless of the initial insult, final pathway to CKD and kidney failure is always the loss of normal tissue and fibrosis development, in which the dynamic equilibrium between extracellular matrix synthesis and degradation is disturbed, leading to excessive production and accumulation. During fibrosis, a multitude of cell types intervene at different levels, but myofibroblasts and inflammatory cells are considered critical in the process. They exert their effects through different molecular pathways, of which transforming growth factor β (TGF-β) has demonstrated to be of particular importance. Additionally, CKD itself promotes fibrosis due to the accumulation of toxins and hormonal changes, and proteinuria is simultaneously a manifestation of CKD and a specific driver of renal fibrosis. Pathways involved in renal fibrosis and CKD are closely interrelated, and although important advances have been made in our knowledge of them, it is still necessary to translate them into clinical practice. Given the complexity of this process, it is highly likely that its treatment will require a multi-target strategy to control the origin of the damage but also the mechanisms that perpetuate it. Fortunately, rapid technology development over the last years and new available drugs in the nephrologist's armamentarium give reasons for optimism that more personalized assistance for CKD and renal fibrosis will appear in the future.
Collapse
|
29
|
Parvin S, Williams CR, Jarrett SA, Garraway SM. Spinal Cord Injury Increases Pro-inflammatory Cytokine Expression in Kidney at Acute and Sub-chronic Stages. Inflammation 2021; 44:2346-2361. [PMID: 34417952 PMCID: PMC8616867 DOI: 10.1007/s10753-021-01507-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
Accumulating evidence supports that spinal cord injury (SCI) produces robust inflammatory plasticity. We previously showed that the pro-inflammatory cytokine tumor necrosis factor (TNF)α is increased in the spinal cord after SCI. SCI also induces a systemic inflammatory response that can impact peripheral organ functions. The kidney plays an important role in maintaining cardiovascular health. However, SCI-induced inflammatory response in the kidney and the subsequent effect on renal function have not been well characterized. This study investigated the impact of high and low thoracic (T) SCI on C-fos, TNFα, interleukin (IL)-1β, and IL-6 expression in the kidney at acute and sub-chronic timepoints. Adult C57BL/6 mice received a moderate contusion SCI or sham procedures at T4 or T10. Uninjured mice served as naïve controls. mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNFα, and C-fos, and TNFα and C-fos protein expression were assessed in the kidney and spinal cord 1 day and 14 days post-injury. The mRNA levels of all targets were robustly increased in the kidney and spinal cord, 1 day after both injuries. Whereas IL-6 and TNFα remained elevated in the spinal cord at 14 days after SCI, C-fos, IL-6, and TNFα levels were sustained in the kidney only after T10 SCI. TNFα protein was significantly upregulated in the kidney 1 day after both T4 and T10 SCI. Overall, these results clearly demonstrate that SCI induces robust systemic inflammation that extends to the kidney. Hence, the presence of renal inflammation can substantially impact renal pathophysiology and function after SCI.
Collapse
Affiliation(s)
- Shangrila Parvin
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
| | - Clintoria R. Williams
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
- Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH USA
| | - Simone A. Jarrett
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
| | - Sandra M. Garraway
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
| |
Collapse
|
30
|
Gao C, Ge L, Chen D, Zhang M, Zhao L, Liu W, Chen S, Wang J, Zhou C, Zhao X, Li S, Song Z, Li J. Increased Frequency of Circulating Classical Monocytes in Patients with Rosacea. Clin Cosmet Investig Dermatol 2021; 14:1629-1636. [PMID: 34803388 PMCID: PMC8601253 DOI: 10.2147/ccid.s336194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Purpose Monocyte subsets, including classical, intermediate and non-classical monocytes, are involved in the pathogenesis of inflammatory or autoimmune diseases. The pathogenic role of monocytes in the peripheral blood mononuclear cells (PBMCs) of patients with rosacea remains unclear. This study aimed to assess frequencies of monocyte subsets in PBMCs from rosacea patients before and after clinical treatment. Patients and Methods We applied flow cytometry to examine frequencies of monocyte subsets in 116 patients with rosacea, while patients with 26 systemic lupus erythematosus (SLE), 28 acne and 42 normal healthy subjects without skin problems (HC) were recruited as controls. Expression of C–C chemokine receptor 2 (CCR2) on monocytes and plasma levels of CC-chemokine ligand 2 (CCL2), high mobility group box-1 (HMGB-1), interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) were measured in HC and rosacea patients before and after treatment. Results The frequency of classical monocytes, but not intermediate or non-classical monocytes, was higher in rosacea as compared with HC, which decreased after treatment. Frequencies of monocyte subsets showed no gender difference, while increased with age in patients but not in HC. Frequencies of classical monocytes in patients with erythematotelangiectatic rosacea (ETR) and ETR-papulopustular rosacea (PPR) overlap were significantly higher than HC or patients with only PPR or phymatous rosacea (PhR). There was a significant higher expression of CCR2 in classical monocytes, with higher plasma levels of CCL2, HMGB-1, IL-1β and TNF-α in patients than in HC, which all significantly decreased after treatment. Conclusion Our data indicated a possible association between abnormal classical monocytes frequencies and rosacea.
Collapse
Affiliation(s)
- Cuie Gao
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Dewei Chen
- Department of Pathophysiology, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Mengjie Zhang
- Department of Pathophysiology, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Li Zhao
- Department of Pathophysiology, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Wenying Liu
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Shuguang Chen
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cunjian Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Shifei Li
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jian Li
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
31
|
Tian Y, Luo J, Xu Q, Liu Y, Cai R, Zhou MS. Macrophage depletion protects against endothelial dysfunction and cardiac remodeling in angiotensin II hypertensive mice. Clin Exp Hypertens 2021; 43:699-706. [PMID: 34176379 DOI: 10.1080/10641963.2021.1945075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: Hypertension is associated with a low-grade systemic inflammation in cardiovascular system. Macrophage infiltration may initiate an inflammatory process that contributes to vascular and ventricular remodeling in hypertensive human and mice. The present study investigated the effect of chemical depletion of macrophage using liposome encapsulated clodronate (LEC) on cardiac hypertrophy and remodeling in angiotensin (Ang) II hypertensive mice.Methods: C57BL/6 mice received an Ang II (1.1 mg/kg/day with a minipump) infusion for 2 weeks to induce hypertension. Endothelium-dependent relaxation (ED) was examined by organ bath, hematoxylin and staining and Masson-Trichrome staining were used to evaluate aorta and cardiac hypertrophy and fibrosis.Results: Ang II infusion significantly increased systolic blood pressure (SBP), cardiac hypertrophy and fibrosis, and impaired EDR accompanied by increased macrophage infiltration in the heart. Treatment with LEC significantly lowered Ang II-induced cardiac hypertrophy and fibrosis and cardiac macrophage infiltration, and improved EDR with a mild reduction in SBP. Ang II increased the expression of inflammatory cytokines tumor necross factor alpha and interleukin 1 beta and profibrotic factors transforming growth factor beta 1 and fibronectin in the heart, with was reduced by LEC treatment. Treatment with LEC prevented Ang II-induced the phosphorphorylation of ERK1/2 and c-Jun-N-terminal kinase.Conclusions: Our study suggests that cardiac macrophage may be critical for hypertensive cardiac hypertrophy and remodeling, the underlying mechanisms may involve initial heart inflammation and the activation of hypertrophic MAPKs pathway.
Collapse
Affiliation(s)
- Yuantong Tian
- The Open Project of Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, P.R. of China
| | - Jun Luo
- Department of Cardiology, Affiliated Ganzhou City Hospital, Nanchang Medical University, Ganzhou, P.R. of China
| | - Qian Xu
- Department of Physiology, Shenyang Medical University, Shenyang, P.R. of China
| | - Yueyang Liu
- Department of Physiology, Shenyang Medical University, Shenyang, P.R. of China
| | - Ruiping Cai
- Department of Physiology, Shenyang Medical University, Shenyang, P.R. of China
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang, P.R. Of China & the Open Project of Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University. Ganzhou, P.R. of China
| |
Collapse
|
32
|
Kountouras J, Papaefthymiou A, Polyzos SA, Deretzi G, Vardaka E, Soteriades ES, Tzitiridou-Chatzopoulou M, Gkolfakis P, Karafyllidou K, Doulberis M. Impact of Helicobacter pylori-Related Metabolic Syndrome Parameters on Arterial Hypertension. Microorganisms 2021; 9:microorganisms9112351. [PMID: 34835476 PMCID: PMC8618184 DOI: 10.3390/microorganisms9112351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Arterial hypertension is a risk factor for several pathologies, mainly including cardio-cerebrovascular diseases, which rank as leading causes of morbidity and mortality worldwide. Arterial hypertension also constitutes a fundamental component of the metabolic syndrome. Helicobacter pylori infection is one of the most common types of chronic infection globally and displays a plethora of both gastric and extragastric effects. Among other entities, Helicobacter pylori has been implicated in the pathogenesis of the metabolic syndrome. Within this review, we illustrate the current state-of-the-art evidence, which may link several components of the Helicobacter pylori-related metabolic syndrome, including non-alcoholic fatty liver disease and arterial hypertension. In particular, current knowledge of how Helicobacter pylori exerts its virulence through dietary, inflammatory and metabolic pathways will be discussed. Although there is still no causative link between these entities, the emerging evidence from both basic and clinical research supports the proposal that several components of the Helicobacter pylori infection-related metabolic syndrome present an important risk factor in the development of arterial hypertension. The triad of Helicobacter pylori infection, the metabolic syndrome, and hypertension represents a crucial worldwide health problem on a pandemic scale with high morbidity and mortality, like COVID-19, thereby requiring awareness and appropriate management on a global scale.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- Correspondence:
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- Department of Gastroenterology, University Hospital of Larisa, 41110 Larisa, Greece
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Georgia Deretzi
- Multiple Sclerosis Unit, Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Elisabeth Vardaka
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Elpidoforos S. Soteriades
- Healthcare Management Program, School of Economics and Management, Open University of Cyprus, Nicosia 2252, Cyprus;
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology (EOME), Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, 50100 Kozani, Greece
| | - Paraskevas Gkolfakis
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Erasme University Hospital, 1070 Brussels, Belgium;
- Department of Medical Oncology, Institut Jules Bordet, 1000 Brussels, Belgium
| | - Kyriaki Karafyllidou
- Department of Pediatrics, University Children’s Hospital of Zurich, 8032 Zurich, Switzerland;
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
| |
Collapse
|
33
|
Ricciardolo FLM, Sprio AE, Baroso A, Gallo F, Riccardi E, Bertolini F, Carriero V, Arrigo E, Ciprandi G. Characterization of T2-Low and T2-High Asthma Phenotypes in Real-Life. Biomedicines 2021; 9:biomedicines9111684. [PMID: 34829913 PMCID: PMC8615363 DOI: 10.3390/biomedicines9111684] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Asthma is a heterogeneous and complex condition characterized by chronic airway inflammation, which may be clinically stratified into three main phenotypes: type 2 (T2) low, T2-high allergic, and T2-high non-allergic asthma. This real-world study investigated whether phenotyping patients with asthma using non-invasive parameters could be feasible to characterize the T2-low and T2-high asthma phenotypes in clinical practice. This cross-sectional observational study involved asthmatic outpatients (n = 503) referring to the Severe Asthma Centre of the San Luigi Gonzaga University Hospital. Participants were stratified according to the patterns of T2 inflammation and atopic sensitization. Among outpatients, 98 (19.5%) patients had T2-low asthma, 127 (25.2%) T2-high non-allergic, and 278 (55.3%) had T2-high allergic phenotype. In comparison to T2-low, allergic patients were younger (OR 0.945, p < 0.001) and thinner (OR 0.913, p < 0.001), had lower smoke exposure (OR 0.975, p < 0.001) and RV/TLC% (OR 0.950, p < 0.001), higher prevalence of asthma severity grade 5 (OR 2.236, p < 0.05), more frequent rhinitis (OR 3.491, p < 0.001) and chronic rhinosinusitis with (OR 2.650, p < 0.001) or without (OR 1.919, p < 0.05) nasal polyps, but less common arterial hypertension (OR 0.331, p < 0.001). T2-high non-allergic patients had intermediate characteristics. Non-invasive phenotyping of asthmatic patients is possible in clinical practice. Identifying characteristics in the three main asthma phenotypes could pave the way for further investigations on useful biomarkers for precision medicine.
Collapse
Affiliation(s)
- Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, 10043 Turin, Italy; (A.E.S.); (A.B.); (E.R.); (F.B.); (V.C.); (E.A.)
- Correspondence:
| | - Andrea Elio Sprio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, 10043 Turin, Italy; (A.E.S.); (A.B.); (E.R.); (F.B.); (V.C.); (E.A.)
- Department of Research, ASOMI College of Sciences, 19112 Marsa, Malta
| | - Andrea Baroso
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, 10043 Turin, Italy; (A.E.S.); (A.B.); (E.R.); (F.B.); (V.C.); (E.A.)
| | - Fabio Gallo
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Elisa Riccardi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, 10043 Turin, Italy; (A.E.S.); (A.B.); (E.R.); (F.B.); (V.C.); (E.A.)
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, 10043 Turin, Italy; (A.E.S.); (A.B.); (E.R.); (F.B.); (V.C.); (E.A.)
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, 10043 Turin, Italy; (A.E.S.); (A.B.); (E.R.); (F.B.); (V.C.); (E.A.)
| | - Elisa Arrigo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, 10043 Turin, Italy; (A.E.S.); (A.B.); (E.R.); (F.B.); (V.C.); (E.A.)
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| |
Collapse
|
34
|
Cardet JC, Bulkhi AA, Lockey RF. Nonrespiratory Comorbidities in Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:3887-3897. [PMID: 34492402 PMCID: PMC8631133 DOI: 10.1016/j.jaip.2021.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Asthma is a chronic heterogeneous airway disease. Common comorbid conditions are often disproportionately present in severe asthma. Optimal care of patients with asthma requires the recognition and treatment of these comorbid conditions. This review outlines the pathophysiological mechanisms between nonrespiratory comorbid conditions and asthma and their effect on asthma outcomes. They include: type 2 diabetes mellitus, hypertension, atherosclerotic cardiovascular disease, adrenal and thyroid gland diseases, pregnancy, osteoporosis, adverse effects from medications, and mental health disorders. Studies indicate how poor glycemic control of type 2 diabetes mellitus is associated with not only greater health care utilization but poorer asthma outcomes. Also, a large health care claims database indicates that a substantial proportion of pregnant women have uncontrolled asthma and are prescribed suboptimal controller therapy. Additional data about these nonrespiratory comorbidities and medications known to benefit both nonrespiratory comorbidities and asthma are necessary.
Collapse
Affiliation(s)
- Juan Carlos Cardet
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Fla
| | - Adeeb A Bulkhi
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Fla; Department of Internal Medicine, College of Medicine, Umm Al Qura University, Makkah, Saudi Arabia
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Fla; Department of Internal Medicine, James A. Haley Veterans' Hospital, Tampa, Fla.
| |
Collapse
|
35
|
Wu Y, Xu H, Tu X, Gao Z. The Role of Short-Chain Fatty Acids of Gut Microbiota Origin in Hypertension. Front Microbiol 2021; 12:730809. [PMID: 34650536 PMCID: PMC8506212 DOI: 10.3389/fmicb.2021.730809] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases, and its development involves multiple mechanisms. Gut microbiota has been reported to be closely linked to hypertension. Short-chain fatty acids (SCFAs)-the metabolites of gut microbiota-participate in hypertension development through various pathways, including specific receptors, immune system, autonomic nervous system, metabolic regulation and gene transcription. This article reviews the possible mechanisms of SCFAs in regulating blood pressure and the prospects of SCFAs as a target to prevent and treat hypertension.
Collapse
Affiliation(s)
- Yeshun Wu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Hongqing Xu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaoming Tu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhenyan Gao
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
36
|
Mendiola PJ, Naik JS, Bosc LVG, Gardiner AS, Birg A, Kanagy NL. Hydrogen Sulfide Actions in the Vasculature. Compr Physiol 2021; 11:2467-2488. [PMID: 34558672 PMCID: PMC11758848 DOI: 10.1002/cphy.c200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hydrogen sulfide (H2 S) is a small, gaseous molecule with poor solubility in water that is generated by multiple pathways in many species including humans. It acts as a signaling molecule in many tissues with both beneficial and pathological effects. This article discusses its many actions in the vascular system and the growing evidence of its role to regulate vascular tone, angiogenesis, endothelial barrier function, redox, and inflammation. Alterations in some disease states are also discussed including potential roles in promoting tumor growth and contributions to the development of metabolic disease. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
| | - Jay S. Naik
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Amy S. Gardiner
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Aleksandr Birg
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Nancy L. Kanagy
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
37
|
Wenzel UO, Ehmke H, Bode M. Immune mechanisms in arterial hypertension. Recent advances. Cell Tissue Res 2021; 385:393-404. [PMID: 33394136 PMCID: PMC8523494 DOI: 10.1007/s00441-020-03409-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by hemodynamic injury. Inflammation also plays an important role in the pathophysiology and contributes to the deleterious consequences of this disease. Cells of the innate immune system including monocyte/macrophages and dendritic cells can promote blood pressure elevation via effects mostly on kidney and vascular function. Moreover, convincing evidence shows that T and B cells from the adaptive immune system are involved in hypertension and hypertensive end-organ damage. Skin monocyte/macrophages, regulatory T cells, natural killer T cells, and myeloid-derived suppressor cells have been shown to exert blood pressure controlling effects. Sodium intake is undoubtedly indispensable for normal body function but can be detrimental when taken in excess of dietary requirements. Sodium levels also modulate the function of monocyte/macrophages, dendritic cells, and different T cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome that can be found after high salt intake. Modulation of the immune response can reduce severity of blood pressure elevation and hypertensive end-organ damage in several animal models. The purpose of this review is to briefly summarize recent advances in immunity and hypertension as well as hypertensive end-organ damage.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
38
|
Wenzel UO, Kemper C, Bode M. The role of complement in arterial hypertension and hypertensive end organ damage. Br J Pharmacol 2021; 178:2849-2862. [PMID: 32585035 PMCID: PMC10725187 DOI: 10.1111/bph.15171] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that hypertension and hypertensive end organ damage are not only mediated by haemodynamic injury but that inflammation also plays an important role. The complement system protects the host from a hostile microbial environment and maintains tissue and cell integrity through the elimination of altered or dead cells. As an important effector arm of innate immunity, it plays also central roles in the regulation of adaptive immunity. Thus, complement activation may drive the pathology of hypertension through its effects on innate and adaptive immune responses, aside from direct effects on the vasculature. Recent experimental data strongly support a role for complement in all stages of arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical haemolytic uraemic syndrome suggest also a role for complement in the development of malignant nephrosclerosis. Here, we review the role of complement in hypertension and hypertensive end organ damage. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
39
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
40
|
Haslbauer JD, Tzankov A, Mertz KD, Schwab N, Nienhold R, Twerenbold R, Leibundgut G, Stalder AK, Matter M, Glatz K. Characterisation of cardiac pathology in 23 autopsies of lethal COVID-19. J Pathol Clin Res 2021; 7:326-337. [PMID: 33837673 PMCID: PMC8185365 DOI: 10.1002/cjp2.212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
While coronavirus disease 2019 (COVID-19) primarily affects the respiratory tract, pathophysiological changes of the cardiovascular system remain to be elucidated. We performed a retrospective cardiopathological analysis of the heart and vasculature from 23 autopsies of COVID-19 patients, comparing the findings with control tissue. Myocardium from autopsies of COVID-19 patients was categorised into severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive (n = 14) or negative (n = 9) based on the presence of viral RNA as determined by reverse transcriptase polymerase chain reaction (RT-PCR). Control tissue was selected from autopsies without COVID-19 (n = 10) with similar clinical sequelae. Histological characteristics were scored by ordinal and/or categorical grading. Five RT-PCR-positive cases underwent in situ hybridisation (ISH) for SARS-CoV-2. Patients with lethal COVID-19 infection were mostly male (78%) and had a high incidence of hypertension (91%), coronary artery disease (61%), and diabetes mellitus (48%). Patients with positive myocardial RT-PCR died earlier after hospital admission (5 versus 12 days, p < 0.001) than patients with negative RT-PCR. An increased severity of fibrin deposition, capillary dilatation, and microhaemorrhage was observed in RT-PCR-positive myocardium than in negatives and controls, with a positive correlation amongst these factors All cases with increased cardioinflammatory infiltrate, without myocyte necrosis (n = 4) or with myocarditis (n = 1), were RT-PCR negative. ISH revealed positivity of viral RNA in interstitial cells. Myocardial capillary dilatation, fibrin deposition, and microhaemorrhage may be the histomorphological correlate of COVID-19-associated coagulopathy. Increased cardioinflammation including one case of myocarditis was only detected in RT-PCR-negative hearts with significantly longer hospitalisation time. This may imply a secondary immunological response warranting further characterisation.
Collapse
Affiliation(s)
- Jasmin D Haslbauer
- Pathology, Institute of Medical Genetics and PathologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and PathologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Kirsten D Mertz
- Institute of PathologyCantonal Hospital BasellandLiestalSwitzerland
| | - Nathalie Schwab
- Institute of PathologyCantonal Hospital BasellandLiestalSwitzerland
| | - Ronny Nienhold
- Institute of PathologyCantonal Hospital BasellandLiestalSwitzerland
| | - Raphael Twerenbold
- CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | | | - Anna K Stalder
- Pathology, Institute of Medical Genetics and PathologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Matthias Matter
- Pathology, Institute of Medical Genetics and PathologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Katharina Glatz
- Pathology, Institute of Medical Genetics and PathologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| |
Collapse
|
41
|
Fischer LM, Fichte LA, Büttner-Herold M, Ferrazzi F, Amann K, Benz K, Daniel C. Complement in Renal Disease as a Potential Contributor to Arterial Hypertension. Kidney Blood Press Res 2021; 46:362-376. [PMID: 34077925 DOI: 10.1159/000515823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/11/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Complement deposition is prevalent in kidney biopsies of patients with arterial hypertension and hypertensive nephropathy, but an association of hypertension and complement deposition or involvement of complement in the pathogenesis of hypertensive nephropathy has not been shown to date. METHODS In this study, we analyzed complement C1q and C3c deposition in a rat model of overload and hypertension by subtotal nephrectomy (SNX) and in archival human renal biopsies from 217 patients with known hypertension and 91 control patients with no history of hypertension using semiquantitative scoring of C1q and C3c immunohistochemistry and correlation with parameters of renal function. To address whether complement was only passively deposited or actively expressed by renal cells, C1q and C3 mRNA expression were additionally analyzed. RESULTS Glomerular C1q and C3c complement deposition were significantly higher in kidneys of hypertensive SNX rats and hypertensive compared to nonhypertensive patients. Mean arterial blood pressure (BP) in SNX rats correlated well with the amount of glomerular C1q and C3c deposition and with left ventricular weight, as an indirect parameter of high BP. Quantitative mRNA analysis showed that C3 was not only deposited but also actively produced by glomerular cells of hypertensive SNX rats and in human renal biopsies. Of note, in patients CKD-stage correlated significantly with the intensity of glomerular C3c staining, but not with that of C1q. CONCLUSION Renal complement deposition correlated with experimental hypertension as well as the presence of hypertension in a variety of renal diseases. To answer the question, if and how exactly renal complement is causative for the pathogenesis of arterial hypertension in men, further studies are needed.
Collapse
Affiliation(s)
- Lisa-Maren Fischer
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Laura A Fichte
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Benz
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Pediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
Trump S, Lukassen S, Anker MS, Chua RL, Liebig J, Thürmann L, Corman VM, Binder M, Loske J, Klasa C, Krieger T, Hennig BP, Messingschlager M, Pott F, Kazmierski J, Twardziok S, Albrecht JP, Eils J, Hadzibegovic S, Lena A, Heidecker B, Bürgel T, Steinfeldt J, Goffinet C, Kurth F, Witzenrath M, Völker MT, Müller SD, Liebert UG, Ishaque N, Kaderali L, Sander LE, Drosten C, Laudi S, Eils R, Conrad C, Landmesser U, Lehmann I. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat Biotechnol 2021; 39:705-716. [PMID: 33361824 DOI: 10.1038/s41587-020-00796-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
In coronavirus disease 2019 (COVID-19), hypertension and cardiovascular diseases are major risk factors for critical disease progression. However, the underlying causes and the effects of the main anti-hypertensive therapies-angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)-remain unclear. Combining clinical data (n = 144) and single-cell sequencing data of airway samples (n = 48) with in vitro experiments, we observed a distinct inflammatory predisposition of immune cells in patients with hypertension that correlated with critical COVID-19 progression. ACEI treatment was associated with dampened COVID-19-related hyperinflammation and with increased cell intrinsic antiviral responses, whereas ARB treatment related to enhanced epithelial-immune cell interactions. Macrophages and neutrophils of patients with hypertension, in particular under ARB treatment, exhibited higher expression of the pro-inflammatory cytokines CCL3 and CCL4 and the chemokine receptor CCR1. Although the limited size of our cohort does not allow us to establish clinical efficacy, our data suggest that the clinical benefits of ACEI treatment in patients with COVID-19 who have hypertension warrant further investigation.
Collapse
Affiliation(s)
- Saskia Trump
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Soeren Lukassen
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus S Anker
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Liebig
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Loreen Thürmann
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Victor Max Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Marco Binder
- Research group 'Dynamics of early viral infection and the innate antiviral response' (division F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Loske
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christina Klasa
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Teresa Krieger
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bianca P Hennig
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marey Messingschlager
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Fabian Pott
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Sven Twardziok
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Philipp Albrecht
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Hadzibegovic
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Alessia Lena
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Thore Bürgel
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Steinfeldt
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Maria Theresa Völker
- Department of Anesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany
| | - Sarah Dorothea Müller
- Department of Anesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany
| | - Uwe Gerd Liebert
- Institute of Virology, University Hospital Leipzig, Leipzig, Germany
| | - Naveed Ishaque
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sven Laudi
- Department of Anesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany.
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany. .,Health Data Science Unit, Medical Faculty and BioQuant, University of Heidelberg, Heidelberg, Germany.
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
| | - Irina Lehmann
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
43
|
Sirakaya E, Duru Z, Kuçuk B, Duru N. Response to comments on: Monocyte to high-density lipoprotein and neutrophil-to-lymphocyte ratios in patients with acute central serous chorioretinopathy. Indian J Ophthalmol 2021; 69:472. [PMID: 33463625 PMCID: PMC7933899 DOI: 10.4103/ijo.ijo_3383_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Ender Sirakaya
- Department of Ophthalmology, The Kayseri City Hospital, Kayseri, Turkey
| | - Zeynep Duru
- Department of Ophthalmology, The Kayseri City Hospital, Kayseri, Turkey
| | - Bekir Kuçuk
- Department of Ophthalmology, The Kayseri City Hospital, Kayseri, Turkey
| | - Necati Duru
- Department of Ophthalmology, The Kayseri City Hospital, Kayseri, Turkey
| |
Collapse
|
44
|
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associates with a considerable high rate of mortality and represents currently the most important concern in global health. The risk of more severe clinical manifestation of COVID-19 is higher in males and steeply raised with age but also increased by the presence of chronic comorbidities. Among the latter, early reports suggested that arterial hypertension associates with higher susceptibility to SARS-CoV-2 infection, more severe course and increased COVID-19-related deaths. Furthermore, experimental studies suggested that key pathophysiological hypertension mechanisms, such as activation of the renin-angiotensin system (RAS), may play a role in COVID-19. In fact, ACE2 (angiotensin-converting-enzyme 2) is the pivotal receptor for SARS-CoV-2 to enter host cells and provides thus a link between COVID-19 and RAS. It was thus anticipated that drugs modulating the RAS including an upregulation of ACE2 may increase the risk for infection with SARS-CoV-2 and poorer outcomes in COVID-19. Since the use of RAS-blockers, ACE inhibitors or angiotensin receptor blockers, represents the backbone of recommended antihypertensive therapy and intense debate about their use in the COVID-19 pandemic has developed. Currently, a direct role of hypertension, independent of age and other comorbidities, as a risk factor for the SARS-COV-2 infection and COVID-19 outcome, particularly death, has not been established. Similarly, both current experimental and clinical studies do not support an unfavorable effect of RAS-blockers or other classes of first line blood pressure lowering drugs in COVID-19. Here, we review available data on the role of hypertension and its management on COVID-19. Conversely, some aspects as to how the COVID-19 affects hypertension management and impacts on future developments are also briefly discussed. COVID-19 has and continues to proof the critical importance of hypertension research to address questions that are important for global health.
Collapse
Affiliation(s)
- Carmine Savoia
- Clinical and Molecular Medicine Department, Division of Cardiology, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy (C.S., M.V.)
| | - Massimo Volpe
- Clinical and Molecular Medicine Department, Division of Cardiology, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy (C.S., M.V.)
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Klinische Pharmakologie und Toxikologie (R.K.)
| |
Collapse
|
45
|
Li J, Yang X, Zhou X, Cai J. The Role and Mechanism of Intestinal Flora in Blood Pressure Regulation and Hypertension Development. Antioxid Redox Signal 2021; 34:811-830. [PMID: 32316741 DOI: 10.1089/ars.2020.8104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension (HTN) has a complex etiology that is characterized by genetic and environmental factors. It has become a global health burden leading to cardiovascular diseases and kidney diseases, ultimately progressing to premature death. Accumulating evidence indicated that gut microbiome was associated with metabolic disorders and inflammation, which were closely linked to HTN. Recent Advances: Recent studies using bacterial genomic analysis and fecal microbiota transplantation as well as many lines of seminal evidence demonstrated that aberrant gut microbiome was significantly associated with HTN. The intestinal microbiome of both patients and animals with HTN had decreased bacterial diversity, disordered microbial structure and functions, and altered end products of fermentation. Gut dysbiosis and metabolites of the gut microbiota play an important role in blood pressure (BP) control, and they are therefore responsible for developing HTN. Critical Issues: This study aimed at focusing on the recent advances in understanding the role played by gut bacteria and the mechanisms underlying the pathological milieu that induced elevated BP and led to HTN pathogenesis. Potential intervention strategies targeting the correction of gut dysbiosis to improve HTN development were summarized. Future Directions: Larger numbers of fecal transplants from participants with HTN should be carried out to examine the magnitude of BP changes with the replacement of the gut microbiome. The proposed mechanisms for the gut in regulating BP remain to be verified. Whether intervention strategies using probiotics, dietary interventions, bacteriophages, and fecal transplants are feasible for individuals with HTN remains to be explored. Antioxid. Redox Signal. 34, 811-830.
Collapse
Affiliation(s)
- Jing Li
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xinchun Yang
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease of China, Hypertension Center, National Center for Cardiovascular Diseases of China, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Wenstedt EFE, van Croonenburg TJ, van den Born BJH, Van den Bossche J, Hooijmans CR, Vogt L. The effect of macrophage-targeted interventions on blood pressure - a systematic review and meta-analysis of preclinical studies. Transl Res 2021; 230:123-138. [PMID: 33166696 DOI: 10.1016/j.trsl.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
An increasing body of evidence shows a role for macrophages and monocytes (as their precursors) in hypertension, but with conflicting results with regard to whether they are protective or harmful. Therefore, we systematically reviewed the effect of macrophage interventions on blood pressure in animal models, to explore which factors determine the blood pressure increasing vs. decreasing effect. A search in PubMED and EMBASE yielded 9620 records, 26 of which were included. Eighteen studies (involving 22 different experiments (k = 22)) performed macrophage depletion, whereas 12 studies specifically deleted certain macrophage proteins. The blood pressure effects of macrophage depletion were highly various and directed toward both directions, as expected, which could not be reduced to differences in animal species or methods of hypertension induction. Prespecified subgroup analysis did reveal a potential role for the route in which the macrophage-depleting agent is being administrated (intraperitoneal vs intravenous subgroup difference of P = 0.07 (k = 22), or P < 0.001 in studies achieving considerable (ie, >50%) depletion (k = 18)). Along with findings from specific macrophage protein deletion studies-showing that deletion of one single macrophage protein (like TonEBP, endothelin-B, EP4, NOX-2 and the angiotensin II type 1 receptor) can alter blood pressure responses to hypertensive stimuli-the indication that each route has its specific depletion pattern regarding targeted tissues and macrophage phenotypes suggests a determinative role for these features. These hypothesis-generating results encourage more detailed depletion characterization of each technique by direct experimental comparisons, providing a chance to obtain more knowledge on which macrophages are beneficial versus detrimental in hypertension development.
Collapse
Affiliation(s)
- Eliane F E Wenstedt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Thirza J van Croonenburg
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Bert-Jan H van den Born
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liffert Vogt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Regulatory T-cell subset distribution in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage. J Hypertens 2021; 38:692-700. [PMID: 31834124 DOI: 10.1097/hjh.0000000000002328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The relationship between circulating regulatory T-cell (Tregs) subset distribution and hypertension severity in children with primary hypertension is not known. We aimed to find out if target organ damage (TOD) in children with primary hypertension is related to defects in Tregs distribution reflected by their phenotype characteristics. METHODS The study constituted 33 nontreated hypertensive children and 35 sex-matched and age-matched controls. Using multicolor flow cytometry technique, we assessed a distribution of the total Tregs (CD4CD25CD127) and their subsets (CD45RA-naive Tregs, CD45RA memory/activated Tregs, CD45RACD31 recent thymic emigrants Tregs and mature naive CD45RACD31 Tregs) in the whole blood. RESULTS Hypertensive children showed decreased percentage of the total Tregs, the CD45RA-naive Tregs, the total CD31 Tregs and the recent thymic emigrants Tregs but elevation of the CD45RA memory/activated Treg and mature naive CD45RACD31 Tregs. Decreased frequency of the total Tregs, naive Tregs and CD31-bearing Treg cell subsets (CD31 total Tregs, CD45RACD31 recent thymic emigrants Tregs) negatively correlated to TOD markers, arterial stiffness and blood pressure elevation. In contrast, increased percentage of memory Tregs and CD31 Tregs subsets positively correlated to organ damage markers, arterial stiffness and blood pressure values. These changes were independent of BMI, age, sex and hsCRP. CONCLUSION Both diagnosis of hypertension, TOD and arterial stiffness in hypertensive children were associated with decreased population of total CD4 Tregs, limited output of recent thymic emigrants Tregs, and increased pool of activated/memory Tregs. Hypertension was an independent predictor of the circulating Treg subsets distribution irrespective of hsCRP.
Collapse
|
48
|
Seibert FS, Sitz M, Passfall J, Haesner M, Laschinski P, Buhl M, Bauer F, Rohn B, Babel N, Westhoff TH. Urinary calprotectin, NGAL, and KIM-1 in the differentiation of primarily inflammatory vs. non-inflammatory stable chronic kidney diseases. Ren Fail 2021; 43:417-424. [PMID: 33663323 PMCID: PMC7939572 DOI: 10.1080/0886022x.2021.1885442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction It has been demonstrated that urinary neutrophil gelatinase-associated lipocalin (NGAL) and calprotectin are helpful biomarkers in the differentiation of intrinsic and prerenal acute kidney injury. Objective The present cross-sectional study investigates, whether urinary biomarkers are able to differentiate primarily inflammatory from non-inflammatory entities in chronic kidney disease (CKD). Methods Urinary calprotectin, NGAL, and kidney injury molecule-1 (KIM-1) concentrations were assessed in a study population of 143 patients with stable CKD and 29 healthy controls. Stable renal function was defined as an eGFR fluctuation ≤5 ml/min/1.73 m2 in the past 12 months. Pyuria, metastatic carcinoma, and renal transplantation were regarded as exclusion criteria. Diabetic nephropathy, hypertensive nephropathy, and polycystic kidney disease were categorized as ‘primarily non-inflammatory renal diseases’ (NIRD), whereas glomerulonephritis and vasculitis were regarded as ‘primarily inflammatory renal diseases’ (IRD). Results Urinary calprotectin and NGAL concentrations significantly differed between CKD and healthy controls (p < 0.05 each), whereas KIM-1 concentrations did not (p = 0.84). The three biomarkers did neither show significant differences in-between the individual entities, nor the two categories of IRD vs. NIRD (calprotectin 155.7 vs. 96.99 ng/ml; NGAL 14 896 vs. 11 977 pg/ml; KIM-1 1388 vs. 1009 pg/ml; p > 0.05 each). Albumin exceeds the diagnostic power of the investigated biomarkers by far. Conclusions The urinary biomarkers calprotectin, NGAL, and KIM-1 have no diagnostic value in the differentiation of primarily inflammatory vs. non-inflammatory etiologies of CKD.
Collapse
Affiliation(s)
- Felix S Seibert
- Medical Department I, University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany.,Department of Nephrology, Charité - Campus Benjamin Franklin, Berlin, Germany
| | - Maximilian Sitz
- Department of Nephrology, Charité - Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | - Martin Buhl
- KfH-Nierenzentrum Teltowkanalstraße, Berlin, Germany
| | - Frederic Bauer
- Medical Department I, University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany.,Department of Nephrology, Charité - Campus Benjamin Franklin, Berlin, Germany
| | - Benjamin Rohn
- Medical Department I, University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Nina Babel
- Medical Department I, University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Timm H Westhoff
- Medical Department I, University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany.,Department of Nephrology, Charité - Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
49
|
Rodilla E, López-Carmona MD, Cortes X, Cobos-Palacios L, Canales S, Sáez MC, Campos Escudero S, Rubio-Rivas M, Díez Manglano J, Freire Castro SJ, Vázquez Piqueras N, Mateo Sanchis E, Pesqueira Fontan PM, Magallanes Gamboa JO, González García A, Madrid Romero V, Tamargo Chamorro L, González Moraleja J, Villanueva Martínez J, González Noya A, Suárez-Lombraña A, Gracia Gutiérrez A, López Reboiro ML, Ramos Rincón JM, Gómez Huelgas R. Impact of Arterial Stiffness on All-Cause Mortality in Patients Hospitalized With COVID-19 in Spain. Hypertension 2021; 77:856-867. [PMID: 33377393 PMCID: PMC7884247 DOI: 10.1161/hypertensionaha.120.16563] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023]
Abstract
Older age and cardiovascular comorbidities are well-known risk factors for all-cause mortality in patients with coronavirus disease 2019 (COVID-19). Hypertension and age are the 2 principal determinants of arterial stiffness (AS). This study aimed to estimate AS in patients with COVID-19 requiring hospitalization and analyze its association with all-cause in-hospital mortality. This observational, retrospective, multicenter cohort study analyzed 12 170 patients admitted to 150 Spanish centers included in the SEMI-COVID-19 Network. We compared AS, defined as pulse pressure ≥60 mm Hg, and clinical characteristics between survivors and nonsurvivors. Mean age was 67.5 (±16.1) years and 42.5% were women. Overall, 2606 (21.4%) subjects died. Admission systolic blood pressure (BP) <120 and ≥140 mm Hg was a predictor of higher all-cause mortality (23.5% and 22.8%, respectively, P<0.001), compared with systolic BP between 120 and 140 mm Hg (18.6%). The 4379 patients with AS (36.0%) were older and had higher systolic and lower diastolic BP. Multivariate analysis showed that AS and systolic BP <120 mm Hg significantly and independently predicted all-cause in-hospital mortality (adjusted odds ratio [ORadj]: 1.27, P=0.0001; ORadj: 1.48, P=0.0001, respectively) after adjusting for sex (males, ORadj: 1.6, P=0.0001), age tertiles (second and third tertiles, ORadj: 2.0 and 4.7, P=0.0001), Charlson Comorbidity Index (second and third tertiles, ORadj: 4.8 and 8.6, P=0.0001), heart failure, and previous and in-hospital antihypertensive treatment. Our data show that AS and admission systolic BP <120 mm Hg had independent prognostic value for all-cause mortality in patients with COVID-19 requiring hospitalization.
Collapse
Affiliation(s)
- Enrique Rodilla
- From the Internal Medicine Department, Hypertension and Vascular Risk Unit, Sagunto University Hospital, Sagunto (Valencia), Spain (E.R., X.C., S.C., M.C.S.)
- Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain (E.R., X.C., S.C., M.C.S.)
| | - Maria Dolores López-Carmona
- Internal Medicine Department, Regional University Hospital of Málaga, Biomedical Research Institute of Málaga (IBIMA), University of Málaga (UMA), Spain (M.D.L.-C., L.C.-P., R.G.H.)
| | - Xavi Cortes
- From the Internal Medicine Department, Hypertension and Vascular Risk Unit, Sagunto University Hospital, Sagunto (Valencia), Spain (E.R., X.C., S.C., M.C.S.)
- Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain (E.R., X.C., S.C., M.C.S.)
| | - Lidia Cobos-Palacios
- Internal Medicine Department, Regional University Hospital of Málaga, Biomedical Research Institute of Málaga (IBIMA), University of Málaga (UMA), Spain (M.D.L.-C., L.C.-P., R.G.H.)
| | - Sergio Canales
- From the Internal Medicine Department, Hypertension and Vascular Risk Unit, Sagunto University Hospital, Sagunto (Valencia), Spain (E.R., X.C., S.C., M.C.S.)
- Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain (E.R., X.C., S.C., M.C.S.)
| | - Maria Carmen Sáez
- From the Internal Medicine Department, Hypertension and Vascular Risk Unit, Sagunto University Hospital, Sagunto (Valencia), Spain (E.R., X.C., S.C., M.C.S.)
- Department of Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain (E.R., X.C., S.C., M.C.S.)
| | | | - Manuel Rubio-Rivas
- Internal Medicine Department, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat (Barcelona), Spain (M.R.-R.)
| | - Jesus Díez Manglano
- Internal Medicine Department, Royo Villanova Hospital, Zaragoza, Spain (J.D.M.)
| | | | - Nuria Vázquez Piqueras
- Internal Medicine Department, Consorci Sanitari Integral, Moisès Broggi Hospital Sant Joan Despí (Barcelona), Spain (N.V.P.)
| | | | | | | | - Andrés González García
- Internal Medicine Department, Ramón y Cajal University Hospital, Madrid, Spain (A.G.G.)
- Internal Medicine Department, Defensa General Hospital, Zaragoza, Spain (A.G.G.)
| | | | | | | | | | - Amara González Noya
- Internal Medicine Department, Ourense University Hospital Complex, Ourense, Spain (A.G.N.)
| | | | - Anyuli Gracia Gutiérrez
- Internal Medicine Department, Ramón y Cajal University Hospital, Madrid, Spain (A.G.G.)
- Internal Medicine Department, Defensa General Hospital, Zaragoza, Spain (A.G.G.)
| | | | - José Manuel Ramos Rincón
- Department of Clinical Medicine, Miguel Hernandez University of Elche, Alicante, Spain (J.M.R.R.)
| | - Ricardo Gómez Huelgas
- Internal Medicine Department, Regional University Hospital of Málaga, Biomedical Research Institute of Málaga (IBIMA), University of Málaga (UMA), Spain (M.D.L.-C., L.C.-P., R.G.H.)
| |
Collapse
|
50
|
Karska‐Basta I, Pociej‐Marciak W, Chrząszcz M, Kubicka‐Trząska A, Romanowska‐Dixon B, Sanak M. Altered plasma cytokine levels in acute and chronic central serous chorioretinopathy. Acta Ophthalmol 2021; 99:e222-e231. [PMID: 32701204 PMCID: PMC7984262 DOI: 10.1111/aos.14547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To evaluate plasma levels of selected cytokines and investigate their correlation with choroidal thickness (CT) in patients with acute and chronic central serous chorioretinopathy (CSC). METHODS We enrolled 30 patients with acute CSC, 30 patients with chronic CSC and 20 controls. Plasma concentrations of 12 cytokines, interleukins IL-8, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10 and IL-12 p70, granulocyte-macrophage colony-stimulating factor, interferon-γ, tumour necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF), were measured using multiplex immunoassays. Differences in cytokine levels between groups were assessed. We also investigated correlations between cytokine levels and CT using swept-source optical coherence tomography, as well as an association between plasma cytokine profile and systemic hypertension. RESULTS We noted differences in IL-6 (p = 0.005), IL-10 (p = 0.03), IL-12 p70 (p = 0.028) and VEGF (p = 0.029) levels between groups. Pro-inflammatory IL-12 p70 and multidirectional IL-10 cytokines were upregulated, while pro-angiogenic VEGF was downregulated in chronic CSC as compared with controls (p = 0.005, p = 0.025 and p = 0.027, respectively). Interleukin-6 (IL-6) was upregulated in acute and chronic CSC (p = 0.030 and p = 0.005, respectively). Interleukin-5 (IL-5), IL-6 and IL-12 levels correlated with mean CT in acute CSC (p = 0.008, p = 0.003 and p = 0.044, respectively), while IL-8, IL-6 and TNF-α plasma levels correlated with hypertension in chronic CSC (p = 0.005, p = 0.033 and p = 0.001, respectively). CONCLUSION We provided new evidence for the possible role of plasma cytokines in the pathogenesis of CSC. Our results suggest that IL-6 may be important in the pathophysiology of acute and chronic CSC. The association between inflammatory response and hypertension in patients with CSC was also confirmed.
Collapse
Affiliation(s)
- Izabella Karska‐Basta
- Faculty of MedicineDepartment of OphthalmologyClinic of Ophthalmology and Ocular OncologyJagiellonian University Medical CollegeKrakówPoland
| | - Weronika Pociej‐Marciak
- Faculty of MedicineDepartment of OphthalmologyClinic of Ophthalmology and Ocular OncologyJagiellonian University Medical CollegeKrakówPoland
| | - Michał Chrząszcz
- Faculty of MedicineDepartment of OphthalmologyClinic of Ophthalmology and Ocular OncologyJagiellonian University Medical CollegeKrakówPoland
| | - Agnieszka Kubicka‐Trząska
- Faculty of MedicineDepartment of OphthalmologyClinic of Ophthalmology and Ocular OncologyJagiellonian University Medical CollegeKrakówPoland
| | - Bożena Romanowska‐Dixon
- Faculty of MedicineDepartment of OphthalmologyClinic of Ophthalmology and Ocular OncologyJagiellonian University Medical CollegeKrakówPoland
| | - Marek Sanak
- Faculty of MedicineDepartment of Internal MedicineMolecular Biology and Clinical Genetics UnitJagiellonian University Medical CollegeKrakówPoland
| |
Collapse
|