1
|
Rein JL, Mackie K, Kleyman TR, Satlin LM. Cannabinoid receptor type 1 activation causes a water diuresis by inducing an acute central diabetes insipidus in mice. Am J Physiol Renal Physiol 2024; 326:F917-F930. [PMID: 38634131 DOI: 10.1152/ajprenal.00320.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.
Collapse
Affiliation(s)
- Joshua L Rein
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ken Mackie
- Gill Center for Biomolecular Medicine, Indiana University, Bloomington, Indiana, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
2
|
Gul S, Sridhar SB, Jalil A, Akhlaq M, Arshad MS, Sarwar HS, Usman F, Shareef J, Thomas S. Solid Self-Nanoemulsifying Drug Delivery Systems of Furosemide: In Vivo Proof of Concept for Enhanced Predictable Therapeutic Response. Pharmaceuticals (Basel) 2024; 17:500. [PMID: 38675460 PMCID: PMC11053802 DOI: 10.3390/ph17040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Liquid self-nano emulsifying drug delivery systems (SNEDDS) of furosemide (FSM) have been explored as a potential solution for enhancing solubility and permeability but are associated with rapid emulsification, spontaneous drug release, and poor in vivo correlation. To overcome the shortcoming, this study aimed to develop liquid and solid self-emulsifying drug delivery systems for FSM, compare formulation dynamics, continue in vivo therapeutic efficacy, and investigate the advantages of solidification. For this purpose, liquid SNEDDS (L-SEDDS-FSM) were formed using oleic acid as an oil, chremophore EL, Tween 80, Tween 20 as a surfactant, and PEG 400 as a co-surfactant containing 53 mg/mL FSM. At the same time, solid SNEDDS (S-SEDDS-FSM) was developed by adsorbing liquid SNEDDS onto microcrystalline cellulose in a 1:1 ratio. Both formulations were evaluated for size, zeta potential, lipase degradation, and drug release. Moreover, in vivo diuretic studies regarding urine volume were carried out in mice to investigate the therapeutic responses of liquid and solid SNEDDS formulations. After dilution, L-SEDDS-FSM showed a mean droplet size of 115 ± 4.5 nm, while S-SEDDS-FSM depicted 116 ± 2.6 nm and zeta potentials of -5.4 ± 0.55 and -6.22 ± 1.2, respectively. S-SEDDS-FSM showed 1.8-fold reduced degradation by lipase enzymes in comparison to L-SEDDS-FSM. S-SEDDS-FSM demonstrated a sustained drug release pattern, releasing 63% of the drug over 180 min, in contrast to L-SEDDS-FSM, exhibiting 90% spontaneous drug release within 30 min. L-SEDDS-FSM exhibited a rapid upsurge in urine output (1550 ± 56 μL) compared to S-SEDDS-FSM, showing gradual urine output (969 ± 29 μL) till the 4th h of the study, providing sustained urine output yet a predictable therapeutic response. The solidification of SNEDDS effectively addresses challenges associated with spontaneous drug release and precipitation observed in liquid SNEDDS, highlighting the potential benefits of solid SNEDDS in improving the therapeutic response of furosemide.
Collapse
Affiliation(s)
- Sania Gul
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan (M.S.A.); (F.U.)
| | - Sathvik Belagodu Sridhar
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras al Khaimah 11172, United Arab Emirates; (S.B.S.); (J.S.)
| | - Aamir Jalil
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan (M.S.A.); (F.U.)
| | - Muhammad Akhlaq
- Department of Pharmacy, Hazara University, Mansehra 21300, Pakistan;
| | - Muhammad Sohail Arshad
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan (M.S.A.); (F.U.)
| | - Hafiz Shoaib Sarwar
- Department of Pharmaceutical Sciences, University of Central Punjab, Lahore 54590, Pakistan;
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan (M.S.A.); (F.U.)
| | - Javedh Shareef
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras al Khaimah 11172, United Arab Emirates; (S.B.S.); (J.S.)
| | - Sabin Thomas
- College of Health Sciences, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman;
| |
Collapse
|
3
|
Brazier F, Cornière N, Picard N, Chambrey R, Eladari D. Pendrin: linking acid base to blood pressure. Pflugers Arch 2024; 476:533-543. [PMID: 38110744 DOI: 10.1007/s00424-023-02897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.
Collapse
Affiliation(s)
- François Brazier
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Nicolas Cornière
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Nicolas Picard
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, Lyon, France
| | - Régine Chambrey
- Paris Cardiovascular Research Center (PARCC), INSERM U970, F-75015, Paris, France
| | - Dominique Eladari
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France.
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, Lyon, France.
- French Clinical Research Infrastructure Network (F-CRIN): INI-CRCT, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
4
|
Wang L, Hoang A, Gil-Iturbe E, Laganowsky A, Quick M, Zhou M. Mechanism of anion exchange and small-molecule inhibition of pendrin. Nat Commun 2024; 15:346. [PMID: 38184688 PMCID: PMC10771415 DOI: 10.1038/s41467-023-44612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Pendrin (SLC26A4) is an anion exchanger that mediates bicarbonate (HCO3-) exchange for chloride (Cl-) and is crucial for maintaining pH and salt homeostasis in the kidney, lung, and cochlea. Pendrin also exports iodide (I-) in the thyroid gland. Pendrin mutations in humans lead to Pendred syndrome, causing hearing loss and goiter. Inhibition of pendrin is a validated approach for attenuating airway hyperresponsiveness in asthma and for treating hypertension. However, the mechanism of anion exchange and its inhibition by drugs remains poorly understood. We applied cryo-electron microscopy to determine structures of pendrin from Sus scrofa in the presence of either Cl-, I-, HCO3- or in the apo-state. The structures reveal two anion-binding sites in each protomer, and functional analyses show both sites are involved in anion exchange. The structures also show interactions between the Sulfate Transporter and Anti-Sigma factor antagonist (STAS) and transmembrane domains, and mutational studies suggest a regulatory role. We also determine the structure of pendrin in a complex with niflumic acid (NFA), which uncovers a mechanism of inhibition by competing with anion binding and impeding the structural changes necessary for anion exchange. These results reveal directions for understanding the mechanisms of anion selectivity and exchange and their regulations by the STAS domain. This work also establishes a foundation for analyzing the pathophysiology of mutations associated with Pendred syndrome.
Collapse
Affiliation(s)
- Lie Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony Hoang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Area Neuroscience - Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
6
|
Bourgeois S, Kovacikova J, Bugarski M, Bettoni C, Gehring N, Hall A, Wagner CA. The B1 H + -ATPase ( Atp6v1b1 ) Subunit in Non-Type A Intercalated Cells is Required for Driving Pendrin Activity and the Renal Defense Against Alkalosis. J Am Soc Nephrol 2024; 35:7-21. [PMID: 37990364 PMCID: PMC10786613 DOI: 10.1681/asn.0000000000000259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/07/2023] [Indexed: 11/23/2023] Open
Abstract
SIGNIFICANCE STATEMENT In the kidney, the B1 H + -ATPase subunit is mostly expressed in intercalated cells (IC). Its importance in acid-secreting type A ICs is evident in patients with inborn distal renal tubular acidosis and ATP6V1B1 mutations. However, the protein is also highly expressed in alkali-secreting non-type A ICs where its function is incompletely understood. We demonstrate in Atp6v1b1 knock out mice that the B1 subunit is critical for the renal response to defend against alkalosis during an alkali load or chronic furosemide treatment. These findings highlight the importance of non-type A ICs in maintaining acid-base balance in response to metabolic challenges or commonly used diuretics. BACKGROUND Non-type A ICs in the collecting duct system express the luminal Cl - /HCO 3- exchanger pendrin and apical and/or basolateral H + -ATPases containing the B1 subunit isoform. Non-type A ICs excrete bicarbonate during metabolic alkalosis. Mutations in the B1 subunit (ATP6V1B1) cause distal renal tubular acidosis due to its role in acid secretory type A ICs. The function of B1 in non-type A ICs has remained elusive. METHODS We examined the responses of Atp6v1b1-/- and Atp6v1b1+/+ mice to an alkali load and to chronic treatment with furosemide. RESULTS An alkali load or 1 week of furosemide resulted in a more pronounced hypokalemic alkalosis in male ATP6v1b1-/- versus Atp6v1b1+/+ mice that could not be compensated by respiration. Total pendrin expression and activity in non-type A ICs of ex vivo microperfused cortical collecting ducts were reduced, and β2 -adrenergic stimulation of pendrin activity was blunted in ATP6v1b1-/- mice. Basolateral H + -ATPase activity was strongly reduced, although the basolateral expression of the B2 isoform was increased. Ligation assays for H + -ATPase subunits indicated impaired assembly of V 0 and V 1 H + -ATPase domains. During chronic furosemide treatment, ATP6v1b1-/- mice also showed polyuria and hyperchloremia versus Atp6v1b1+/+ . The expression of pendrin, the water channel AQP2, and subunits of the epithelial sodium channel ENaC were reduced. CONCLUSIONS Our data demonstrate a critical role of H + -ATPases in non-type A ICs function protecting against alkalosis and reveal a hitherto unrecognized need of basolateral B1 isoform for a proper H + -ATPase complexes assembly and ability to be stimulated.
Collapse
Affiliation(s)
- Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jana Kovacikova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Nicole Gehring
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
7
|
Chu T, Karmakar J, Haggie PM, Tan JA, Master R, Ramaswamy K, Verkman AS, Anderson MO, Cil O. Selective isoxazolopyrimidine PAT1 (SLC26A6) inhibitors for therapy of intestinal disorders. RSC Med Chem 2023; 14:2342-2347. [PMID: 37974969 PMCID: PMC10650448 DOI: 10.1039/d3md00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/10/2023] [Indexed: 11/19/2023] Open
Abstract
A loss of prosecretory Cl- channel CFTR activity in the intestine is considered as the key cause of gastrointestinal problems in cystic fibrosis (CF): meconium ileus, distal intestinal obstruction syndrome (DIOS) and constipation. Since CFTR modulators have minimal effects on gastrointestinal symptoms, there is an unmet need for novel treatments for CF-associated gastrointestinal disorders. Meconium ileus and DIOS mainly affect the ileum (distal small intestine). SLC26A6 (putative anion transporter 1, PAT1) is a Cl-/HCO3- exchanger at the luminal membrane of small intestinal epithelial cells which facilitates Cl- and fluid absorption. We recently identified first-in-class PAT1 inhibitors by high-throughput screening. Isoxazolopyrimidine PAT1inh-A01 was a hit compound, which had low potency (IC50 5.2 μM) for SLC26A6 inhibition precluding further preclinical development. Here we performed structure-activity relationship studies to optimize isoxazolopyrimidine SLC26A6 inhibitors and tested a potent inhibitor in mouse models of intestinal fluid absorption. Structure-activity studies of 377 isoxazolopyrimidine analogs identified PAT1inh-A0030 (ethyl 4-(benzyl(methyl)amino)-3-methylisoxazolo[5,4-d]pyrimidine-6-carboxylate) as the most potent SLC26A6 inhibitor with a 1.0 μM IC50. Selectivity studies showed that PAT1inh-A030 has no activity on relevant ion transporters/channels (SLC26A3, SLC26A4, SLC26A9, CFTR, TMEM16A). In a closed-loop model of intestinal fluid absorption, intraluminal PAT1inh-A0030 treatment inhibited fluid absorption in the ileum of wild-type and CF mice (CftrdelF508/delF508) with >90% prevention of a decrease in loop fluid volume and loop weight/length ratio at 30 minutes. These results suggest that SLC26A6 is the key transporter mediating Cl- and fluid absorption in the ileum and SLC26A6 inhibitors are novel drug candidates for treatment of CF-associated small intestinal disorders.
Collapse
Affiliation(s)
- Tifany Chu
- Department of Pediatrics, University of California, San Francisco San Francisco CA USA
| | - Joy Karmakar
- Department of Pediatrics, University of California, San Francisco San Francisco CA USA
| | - Peter M Haggie
- Department of Medicine, University of California, San Francisco San Francisco CA USA
| | - Joseph-Anthony Tan
- Department of Medicine, University of California, San Francisco San Francisco CA USA
| | - Riya Master
- Department of Pediatrics, University of California, San Francisco San Francisco CA USA
| | - Keerthana Ramaswamy
- Department of Pediatrics, University of California, San Francisco San Francisco CA USA
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco San Francisco CA USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University San Francisco CA USA
| | - Onur Cil
- Department of Pediatrics, University of California, San Francisco San Francisco CA USA
| |
Collapse
|
8
|
Haigis AC, Vergauwen L, LaLone CA, Villeneuve DL, O'Brien JM, Knapen D. Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci 2023; 195:1-27. [PMID: 37405877 DOI: 10.1093/toxsci/kfad063] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
9
|
de Souza Goncalves L, Yottasan P, Cil O. Structure of human NCC: insights into the inhibition mechanism of thiazides. Signal Transduct Target Ther 2023; 8:257. [PMID: 37394514 DOI: 10.1038/s41392-023-01527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
| | - Pattareeya Yottasan
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Tamargo J, Agewall S, Borghi C, Ceconi C, Cerbai E, Dan GA, Ferdinandy P, Grove EL, Rocca B, Sulzgruber P, Semb AG, Sossalla S, Niessner A, Kaski JC, Dobrev D. New pharmacological agents and novel cardiovascular pharmacotherapy strategies in 2022. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:pvad034. [PMID: 37169875 PMCID: PMC10236523 DOI: 10.1093/ehjcvp/pvad034] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and pharmacotherapy of most of them is suboptimal. Thus, there is a clear unmet clinical need to develop new pharmacological strategies with greater efficacy and better safety profiles. In this review, we summarize the most relevant advances in cardiovascular pharmacology in 2022 including the approval of first-in-class drugs that open new avenues for the treatment of obstructive hypertrophic cardiomyopathy (mavacamten), type 2 diabetes mellitus (tirzepatide), and heart failure (HF) independent of left ventricular ejection fraction (sodium-glucose cotransporter 2 inhibitors). We also dealt with fixed dose combination therapies repurposing different formulations of "old" drugs with well-known efficacy and safety for the treatment of patients with acute decompensated HF (acetazolamide plus loop diuretics), atherosclerotic cardiovascular disease (moderate-dose statin plus ezetimibe), Marfan syndrome (angiotensin receptor blockers plus β-blockers), and secondary cardiovascular prevention (i.e. low-dose aspirin, ramipril and atorvastatin), thereby filling existing gaps in knowledge, and opening new avenues for the treatment of CVD. Clinical trials confirming the role of dapagliflozin in patients with HF and mildly reduced or preserved ejection fraction, long-term evolocumab to reduce the risk of cardiovascular events, vitamin K antagonists for stroke prevention in patients with rheumatic heart disease-associated atrial fibrillation, antibiotic prophylaxis in patients at high risk for infective endocarditis before invasive dental procedures, and vutrisiran for the treatment of hereditary transthyretin-related amyloidosis with polyneuropathy were also reviewed. Finally, we briefly discuss recent clinical trials suggesting that FXIa inhibitors may have the potential to uncouple thrombosis from hemostasis and attenuate/prevent thromboembolic events with minimal disruption of hemostasis.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
| | - Stefan Agewall
- Department of Cardiology, Oslo University Hospital and Institute of Clinical Medicine, Oslo University, Oslo, Norvay
| | - Claudio Borghi
- Department of Cardiovascular Medicine, University of Bologna-IRCCS AOU S. Orsola, Bologna, Italy
| | - Claudio Ceconi
- Unit of Cardiologia, ASST Garda, Desenzano del Garda, Italy
| | - Elisabetta Cerbai
- Department Neurofarba, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Gheorghe A Dan
- “Carol Davila” University of Medicine, Colentina University Hospital, Bucharest, Romania
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Bianca Rocca
- Section of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Patrick Sulzgruber
- Department of Medicine, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Anne Grete Semb
- Preventive Cario-Rheuma Clinic, Division of Research and Innovation, REMEDY Centre, Diakonhjemmet Hospital, Oslo, Norway
| | - Samuel Sossalla
- Department of Internal Medicine II, University Regensburg, Regensburg, Germany
| | - Alexander Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Dobromir Dobrev
- Institute of Pharmacology, West-German Heart and Vascular Centre, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Koirala A, Pourafshar N, Daneshmand A, Wilcox CS, Mannemuddhu SS, Arora N. Etiology and Management of Edema: A Review. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:110-123. [PMID: 36868727 DOI: 10.1053/j.akdh.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 04/18/2023]
Abstract
The development of peripheral edema can often pose a significant diagnostic and therapeutic challenge for practitioners due to its association with a wide variety of underlying disorders ranging in severity. Updates to the original Starling's principle have provided new mechanistic insights into edema formation. Additionally, contemporary data highlighting the role of hypochloremia in the development of diuretic resistance provide a possible new therapeutic target. This article reviews the pathophysiology of edema formation and discusses implications for treatment.
Collapse
Affiliation(s)
- Abbal Koirala
- Division of Nephrology, University of Washington, Seattle, WA
| | - Negiin Pourafshar
- Division of Nephrology, MedStar Georgetown University Hospital, Washington DC
| | - Arvin Daneshmand
- Division of Nephrology, MedStar Georgetown University Hospital, Washington DC
| | | | | | - Nayan Arora
- Division of Nephrology, University of Washington, Seattle, WA.
| |
Collapse
|
12
|
Heneghan JF, Majmundar AJ, Rivera A, Wohlgemuth JG, Dlott JS, Snyder LM, Hildebrandt F, Alper SL. Activation of 2-oxoglutarate receptor 1 (OXGR1) by α-ketoglutarate (αKG) does not detectably stimulate Pendrin-mediated anion exchange in Xenopus oocytes. Physiol Rep 2022; 10:e15362. [PMID: 35851763 PMCID: PMC9294391 DOI: 10.14814/phy2.15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023] Open
Abstract
SLC26A4/Pendrin is the major electroneutral Cl- /HCO3- exchanger of the apical membrane of the Type B intercalated cell (IC) of the connecting segment (CNT) and cortical collecting duct (CCD). Pendrin mediates both base secretion in response to systemic base load and Cl- reabsorption in response to systemic volume depletion, manifested as decreased nephron salt and water delivery to the distal nephron. Pendrin-mediated Cl- /HCO3- exchange in the apical membrane is upregulated through stimulation of the β-IC apical membrane G protein-coupled receptor, 2-oxoglutarate receptor 1 (OXGR1/GPR99), by its ligand α-ketoglutarate (αKG). αKG is both filtered by the glomerulus and lumenally secreted by proximal tubule apical membrane organic anion transporters (OATs). OXGR1-mediated regulation of Pendrin by αKG has been documented in transgenic mice and in isolated perfused CCD. However, aspects of the OXGR1 signaling pathway have remained little investigated since its original discovery in lymphocytes. Moreover, no ex vivo cellular system has been reported in which to study the OXGR1 signaling pathway of Type B-IC, a cell type refractory to survival in culture in its differentiated state. As Xenopus oocytes express robust heterologous Pendrin activity, we investigated OXGR1 regulation of Pendrin in oocytes. Despite functional expression of OXGR1 in oocytes, co-expression of Pendrin and OXGR1 failed to exhibit αKG-sensitive stimulation of Pendrin-mediated Cl- /anion exchange under a wide range of conditions. We conclude that Xenopus oocytes lack one or more essential molecular components or physical conditions required for OXGR1 to regulate Pendrin activity.
Collapse
Affiliation(s)
- John F. Heneghan
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Amar J. Majmundar
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
| | - Alicia Rivera
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | | | - Friedhelm Hildebrandt
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Seth L. Alper
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
13
|
Wall SM. Regulation of Blood Pressure and Salt Balance By Pendrin-Positive Intercalated Cells: Donald Seldin Lecture 2020. Hypertension 2022; 79:706-716. [PMID: 35109661 PMCID: PMC8918038 DOI: 10.1161/hypertensionaha.121.16492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intercalated cells make up about a third of all cells within the connecting tubule and the collecting duct and are subclassified as type A, type B and non-A, non-B based on the subcellular distribution of the H+-ATPase, which dictates whether it secretes H+ or HCO3-. Type B intercalated cells mediate Cl- absorption and HCO3- secretion, which occurs largely through the anion exchanger pendrin. Pendrin is stimulated by angiotensin II via the angiotensin type 1a receptor and by aldosterone through MR (mineralocorticoid receptor). Aldosterone stimulates pendrin expression and function, in part, through the alkalosis it generates. Pendrin-mediated HCO3- secretion increases in models of metabolic alkalosis, which attenuates the alkalosis. However, pendrin-positive intercalated cells also regulate blood pressure, at least partly, through pendrin-mediated Cl- absorption and through their indirect effect on the epithelial Na+ channel, ENaC. This aldosterone-induced increase in pendrin secondarily stimulates ENaC, thereby contributing to the aldosterone pressor response. This review describes the contribution of pendrin-positive intercalated cells to Na+, K+, Cl- and acid-base balance.
Collapse
Affiliation(s)
- Susan M. Wall
- Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
14
|
Cox ZL, Rao VS, Testani JM. Classic and Novel Mechanisms of Diuretic Resistance in Cardiorenal Syndrome. KIDNEY360 2022; 3:954-967. [PMID: 36128483 PMCID: PMC9438407 DOI: 10.34067/kid.0006372021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/23/2022] [Indexed: 01/10/2023]
Abstract
Despite the incompletely understood multiple etiologies and underlying mechanisms, cardiorenal syndrome is characterized by decreased glomerular filtration and sodium avidity. The underlying level of renal sodium avidity is of primary importance in driving a congested heart failure phenotype and ultimately determining the response to diuretic therapy. Historically, mechanisms of kidney sodium avidity and resultant diuretic resistance were primarily extrapolated to cardiorenal syndrome from non-heart failure populations. Yet, the mechanisms appear to differ between these populations. Recent literature in acute decompensated heart failure has refuted several classically accepted diuretic resistance mechanisms and reshaped how we conceptualize diuretic resistance mechanisms in cardiorenal syndrome. Herein, we propose an anatomically based categorization of diuretic resistance mechanisms to establish the relative importance of specific transporters and translate findings toward therapeutic strategies. Within this categorical structure, we discuss classic and novel mechanisms of diuretic resistance.
Collapse
Affiliation(s)
- Zachary L. Cox
- Department of Pharmacy Practice, Lipscomb University College of Pharmacy, Nashville, Tennessee,Department of Pharmacy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Veena S. Rao
- Division of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jeffrey M. Testani
- Division of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Inoue T, Hisamichi M, Ichikawa D, Shibagaki Y, Yazawa M. The Effect of Add-on Acetazolamide to Conventional Diuretics for Diuretic-resistant Edema Complicated with Hypercapnia: A Report of Two Cases. Intern Med 2022; 61:373-378. [PMID: 34373379 PMCID: PMC8866788 DOI: 10.2169/internalmedicine.7896-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We herein report two cases in which add-on acetazolamide to furosemide was effective for diuretic-resistant volume overload and hypercapnia. Case 1 was a woman in her 40s presenting with volume overload due to the nephrotic syndrome with diabetes mellitus. Case 2 was a man in his 60s with fluid overload and non-nephrotic proteinuria and sepsis. In both cases, although fluid overload was resistant to high-dose loop diuretics and complicated with hypercapnia due to pulmonary effusion, add-on acetazolamide administration resulted in symptom resolution. The additional effect of acetazolamide occurred regardless of the degree of proteinuria and kidney function.
Collapse
Affiliation(s)
- Tomohiko Inoue
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Japan
| | - Mikako Hisamichi
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Japan
- Division of Nephrology, Department of Internal Medicine, Tokyo Takanawa Hospital, Japan
| | - Daisuke Ichikawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Japan
| | - Yugo Shibagaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Japan
| | - Masahiko Yazawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Japan
| |
Collapse
|
16
|
Abstract
Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.
Collapse
Affiliation(s)
- Alan S Verkman
- Department of Medicine, University of California, San Francisco, California.,Department of Physiology, University of California, San Francisco, California
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Pendrin resides on the luminal membrane of type B intercalated cells in the renal collecting tubule system mediating the absorption of chloride in exchange for bicarbonate. In mice or humans lacking pendrin, blood pressure is lower, and pendrin knockout mice are resistant to aldosterone-induced hypertension. Here we discuss recent findings on the regulation of pendrin. RECENT FINDINGS Pendrin activity is stimulated during alkalosis partly mediated by secretin. Also, angiotensin II and aldosterone stimulate pendrin activity requiring the mineralocorticoid receptor in intercalated cells. Angiotensin II induces dephosphorylation of the mineralocorticoid receptor rendering the receptor susceptible for aldosterone binding. In the absence of the mineralocorticoid receptor in intercalated cells, angiotensin II does not stimulate pendrin. The effect of aldosterone on pendrin expression is in part mediated by the development of hypokalemic alkalosis and blunted by K-supplements or amiloride. Part of the blood pressure-increasing effect of pendrin is also mediated by its stimulatory effect on the epithelial Na-channel in neighbouring principal cells. SUMMARY These findings identify pendrin as a critical regulator of renal salt handling and blood pressure along with acid--base balance. A regulatory network of hormones fine-tuning activity is emerging. Drugs blocking pendrin are being developed.
Collapse
|
18
|
Cil O, Haggie PM, Tan JAT, Rivera AA, Verkman AS. SLC26A6-selective inhibitor identified in a small-molecule screen blocks fluid absorption in small intestine. JCI Insight 2021; 6:147699. [PMID: 34100381 PMCID: PMC8262356 DOI: 10.1172/jci.insight.147699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
SLC26A6 (also known as putative anion transporter 1 [PAT1]) is a Cl-/HCO3- exchanger expressed at the luminal membrane of enterocytes where it facilitates intestinal Cl- and fluid absorption. Here, high-throughput screening of 50,000 synthetic small molecules in cells expressing PAT1 and a halide-sensing fluorescent protein identified several classes of inhibitors. The most potent compound, the pyrazolo-pyrido-pyrimidinone PAT1inh-B01, fully inhibited PAT1-mediated anion exchange (IC50 ~350 nM), without inhibition of the related intestinal transporter SLC26A3 (also known as DRA). In closed midjejunal loops in mice, PAT1inh-B01 inhibited fluid absorption by 50%, which increased to >90% when coadministered with DRA inhibitor DRAinh-A270. In ileal loops, PAT1inh-B01 blocked fluid absorption by >80%, whereas DRAinh-A270 was without effect. In colonic loops, PAT1inh-B01 was without effect, whereas DRAinh-A270 completely blocked fluid absorption. In a loperamide constipation model, coadministration of PAT1inh-B01 with DRAinh-A270 increased stool output compared with DRAinh-A270 alone. These results provide functional evidence for complementary and region-specific roles of PAT1 and DRA in intestinal fluid absorption, with PAT1 as the predominant anion exchanger in mouse ileum. We believe that PAT1inh-B01 is a novel tool to study intestinal ion and fluid transport and perhaps a drug candidate for small intestinal hyposecretory disorders such as cystic fibrosis-related meconium ileus and distal intestinal obstruction syndrome.
Collapse
Affiliation(s)
| | - Peter M. Haggie
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Joseph-Anthony Tapia Tan
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Amber A. Rivera
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Renal tubular transport protein regulation in primary aldosteronism: can large-scale proteomic analysis offer a new insight? J Hum Hypertens 2021; 35:825-827. [PMID: 33837295 DOI: 10.1038/s41371-021-00537-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 11/08/2022]
|
20
|
Titko T, Perekhoda L, Drapak I, Tsapko Y. Modern trends in diuretics development. Eur J Med Chem 2020; 208:112855. [PMID: 33007663 DOI: 10.1016/j.ejmech.2020.112855] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Diuretics are the first-line therapy for widespread cardiovascular and non-cardiovascular diseases. Traditional diuretics are commonly prescribed for treatment in patients with hypertension, edema and heart failure, as well as with a number of kidney problems. They are diseases with high mortality, and the number of patients suffering from heart and kidney diseases is increasing year by year. The use of several classes of diuretics currently available for clinical use exhibits an overall favorable risk/benefit balance. However, they are not devoid of side effects. Hence, pharmaceutical researchers have been making efforts to develop new drugs with a better pharmacological profile. High-throughput screening, progress in protein structure analysis and modern methods of chemical modification have opened good possibilities for identification of new promising agents for preclinical and clinical testing. In this review, we provide an overview of the medicinal chemistry approaches toward the development of small molecule compounds showing diuretic activity that have been discovered over the past decade and are interesting drug candidates. We have discussed promising natriuretics/aquaretics/osmotic diuretics from such classes as: vasopressin receptor antagonists, SGLT2 inhibitors, urea transporters inhibitors, aquaporin antagonists, adenosine receptor antagonists, natriuretic peptide receptor agonists, ROMK inhibitors, WNK-SPAK inhibitors, and pendrin inhibitors.
Collapse
Affiliation(s)
- Tetiana Titko
- Department of Medicinal Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| | - Lina Perekhoda
- Department of Medicinal Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| | - Iryna Drapak
- Department of General, Bioinorganic, Physical and Colloidal Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska Str., 79010, Lviv, Ukraine.
| | - Yevgen Tsapko
- Department of Inorganic Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| |
Collapse
|
21
|
Wilcox CS, Testani JM, Pitt B. Pathophysiology of Diuretic Resistance and Its Implications for the Management of Chronic Heart Failure. Hypertension 2020; 76:1045-1054. [PMID: 32829662 PMCID: PMC10683075 DOI: 10.1161/hypertensionaha.120.15205] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diuretic resistance implies a failure to increase fluid and sodium (Na+) output sufficiently to relieve volume overload, edema, or congestion, despite escalating doses of a loop diuretic to a ceiling level (80 mg of furosemide once or twice daily or greater in those with reduced glomerular filtration rate or heart failure). It is a major cause of recurrent hospitalizations in patients with chronic heart failure and predicts death but is difficult to diagnose unequivocally. Pharmacokinetic mechanisms include the low and variable bioavailability of furosemide and the short duration of all loop diuretics that provides time for the kidneys to restore diuretic-induced Na+ losses between doses. Pathophysiological mechanisms of diuretic resistance include an inappropriately high daily salt intake that exceeds the acute diuretic-induced salt loss, hyponatremia or hypokalemic, hypochloremic metabolic alkalosis, and reflex activation of the renal nerves. Nephron mechanisms include tubular tolerance that can develop even during the time that the renal tubules are exposed to a single dose of diuretic, or enhanced reabsorption in the proximal tubule that limits delivery to the loop, or an adaptive increase in reabsorption in the downstream distal tubule and collecting ducts that offsets ongoing blockade of Na+ reabsorption in the loop of Henle. These provide rationales for novel strategies including the concurrent use of diuretics that block these nephron segments and even sequential nephron blockade with multiple diuretics and aquaretics combined in severely diuretic-resistant patients with heart failure.
Collapse
Affiliation(s)
- Christopher Stuart Wilcox
- From the Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington DC (C.S.W.)
| | | | - Bertram Pitt
- Division of Cardiology, University of Michigan, Ann Arbor, MI (B.P.)
| |
Collapse
|
22
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Abstract
Decompensated heart failure accounts for approximately 1 million hospitalizations in the United States annually, and this number is expected to increase significantly in the near future. Diuretics provide the initial management in most patients with fluid overload. However, the development of diuretic resistance remains a significant challenge in the treatment of heart failure. Due to the lack of a standard definition, the prevalence of this phenomenon remains difficult to determine, with some estimates suggesting that 25-30% of patients with heart failure have diuretic resistance. Certain characteristics, including low systolic blood pressures, renal impairment, and atherosclerotic disease, help predict the development of diuretic resistance. The underlying pathophysiology is likely multifactorial, with pharmacokinetic alterations, hormonal dysregulation, and the cardiorenal syndrome having significant roles. The therapeutic approach to this common problem typically involves increases in the diuretic dose and/or frequency, sequential nephron blockade, and mechanical fluid movement removal with ultrafiltration or peritoneal dialysis. Paracentesis is potentially useful in patients with intra-abdominal hypertension.
Collapse
|
24
|
Recent insights into sodium and potassium handling by the aldosterone-sensitive distal nephron: implications on pathophysiology and drug discovery. J Nephrol 2020; 33:447-466. [DOI: 10.1007/s40620-020-00700-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
|
25
|
Zhu JS, Lu JY, Tan JA, Rivera AA, Phuan PW, Shatskikh ME, Son JH, Haggie PM, Verkman AS, Kurth MJ. Synthesis and evaluation of tetrahydropyrazolopyridine inhibitors of anion exchange protein SLC26A4 (pendrin). Bioorg Med Chem Lett 2019; 29:2119-2123. [PMID: 31281021 DOI: 10.1016/j.bmcl.2019.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/03/2023]
Abstract
Pendrin is a transmembrane chloride/anion antiporter that is strongly upregulated in the airways in rhinoviral infection, asthma, cystic fibrosis and chronic rhinosinusitis. Based on its role in the regulation of airway surface liquid depth, pendrin inhibitors have potential indications for treatment of inflammatory airways diseases. Here, a completely regioselective route to tetrahydro-pyrazolopyridine pendrin inhibitors based on 1,3-diketone and substituted hydrazine condensation was been developed. Structure-activity relationships at the tetrahydropyridyl nitrogen were investigated using a focused library, establishing the privileged nature of N-phenyl ureas and improving inhibitor potency by greater than 2-fold.
Collapse
Affiliation(s)
- Jie S Zhu
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Julia Y Lu
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Joseph-Anthony Tan
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Amber A Rivera
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Puay-Wah Phuan
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Marina E Shatskikh
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Jung-Ho Son
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Peter M Haggie
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Alan S Verkman
- Departments of Medicine & Physiology, University of California, San Francisco, CA 94143, United States
| | - Mark J Kurth
- Department of Chemistry, University of California, Davis, CA 95616, United States.
| |
Collapse
|
26
|
Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Sci Rep 2019; 9:6516. [PMID: 31019198 PMCID: PMC6482305 DOI: 10.1038/s41598-019-42751-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Morbidity is mainly due to early airway infection. We hypothesized that S. aureus clearance during the first hours of infection was impaired in CF human Airway Surface Liquid (ASL) because of a lowered pH. The ASL pH of human bronchial epithelial cell lines and primary respiratory cells from healthy controls (WT) and patients with CF was measured with a pH microelectrode. The antimicrobial capacity of airway cells was studied after S. aureus apical infection by counting surviving bacteria. ASL was significantly more acidic in CF than in WT respiratory cells. This was consistent with a defect in bicarbonate secretion involving CFTR and SLC26A4 (pendrin) and a persistent proton secretion by ATP12A. ASL demonstrated a defect in S. aureus clearance which was improved by pH normalization. Pendrin inhibition in WT airways recapitulated the CF airway defect and increased S. aureus proliferation. ATP12A inhibition by ouabain decreased bacterial proliferation. Antimicrobial peptides LL-37 and hBD1 demonstrated a pH-dependent activity. Normalizing ASL pH might improve innate airway defense in newborns with CF during onset of S. aureus infection. Pendrin activation and ATP12A inhibition could represent novel therapeutic strategies to normalize pH in CF airways.
Collapse
|
27
|
Haggie PM, Cil O, Lee S, Tan JA, Rivera AA, Phuan PW, Verkman AS. SLC26A3 inhibitor identified in small molecule screen blocks colonic fluid absorption and reduces constipation. JCI Insight 2018; 3:121370. [PMID: 30046015 DOI: 10.1172/jci.insight.121370] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
SLC26A3 (downregulated in adenoma; DRA) is a Cl-/anion exchanger expressed in the luminal membrane of intestinal epithelial cells, where it facilitates electroneutral NaCl absorption. SLC26A3 loss of function in humans or mice causes chloride-losing diarrhea. Here, we identified slc26a3 inhibitors in a screen of 50,000 synthetic small molecules done in Fischer rat thyroid (FRT) cells coexpressing slc26a3 and a genetically encoded halide sensor. Structure-activity relationship studies were done on the most potent inhibitor classes identified in the screen: 4,8-dimethylcoumarins and acetamide-thioimidazoles. The dimethylcoumarin DRAinh-A250 fully and reversibly inhibited slc26a3-mediated Cl- exchange with HCO3-, I-, and thiocyanate (SCN-), with an IC50 of ~0.2 μM. DRAinh-A250 did not inhibit the homologous anion exchangers slc26a4 (pendrin) or slc26a6 (PAT-1), nor did it alter activity of other related proteins or intestinal ion channels. In mice, intraluminal DRAinh-A250 blocked fluid absorption in closed colonic loops but not in jejunal loops, while the NHE3 (SLC9A3) inhibitor tenapanor blocked absorption only in the jejunum. Oral DRAinh-A250 and tenapanor comparably reduced signs of constipation in loperamide-treated mice, with additive effects found on coadministration. DRAinh-A250 was also effective in loperamide-treated cystic fibrosis mice. These studies support a major role of slc26a3 in colonic fluid absorption and suggest the therapeutic utility of SLC26A3 inhibition in constipation.
Collapse
Affiliation(s)
| | - Onur Cil
- Department of Medicine.,Department of Pediatrics, and
| | | | | | | | | | - Alan S Verkman
- Department of Medicine.,Department of Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
28
|
Trepiccione F, Soukaseum C, Baudrie V, Kumai Y, Teulon J, Villoutreix B, Cornière N, Wangemann P, Griffith AJ, Byung Choi Y, Hadchouel J, Chambrey R, Eladari D. Acute genetic ablation of pendrin lowers blood pressure in mice. Nephrol Dial Transplant 2018; 32:1137-1145. [PMID: 28064162 DOI: 10.1093/ndt/gfw393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/02/2016] [Indexed: 11/14/2022] Open
Abstract
Background Pendrin, the chloride/bicarbonate exchanger of β-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure. Methods Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function. Results We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K + concentration. Conclusion By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension.
Collapse
Affiliation(s)
- Francesco Trepiccione
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Christelle Soukaseum
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Veronique Baudrie
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Yusuke Kumai
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Jacques Teulon
- CNRS ERL 8228, INSERM UMRS 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Bruno Villoutreix
- INSERM U973, MTi-Bioinformatics; University Paris Diderot, Paris, France
| | - Nicolas Cornière
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| | - Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, KS, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yoon Byung Choi
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Juliette Hadchouel
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Regine Chambrey
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| | - Dominique Eladari
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| |
Collapse
|
29
|
Hirohama D, Ayuzawa N, Ueda K, Nishimoto M, Kawarazaki W, Watanabe A, Shimosawa T, Marumo T, Shibata S, Fujita T. Aldosterone Is Essential for Angiotensin II-Induced Upregulation of Pendrin. J Am Soc Nephrol 2017; 29:57-68. [PMID: 29021385 DOI: 10.1681/asn.2017030243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
The renin-angiotensin-aldosterone system has an important role in the control of fluid homeostasis and BP during volume depletion. Dietary salt restriction elevates circulating angiotensin II (AngII) and aldosterone levels, increasing levels of the Cl-/HCO3- exchanger pendrin in β-intercalated cells and the Na+-Cl- cotransporter (NCC) in distal convoluted tubules. However, the independent roles of AngII and aldosterone in regulating these levels remain unclear. In C57BL/6J mice receiving a low-salt diet or AngII infusion, we evaluated the membrane protein abundance of pendrin and NCC; assessed the phosphorylation of the mineralocorticoid receptor, which selectively inhibits aldosterone binding in intercalated cells; and measured BP by radiotelemetry in pendrin-knockout and wild-type mice. A low-salt diet or AngII infusion upregulated NCC and pendrin levels, decreased the phosphorylation of mineralocorticoid receptor in β-intercalated cells, and increased plasma aldosterone levels. Notably, a low-salt diet did not alter BP in wild-type mice, but significantly decreased BP in pendrin-knockout mice. To dissect the roles of AngII and aldosterone, we performed adrenalectomies in mice to remove aldosterone from the circulation. In adrenalectomized mice, AngII infusion again upregulated NCC expression, but did not affect pendrin expression despite the decreased phosphorylation of mineralocorticoid receptor. By contrast, AngII and aldosterone coadministration markedly elevated pendrin levels in adrenalectomized mice. Our results indicate that aldosterone is necessary for AngII-induced pendrin upregulation, and suggest that pendrin contributes to the maintenance of normal BP in cooperation with NCC during activation of the renin-angiotensin-aldosterone system by dietary salt restriction.
Collapse
Affiliation(s)
- Daigoro Hirohama
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan;
| | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kohei Ueda
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Atsushi Watanabe
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Takeshi Marumo
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shigeru Shibata
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; .,CREST, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
30
|
Edwards A, Crambert G. Versatility of NaCl transport mechanisms in the cortical collecting duct. Am J Physiol Renal Physiol 2017; 313:F1254-F1263. [PMID: 28877883 DOI: 10.1152/ajprenal.00369.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
The cortical collecting duct (CCD) forms part of the aldosterone-sensitive distal nephron and plays an essential role in maintaining the NaCl balance and acid-base status. The CCD epithelium comprises principal cells as well as different types of intercalated cells. Until recently, transcellular Na+ transport was thought to be restricted to principal cells, whereas (acid-secreting) type A and (bicarbonate-secreting) type B intercalated cells were associated with the regulation of acid-base homeostasis. This review describes how this traditional view has been upended by several discoveries in the past decade. A series of studies has shown that type B intercalated cells can mediate electroneutral NaCl reabsorption by a mechanism involving Na+-dependent and Na+-independent Cl-/[Formula: see text] exchange, and that is energetically driven by basolateral vacuolar H+-ATPase pumps. Other research indicates that type A intercalated cells can mediate NaCl secretion, through a bumetanide-sensitive pathway that is energized by apical H+,K+-ATPase type 2 pumps operating as Na+/K+ exchangers. We also review recent findings on the contribution of the paracellular route to NaCl transport in the CCD. Last, we describe cross-talk processes, by which one CCD cell type impacts Na+/Cl- transport in another cell type. The mechanisms that have been identified to date demonstrate clearly the interdependence of NaCl and acid-base transport systems in the CCD. They also highlight the remarkable versatility of this nephron segment.
Collapse
Affiliation(s)
- Aurélie Edwards
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and .,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Gilles Crambert
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and
| |
Collapse
|
31
|
Alshahrani S, Soleimani M. Ablation of the Cl-/HCO3- Exchanger Pendrin Enhances Hydrochlorothiazide-Induced Diuresis. Kidney Blood Press Res 2017; 42:444-455. [PMID: 28750403 PMCID: PMC10947751 DOI: 10.1159/000479296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The Cl-/HCO3- exchanger pendrin and the thiazide-sensitive Na-Cl cotransporter NCC are expressed in the kidney distal nephron and mediate salt absorption. We hypothesized that deletion of pendrin leaves NCC as the major salt absorbing transporter in the distal nephron and therefore enhances salt excretion by hydrochlorothiazide (HCTZ). METHODS Metabolic cage studies were performed in wild type, pendrin KO and NCC KO mice at baseline and following HCTZ treatment. In parallel studies, systemic blood pressure was measured in mice treated with HCTZ with the tail cuff method. RESULTS Urine output, salt excretion and water intake were comparable in all groups under baseline condition. Urine output and water intake increased significantly only in pendrin KO mice in response to HCTZ, but not in WT or NCC KO mice. Sodium and chloride excretion increased in HCTZ-treated pendrin KO mice, but they remained unchanged in WT or NCC KO mice. Pendrin KO mice treated with HCTZ developed volume depletion, as determined by increased expression of renin mRNA and protein. The expression of ENaC and pendrin increased in HCTZ-treated WT mice. HCTZ treatment did not significantly modify blood pressure in any of the experimental group. CONCLUSION The ablation of the Cl-/HCO3- exchanger Pendrin enhances the magnitude of salt wasting by HCTZ.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Manoocher Soleimani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Medicine, University of Cincinnati and VA Research Services, Cincinnati, Ohio, USA
- Veterans Administration Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
32
|
Cheng CJ, Rodan AR, Huang CL. Emerging Targets of Diuretic Therapy. Clin Pharmacol Ther 2017; 102:420-435. [PMID: 28560800 DOI: 10.1002/cpt.754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
Diuretics are commonly prescribed for treatment in patients with hypertension, edema, or heart failure. Studies on hypertensive and salt-losing disorders and on urea transporters have contributed to better understanding of mechanisms of renal salt and water reabsorption and their regulation. Proteins involved in the regulatory pathways are emerging targets for diuretic and aquaretic therapy. Integrative high-throughput screening, protein structure analysis, and chemical modification have identified promising agents for preclinical testing in animals. These include WNK-SPAK inhibitors, ClC-K channel antagonists, ROMK channel antagonists, and pendrin and urea transporter inhibitors. We discuss the potential advantages and side effects of these potential diuretics.
Collapse
Affiliation(s)
- C-J Cheng
- Department of Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - A R Rodan
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, USA
| | - C-L Huang
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
33
|
Aronson D. The complexity of diuretic resistance. Eur J Heart Fail 2017; 19:1023-1026. [DOI: 10.1002/ejhf.815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 11/10/2022] Open
Affiliation(s)
- Doron Aronson
- Department of Cardiology, Rambam Medical Center, Haifa, Israel; and Department of Medicine, Ruth & Bruce Rappaport Faculty of Medicine; Technion - Israel Institute of Technology; Haifa Israel
| |
Collapse
|
34
|
Abstract
Pendred syndrome is an autosomal recessive disorder that is classically defined by the combination of sensorineural deafness/hearing impairment, goiter, and an abnormal organification of iodide with or without hypothyroidism. The hallmark of the syndrome is the impaired hearing, which is associated with inner ear malformations such as an enlarged vestibular aqueduct (EVA). The thyroid phenotype is variable and may be modified by the nutritional iodine intake. Pendred syndrome is caused by biallelic mutations in the SLC26A4/PDS gene, which encodes the multifunctional anion exchanger pendrin. Pendrin has affinity for chloride, iodide, and bicarbonate, among other anions. In the inner ear, pendrin functions as a chloride/bicarbonate exchanger that is essential for maintaining the composition and the potential of the endolymph. In the thyroid, pendrin is expressed at the apical membrane of thyroid cells facing the follicular lumen. Functional studies have demonstrated that pendrin can mediate iodide efflux in heterologous cells. This, together with the thyroid phenotype observed in humans (goiter, impaired iodine organification) suggests that pendrin could be involved in iodide efflux into the lumen, one of the steps required for thyroid hormone synthesis. Iodide efflux can, however, also occur in the absence of pendrin suggesting that other exchangers or channels are involved. It has been suggested that Anoctamin 1 (ANO1/TMEM16A), a calcium-activated anion channel, which is also expressed at the apical membrane of thyrocytes, could participate in mediating apical efflux. In the kidney, pendrin is involved in bicarbonate secretion and chloride reabsorption. While there is no renal phenotype under basal conditions, severe metabolic alkalosis has been reported in Pendred syndrome patients exposed to an increased alkali load. This review provides an overview on the clinical spectrum of Pendred syndrome, the functional data on pendrin with a focus on its potential role in the thyroid, as well as the controversy surrounding the relative physiological roles of pendrin and anoctamin.
Collapse
Affiliation(s)
- Jean-Louis Wémeau
- Université de Lille 2, Centre Hospitalier Régional Universitaire de Lille, Clinique Endocrinologique Marc-Linquette, 59037 Lille, France.
| | - Peter Kopp
- Northwestern University, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Tarry 15, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Fallahzadeh MA, Dormanesh B, Fallahzadeh MK, Roozbeh J, Fallahzadeh MH, Sagheb MM. Acetazolamide and Hydrochlorothiazide Followed by Furosemide Versus Furosemide and Hydrochlorothiazide Followed by Furosemide for the Treatment of Adults With Nephrotic Edema: A Randomized Trial. Am J Kidney Dis 2016; 69:420-427. [PMID: 28043731 DOI: 10.1053/j.ajkd.2016.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 10/09/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Nephrotic edema is considered refractory if it does not respond to maximum or near-maximum doses of loop diuretics. This condition can be treated with loop diuretics and thiazides. However, animal studies show that the simultaneous downregulation of pendrin with acetazolamide and inhibition of the sodium-chloride cotransporter with hydrochlorothiazide generates significant diuresis, and furosemide administration following a pendrin inhibitor potentiates furosemide's diuretic effect. Therefore, we performed this study to compare the efficacy of acetazolamide and hydrochlorothiazide followed by furosemide versus furosemide and hydrochlorothiazide followed by furosemide for treatment of refractory nephrotic edema. STUDY DESIGN Randomized, double-blind, 2-arm, parallel trial. SETTING & PARTICIPANTS 20 patients with refractory nephrotic edema despite treatment with 80mg of furosemide daily and creatinine clearance > 60mL/min. INTERVENTION Patients were randomly assigned to 2 groups: group 1 (n=10) received 250mg of acetazolamide and 50mg of hydrochlorothiazide daily and group 2 (n=10) received 40mg of furosemide and 50mg of hydrochlorothiazide daily for 1 week in phase 1. In phase 2, both groups received 40mg of furosemide daily for 2 weeks. OUTCOMES The primary outcome was absolute change in weight before and at the end of each phase. MEASUREMENTS Weight and 24-hour urine volume at baseline and the end of each phase. RESULTS The mean weight decrease was of significantly larger magnitude in group 1 compared with group 2 at the end of phase 1 (-1.4±0.52 [SD] vs -0.65±0.41kg; P=0.001) and phase 2 (-1.6±0.84 vs -0.5±0.47kg; P=0.005). The increase in 24-hour urine volume was also significantly higher in group 1 at the end of phase 2. LIMITATIONS Small sample size, short follow-up duration, and lack of serum bicarbonate and chloride measurement. CONCLUSIONS Acetazolamide and hydrochlorothiazide followed by furosemide is more effective than furosemide and hydrochlorothiazide followed by furosemide for the treatment of refractory nephrotic edema.
Collapse
Affiliation(s)
- Mohammad Amin Fallahzadeh
- AJA University of Medical Sciences, Tehran, Iran; Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Mahdi Sagheb
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Affiliation(s)
- Carsten A Wagner
- National Center for Competence in Research Kidney.CH and Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|