1
|
Eun M, Kim D, Shin SI, Yang HO, Kim KD, Choi SY, Park S, Kim DK, Jeong CW, Moon KC, Lee H, Park J. Chromatin accessibility analysis and architectural profiling of human kidneys reveal key cell types and a regulator of diabetic kidney disease. Kidney Int 2024; 105:150-164. [PMID: 37925023 DOI: 10.1016/j.kint.2023.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 11/06/2023]
Abstract
Diabetes is the leading cause of kidney disease that progresses to kidney failure. However, the key molecular and cellular pathways involved in diabetic kidney disease (DKD) pathogenesis are largely unknown. Here, we performed a comparative analysis of adult human kidneys by examining cell type-specific chromatin accessibility by single-nucleus ATAC-seq (snATAC-seq) and analyzing three-dimensional chromatin architecture via high-throughput chromosome conformation capture (Hi-C method) of paired samples. We mapped the cell type-specific and DKD-specific open chromatin landscape and found that genetic variants associated with kidney diseases were significantly enriched in the proximal tubule- (PT) and injured PT-specific open chromatin regions in samples from patients with DKD. BACH1 was identified as a core transcription factor of injured PT cells; its binding target genes were highly associated with fibrosis and inflammation, which were also key features of injured PT cells. Additionally, Hi-C analysis revealed global chromatin architectural changes in DKD, accompanied by changes in local open chromatin patterns. Combining the snATAC-seq and Hi-C data identified direct target genes of BACH1, and indicated that BACH1 binding regions showed increased chromatin contact frequency with promoters of their target genes in DKD. Thus, our multi-omics analysis revealed BACH1 target genes in injured PTs and highlighted the role of BACH1 as a novel regulator of tubular inflammation and fibrosis.
Collapse
Affiliation(s)
- Minho Eun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Donggun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Oh Yang
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sehoon Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Das M, Hossain A, Banerjee D, Praul CA, Girirajan S. Challenges and considerations for reproducibility of STARR-seq assays. Genome Res 2023; 33:479-495. [PMID: 37130797 PMCID: PMC10234304 DOI: 10.1101/gr.277204.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
High-throughput methods such as RNA-seq, ChIP-seq, and ATAC-seq have well-established guidelines, commercial kits, and analysis pipelines that enable consistency and wider adoption for understanding genome function and regulation. STARR-seq, a popular assay for directly quantifying the activities of thousands of enhancer sequences simultaneously, has seen limited standardization across studies. The assay is long, with more than 250 steps, and frequent customization of the protocol and variations in bioinformatics methods raise concerns for reproducibility of STARR-seq studies. Here, we assess each step of the protocol and analysis pipelines from published sources and in-house assays, and identify critical steps and quality control (QC) checkpoints necessary for reproducibility of the assay. We also provide guidelines for experimental design, protocol scaling, customization, and analysis pipelines for better adoption of the assay. These resources will allow better optimization of STARR-seq for specific research needs, enable comparisons and integration across studies, and improve the reproducibility of results.
Collapse
Affiliation(s)
- Maitreya Das
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ayaan Hossain
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Deepro Banerjee
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig Alan Praul
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Long K, Li X, Su D, Zeng S, Li H, Zhang Y, Zhang B, Yang W, Li P, Li X, Wang X, Tang Q, Lu L, Jin L, Ma J, Li M. Exploring high-resolution chromatin interaction changes and functional enhancers of myogenic marker genes during myogenic differentiation. J Biol Chem 2022; 298:102149. [PMID: 35787372 PMCID: PMC9352921 DOI: 10.1016/j.jbc.2022.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Skeletal muscle differentiation (myogenesis) is a complex and highly coordinated biological process regulated by a series of myogenic marker genes. Chromatin interactions between gene's promoters and their enhancers have an important role in transcriptional control. However, the high-resolution chromatin interactions of myogenic genes and their functional enhancers during myogenesis remain largely unclear. Here, we used circularized chromosome conformation capture coupled with next generation sequencing (4C-seq) to investigate eight myogenic marker genes in C2C12 myoblasts (C2C12-MBs) and C2C12 myotubes (C2C12-MTs). We revealed dynamic chromatin interactions of these marker genes during differentiation and identified 163 and 314 significant interaction sites (SISs) in C2C12-MBs and C2C12-MTs, respectively. The interacting genes of SISs in C2C12-MTs were mainly involved in muscle development, and histone modifications of the SISs changed during differentiation. Through functional genomic screening, we also identified 25 and 41 putative active enhancers in C2C12-MBs and C2C12-MTs, respectively. Using luciferase reporter assays for putative enhancers of Myog and Myh3, we identified eight activating enhancers. Furthermore, dCas9-KRAB epigenome editing and RNA-Seq revealed a role for Myog enhancers in the regulation of Myog expression and myogenic differentiation in the native genomic context. Taken together, this study lays the groundwork for understanding 3D chromatin interaction changes of myogenic genes during myogenesis and provides insights that contribute to our understanding of the role of enhancers in regulating myogenesis.
Collapse
Affiliation(s)
- Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaokai Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Duo Su
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Sha Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengkuan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Biwei Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenying Yang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi'nan Gynecology Hospital Co, Ltd, Chengdu, Sichuan, China
| | - Xuemin Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Improvement of Hemolytic Anemia with GBT1118 is Reno-protective in Transgenic Sickle Mice. Blood Adv 2022; 6:4403-4407. [PMID: 35759756 PMCID: PMC9636314 DOI: 10.1182/bloodadvances.2022007809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
|
5
|
Tanemoto F, Mimura I. Therapies Targeting Epigenetic Alterations in Acute Kidney Injury-to-Chronic Kidney Disease Transition. Pharmaceuticals (Basel) 2022; 15:ph15020123. [PMID: 35215236 PMCID: PMC8877070 DOI: 10.3390/ph15020123] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Acute kidney injury (AKI) was previously thought to be a merely transient event; however, recent epidemiological evidence supports the existence of a causal relationship between AKI episodes and subsequent progression to chronic kidney disease (CKD). Although the pathophysiology of this AKI-to-CKD transition is not fully understood, it is mediated by the interplay among multiple components of the kidney including tubular epithelial cells, endothelial cells, pericytes, inflammatory cells, and myofibroblasts. Epigenetic alterations including histone modification, DNA methylation, non-coding RNAs, and chromatin conformational changes, are also expected to be largely involved in the pathophysiology as a “memory” of the initial injury that can persist and predispose to chronic progression of fibrosis. Each epigenetic modification has a great potential as a therapeutic target of AKI-to-CKD transition; timely and target-specific epigenetic interventions to the various temporal stages of AKI-to-CKD transition will be the key to future therapeutic applications in clinical practice. This review elaborates on the latest knowledge of each mechanism and the currently available therapeutic agents that target epigenetic modification in the context of AKI-to-CKD transition. Further studies will elucidate more detailed mechanisms and novel therapeutic targets of AKI-to-CKD transition.
Collapse
|
6
|
Clark KC, Kwitek AE. Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. Compr Physiol 2021; 12:3045-3084. [PMID: 34964118 PMCID: PMC9373910 DOI: 10.1002/cphy.c210010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS. As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome-wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi-omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1-40, 2022.
Collapse
Affiliation(s)
- Karen C Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Xu L, Yin L, Qi Y, Tan X, Gao M, Peng J. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing. Acta Pharm Sin B 2021; 11:3150-3164. [PMID: 34729306 PMCID: PMC8546856 DOI: 10.1016/j.apsb.2021.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
The three-dimensional (3D) conformation of chromatin is integral to the precise regulation of gene expression. The 3D genome and genomic variations in non-alcoholic fatty liver disease (NAFLD) are largely unknown, despite their key roles in cellular function and physiological processes. High-throughput chromosome conformation capture (Hi-C), Nanopore sequencing, and RNA-sequencing (RNA-seq) assays were performed on the liver of normal and NAFLD mice. A high-resolution 3D chromatin interaction map was generated to examine different 3D genome hierarchies including A/B compartments, topologically associated domains (TADs), and chromatin loops by Hi-C, and whole genome sequencing identifying structural variations (SVs) and copy number variations (CNVs) by Nanopore sequencing. We identified variations in thousands of regions across the genome with respect to 3D chromatin organization and genomic rearrangements, between normal and NAFLD mice, and revealed gene dysregulation frequently accompanied by these variations. Candidate target genes were identified in NAFLD, impacted by genetic rearrangements and spatial organization disruption. Our data provide a high-resolution 3D genome interaction resource for NAFLD investigations, revealed the relationship among genetic rearrangements, spatial organization disruption, and gene regulation, and identified candidate genes associated with these variations implicated in the pathogenesis of NAFLD. The newly findings offer insights into novel mechanisms of NAFLD pathogenesis and can provide a new conceptual framework for NAFLD therapy.
Collapse
Key Words
- 3C, chromosome conformation capture
- 3D genome
- 3D, three-dimensional
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Abcg5, ATP-binding cassette sub-family G member 5
- BWA, Burrows-Wheeler Aligner
- CNV, copy number variation
- Camk1d, calcium/calmodulin-dependent protein kinase type 1D
- Chr, chromosome
- Chromatin looping
- DEG, differentially expressed gene
- DEL, deletion
- DI, directionality index
- DUP, duplication
- Elovl6, elongation of very long chain fatty acids protein 6
- FDR, false discovery rate
- FFA, free fatty acid
- Fgfr2, fibroblast growth factor receptor 2
- GCKR, glucokinase regulator
- GO, gene ontology
- GSH, glutathione
- Gadd45g, growth arrest and DNA damage-inducible protein GADD45 gamma
- Grm8, metabotropic glutamate receptor 8
- Gsta1, glutathione S-transferase A1
- H&E, hematoxylin-eosin
- HFD, high-fat diet
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- Hi-C, high-throughput chromosome conformation capture
- IDE, interaction decay exponent
- INS, insertion
- INV, inversion
- IR, inclusion ratio
- IRGM, immunity related GTPase M
- IRS4, insulin receptor substrate 4
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- Kcnma1, calcium-activated potassium channel subunit alpha-1
- LPIN1, lipin 1
- MBOAT7, membrane bound O-acyltransferase domain containing 7
- MDA, malondialdehyde
- NAFLD, non-alcoholic fatty liver disease
- NF1, neurofibromin 1
- NGS, next-generation sequencing
- NOTCH1, notch receptor 1
- ONT, Oxford Nanopore Technologies
- PCA, principal component analysis
- PNPLA3, patatin like phospholipase domain containing 3
- PPP1R3B, protein phosphatase 1 regulatory subunit 3B
- PTEN, phosphatase and tensin homolog
- Pde4b, phosphodiesterase 4B
- Plce1, 1-phosphat-idylinositol 4,5-bisphosphate phosphodiesterase epsilon-1
- Plxnb1, Plexin-B1
- RB1, RB transcriptional corepressor 1
- RNA-seq, RNA-sequencing
- SD, standard deviation
- SOD, superoxide dismutase
- SV, structural variation
- Scd1, acyl-CoA desaturase 1
- Sugct, succinate-hydroxymethylglutarate CoA-transferase
- TAD, topologically associated domain
- TC, total cholesterol
- TG, triglyceride
- TM6SF2, transmembrane 6 superfamily member 2
- TP53, tumor protein p53
- TRA, translocation
- Topologically associated domain
- Transcriptome
- WGS, whole-genome sequencing
- Whole-genome sequencing
Collapse
|
8
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
9
|
Golson ML. Islet Epigenetic Impacts on β-Cell Identity and Function. Compr Physiol 2021; 11:1961-1978. [PMID: 34061978 DOI: 10.1002/cphy.c200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β-cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell-fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1-18, 2021.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Duan A, Wang H, Zhu Y, Wang Q, Zhang J, Hou Q, Xing Y, Shi J, Hou J, Qin Z, Chen Z, Liu Z, Yang J. Chromatin architecture reveals cell type-specific target genes for kidney disease risk variants. BMC Biol 2021; 19:38. [PMID: 33627123 PMCID: PMC7905576 DOI: 10.1186/s12915-021-00977-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cell type-specific transcriptional programming results from the combinatorial interplay between the repertoire of active regulatory elements. Disease-associated variants disrupt such programming, leading to altered expression of downstream regulated genes and the onset of pathological states. However, due to the non-linear regulatory properties of non-coding elements such as enhancers, which can activate transcription at long distances and in a non-directional way, the identification of causal variants and their target genes remains challenging. Here, we provide a multi-omics analysis to identify regulatory elements associated with functional kidney disease variants, and downstream regulated genes. RESULTS In order to understand the genetic risk of kidney diseases, we generated a comprehensive dataset of the chromatin landscape of human kidney tubule cells, including transcription-centered 3D chromatin organization, histone modifications distribution and transcriptome with HiChIP, ChIP-seq and RNA-seq. We identified genome-wide functional elements and thousands of interactions between the distal elements and target genes. The results revealed that risk variants for renal tumor and chronic kidney disease were enriched in kidney tubule cells. We further pinpointed the target genes for the variants and validated two target genes by CRISPR/Cas9 genome editing techniques in zebrafish, demonstrating that SLC34A1 and MTX1 were indispensable genes to maintain kidney function. CONCLUSIONS Our results provide a valuable multi-omics resource on the chromatin landscape of human kidney tubule cells and establish a bioinformatic pipeline in dissecting functions of kidney disease-associated variants based on cell type-specific epigenome.
Collapse
Affiliation(s)
- Aiping Duan
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Hong Wang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yan Zhu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Qi Wang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jing Zhang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Qing Hou
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuexian Xing
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinsong Shi
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinhua Hou
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road N.E, Atlanta, GA, 30322, USA
| | - Zhaohong Chen
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jingping Yang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
11
|
van Dijk CG, Louzao-Martinez L, van Mulligen E, Boermans B, Demmers JA, van den Bosch TP, Goumans MJ, Duncker DJ, Verhaar MC, Cheng C. Extracellular Matrix Analysis of Human Renal Arteries in Both Quiescent and Active Vascular State. Int J Mol Sci 2020; 21:E3905. [PMID: 32486169 PMCID: PMC7313045 DOI: 10.3390/ijms21113905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/30/2023] Open
Abstract
In vascular tissue engineering strategies, the addition of vascular-specific extracellular matrix (ECM) components may better mimic the in vivo microenvironment and potentially enhance cell-matrix interactions and subsequent tissue growth. For this purpose, the exact composition of the human vascular ECM first needs to be fully characterized. Most research has focused on characterizing ECM components in mature vascular tissue; however, the developing fetal ECM matches the active environment required in vascular tissue engineering more closely. Consequently, we characterized the ECM protein composition of active (fetal) and quiescent (mature) renal arteries using a proteome analysis of decellularized tissue. The obtained human fetal renal artery ECM proteome dataset contains higher levels of 15 ECM proteins versus the mature renal artery ECM proteome, whereas 16 ECM proteins showed higher levels in the mature tissue compared to fetal. Elastic ECM proteins EMILIN1 and FBN1 are significantly enriched in fetal renal arteries and are mainly produced by cells of mesenchymal origin. We functionally tested the role of EMILIN1 and FBN1 by anchoring the ECM secreted by vascular smooth muscle cells (SMCs) to glass coverslips. This ECM layer was depleted from either EMILIN1 or FBN1 by using siRNA targeting of the SMCs. Cultured endothelial cells (ECs) on this modified ECM layer showed alterations on the transcriptome level of multiple pathways, especially the Rho GTPase controlled pathways. However, no significant alterations in adhesion, migration or proliferation were observed when ECs were cultured on EMILIN1- or FNB1-deficient ECM. To conclude, the proteome analysis identified unique ECM proteins involved in the embryonic development of renal arteries. Alterations in transcriptome levels of ECs cultured on EMILIN1- or FBN1-deficient ECM showed that these candidate proteins could affect the endothelial (regenerative) response.
Collapse
Affiliation(s)
- Christian G.M. van Dijk
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
| | - Laura Louzao-Martinez
- Center for Proteomics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (L.L.-M.); (J.A.A.D.)
| | - Elise van Mulligen
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
| | - Bart Boermans
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
| | - Jeroen A.A. Demmers
- Center for Proteomics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (L.L.-M.); (J.A.A.D.)
| | | | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands;
| | - Dirk J. Duncker
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands;
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
| | - Caroline Cheng
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; (C.G.M.v.D.); (E.v.M.); (B.B.); (M.C.V.)
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands;
| |
Collapse
|
12
|
Li Y, Tao T, Du L, Zhu X. Three-dimensional genome: developmental technologies and applications in precision medicine. J Hum Genet 2020; 65:497-511. [PMID: 32152365 DOI: 10.1038/s10038-020-0737-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022]
Abstract
In the 20th century, our familiar structure of DNA was the double helix. Due to technical limitations, we do not have a good way to understand the finer structure of the genome, let alone its transcriptional regulation. Until the advent of 3C technologies, we were no longer blind to this one. Three-dimensional (3D) genomics is a new subject, which mainly studies the 3D structure and transcriptional regulation of eukaryotic genomes. Now, this field mainly has Hi-C series and CHIA-PET series technologies. Through 3D genomics, we can understand the basic structure of DNA, understand the growth and development of organisms and the occurrence of diseases, so as to promote human medical and health undertakings. The review introduces the main research techniques of 3D genomics and their characteristics, the latest development of 3D genome structure, the relationship between diseases and 3D genome structure, the applications of 3D genome in precision medicine, and the development of the 4D nucleome project.
Collapse
Affiliation(s)
- Yingqi Li
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, 255000, China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| | - Xiao Zhu
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
13
|
Brandt MM, van Dijk CGM, Maringanti R, Chrifi I, Kramann R, Verhaar MC, Duncker DJ, Mokry M, Cheng C. Transcriptome analysis reveals microvascular endothelial cell-dependent pericyte differentiation. Sci Rep 2019; 9:15586. [PMID: 31666598 PMCID: PMC6821775 DOI: 10.1038/s41598-019-51838-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/10/2019] [Indexed: 11/11/2022] Open
Abstract
Microvascular homeostasis is strictly regulated, requiring close interaction between endothelial cells and pericytes. Here, we aimed to improve our understanding of how microvascular crosstalk affects pericytes. Human-derived pericytes, cultured in absence, or presence of human endothelial cells, were studied by RNA sequencing. Compared with mono-cultured pericytes, a total of 6704 genes were differentially expressed in co-cultured pericytes. Direct endothelial contact induced transcriptome profiles associated with pericyte maturation, suppression of extracellular matrix production, proliferation, and morphological adaptation. In vitro studies confirmed enhanced pericyte proliferation mediated by endothelial-derived PDGFB and pericyte-derived HB-EGF and FGF2. Endothelial-induced PLXNA2 and ACTR3 upregulation also triggered pericyte morphological adaptation. Pathway analysis predicted a key role for TGFβ signaling in endothelial-induced pericyte differentiation, whereas the effect of signaling via gap- and adherens junctions was limited. We demonstrate that endothelial cells have a major impact on the transcriptional profile of pericytes, regulating endothelial-induced maturation, proliferation, and suppression of ECM production.
Collapse
Affiliation(s)
- Maarten M Brandt
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ranganath Maringanti
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ihsan Chrifi
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk J Duncker
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michal Mokry
- Epigenomics facility, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
14
|
QTL mapping of rat blood pressure loci on RNO1 within a homologous region linked to human hypertension on HSA15. PLoS One 2019; 14:e0221658. [PMID: 31442284 PMCID: PMC6707578 DOI: 10.1371/journal.pone.0221658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
Fine-mapping of regions linked to the inheritance of hypertension is accomplished by genetic dissection of blood pressure quantitative trait loci (BP QTLs) in rats. The goal of the current study was to further fine-map two genomic regions on rat chromosome 1 with opposing blood pressure effects (BP QTL1b1 and BP QTL1b1a), the homologous region of which on human chromosome 15 harbors BP QTLs. Two new substrains were constructed and studied from the previously reported BP QTL1b1, one having significantly lower systolic BP by 17 mmHg than that of the salt-sensitive (S) rat (P = 0.007). The new limits of BP QTL1b1 were between 134.09 Mb and 135.40 Mb with a 43% improvement from the previous 2.31 Mb to the current 1.31 Mb interval containing 4 protein-coding genes (Rgma, Chd2, Fam174b, and St8sia2), 2 predicted miRNAs, and 4 lncRNAs. One new substrain was constructed and studied from the previously reported BPQTL1b1a having a significantly higher systolic BP by 22 mmHg (P = 0.006) than that of the S rat. The new limits of BPQTL1b1a were between 133.53 Mb and 134.52 Mb with a 32% improvement from the previous1.45 Mb to the current 990.21 Kb interval containing 1 protein-coding gene, Mctp2, and a lncRNA. The congenic segments of these two BP QTLs overlapped between 134.09 Mb and 134.52 Mb. No exonic variants were detected in any of the genes. These findings reiterate complexity of genetic regulation of BP within QTL regions, where elements beyond protein-coding sequences could be factors in controlling BP.
Collapse
|
15
|
Pei J, Juni R, Harakalova M, Duncker DJ, Asselbergs FW, Koolwijk P, Hinsbergh VV, Verhaar MC, Mokry M, Cheng C. Indoxyl Sulfate Stimulates Angiogenesis by Regulating Reactive Oxygen Species Production via CYP1B1. Toxins (Basel) 2019; 11:E454. [PMID: 31382511 PMCID: PMC6723868 DOI: 10.3390/toxins11080454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Indoxyl sulfate (IS) is an accumulative protein-bound uremic toxin found in patients with kidney disease. It is reported that IS impairs the vascular endothelium, but a comprehensive overview of all mechanisms active in IS-injury currently remains lacking. Here we performed RNA sequencing in human umbilical vein endothelial cells (HUVECs) after IS or control medium treatment and identified 1293 genes that were affected in a IS-induced response. Gene enrichment analysis highlighted pathways involved in altered vascular formation and cell metabolism. We confirmed these transcriptome profiles at the functional level by demonstrating decreased viability and increased cell senescence in response to IS treatment. In line with the additional pathways highlighted by the transcriptome analysis, we further could demonstrate that IS exposure of HUVECs promoted tubule formation as shown by the increase in total tubule length in a 3D HUVECs/pericytes co-culture assay. Notably, the pro-angiogenic response of IS and increased ROS production were abolished when CYP1B1, one of the main target genes that was highly upregulated by IS, was silenced. This observation indicates IS-induced ROS in endothelial cells is CYP1B1-dependent. Taken together, our findings demonstrate that IS promotes angiogenesis and CYP1B1 is an important factor in IS-activated angiogenic response.
Collapse
Affiliation(s)
- Jiayi Pei
- Department of Nephrology and Hypertension, DIGD, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, Division Heart & Lungs, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative Medicine Utrecht, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Rio Juni
- Department of Physiology, Amsterdam UMC, VUmc location, Amsterdam Cardiovascular Science, 1081 HV Amsterdam, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart & Lungs, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Pathology, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, NW1 2DA, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Pieter Koolwijk
- Department of Physiology, Amsterdam UMC, VUmc location, Amsterdam Cardiovascular Science, 1081 HV Amsterdam, The Netherlands
| | - Victor van Hinsbergh
- Department of Physiology, Amsterdam UMC, VUmc location, Amsterdam Cardiovascular Science, 1081 HV Amsterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, DIGD, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative Medicine Utrecht, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Michal Mokry
- Regenerative Medicine Utrecht, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Clinical Chemistry and Heamatology, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Paediatrics, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, DIGD, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands.
- Regenerative Medicine Utrecht, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
16
|
Krumm A, Duan Z. Understanding the 3D genome: Emerging impacts on human disease. Semin Cell Dev Biol 2019; 90:62-77. [PMID: 29990539 PMCID: PMC6329682 DOI: 10.1016/j.semcdb.2018.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.
Collapse
Affiliation(s)
- Anton Krumm
- Department of Microbiology, University of Washington, USA.
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.
| |
Collapse
|
17
|
Meddens CA, van der List ACJ, Nieuwenhuis EES, Mokry M. Non-coding DNA in IBD: from sequence variation in DNA regulatory elements to novel therapeutic potential. Gut 2019; 68:928-941. [PMID: 30692146 DOI: 10.1136/gutjnl-2018-317516] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have identified over 200 loci associated with IBD. We and others have recently shown that, in addition to variants in protein-coding genes, the majority of the associated loci are related to DNA regulatory elements (DREs). These findings add a dimension to the already complex genetic background of IBD. In this review we summarise the existing evidence on the role of DREs in IBD. We discuss how epigenetic research can be used in candidate gene approaches that take non-coding variants into account and can help to pinpoint the essential pathways and cell types in the pathogenesis of IBD. Despite the increased level of genetic complexity, these findings can contribute to novel therapeutic options that target transcription factor binding and enhancer activity. Finally, we summarise the future directions and challenges of this emerging field.
Collapse
Affiliation(s)
- Claartje Aleid Meddens
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Sieber KB, Batorsky A, Siebenthall K, Hudkins KL, Vierstra JD, Sullivan S, Sur A, McNulty M, Sandstrom R, Reynolds A, Bates D, Diegel M, Dunn D, Nelson J, Buckley M, Kaul R, Sampson MG, Himmelfarb J, Alpers CE, Waterworth D, Akilesh S. Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci. J Am Soc Nephrol 2019; 30:421-441. [PMID: 30760496 PMCID: PMC6405142 DOI: 10.1681/asn.2018030309] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/26/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.
Collapse
Affiliation(s)
| | - Anna Batorsky
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | | | - Jeff D Vierstra
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | - Aakash Sur
- Phase Genomics Inc., Seattle, Washington
- Department of Biomedical and Health Informatics, and
| | - Michelle McNulty
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | | | - Alex Reynolds
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Michael Buckley
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Rajinder Kaul
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Charles E Alpers
- Department of Anatomic Pathology
- Kidney Research Institute, Seattle, Washington
| | | | - Shreeram Akilesh
- Department of Anatomic Pathology,
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
19
|
Agrawal P, Heimbruch KE, Rao S. Genome-Wide Maps of Transcription Regulatory Elements and Transcription Enhancers in Development and Disease. Compr Physiol 2018; 9:439-455. [PMID: 30549021 DOI: 10.1002/cphy.c180028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene expression is regulated by numerous elements including enhancers, insulators, transcription factors, and architectural proteins. Regions of DNA distal to the transcriptional start site, called enhancers, play a central role in the temporal and tissue-specific regulation of gene expression through RNA polymerase II. The identification of enhancers and other cis regulatory elements has largely been possible due to advances in next generation sequencing technologies. Enhancers regulate gene expression through chromatin loops mediated by architectural proteins such as YY1, CTCF, the cohesin complex, and LDB1. Additionally, enhancers can be transcribed to produce noncoding RNAs termed enhancer RNAs that likely participate in transcriptional regulation. The central role of enhancers in regulating gene expression implicates them in both normal physiology but also many disease states. The importance of enhancers is evident by the suggested role of SNPs, duplications, and other alterations of enhancer function in many diseases, ranging from cancer to atherosclerosis to chronic kidney disease. Although much progress has been made in recent years, the field of enhancer biology and our knowledge of the cis regulome remains a work in progress. This review will highlight recent seminal studies which demonstrate the role of enhancers in normal physiology and disease pathogenesis. © 2019 American Physiological Society. Compr Physiol 9:439-455, 2019.
Collapse
Affiliation(s)
- Puja Agrawal
- Blood Research Institute, BloodCenter of Wisconsin, a part of Versiti, Milwaukee, Wisconsin, USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Katelyn E Heimbruch
- Blood Research Institute, BloodCenter of Wisconsin, a part of Versiti, Milwaukee, Wisconsin, USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sridhar Rao
- Blood Research Institute, BloodCenter of Wisconsin, a part of Versiti, Milwaukee, Wisconsin, USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
20
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|