1
|
Janosevic D, De Luca T, Eadon MT. The Kidney Precision Medicine Project and Single-Cell Biology of the Injured Proximal Tubule. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:7-22. [PMID: 39332674 DOI: 10.1016/j.ajpath.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has led to major advances in our understanding of proximal tubule subtypes in health and disease. The proximal tubule serves essential functions in overall homeostasis, but pathologic or physiological perturbations can affect its transcriptomic signature and corresponding tasks. These alterations in proximal tubular cells are often described within a scRNA-seq atlas as cell states, which are pathophysiological subclassifications based on molecular and morphologic changes in a cell's response to that injury compared with its native state. This review describes the major cell states defined in the Kidney Precision Medicine Project's scRNA-seq atlas. It then identifies the overlap between the Kidney Precision Medicine Project and other seminal works that may use different nomenclature or cluster proximal tubule cells at different resolutions to define cell state subtypes. The goal is for the reader to understand the key transcriptomic markers of important cellular injury and regeneration processes across this highly dynamic and evolving field.
Collapse
Affiliation(s)
- Danielle Janosevic
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas De Luca
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael T Eadon
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
2
|
Xu B, Levchenko V, Zietara A, Fan S, Klemens CA, Staruschenko A. Role of K ir5.1 (Kcnj16) Channels in Regulating Renal Ammonia Metabolism during Metabolic Acidosis in Dahl Salt-Sensitive Rats. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:115-125. [PMID: 39341364 DOI: 10.1016/j.ajpath.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Maintaining acid-base homeostasis is critical for normal physiological function. The kidneys are essential for regulating acid-base homeostasis through maintaining systemic bicarbonate concentration. Chronic metabolic acidosis is an independent risk factor for chronic kidney diseases. Renal inwardly rectifying potassium channel Kir5.1 plays an essential role in maintaining resting membrane potential. Patients with loss-of-function mutations in the KCNJ16 gene, which encodes Kir5.1, may have tubulopathy with hypokalemia, salt wasting, and hearing loss. Importantly, these mutations also disrupt acid-base balance, particularly causing metabolic acidosis. This study aimed to use Dahl salt-sensitive rats with a knockout of the Kcnj16 gene (SSKcnj16-/-) to investigate how the deletion of Kir5.1 affects the regulation of acid-base balance in salt-sensitive hypertension. SSKcnj16-/- rats displayed metabolic acidosis under a normal salt diet. Further analysis using RNA sequencing and Western blot analyses showed unchanged expression of proteins responsible for ammonia metabolism in the kidney of SSKcnj16-/- rats despite observed acidosis. However, there was a significant increase in the expression of bicarbonate transporter NBCe1, where there was a significant decrease in pendrin. In conclusion, the current study demonstrated that the loss of Kir5.1 impairs the sensitivity of ammonia metabolism in the kidney in response to metabolic acidosis, which provides mechanistic insights into developing potential therapeutics for conditions involving hypokalemia and acid-base abnormalities.
Collapse
Affiliation(s)
- Biyang Xu
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Adrian Zietara
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Sarah Fan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida; The James A. Haley Veterans' Hospital, Tampa, Florida.
| |
Collapse
|
3
|
Delrue C, Speeckaert MM. Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine. J Pers Med 2024; 14:1157. [PMID: 39728069 DOI: 10.3390/jpm14121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a major worldwide health concern because of its progressive nature and complex biology. Traditional diagnostic and therapeutic approaches usually fail to account for disease heterogeneity, resulting in low efficacy. Precision medicine offers a novel approach to studying kidney disease by combining omics technologies such as genomics, transcriptomics, proteomics, metabolomics, and epigenomics. By identifying discrete disease subtypes, molecular biomarkers, and therapeutic targets, these technologies pave the way for personalized treatment approaches. Multi-omics integration has enhanced our understanding of CKD by revealing intricate molecular linkages and pathways that contribute to treatment resistance and disease progression. While pharmacogenomics offers insights into expected responses to personalized treatments, single-cell and spatial transcriptomics can be utilized to investigate biological heterogeneity. Despite significant development, challenges persist, including data integration concerns, high costs, and ethical quandaries. Standardized data protocols, collaborative data-sharing frameworks, and advanced computational tools such as machine learning and causal inference models are required to address these challenges. With the advancement of omics technology, nephrology may benefit from improved diagnostic accuracy, risk assessment, and personalized care. By overcoming these barriers, precision medicine has the potential to develop novel techniques for improving patient outcomes in kidney disease treatment.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
4
|
Terinte-Balcan G, Lebraud E, Zuber J, Anglicheau D, Ismail G, Rabant M. Deciphering the Complexity of the Immune Cell Landscape in Kidney Allograft Rejection. Transpl Int 2024; 37:13835. [PMID: 39722854 PMCID: PMC11668586 DOI: 10.3389/ti.2024.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
While the Banff classification dichotomizes kidney allograft rejection based on the localization of the cells in the different compartments of the cortical kidney tissue [schematically interstitium for T cell mediated rejection (TCMR) and glomerular and peritubular capillaries for antibody-mediated rejection (AMR)], there is a growing evidences that subtyping the immune cells can help refine prognosis prediction and treatment tailoring, based on a better understanding of the pathophysiology of kidney allograft rejection. In the last few years, multiplex IF techniques and automatic counting systems as well as transcriptomics studies (bulk, single-cell and spatial techniques) have provided invaluable clues to further decipher the complex puzzle of rejection. In this review, we aim to better describe the inflammatory infiltrates that occur during the course of kidney transplant rejection (active AMR, chronic active AMR and acute and chronic active TCMR). We also discuss minor components of the inflammatory response (mastocytes, eosinophils, neutrophils, follicular dendritic cells). We conclude by discussing whether the over simplistic dichotomy between AMR and TCMR, currently used in clinical routine, remains relevant given the great diversity of immune actors involved in rejections.
Collapse
Affiliation(s)
- George Terinte-Balcan
- Nephrology department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique—Hopitaux de Paris, Paris, France
- Centre National de la Recherche Scientifique (CNRS), Inserm U1151, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Emilie Lebraud
- Centre National de la Recherche Scientifique (CNRS), Inserm U1151, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Julien Zuber
- Department of Kidney and Metabolic Diseases, Transplantation and Clinical Immunology, Necker Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Dany Anglicheau
- Centre National de la Recherche Scientifique (CNRS), Inserm U1151, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
- Department of Kidney and Metabolic Diseases, Transplantation and Clinical Immunology, Necker Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Gener Ismail
- Nephrology department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Marion Rabant
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique—Hopitaux de Paris, Paris, France
- Centre National de la Recherche Scientifique (CNRS), Inserm U1151, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Huang S, Jin Y, Zhang L, Zhou Y, Chen N, Wang W. PPAR gamma and PGC-1alpha activators protect against diabetic nephropathy by suppressing the inflammation and NF-kappaB activation. Nephrology (Carlton) 2024; 29:858-872. [PMID: 39229715 PMCID: PMC11579552 DOI: 10.1111/nep.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
AIM Inflammation plays a critical role in the progression of diabetic nephropathy. Peroxisome proliferator-activated receptor gamma (PPARγ) and its coactivator PPARγ coactivator-1 alpha (PGC-1α) enhance mitochondrial biogenesis and cellular energy metabolism but inhibit inflammation. However, the molecular mechanism through which these two proteins cooperate in the kidney remains unclear. The aim of the present study was to investigate this mechanism. METHODS HK-2 human proximal tubular cells were stimulated by inflammatory factors, the expression of PPARγ and PGC-1α were determined via reverse transcription-quantitative polymerase chain reaction (PCR) and western blotting (WB), and DNA binding capacity was measured by an EMSA. Furthermore, db/db mice were used to establish a diabetic nephropathy model and were administered PPARγ and PGC-1α activators. Kidney injury was evaluated microscopically, and the inflammatory response was assessed via WB, immunohistochemistry and immunofluorescence staining. Besides, HK-2 cells were stimulated by high glucose and inflammatory factors with and without ZLN005 treatment, the expression of PPARγ, PGC-1α, p-p65 and p65 were determined via qPCR and WB. RESULTS Our results revealed that both TNF-α and IL-1β significantly decreased PPARγ and PGC-1 expression in vitro. Cytokines obviously decreased PPARγ DNA binding capacity. Moreover, we detected rapid activation of the NF-κB pathway in the presence of TNF-α or IL-1β. PPARγ and PGC-1α activators effectively protected against diabetic nephropathy and suppressed NF-κB expression both in db/db mice and HK-2 cells. CONCLUSION PPARγ and its coactivator PGC-1α actively participate in protecting against renal inflammation by regulating the NF-κB pathway, which highlights their potential as therapeutic targets for renal diseases.
Collapse
Affiliation(s)
- Siyi Huang
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanmeng Jin
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liwen Zhang
- Department of NephrologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ying Zhou
- Department of NephrologyShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Nan Chen
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiming Wang
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Kennedy C, Doyle R, Gough O, Mcevoy C, McAnallen S, Hughes M, Sheng X, Crifo B, Andrews D, Gaffney A, Rodriguez J, Kennedy S, Dillon E, Crean D, Zhang W, Yi Z, Nair V, Susztak K, Hirschhorn J, Florez J, Groop PH, Sandholm N, Kretzler M, McKay GJ, McKnight AJ, Maxwell AP, Matallanas D, Dorman A, Martin F, Conlon PJ, Sadlier DM, Brennan E, Godson C. A Novel Role for FERM Domain-Containing Protein 3 in CKD. KIDNEY360 2024; 5:1799-1812. [PMID: 39450948 DOI: 10.34067/kid.0000000602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Key Points
We have identified a transcriptional signature of 93 genes associated with CKD severity and progression.Protein 4.1, ezrin, radixin, moesin domain-containing protein 3 gene expression is reduced in the context of more severe kidney disease and in individuals who go on to develop progressive disease.Protein 4.1, ezrin, radixin, moesin domain-containing protein 3 interacts with proteins of the cell cytoskeleton and cell-cell junctions in proximal tubule epithelial cells.
Background
Currently, there are limited methods to link disease severity and risk of disease progression in CKD. To better understand this potential relationship, we interrogated the renal transcriptomic profile of individuals with CKD with measures of CKD severity and identified protein 4.1, ezrin, radixin, moesin-domain containing protein 3 (FRMD3) as a candidate gene for follow-up study.
Methods
RNA-sequencing was used to profile the transcriptome of CKD biopsies from the North Dublin Renal BioBank, the results of which were correlated with clinical parameters. The potential function of FRMD3 was explored by interrogating the FRMD3 interactome and assessing the effect of lentiviral mediated FRMD3 knock down on human renal proximal tubule epithelial cells by assessing cell viability, metabolic activity, and structural markers.
Results
We identified a subset of 93 genes which are significantly correlated with eGFR and percentage tubulointerstitial fibrosis at time of biopsy and with CKD progression 5 years postbiopsy. These results were validated against transcriptomic data from an external cohort of 432 nephrectomy samples. One of the top-ranking genes from this subset, FRMD3, has previously been associated with the risk of developing diabetic kidney disease. Interrogating the interactome of FRMD3 in tubule epithelial cells revealed interactions with cytoskeletal components of cell-cell junctions. Knockdown of FRMD3 expression in tubule epithelial cells resulted in increased proapoptotic activity within the cells, as well as dysregulation of E-Cadherin.
Conclusions
We have identified a panel of kidney-specific transcripts correlated with severity and progression of kidney disease, and from this, we have identified a possible role for FRMD3 in tubule cell structure and health.
Collapse
Affiliation(s)
- Ciarán Kennedy
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Oisin Gough
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Caitriona Mcevoy
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
- Tallaght University Hospital, Dublin; and Trinity Kidney Centre, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Susan McAnallen
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Maria Hughes
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Xin Sheng
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Bianca Crifo
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Darrell Andrews
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Andrew Gaffney
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Susan Kennedy
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- TriviumVet, Waterford, Ireland
| | - Eugene Dillon
- UCD Conway Institute Core Technologies, University College Dublin, Dublin, Ireland
| | - Daniel Crean
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Weijia Zhang
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhengzi Yi
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Katalin Susztak
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joel Hirschhorn
- Endocrine Division and Diabetes Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jose Florez
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gareth J McKay
- Centre for Public Health, Queens University of Belfast, Northern Ireland, United Kingdom
| | - Amy Jayne McKnight
- Centre for Public Health, Queens University of Belfast, Northern Ireland, United Kingdom
| | - Alexander P Maxwell
- Centre for Public Health, Queens University of Belfast, Northern Ireland, United Kingdom
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Finian Martin
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Peter J Conlon
- National Kidney Transplant Service, Department of Nephrology and Kidney Transplantation, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Denise M Sadlier
- School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Sahara Y, Fukui C, Kuniyoshi Y, Takasato M. Proximal tubule cell maturation rate and function are controlled by PPARα signaling in kidney organoids. Commun Biol 2024; 7:1532. [PMID: 39604738 PMCID: PMC11603349 DOI: 10.1038/s42003-024-07069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
Human pluripotent stem cell-derived kidney organoids are expected to be a useful tool for new drug discoveries, however, the immaturation of kidney organoids causes difficulties in recapitulating renal pharmacokinetics using organoids. Here, we performed time-course single-cell RNA sequencing of kidney organoids and revealed cell heterogeneity in the maturation rate of the proximal tubule. An unbiased analysis to identify upstream targets of genes that are expressed differentially between cells with low and high maturation rates revealed a higher activation of PPARα signaling in rapidly maturing cells. Treatment with a combination of a PPARα agonist and an RXRα agonist induced genes related to proximal tubule maturation and increased the capacity for protein uptake as well as the sensitivity to nephrotoxicity by cisplatin. This method to promote the maturation rate of proximal tubule cells has the potential to be utilized in microphysiological systems to recapitulate proximal tubule functions and to screen nephrotoxic drugs.
Collapse
Affiliation(s)
- Yoshiki Sahara
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., Minoh, 562-0029, Japan
| | - Chie Fukui
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Yuki Kuniyoshi
- Office of Bioinformatics, Department of Drug Discovery Strategy, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., Minoh, 562-0029, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Department of Development and Regeneration, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
8
|
Huang L, Chen J, Fu L, Yang B, Zhou C, Mei S, Zhang L, Mao Z, Lu C, Xue C. Integrated mRNA-seq and miRNA-seq analysis reveals key transcription factors of HNF4α and KLF4 in ADPKD. Biochem Biophys Res Commun 2024; 735:150848. [PMID: 39432926 DOI: 10.1016/j.bbrc.2024.150848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most prevalent genetic disorder affecting the kidneys. Understanding epigenetic regulatory mechanisms and the role of microRNAs (miRNAs) is crucial for developing therapeutic interventions. Two mRNA datasets (GSE7869 and GSE35831) and miRNA expression data (GSE133530) from ADPKD patients were used to find differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs), with a focus on genes regulated by hub transcription factors (TFs) and their target genes. The expression of hub TFs was validated in human kidneys and animal models through Western Blot (WB) and RT-PCR analysis. The location of the hub TF proteins in kidney cells was observed by a laser confocal microscope. A total of 2037 DEGs were identified. DEM analysis resulted in 59 up-regulated and 107 down-regulated miRNAs. Predicted target DEGs of DEMs indicated two top dysregulated TFs: hepatocyte nuclear factor 4 alpha (HNF4α) and Kruppel-like factor 4 (KLF4). RT-PCR, WB, and immunochemistry results showed that mRNA and protein levels of HNF4α were significantly decreased while KLF4 levels were significantly up-regulated in human ADPKD kidneys and Pkd1 conditional knockout mice compared with normal controls. Laser confocal microscopy revealed that KLF4 was mainly located in the cytoplasm while HNF4α was in the nucleus. Functional enrichment analysis indicated that genes regulated by HNF4α were mainly associated with metabolic pathways, while KLF4-regulated genes were linked to kidney development. Drug response prediction analysis revealed potential drug candidates for ADPKD treatment, including BI-2536, Sepantronium, and AZD5582. This integrated analysis provides new epigenetic insights into the complex miRNA-TF-mRNA network in ADPKD and identifies HNF4α and KLF4 as key TFs. These findings offer valuable resources for further research and potential drug development for ADPKD.
Collapse
Affiliation(s)
- Linxi Huang
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China; Department of Nephrology, 905th Hospital of PLA Navy, Shanghai, 200000, China
| | - Jiaxin Chen
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China
| | - Lili Fu
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China
| | - Bo Yang
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, 200000, China
| | - Chenchen Zhou
- Outpatient Department, Yangpu Third Military Retreat, Yangpu first retirement, Shanghai, 200000, China
| | - Shuqin Mei
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China
| | - Liming Zhang
- Department of Nephrology, Zhabei Central Hospital of JingAn District of Shanghai, Shanghai, 200000, China
| | - Zhiguo Mao
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China
| | - Chunlai Lu
- Department of Nephrology, 905th Hospital of PLA Navy, Shanghai, 200000, China
| | - Cheng Xue
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China.
| |
Collapse
|
9
|
Lay AC, Tran VDT, Nair V, Betin V, Hurcombe JA, Barrington AF, Pope RJ, Burdet F, Mehl F, Kryvokhyzha D, Ahmad A, Sinton MC, Lewis P, Wilson MC, Menon R, Otto E, Heesom KJ, Ibberson M, Looker HC, Nelson RG, Ju W, Kretzler M, Satchell SC, Gomez MF, Coward RJM. Profiling of insulin-resistant kidney models and human biopsies reveals common and cell-type-specific mechanisms underpinning Diabetic Kidney Disease. Nat Commun 2024; 15:10018. [PMID: 39562547 PMCID: PMC11576882 DOI: 10.1038/s41467-024-54089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage kidney failure worldwide, of which cellular insulin resistance is a major driver. Here, we study key human kidney cell types implicated in DKD (podocytes, glomerular endothelial, mesangial and proximal tubular cells) in insulin sensitive and resistant conditions, and perform simultaneous transcriptomics and proteomics for integrated analysis. Our data is further compared with bulk- and single-cell transcriptomic kidney biopsy data from early- and advanced-stage DKD patient cohorts. We identify several consistent changes (individual genes, proteins, and molecular pathways) occurring across all insulin-resistant kidney cell types, together with cell-line-specific changes occurring in response to insulin resistance, which are replicated in DKD biopsies. This study provides a rich data resource to direct future studies in elucidating underlying kidney signalling pathways and potential therapeutic targets in DKD.
Collapse
Affiliation(s)
- Abigail C Lay
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Van Du T Tran
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Virginie Betin
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Robert Jp Pope
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Frédéric Burdet
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florence Mehl
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dmytro Kryvokhyzha
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Abrar Ahmad
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Matthew C Sinton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip Lewis
- Proteomics Facility, University of Bristol, Bristol, UK
| | | | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Edgar Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, UK
| | - Mark Ibberson
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Phoenix, AZ, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Phoenix, AZ, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria F Gomez
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Richard J M Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
10
|
Fernandez-Prado R, Valiño L, Pintor-Chocano A, Sanz AB, Ortiz A, Sanchez-Niño MD. Cefadroxil targeting of SLC15A2/PEPT2 protects from colistin nephrotoxicity. J Transl Med 2024:102182. [PMID: 39522761 DOI: 10.1016/j.labinv.2024.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are considered interconnected syndromes, as AKI episodes may accelerate CKD progression and CKD increases the risk of AKI. Genome-wide association studies (GWAS) may identify novel actionable therapeutic targets. Human genome-wide association studies (GWAS) for AKI or CKD were combined with murine AKI transcriptomics datasets to identify 13 (ACACB, ACSM5, CNDP1, DPEP1, GATM, SLC6A12, AGXT2L1, SLC15A2, CTSS, ICAM1, ITGAX, ITGAM, PPM1J) potentially actionable therapeutic targets to modulate kidney disease severity across species and across the AKI-CKD spectrum. Among them, SLC15A2, encoding the cell membrane proton-coupled peptide transporter 2 (PEPT2), was prioritized for data mining and functional intervention studies in vitro and in vivo because of its known function to transport nephrotoxic drugs such as colistin and the possibility for targeting with small molecules already in clinical use, such as cefadroxil. Data mining disclosed that SLC15A2 was upregulated in the tubulointerstitium of human CKD, including diabetic nephropathy, and the upregulation was localized to proximal tubular cells. Colistin elicited cytotoxicity and a proinflammatory response in cultured human and murine proximal tubular cells that was decreased by concomitant exposure to cefadroxil. In proof-of-concept in vivo studies, cefadroxil protected from colistin nephrotoxicity in mice. The GWAS association of SLC15A2 with human kidney disease may be actionable and related to the modifiable transport of nephrotoxins causing repeated subclinical episodes of AKI and/or chronic nephrotoxicity.
Collapse
Affiliation(s)
- Raul Fernandez-Prado
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040; Madrid, Spain
| | - Lara Valiño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040; Madrid, Spain
| | | | - Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040; Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040; Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040; Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Tasca P, van den Berg BM, Rabelink TJ, Wang G, Heijs B, van Kooten C, de Vries APJ, Kers J. Application of spatial-omics to the classification of kidney biopsy samples in transplantation. Nat Rev Nephrol 2024; 20:755-766. [PMID: 38965417 DOI: 10.1038/s41581-024-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Improvement of long-term outcomes through targeted treatment is a primary concern in kidney transplant medicine. Currently, the validation of a rejection diagnosis and subsequent treatment depends on the histological assessment of allograft biopsy samples, according to the Banff classification system. However, the lack of (early) disease-specific tissue markers hinders accurate diagnosis and thus timely intervention. This challenge mainly results from an incomplete understanding of the pathophysiological processes underlying late allograft failure. Integration of large-scale multimodal approaches for investigating allograft biopsy samples might offer new insights into this pathophysiology, which are necessary for the identification of novel therapeutic targets and the development of tailored immunotherapeutic interventions. Several omics technologies - including transcriptomic, proteomic, lipidomic and metabolomic tools (and multimodal data analysis strategies) - can be applied to allograft biopsy investigation. However, despite their successful application in research settings and their potential clinical value, several barriers limit the broad implementation of many of these tools into clinical practice. Among spatial-omics technologies, mass spectrometry imaging, which is under-represented in the transplant field, has the potential to enable multi-omics investigations that might expand the insights gained with current clinical analysis technologies.
Collapse
Affiliation(s)
- Paola Tasca
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (Renew), Leiden University Medical Center, Leiden, the Netherlands
| | - Gangqi Wang
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (Renew), Leiden University Medical Center, Leiden, the Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Cees van Kooten
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Aiko P J de Vries
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands.
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Jesper Kers
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Center for Analytical Sciences Amsterdam, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Sun L, Liu L, Jiang J, Liu K, Zhu J, Wu L, Lu X, Huang Z, Yuan Y, Crowley SD, Mao H, Xing C, Ren J. Transcription factor Twist1 drives fibroblast activation to promote kidney fibrosis via signaling proteins Prrx1/TNC. Kidney Int 2024; 106:840-855. [PMID: 39181396 DOI: 10.1016/j.kint.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The transcription factor Twist1 plays a vital role in normal development in many tissue systems and continues to be important throughout life. However, inappropriate Twist1 activity has been associated with kidney injury and fibrosis, though the underlying mechanisms involved remain incomplete. Here, we explored the role of Twist1 in regulating fibroblast behaviors and the development kidney fibrosis. Initially Twist1 protein and activity was found to be markedly increased within interstitial myofibroblasts in fibrotic kidneys in both humans and rodents. Treatment of rat kidney interstitial fibroblasts with transforming growth factor-β1 (a profibrotic factor) also induced Twist1 expression in vitro. Gain- and loss-of-function experiments supported that Twist1 signaling was responsible for transforming growth factor-β1-induced fibroblast activation and fetal bovine serum-induced fibroblast proliferation. Mechanistically, Twist1 protein promoted kidney fibroblast activation by driving the expression of downstream signaling proteins, Prrx1 and Tnc. Twist1 directly enhanced binding to the promoter of Prrx1 but not TNC, whereas the promoter of TNC was directly bound by Prrx1. Finally, mice with fibroblast-specific deletion of Twist1 exhibited less Prrx1 and TNC protein abundance, interstitial extracellular matrix deposition and kidney inflammation in both the unilateral ureteral obstruction and ischemic-reperfusion injury-induced-kidney fibrotic models. Inhibition of Twist1 signaling with Harmine, a β-carboline alkaloid, improved extracellular matrix deposition in both injury models. Thus, our results suggest that Twist1 signaling promotes the activation and proliferation of kidney fibroblasts, contributing to the development of interstitial fibrosis, offering a potential therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Lianqin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lishan Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juanjuan Jiang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kang Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingfeng Zhu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Zhimin Huang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Durham VA Medical Center, Durham, North Carolina, USA
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Jiafa Ren
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
13
|
Khbouz B, Musumeci L, Grahammer F, Jouret F. The Dual-specificity Phosphatase 3 (DUSP3): A Potential Target Against Renal Ischemia/Reperfusion Injury. Transplantation 2024; 108:2166-2173. [PMID: 39466786 DOI: 10.1097/tp.0000000000005009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Renal ischemia/reperfusion (I/R) injury is a common clinical challenge faced by clinicians in kidney transplantation. I/R is the leading cause of acute kidney injury, and it occurs when blood flow to the kidney is interrupted and subsequently restored. I/R impairs renal function in both short and long terms. Renal ischemic preconditioning refers to all maneuvers intended to prevent or attenuate ischemic damage. In this context, the present review focuses on the dual-specificity phosphatase 3 (DUSP3), also known as vaccinia H1-related phosphatase, an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 has different biological functions: (1) it acts as a tumor modulator and (2) it is involved in the regulation of immune response, thrombosis, hemostasis, angiogenesis, and genomic stability. These functions occur either through MAPK-dependent or MAPK-independent mechanisms. DUSP3 genetic deletion dampens kidney damage and inflammation caused by I/R in mice, suggesting DUSP3 as a potential target for preventing renal I/R injury. Here, we discuss the putative role of DUSP3 in ischemic preconditioning and the potential mechanisms of such an attenuated inflammatory response via improved kidney perfusion and adequate innate immune response.
Collapse
Affiliation(s)
- Badr Khbouz
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine (Nephrology, Rheumatology, Endocrinology), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lucia Musumeci
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Department of Cardiovascular Surgery, CHU of Liège, Liège, Belgium
| | - Florian Grahammer
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine (Nephrology, Rheumatology, Endocrinology), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Division of Nephrology, CHU of Liège, University of Liège (CHU ULiège), Liège, Belgium
| |
Collapse
|
14
|
Gies SE, Hänzelmann S, Kylies D, Lassé M, Lagies S, Hausmann F, Khatri R, Zolotarev N, Poets M, Zhang T, Demir F, Billing AM, Quaas J, Meister E, Engesser J, Mühlig AK, Lu S, Liu S, Chilla S, Edenhofer I, Czogalla J, Braun F, Kammerer B, Puelles VG, Bonn S, Rinschen MM, Lindenmeyer M, Huber TB. Optimized protocol for the multiomics processing of cryopreserved human kidney tissue. Am J Physiol Renal Physiol 2024; 327:F822-F844. [PMID: 39361723 DOI: 10.1152/ajprenal.00404.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Biobanking of tissue from clinically obtained kidney biopsies for later analysis with multiomic approaches, such as single-cell technologies, proteomics, metabolomics, and the different types of imaging, is an inevitable step to overcome the need of disease model systems and toward translational medicine. Hence, collection protocols that ensure integration into daily clinical routines by the usage of preservation media that do not require liquid nitrogen but instantly preserve kidney tissue for both clinical and scientific analyses are necessary. Thus, we modified a robust single-nucleus dissociation protocol for kidney tissue stored snap-frozen or in the preservation media RNAlater and CellCover. Using at first porcine kidney tissue as a surrogate for human kidney tissue, we conducted single-nucleus RNA sequencing with the widely recognized Chromium 10X Genomics platform. The resulting datasets from each storage condition were analyzed to identify any potential variations in transcriptomic profiles. Furthermore, we assessed the suitability of the preservation media for additional analysis techniques such as proteomics, metabolomics, and the preservation of tissue architecture for histopathological examination including immunofluorescence staining. In this study, we show that in daily clinical routines, the preservation medium RNAlater facilitates the collection of highly preserved human kidney biopsies and enables further analysis with cutting-edge techniques like single-nucleus RNA sequencing, proteomics, and histopathological evaluation. Only metabolome analysis is currently restricted to snap-frozen tissue. This work will contribute to build tissue biobanks with well-defined cohorts of the respective kidney disease that can be deeply molecularly characterized, opening up new horizons for the identification of unique cells, pathways and biomarkers for the prevention, early identification, and targeted therapy of kidney diseases.NEW & NOTEWORTHY In this study, we addressed challenges in integrating clinically obtained kidney biopsies into everyday clinical routines. Using porcine kidneys, we evaluated preservation media (RNAlater and CellCover) versus snap freezing for multi-omics processing. Our analyses highlighted RNAlater's suitability for single-nucleus RNA sequencing, proteome analysis and histopathological evaluation. Only metabolomics are currently restricted to snap-frozen biopsies. Our research established a cryopreservation protocol that facilitates tissue biobanking for advancing precision medicine in nephrology.
Collapse
Affiliation(s)
- Sydney E Gies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Lassé
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Lagies
- Core Competence Metabolomics (Hilde-Mangold-Haus), University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Freiburg, Germany
| | - Fabian Hausmann
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolay Zolotarev
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuela Poets
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tianran Zhang
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - Anja M Billing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - Josephine Quaas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Meister
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Engesser
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne K Mühlig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia Chilla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics (Hilde-Mangold-Haus), University of Freiburg, Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Torcasso MS, Ai J, Casella G, Cao T, Chang A, Halper-Stromberg A, Jabri B, Clark MR, Giger ML. Pseudo-spectral angle mapping for pixel and cell classification in highly multiplexed immunofluorescence images. J Med Imaging (Bellingham) 2024; 11:067502. [PMID: 39664650 PMCID: PMC11629784 DOI: 10.1117/1.jmi.11.6.067502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose The rapid development of highly multiplexed microscopy has enabled the study of cells embedded within their native tissue. The rich spatial data provided by these techniques have yielded exciting insights into the spatial features of human disease. However, computational methods for analyzing these high-content images are still emerging; there is a need for more robust and generalizable tools for evaluating the cellular constituents and stroma captured by high-plex imaging. To address this need, we have adapted spectral angle mapping-an algorithm developed for hyperspectral image analysis-to compress the channel dimension of high-plex immunofluorescence (IF) images. Approach Here, we present pseudo-spectral angle mapping (pSAM), a robust and flexible method for determining the most likely class of each pixel in a high-plex image. The class maps calculated through pSAM yield pixel classifications which can be combined with instance segmentation algorithms to classify individual cells. Results In a dataset of colon biopsies imaged with a 13-plex staining panel, 16 pSAM class maps were computed to generate pixel classifications. Instance segmentations of cells with Cellpose2.0 ( F 1 -score of 0.83 ± 0.13 ) were combined with these class maps to provide cell class predictions for 13 cell classes. In addition, in a separate unseen dataset of kidney biopsies imaged with a 44-plex staining panel, pSAM plus Cellpose2.0 ( F 1 -score of 0.86 ± 0.11 ) detected a diverse set of 38 classes of structural and immune cells. Conclusions In summary, pSAM is a powerful and generalizable tool for evaluating high-plex IF image data and classifying cells in these high-dimensional images.
Collapse
Affiliation(s)
- Madeleine S. Torcasso
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
- The University of Chicago, Department of Medicine, Section on Rheumatology, Chicago, Illinois, United States
| | - Junting Ai
- The University of Chicago, Department of Medicine, Section on Rheumatology, Chicago, Illinois, United States
| | - Gabriel Casella
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
- The University of Chicago, Department of Medicine, Section on Rheumatology, Chicago, Illinois, United States
| | - Thao Cao
- The University of Chicago, Pritzker School of Molecular Engineering, Chicago, Illinois, United States
| | - Anthony Chang
- The University of Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Ariel Halper-Stromberg
- The University of Chicago, Department of Medicine, Section on Gastroenterology, Hepatology and Nutrition, Chicago, Illinois, United States
| | - Bana Jabri
- The University of Chicago, Department of Medicine, Section on Gastroenterology, Hepatology and Nutrition, Chicago, Illinois, United States
| | - Marcus R. Clark
- The University of Chicago, Department of Medicine, Section on Rheumatology, Chicago, Illinois, United States
| | - Maryellen L. Giger
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
16
|
Lv J, Lan B, Fu L, He C, Zhou W, Wang X, Zhou C, Mao Z, Chen Y, Mei C, Xue C. EZH2 inhibition or genetic ablation suppresses cyst growth in autosomal dominant polycystic kidney disease. J Transl Med 2024; 22:979. [PMID: 39472935 PMCID: PMC11520870 DOI: 10.1186/s12967-024-05785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent genetic disorder characterized by the formation of renal cysts leading to kidney failure. Despite known genetic underpinnings, the variability in disease progression suggests additional regulatory layers, including epigenetic modifications. METHODS We utilized various ADPKD models, including Pkd1 and Ezh2 conditional knockout (Pkd1delta/delta:Ezh2delta/delta) mice, to explore the role of Enhancer of Zeste Homolog 2 (EZH2) in cystogenesis. Pharmacological inhibition of EZH2 was performed using GSK126 or EPZ-6438 across multiple models. RESULTS EZH2 expression was significantly upregulated in Pkd1-/- cells, Pkd1delta/delta mice, and human ADPKD kidneys. EZH2 inhibition attenuates cyst development in MDCK cells and a mouse embryonic kidney cyst model. Both Ezh2 conditional knockout and GSK126 treatment suppressed renal cyst growth and protected renal function in Pkd1delta/delta mice. Mechanistically, cAMP/PKA/CREB pathway increased EZH2 expression. EZH2 mediated cystogenesis by enhancing methylation and activation of STAT3, promoting cell cycle through p21 suppression, and stimulating non-phosphorylated β-catenin in Wnt signaling pathway. Additionally, EZH2 enhanced ferroptosis by inhibiting SLC7A11 and GPX4 in ADPKD. CONCLUSION Our findings elucidate the pivotal role of EZH2 in promoting renal cyst growth through epigenetic mechanisms and suggest that EZH2 inhibition or ablation may serve as a novel therapeutic approach for managing ADPKD.
Collapse
Affiliation(s)
- Jiayi Lv
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China
| | - Bingxue Lan
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Lili Fu
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China
| | - Chaoran He
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Wei Zhou
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xi Wang
- Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
| | - Chenchen Zhou
- Outpatient Department, Yangpu Third Military Retreat, Shanghai, China
| | - Zhiguo Mao
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China.
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| | - Changlin Mei
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China.
| | - Cheng Xue
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
17
|
Van Loon E, Lamarthée B, Callemeyn J, Farhat I, Koshy P, Anglicheau D, Cippà P, Franken A, Gwinner W, Kuypers D, Marquet P, Rinaldi A, Tinel C, Van Brussel T, Van Craenenbroeck A, Varin A, Vaulet T, Lambrechts D, Naesens M. Active immunologic participation and metabolic shutdown of kidney structural cells during kidney transplant rejection. Am J Transplant 2024:S1600-6135(24)00675-0. [PMID: 39461479 DOI: 10.1016/j.ajt.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Contrary to immune cells, the response of the kidney structural cells in rejection is less established. We performed single-cell RNA sequencing of 18 kidney transplant biopsies from 14 recipients. Single-cell RNA sequencing identified cells from the major compartments of the kidney, next to infiltrated immune cells. Endothelial cells from the glomerulus, peritubular capillaries, and vasa recta showed upregulation of class I and II human leukocyte antigen genes, adhesion molecules, cytokines, and chemokines, suggesting active participation in the alloimmune process, with compartment-specific differences. Epithelial cells including proximal tubular, loop of Henle, and collecting duct cells, also showed increased expression of immune genes. Strikingly, in proximal tubule cells, a strong downregulation of energy metabolism upon inflammation was observed. There was a large overlap between the cell-specific expression changes upon alloimmune inflammation and those observed in 2 large microarray biopsy cohorts. In conclusion, the kidney structural cells, being the main target of the alloimmune process, appear to actively contribute herein, enhancing the damaging effects of the infiltrating immune cells. In epithelial cells, a profound shutdown of metabolism was seen upon inflammation, which is associated with poor kidney function. These observations highlight the critical role of the graft in triggering and sustaining rejection after transplantation.
Collapse
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; University of Franche-Comté, UBFC, Inserm UMR1098 Right, EFS BFC, Besançon, France
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Imane Farhat
- University of Franche-Comté, UBFC, Inserm UMR1098 Right, EFS BFC, Besançon, France
| | - Priyanka Koshy
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Cité, Inserm U1151, Necker Enfants-Malades Institute, Paris, France
| | - Pietro Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Amelie Franken
- VIB Center for Cancer Biology, Leuven, Belgium; Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Marquet
- Department of Pharmacology and Transplantation, University of Limoges, Inserm U1248, Limoges University Hospital, Limoges, France
| | - Anna Rinaldi
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Claire Tinel
- University of Franche-Comté, UBFC, Inserm UMR1098 Right, EFS BFC, Besançon, France; Department of Nephrology and Kidney Transplantation, Dijon University Hospital, Dijon, France
| | - Thomas Van Brussel
- VIB Center for Cancer Biology, Leuven, Belgium; Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Amaryllis Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Alexis Varin
- University of Franche-Comté, UBFC, Inserm UMR1098 Right, EFS BFC, Besançon, France
| | - Thibaut Vaulet
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium; Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Xu C, Zhang Y, Zhou J, Zhang J, Dong H, Chen X, Tian Y, Wu Y. Integrated temporal transcriptional and epigenetic single-cell analysis reveals the intrarenal immune characteristics in an early-stage model of IgA nephropathy during its acute injury. Front Immunol 2024; 15:1405748. [PMID: 39493754 PMCID: PMC11528150 DOI: 10.3389/fimmu.2024.1405748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Rationale Kidney inflammation plays a crucial role in the pathogenesis of IgA nephropathy (IgAN), yet the specific phenotypes of immune cells involved in disease progression remain incompletely understood. Utilizing joint profiling through longitudinal single-cell RNA-sequencing (scRNAseq) and single-cell assay for transposase-accessible chromatin sequencing (scATACseq) can provide a comprehensive framework for elucidating the development of cell subset diversity and how chromatin accessibility regulates transcription. Objective We aimed to characterize the dynamic immune cellular landscape at a high resolution in an early IgAN mouse model with acute kidney injury (AKI). Methods and results A murine model was utilized to mimic 3 immunological states -"immune stability (IS), immune activation (IA) and immune remission (IR)" in early human IgAN-associated glomerulopathy during AKI, achieved through lipopolysaccharide (LPS) injection. Urinary albumin to creatinine ratio (UACR) was measured to further validate the exacerbation and resolution of kidney inflammation during this course. Paired scRNAseq and scATACseq analysis was performed on CD45+ immune cells isolated from kidney tissues obtained from CTRL (healthy vehicle), IS, IA and IR (4 or 5 mice each). The analyses revealed 7 major cell types and 24 clusters based on 72304 single-cell transcriptomes, allowing for the identification and characterization of various immune cell types within each cluster. Our data offer an impartial depiction of the immunological characteristics, as the proportions of immune cell types fluctuated throughout different stages of the disease. Specifically, these analyses also revealed novel subpopulations, such as a macrophage subset (Nlrp1b Mac) with distinct epigenetic features and a unique transcription factor motif profile, potentially exerting immunoregulatory effects, as well as an early subset of Tex distinguished by their effector and cytolytic potential (CX3CR1-transTeff). Furthermore, in order to investigate the potential interaction between immune cells and renal resident cells, we conducted single-cell RNA sequencing on kidney cells obtained from a separate cohort of IS and IA mice without isolating immune cells. These findings underscored the diverse roles played by macrophages and CD8+ T cells in maintaining homeostasis of endothelial cells (ECs) under stress. Conclusions This study presents a comprehensive analysis of the dynamic changes in immune cell profiles in a model of IgAN, identifying key cell types and their roles and interactions. These findings significantly contribute to the understanding of the pathogenesis of IgAN and may provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Xu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiwei Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Zhou
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiangnan Zhang
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Dong
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese People's Liberation Army (PLA) General Hospital, Chinese People's Liberation Army (PLA) Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yi Tian
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
19
|
Valiño-Rivas L, Pintor-Chocano A, Carriazo SM, Sanz AB, Ortiz A, Sanchez-Niño MD. Loss of NLRP6 increases the severity of kidney fibrosis. J Cell Physiol 2024; 239:e31347. [PMID: 38934623 DOI: 10.1002/jcp.31347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
While NLRP3 contributes to kidney fibrosis, the function of most NOD-like receptors (NLRs) in chronic kidney disease (CKD) remains unexplored. To identify further NLR members involved in the pathogenesis of CKD, we searched for NLR genes expressed by normal kidneys and differentially expressed in human CKD transcriptomics databases. For NLRP6, lower kidney expression correlated with decreasing glomerular filtration rate. The role and molecular mechanisms of Nlrp6 in kidney fibrosis were explored in wild-type and Nlrp6-deficient mice and cell cultures. Data mining of single-cell transcriptomics databases identified proximal tubular cells as the main site of Nlrp6 expression in normal human kidneys and tubular cell Nlrp6 was lost in CKD. We confirmed kidney Nlrp6 downregulation following murine unilateral ureteral obstruction. Nlrp6-deficient mice had higher kidney p38 MAPK activation and more severe kidney inflammation and fibrosis. Similar results were obtained in adenine-induced kidney fibrosis. Mechanistically, profibrotic cytokines transforming growth factor beta 1 (TGF-β1) and TWEAK decreased Nlrp6 expression in cultured tubular cells, and Nlrp6 downregulation resulted in increased TGF-β1 and CTGF expression through p38 MAPK activation, as well as in downregulation of the antifibrotic factor Klotho, suggesting that loss of Nlrp6 promotes maladaptive tubular cell responses. The pattern of gene expression following Nlrp6 targeting in cultured proximal tubular cells was consistent with maladaptive transitions for proximal tubular cells described in single-cell transcriptomics datasets. In conclusion, endogenous constitutive Nlrp6 dampens sterile kidney inflammation and fibrosis. Loss of Nlrp6 expression by tubular cells may contribute to CKD progression.
Collapse
Grants
- Sociedad Española de Nefrología, Comunidad de Madrid en Biomedicina P2022/BMD-7223, CIFRA_COR-CM and COST Action PERMEDIK CA21165, supported by COST (European Cooperation in Science and Technology). MDSN and ABS were supported by MICINN Ramon y Cajal program RYC2018-024461-I and RYC2019-026916-I respectively. IIS- Fundacion Jimenez Diaz Biobank, part of the Spanish Biobanks Platform (PT17/0015/0006)
- MICINN
- This work was supported by Instituto de Salud Carlos III (ISCIII)-FIS/Fondo Europeo de Desarrollo Regional FEDER grants (PI18/01366, PI21/00251, PI22/00050, PI22/00469), Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación/Next Generation EU (CNS2022-135937), ERA- PerMed-JTC2022 (SPAREKID AC22/00027), RICORS program to RICORS2040 (RD21/0005/0001) funded by European Union - NextGenerationEU, Mecanismo para la Recuperación y la Resiliencia (MRR) and SPACKDc PMP21/00109 FEDER
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Sol M Carriazo
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Ana B Sanz
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria D Sanchez-Niño
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
- Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Pan W, Zhang W, Zheng B, Camellato BR, Stern J, Lin Z, Khodadadi-Jamayran A, Kim J, Sommer P, Khalil K, Weldon E, Bai J, Zhu Y, Meyn P, Heguy A, Mangiola M, Griesemer A, Keating BJ, Montgomery RA, Xia B, Boeke JD. Cellular dynamics in pig-to-human kidney xenotransplantation. MED 2024; 5:1016-1029.e4. [PMID: 38776915 DOI: 10.1016/j.medj.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Xenotransplantation of genetically engineered porcine organs has the potential to address the challenge of organ donor shortage. Two cases of porcine-to-human kidney xenotransplantation were performed, yet the physiological effects on the xenografts and the recipients' immune responses remain largely uncharacterized. METHODS We performed single-cell RNA sequencing (scRNA-seq) and longitudinal RNA-seq analyses of the porcine kidneys to dissect xenotransplantation-associated cellular dynamics and xenograft-recipient interactions. We additionally performed longitudinal scRNA-seq of the peripheral blood mononuclear cells (PBMCs) to detect recipient immune responses across time. FINDINGS Although no hyperacute rejection signals were detected, scRNA-seq analyses of the xenografts found evidence of endothelial cell and immune response activation, indicating early signs of antibody-mediated rejection. Tracing the cells' species origin, we found human immune cell infiltration in both xenografts. Human transcripts in the longitudinal bulk RNA-seq revealed that human immune cell infiltration and the activation of interferon-gamma-induced chemokine expression occurred by 12 and 48 h post-xenotransplantation, respectively. Concordantly, longitudinal scRNA-seq of PBMCs also revealed two phases of the recipients' immune responses at 12 and 48-53 h. Lastly, we observed global expression signatures of xenotransplantation-associated kidney tissue damage in the xenografts. Surprisingly, we detected a rapid increase of proliferative cells in both xenografts, indicating the activation of the porcine tissue repair program. CONCLUSIONS Longitudinal and single-cell transcriptomic analyses of porcine kidneys and the recipient's PBMCs revealed time-resolved cellular dynamics of xenograft-recipient interactions during xenotransplantation. These cues can be leveraged for designing gene edits and immunosuppression regimens to optimize xenotransplantation outcomes. FUNDING This work was supported by NIH RM1HG009491 and DP5OD033430.
Collapse
Affiliation(s)
- Wanqing Pan
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Weimin Zhang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Binghan Zheng
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan R Camellato
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey Stern
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratories (ABL), NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Jacqueline Kim
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Philip Sommer
- Department of Anesthesiology, Perioperative Care & Pain Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Karen Khalil
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA
| | - Elaina Weldon
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jiangshan Bai
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yinan Zhu
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Peter Meyn
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana Heguy
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Massimo Mangiola
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA
| | - Adam Griesemer
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Brendan J Keating
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert A Montgomery
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Bo Xia
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA.
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
Chicca A, Bátora D, Ullmer C, Caruso A, Grüner S, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies. ACS Pharmacol Transl Sci 2024; 7:2424-2438. [PMID: 39144568 PMCID: PMC11320734 DOI: 10.1021/acsptsci.4c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent K d values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daniel Bátora
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Christoph Ullmer
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Antonello Caruso
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Sabine Grüner
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Thomas Hartung
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Roland Degen
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Matthias Müller
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Uwe Grether
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Pal Pacher
- Laboratory
of Cardiovascular Physiology and Tissue Injury (P.P.), National Institute on Alcohol Abuse and Alcoholism,
National Institutes of Health (NIH), Bethesda MD 20892-9304, United States
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
22
|
Chauveau B, Couzi L, Merville P. The Microscope and Beyond: Current Trends in the Characterization of Kidney Allograft Rejection From Tissue Samples. Transplantation 2024:00007890-990000000-00841. [PMID: 39436268 DOI: 10.1097/tp.0000000000005153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The Banff classification is regularly updated to integrate recent advances in the characterization of kidney allograft rejection, gathering novel diagnostic, prognostic, and theragnostic data into a diagnostic and pathogenesis-based framework. Despite ongoing research on noninvasive biomarkers of kidney rejection, the Banff classification remains, to date, biopsy-centered, primarily relying on a semiquantitative histological scoring system that overall lacks reproducibility and granularity. Besides, the ability of histopathological injuries and transcriptomics analyses from bulk tissue to accurately infer the pathogenesis of rejection is questioned. This review discusses findings from past, current, and emerging innovative tools that have the potential to enhance the characterization of allograft rejection from tissue samples. First, the digitalization of pathological workflows and the rise of deep learning should yield more reproducible and quantitative results from routine slides. Additionally, novel histomorphometric features of kidney rejection could be discovered with an overall genuine clinical implementation perspective. Second, multiplex immunohistochemistry enables in-depth in situ phenotyping of cells from formalin-fixed samples, which can decipher the heterogeneity of the immune infiltrate during kidney allograft rejection. Third, transcriptomics from bulk tissue is gradually integrated into the Banff classification, and its specific context of use is currently under extensive consideration. Finally, single-cell transcriptomics and spatial transcriptomics from formalin-fixed and paraffin-embedded samples are emerging techniques capable of producing up to genome-wide data with unprecedented precision levels. Combining all these approaches gives us hope for novel advances that will address the current blind spots of the Banff system.
Collapse
Affiliation(s)
- Bertrand Chauveau
- Department of Pathology, Bordeaux University Hospital, Pellegrin Hospital, Place Amélie Raba Léon, Bordeaux, France
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Lionel Couzi
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| | - Pierre Merville
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| |
Collapse
|
23
|
Feng Y, Sun Z, Fu J, Zhong F, Zhang W, Wei C, Chen A, Liu BC, He JC, Lee K. Podocyte-derived soluble RARRES1 drives kidney disease progression through direct podocyte and proximal tubular injury. Kidney Int 2024; 106:50-66. [PMID: 38697478 PMCID: PMC11193616 DOI: 10.1016/j.kint.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.
Collapse
Affiliation(s)
- Ye Feng
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Zeguo Sun
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Jia Fu
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Fang Zhong
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Weijia Zhang
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Chengguo Wei
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Anqun Chen
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - John C He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| | - Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA.
| |
Collapse
|
24
|
Asowata EO, Romoli S, Sargeant R, Tan JY, Hoffmann S, Huang MM, Mahbubani KT, Krause FN, Jachimowicz D, Agren R, Koulman A, Jenkins B, Musial B, Griffin JL, Soderberg M, Ling S, Hansen PBL, Saeb-Parsy K, Woollard KJ. Multi-omics and imaging mass cytometry characterization of human kidneys to identify pathways and phenotypes associated with impaired kidney function. Kidney Int 2024; 106:85-97. [PMID: 38431215 DOI: 10.1016/j.kint.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Despite the recent advances in our understanding of the role of lipids, metabolites, and related enzymes in mediating kidney injury, there is limited integrated multi-omics data identifying potential metabolic pathways driving impaired kidney function. The limited availability of kidney biopsies from living donors with acute kidney injury has remained a major constraint. Here, we validated the use of deceased transplant donor kidneys as a good model to study acute kidney injury in humans and characterized these kidneys using imaging and multi-omics approaches. We noted consistent changes in kidney injury and inflammatory markers in donors with reduced kidney function. Neighborhood and correlation analyses of imaging mass cytometry data showed that subsets of kidney cells (proximal tubular cells and fibroblasts) are associated with the expression profile of kidney immune cells, potentially linking these cells to kidney inflammation. Integrated transcriptomic and metabolomic analysis of human kidneys showed that kidney arachidonic acid metabolism and seven other metabolic pathways were upregulated following diminished kidney function. To validate the arachidonic acid pathway in impaired kidney function we demonstrated increased levels of cytosolic phospholipase A2 protein and related lipid mediators (prostaglandin E2) in the injured kidneys. Further, inhibition of cytosolic phospholipase A2 reduced injury and inflammation in human kidney proximal tubular epithelial cells in vitro. Thus, our study identified cell types and metabolic pathways that may be critical for controlling inflammation associated with impaired kidney function in humans.
Collapse
Affiliation(s)
- Evans O Asowata
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom; Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Simone Romoli
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jennifer Y Tan
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Scott Hoffmann
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Margaret M Huang
- Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Fynn N Krause
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Jachimowicz
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Agren
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Albert Koulman
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Jenkins
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Barbara Musial
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Magnus Soderberg
- Department of Pathology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Pernille B L Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom.
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
25
|
Hinze C, Lovric S, Halloran PF, Barasch J, Schmidt-Ott KM. Epithelial cell states associated with kidney and allograft injury. Nat Rev Nephrol 2024; 20:447-459. [PMID: 38632381 DOI: 10.1038/s41581-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
The kidney epithelium, with its intricate arrangement of highly specialized cell types, constitutes the functional core of the organ. Loss of kidney epithelium is linked to the loss of functional nephrons and a subsequent decline in kidney function. In kidney transplantation, epithelial injury signatures observed during post-transplantation surveillance are strong predictors of adverse kidney allograft outcomes. However, epithelial injury is currently neither monitored clinically nor addressed therapeutically after kidney transplantation. Several factors can contribute to allograft epithelial injury, including allograft rejection, drug toxicity, recurrent infections and postrenal obstruction. The injury mechanisms that underlie allograft injury overlap partially with those associated with acute kidney injury (AKI) and chronic kidney disease (CKD) in the native kidney. Studies using advanced transcriptomic analyses of single cells from kidney or urine have identified a role for kidney injury-induced epithelial cell states in exacerbating and sustaining damage in AKI and CKD. These epithelial cell states and their associated expression signatures are also observed in transplanted kidney allografts, suggesting that the identification and characterization of transcriptomic epithelial cell states in kidney allografts may have potential clinical implications for diagnosis and therapy.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan Barasch
- Division of Nephrology, Columbia University, New York City, NY, USA
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
26
|
Martin-Martin C, Suarez-Alvarez B, González M, Torres IB, Bestard O, Martín JE, Barceló-Coblijn G, Moreso F, Aransay AM, Lopez-Larrea C, Rodriguez RM. Exploring kidney allograft rejection: A proof-of-concept study using spatial transcriptomics. Am J Transplant 2024; 24:1161-1171. [PMID: 38692412 DOI: 10.1016/j.ajt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In this proof-of-concept study, spatial transcriptomics combined with public single-cell ribonucleic acid-sequencing data were used to explore the potential of this technology to study kidney allograft rejection. We aimed to map gene expression patterns within diverse pathologic states by examining biopsies classified across nonrejection, T cell-mediated acute rejection, interstitial fibrosis, and tubular atrophy. Our results revealed distinct immune cell signatures, including those of T and B lymphocytes, monocytes, mast cells, and plasma cells, and their spatial organization within the renal interstitium. We also mapped chemokine receptors and ligands to study immune cell migration and recruitment. Finally, our analysis demonstrated differential spatial enrichment of transcription signatures associated with kidney allograft rejection across various biopsy regions. Interstitium regions displayed higher enrichment scores for rejection-associated gene expression patterns than tubular areas, which had negative scores. This implies that these signatures are primarily driven by processes unfolding in the renal interstitium. Overall, this study highlights the value of spatial transcriptomics for revealing cellular heterogeneity and immune signatures in renal transplant biopsies and demonstrates its potential for studying the molecular and cellular mechanisms associated with rejection. However, certain limitations must be borne in mind regarding the development and future applications of this technology.
Collapse
Affiliation(s)
- Cristina Martin-Martin
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain; RICORS2040, Kidney Disease Research Network, ISCIII, Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain; RICORS2040, Kidney Disease Research Network, ISCIII, Madrid, Spain
| | - Monika González
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Irina B Torres
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Nephrology and Renal Transplant Laboratory, Vall Hebron Research Institute (VHIR), Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Oriol Bestard
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Nephrology and Renal Transplant Laboratory, Vall Hebron Research Institute (VHIR), Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - José E Martín
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Francesc Moreso
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Nephrology and Renal Transplant Laboratory, Vall Hebron Research Institute (VHIR), Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carlos Lopez-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain; RICORS2040, Kidney Disease Research Network, ISCIII, Madrid, Spain; Department of Immunology, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain.
| | - Ramon M Rodriguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| |
Collapse
|
27
|
Sarkar H, Chitra U, Gold J, Raphael BJ. A count-based model for delineating cell-cell interactions in spatial transcriptomics data. Bioinformatics 2024; 40:i481-i489. [PMID: 38940134 PMCID: PMC11211854 DOI: 10.1093/bioinformatics/btae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Cell-cell interactions (CCIs) consist of cells exchanging signals with themselves and neighboring cells by expressing ligand and receptor molecules and play a key role in cellular development, tissue homeostasis, and other critical biological functions. Since direct measurement of CCIs is challenging, multiple methods have been developed to infer CCIs by quantifying correlations between the gene expression of the ligands and receptors that mediate CCIs, originally from bulk RNA-sequencing data and more recently from single-cell or spatially resolved transcriptomics (SRT) data. SRT has a particular advantage over single-cell approaches, since ligand-receptor correlations can be computed between cells or spots that are physically close in the tissue. However, the transcript counts of individual ligands and receptors in SRT data are generally low, complicating the inference of CCIs from expression correlations. RESULTS We introduce Copulacci, a count-based model for inferring CCIs from SRT data. Copulacci uses a Gaussian copula to model dependencies between the expression of ligands and receptors from nearby spatial locations even when the transcript counts are low. On simulated data, Copulacci outperforms existing CCI inference methods based on the standard Spearman and Pearson correlation coefficients. Using several real SRT datasets, we show that Copulacci discovers biologically meaningful ligand-receptor interactions that are lowly expressed and undiscoverable by existing CCI inference methods. AVAILABILITY AND IMPLEMENTATION Copulacci is implemented in Python and available at https://github.com/raphael-group/copulacci.
Collapse
Affiliation(s)
- Hirak Sarkar
- Department of Computer Science, Princeton University, Princeton, NJ, 08540, United States
- Ludwig Cancer Institute, Princeton Branch, Princeton University, Princeton, NJ, 08540, United States
| | - Uthsav Chitra
- Department of Computer Science, Princeton University, Princeton, NJ, 08540, United States
| | - Julian Gold
- Department of Computer Science, Princeton University, Princeton, NJ, 08540, United States
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, 08540, United States
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, 08540, United States
| |
Collapse
|
28
|
Chen XJ, Tang R, Zha J, Zeng L, Zhou L, Liu Z, Yang D, Zeng M, Zhu X, Chen A, Liu H, Chen H, Chen G. A potential defensive role of TIM-3 on T lymphocytes in the inflammatory involvement of diabetic kidney disease. Front Immunol 2024; 15:1365226. [PMID: 38812511 PMCID: PMC11133625 DOI: 10.3389/fimmu.2024.1365226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Objective The aberrant mobilization and activation of various T lymphocyte subpopulations play a pivotal role in the pathogenesis of diabetic kidney disease (DKD), yet the regulatory mechanisms underlying these processes remain poorly understood. Our study is premised on the hypothesis that the dysregulation of immune checkpoint molecules on T lymphocytes disrupts kidney homeostasis, instigates pathological inflammation, and promotes DKD progression. Methods A total of 360 adult patients with DKD were recruited for this study. The expression of immune checkpoint molecules on T lymphocytes was assessed by flow cytometry for peripheral blood and immunofluorescence staining for kidney tissue. Single-cell sequencing (scRNA-seq) data from the kidneys of DKD mouse model were analyzed. Results Patients with DKD exhibited a reduction in the proportion of CD3+TIM-3+ T cells in circulation concurrent with the emergence of significant albuminuria and hematuria (p=0.008 and 0.02, respectively). Conversely, the incidence of infection during DKD progression correlated with an elevation of peripheral CD3+TIM-3+ T cells (p=0.01). Both univariate and multivariate logistic regression analysis revealed a significant inverse relationship between the proportion of peripheral CD3+TIM-3+ T cells and severe interstitial mononuclear infiltration (OR: 0.193, 95%CI: 0.040,0.926, p=0.04). Immunofluorescence assays demonstrated an increase of CD3+, TIM-3+ and CD3+TIM-3+ interstitial mononuclear cells in the kidneys of DKD patients as compared to patients diagnosed with minimal change disease (p=0.03, 0.02 and 0.002, respectively). ScRNA-seq analysis revealed decreased gene expression of TIM3 on T lymphocytes in DKD compared to control. And one of TIM-3's main ligands, Galectin-9 on immune cells showed a decreasing trend in gene expression as kidney damage worsened. Conclusion Our study underscores the potential protective role of TIM-3 on T lymphocytes in attenuating the progression of DKD and suggests that monitoring circulating CD3+TIM3+ T cells may serve as a viable strategy for identifying DKD patients at heightened risk of disease progression.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Runyan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Li Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Linshan Zhou
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Anqun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
29
|
Jung HJ, Pham TD, Su XT, Grigore TV, Hoenderop JG, Olauson H, Wall SM, Ellison DH, Welling PA, Al-Qusairi L. Klotho is highly expressed in the chief sites of regulated potassium secretion, and it is stimulated by potassium intake. Sci Rep 2024; 14:10740. [PMID: 38729987 PMCID: PMC11087591 DOI: 10.1038/s41598-024-61481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Klotho regulates many pathways in the aging process, but it remains unclear how it is physiologically regulated. Because Klotho is synthesized, cleaved, and released from the kidney; activates the chief urinary K+ secretion channel (ROMK) and stimulates urinary K+ secretion, we explored if Klotho protein is regulated by dietary K+ and the potassium-regulatory hormone, Aldosterone. Klotho protein along the nephron was evaluated in humans and in wild-type (WT) mice; and in mice lacking components of Aldosterone signaling, including the Aldosterone-Synthase KO (AS-KO) and the Mineralocorticoid-Receptor KO (MR-KO) mice. We found the specific cells of the distal nephron in humans and mice that are chief sites of regulated K+ secretion have the highest Klotho protein expression along the nephron. WT mice fed K+-rich diets increased Klotho expression in these cells. AS-KO mice exhibit normal Klotho under basal conditions but could not upregulate Klotho in response to high-K+ intake in the K+-secreting cells. Similarly, MR-KO mice exhibit decreased Klotho protein expression. Together, i) Klotho is highly expressed in the key sites of regulated K+ secretion in humans and mice, ii) In mice, K+-rich diets increase Klotho expression specifically in the potassium secretory cells of the distal nephron, iii) Aldosterone signaling is required for Klotho response to high K+ intake.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Truyen D Pham
- Department of Nephrology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, USA
| | - Teodora Veronica Grigore
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Susan M Wall
- Department of Nephrology, Emory University School of Medicine, Atlanta, GA, USA
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, USA
| | - Paul A Welling
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lama Al-Qusairi
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Shankar AS, Tejeda-Mora H, Du Z, Nlandu Q, Palomares-Cabeza V, van den Bosch TPP, Korevaar SS, Da Costa Gonçalves F, Bindels EMJ, Kramann R, Reinders MEJ, Clahsen-van Groningen MC, Hoorn EJ, Gribnau J, Baan CC, Hoogduijn MJ. Interactions of the Immune System with Human Kidney Organoids. Transpl Int 2024; 37:12468. [PMID: 38699175 PMCID: PMC11064018 DOI: 10.3389/ti.2024.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.
Collapse
Affiliation(s)
- Anusha S. Shankar
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Hector Tejeda-Mora
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Zhaoyu Du
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Quincy Nlandu
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Virginia Palomares-Cabeza
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Sander S. Korevaar
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Fabiany Da Costa Gonçalves
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - R. Kramann
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marlies E. J. Reinders
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Marian C. Clahsen-van Groningen
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ewout J. Hoorn
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, University Medical Center, Rotterdam, Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
31
|
Wei S, Shen H, Zhang Y, Liu C, Li S, Yao J, Jin Z, Yu H. Integrative analysis of single-cell and bulk transcriptome data reveal the significant role of macrophages in lupus nephritis. Arthritis Res Ther 2024; 26:84. [PMID: 38610007 PMCID: PMC11010324 DOI: 10.1186/s13075-024-03311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE We attempted to identify abnormal immune cell components and signaling pathways in lupus nephritis (LN) and to identify potential therapeutic targets. METHODS Differentially expressed genes (DEGs) between LN and normal kidney tissues were identified from bulk transcriptome data, and functional annotation was performed. The phenotypic changes in macrophages and aberrant intercellular signaling communications within immune cells were imputed from LN scRNA-seq data using trajectory analysis and verified using immunofluorescence staining. Finally, lentivirus-mediated overexpression of LGALS9, the gene encoding Galectin 9, in THP-1 cells was used to study the functional effect of this gene on monocytic cells. RESULTS From bulk transcriptome data, a significant activation of interferon (IFN) signaling was observed, and its intensity showed a significantly positive correlation with the abundance of infiltrating macrophages in LN. Analysis of scRNA-seq data revealed 17 immune cell clusters, with macrophages showing the highest enrichment of intercellular signal communication in LN. Trajectory analysis revealed macrophages in LN undergo a phenotypic change from inflammatory patrolling macrophages to phagocytic and then to antigen-presenting macrophages, and secrete various pro-inflammatory factors and complement components. LGALS9 was found significantly upregulated in macrophages in LN, which was confirmed by the immunofluorescence assay. Gene functional study showed that LGALS9 overexpression in THP-1 cells significantly elicited pro-inflammatory activation, releasing multiple immune cell chemoattractants. CONCLUSION Our results present an important pathophysiological role for macrophages in LN, and our preliminary results demonstrate significant pro-inflammatory effects of LGALS9 gene in LN macrophages.
Collapse
Affiliation(s)
- Shuping Wei
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Haiyun Shen
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Yidan Zhang
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Chunrui Liu
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Shoushan Li
- Department of oncology, The Siyang Hospital of Chinese Traditional Medicine, 15 Jiefangbei Road, Zhongxing district, Siyang country, Suqian, 223798, Jiangsu, PR China
| | - Jing Yao
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Zhibin Jin
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Hongliang Yu
- Department of oncology, The Siyang Hospital of Chinese Traditional Medicine, 15 Jiefangbei Road, Zhongxing district, Siyang country, Suqian, 223798, Jiangsu, PR China.
- Department of radiation oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210007, Jiangsu, PR China.
| |
Collapse
|
32
|
Abedini-Nassab R, Taheri F, Emamgholizadeh A, Naderi-Manesh H. Single-Cell RNA Sequencing in Organ and Cell Transplantation. BIOSENSORS 2024; 14:189. [PMID: 38667182 PMCID: PMC11048310 DOI: 10.3390/bios14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Fatemeh Taheri
- Biomedical Engineering Department, University of Neyshabur, Neyshabur P.O. Box 9319774446, Iran
| | - Ali Emamgholizadeh
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran;
- Department of Biophysics, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| |
Collapse
|
33
|
Mrug M, Mrug E, Rosenblum F, Chen J, Cui X, Agarwal A, Zarjou A. Distinct developmental reprogramming footprint of macrophages during acute kidney injury across species. Am J Physiol Renal Physiol 2024; 326:F635-F641. [PMID: 38357719 PMCID: PMC11208015 DOI: 10.1152/ajprenal.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Acute kidney injury (AKI) is a common finding in hospitalized patients, particularly those who are critically ill. The development of AKI is associated with several adverse outcomes including mortality, morbidity, progression to chronic kidney disease, and an increase in healthcare expenditure. Despite the well-established negative impact of AKI and rigorous efforts to better define, identify, and implement targeted therapies, the overall approach to the treatment of AKI continues to principally encompass supportive measures. This enduring challenge is primarily due to the heterogeneous nature of insults that activate many independent and overlapping molecular pathways. Consequently, it is evident that the identification of common mechanisms that mediate the pathogenesis of AKI, independent of etiology and engaged pathophysiological pathways, is of paramount importance and could lead to the identification of novel therapeutic targets. To better distinguish the commonly modulated mechanisms of AKI, we explored the transcriptional characteristics of human kidney biopsies from patients with acute tubular necrosis (ATN), and acute interstitial nephritis (AIN) using a NanoString inflammation panel. Subsequently, we used publicly available single-cell transcriptional resources to better interpret the generated transcriptional findings. Our findings identify robust acute kidney injury (AKI-induced) developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species. These results would expand the current understanding of the pathophysiology of AKI and potentially offer novel targets for additional studies to enhance the translational transition of AKI research.NEW & NOTEWORTHY Our findings identify robust acute kidney injury (AKI)-induced developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species.
Collapse
Affiliation(s)
- Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States
| | - Elias Mrug
- Math-Science Department, Alabama School of Fine Arts, Birmingham, Alabama, United States
| | - Frida Rosenblum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jiandong Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
34
|
Pang Q, Chen L, An C, Zhou J, Xiao H. Single-cell and bulk RNA sequencing highlights the role of M1-like infiltrating macrophages in antibody-mediated rejection after kidney transplantation. Heliyon 2024; 10:e27865. [PMID: 38524599 PMCID: PMC10958716 DOI: 10.1016/j.heliyon.2024.e27865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background Antibody-mediated rejection (ABMR) significantly affects transplanted kidney survival, yet the macrophage phenotype, ontogeny, and mechanisms in ABMR remain unclear. Method We analyzed post-transplant sequencing and clinical data from GEO and ArrayExpress. Using dimensionality reduction and clustering on scRNA-seq data, we identified macrophage subpopulations and compared their infiltration in ABMR and non-rejection cases. Cibersort quantified these subpopulations in bulk samples. Cellchat, SCENIC, monocle2, and monocle3 helped explore intercellular interactions, predict transcription factors, and simulate differentiation of cell subsets. The Scissor method linked macrophage subgroups with transplant prognosis. Furthermore, hdWGCNA, nichnet, and lasso regression identified key genes associated with core transcription factors in selected macrophages, validated by external datasets. Results Six macrophage subgroups were identified in five post-transplant kidney biopsies. M1-like infiltrating macrophages, prevalent in ABMR, correlated with pathological injury severity. MIF acted as a primary intercellular signal in these macrophages. STAT1 regulated monocyte-to-M1-like phenotype transformation, impacting transplant prognosis via the IFNγ pathway. The prognostic models built on the upstream and downstream genes of STAT1 effectively predicted transplant survival. The TLR4-STAT1-PARP9 axis may regulate the pro-inflammatory phenotype of M1-like infiltrating macrophages, identifying PARP9 as a potential target for mitigating ABMR inflammation. Conclusion Our study delineates the macrophage landscape in ABMR post-kidney transplantation, underscoring the detrimental impact of M1-like infiltrating macrophages on ABMR pathology and prognosis.
Collapse
Affiliation(s)
- Qidan Pang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Liang Chen
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Changyong An
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Juan Zhou
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Hanyu Xiao
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| |
Collapse
|
35
|
Clair G, Soloyan H, Cravedi P, Angeletti A, Salem F, Al-Rabadi L, De Filippo RE, Da Sacco S, Lemley KV, Sedrakyan S, Perin L. The spatially resolved transcriptome signatures of glomeruli in chronic kidney disease. JCI Insight 2024; 9:e165515. [PMID: 38516889 PMCID: PMC11063942 DOI: 10.1172/jci.insight.165515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures that may characterize the complex molecular mechanisms underlying progressive kidney disease in Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis showed that histologically similar glomeruli manifested different transcriptional profiles. Using glomerular pathology scores to establish an axis of progression, we identified molecular pathways with progressively decreased expression in response to increasing pathology scores, including signal recognition particle-dependent cotranslational protein targeting to membrane and selenocysteine synthesis pathways. We also identified a distinct signature of upregulated and downregulated genes common to all the diseases investigated when compared with nondiseased tissue from nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of disease progression in glomerulopathies.
Collapse
Affiliation(s)
- Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hasmik Soloyan
- The GOFARR Laboratory, The Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea Angeletti
- Nephrology Dialysis and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Fadi Salem
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Laith Al-Rabadi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | - Roger E. De Filippo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Stefano Da Sacco
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Kevin V. Lemley
- Division of Nephrology, Department of Pediatrics, University of Southern California, Los Angeles, California, USA
| | - Sargis Sedrakyan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Laura Perin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| |
Collapse
|
36
|
Legouis D, Rinaldi A, Malpetti D, Arnoux G, Verissimo T, Faivre A, Mangili F, Rinaldi A, Ruinelli L, Pugin J, Moll S, Clivio L, Bolis M, de Seigneux S, Azzimonti L, Cippà PE. A transfer learning framework to elucidate the clinical relevance of altered proximal tubule cell states in kidney disease. iScience 2024; 27:109271. [PMID: 38487013 PMCID: PMC10937833 DOI: 10.1016/j.isci.2024.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
The application of single-cell technologies in clinical nephrology remains elusive. We generated an atlas of transcriptionally defined cell types and cell states of human kidney disease by integrating single-cell signatures reported in the literature with newly generated signatures obtained from 5 patients with acute kidney injury. We used this information to develop kidney-specific cell-level information ExtractoR (K-CLIER), a transfer learning approach specifically tailored to evaluate the role of cell types/states on bulk RNAseq data. We validated the K-CLIER as a reliable computational framework to obtain a dimensionality reduction and to link clinical data with single-cell signatures. By applying K-CLIER on cohorts of patients with different kidney diseases, we identified the most relevant cell types associated with fibrosis and disease progression. This analysis highlighted the central role of altered proximal tubule cells in chronic kidney disease. Our study introduces a new strategy to exploit the power of single-cell technologies toward clinical applications.
Collapse
Affiliation(s)
- David Legouis
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
| | - Anna Rinaldi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Daniele Malpetti
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Gregoire Arnoux
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
| | - Thomas Verissimo
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
| | - Anna Faivre
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
- Division of Nephrology, Department of Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Francesca Mangili
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncological Research, 6500 Bellinzona, Switzerland
| | | | - Jerome Pugin
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Solange Moll
- Division of Pathology, Department of Diagnostic, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Luca Clivio
- Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
- Laboratory of Computational Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
- Division of Nephrology, Department of Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Laura Azzimonti
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Pietro E. Cippà
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
37
|
Galichon P, Lannoy M, Li L, Serre J, Vandermeersch S, Legouis D, Valerius MT, Hadchouel J, Bonventre JV. Energy depletion by cell proliferation sensitizes the kidney epithelial cells to injury. Am J Physiol Renal Physiol 2024; 326:F326-F337. [PMID: 38205542 PMCID: PMC11207531 DOI: 10.1152/ajprenal.00023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 01/12/2024] Open
Abstract
Acute kidney injury activates both proliferative and antiproliferative pathways, the consequences of which are not fully elucidated. If an initial proliferation of the renal epithelium is necessary for the successful repair, the persistence of proliferation markers is associated with the occurrence of chronic kidney disease. We hypothesized that proliferation in stress conditions impacts cell viability and renal outcomes. We found that proliferation is associated with cell death after various stresses in kidney cells. In vitro, the ATP/ADP ratio oscillates reproducibly throughout the cell cycle, and cell proliferation is associated with a decreased intracellular ATP/ADP ratio. In vivo, transcriptomic data from transplanted kidneys revealed that proliferation was strongly associated with a decrease in the expression of the mitochondria-encoded genes of the oxidative phosphorylation pathway, but not of the nucleus-encoded ones. These observations suggest that mitochondrial function is a limiting factor for energy production in proliferative kidney cells after injury. The association of increased proliferation and decreased mitochondrial function was indeed associated with poor renal outcomes. In summary, proliferation is an energy-demanding process impairing the cellular ability to cope with an injury, highlighting proliferative repair and metabolic recovery as indispensable and interdependent features for successful kidney repair.NEW & NOTEWORTHY ATP depletion is a hallmark of acute kidney injury. Proliferation is instrumental to kidney repair. We show that ATP levels vary during the cell cycle and that proliferation sensitizes renal epithelial cells to superimposed injuries in vitro. More proliferation and less energy production by the mitochondria are associated with adverse outcomes in injured kidney allografts. This suggests that controlling the timing of kidney repair might be beneficial to mitigate the extent of acute kidney injury.
Collapse
Affiliation(s)
- Pierre Galichon
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
- Medical School, Sorbonne Université, Paris, France
| | - Morgane Lannoy
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Li Li
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Justine Serre
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Sophie Vandermeersch
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - David Legouis
- Laboratory of Nephrology, Division of Intensive Care, Department of Medicine and Cell Physiology, University Hospital of Geneva, Geneva, Switzerland
| | - M Todd Valerius
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Joseph V Bonventre
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| |
Collapse
|
38
|
Mao W, Zhang L, Wang Y, Sun S, Wu J, Sun J, Zou X, Chen M, Zhang G. Cisplatin induces acute kidney injury by downregulating miR-30e-5p that targets Galnt3 to activate the AMPK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1567-1580. [PMID: 38010663 DOI: 10.1002/tox.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Cisplatin nephrotoxicity is an etiological factor for acute kidney injury (AKI). MicroRNA (miRNA) expression is dysregulated in cisplatin-induced AKI (cAKI) although the underlying mechanisms are unclear. A cAKI model was established by intraperitoneally injecting cisplatin, and key miRNAs were screened using high-throughput miRNA sequencing. The functions of key miRNAs were determined using the cell viability, live/dead, reactive oxygen species (ROS), and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays. Additionally, the macrophage membrane was wrapped around a metal-organic framework (MOF) loaded with miRNA agomir to develop a novel composite material, macrophage/MOF/miRNA agomir nanoparticles (MMA NPs). High-throughput miRNA sequencing revealed that miR-30e-5p is a key miRNA that is downregulated in cAKI. The results of in vitro experiments demonstrated that miR-30e-5p overexpression partially suppressed the cisplatin-induced or lipopolysaccharide (LPS)-induced downregulation of cell viability, proliferation, upregulation of ROS production, and cell death. Meanwhile, the results of in vivo and in vitro experiments demonstrated that MMA NPs alleviated cAKI by exerting anti-inflammatory effects. Mechanistically, cisplatin downregulates the expression of miR-30e-5p, and the downregulated miR-30e-5p can target Galnt3 to activate the adenosine 5'-monophosphate activated protein kinase (AMPK) signaling pathway, which promotes the progression of AKI. Our study found that miR-30e-5p is a key downregulated miRNA in cAKI. The downregulated miR-30e-5p promotes AKI progression by targeting Galnt3 to activate the AMPK signaling pathway. The newly developed MMA NPs were found to have protective effects on cAKI, suggesting a potential novel strategy for preventing cAKI.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Lei Zhang
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
| | - Yiduo Wang
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
| | - Si Sun
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
| | - Jianping Wu
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
39
|
Pan J, Ye F, Li H, Yu C, Mao J, Xiao Y, Chen H, Wu J, Li J, Fei L, Wu Y, Meng X, Guo G, Wang Y. Dissecting the immune discrepancies in mouse liver allograft tolerance and heart/kidney allograft rejection. Cell Prolif 2024; 57:e13555. [PMID: 37748771 PMCID: PMC10905343 DOI: 10.1111/cpr.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
The liver is the most tolerogenic of transplanted organs. However, the mechanisms underlying liver transplant tolerance are not well understood. The comparison between liver transplantation tolerance and heart/kidney transplantation rejection will deepen our understanding of tolerance and rejection in solid organs. Here, we built a mouse model of liver, heart and kidney allograft and performed single-cell RNA sequencing of 66,393 cells to describe the cell composition and immune cell interactions at the early stage of tolerance or rejection. We also performed bulk RNA-seq of mouse liver allografts from Day 7 to Day 60 post-transplantation to map the dynamic transcriptional variation in spontaneous tolerance. The transcriptome of lymphocytes and myeloid cells were characterized and compared in three types of organ allografts. Cell-cell interaction networks reveal the coordinated function of Kupffer cells, macrophages and their associated metabolic processes, including insulin receptor signalling and oxidative phosphorylation in tolerance induction. Cd11b+ dendritic cells (DCs) in liver allografts were found to inhibit cytotoxic T cells by secreting anti-inflammatory cytokines such as Il10. In summary, we profiled single-cell transcriptome analysis of mouse solid organ allografts. We characterized the immune microenvironment of mouse organ allografts in the acute rejection state (heart, kidney) and tolerance state (liver).
Collapse
Affiliation(s)
- Jun Pan
- Department of Thyroid Surgery, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fang Ye
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hui Li
- Key Laboratory of Combined Multiorgan Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiajia Mao
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Junqing Wu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yijun Wu
- Department of Thyroid Surgery, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical University, The Key Laboratory of Anti‐inflammatory of Immune Medicines, Ministry of EducationHefeiChina
| | - Guoji Guo
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiangChina
| | - Yingying Wang
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
40
|
Hammoud S, Ivanova A, Osaki Y, Funk S, Yang H, Viquez O, Delgado R, Lu D, Phillips Mignemi M, Tonello J, Colon S, Lantier L, Wasserman DH, Humphreys BD, Koenitzer J, Kern J, de Caestecker M, Finkel T, Fogo A, Messias N, Lodhi IJ, Gewin LS. Tubular CPT1A deletion minimally affects aging and chronic kidney injury. JCI Insight 2024; 9:e171961. [PMID: 38516886 PMCID: PMC11063933 DOI: 10.1172/jci.insight.171961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Kidney tubules use fatty acid oxidation (FAO) to support their high energetic requirements. Carnitine palmitoyltransferase 1A (CPT1A) is the rate-limiting enzyme for FAO, and it is necessary to transport long-chain fatty acids into mitochondria. To define the role of tubular CPT1A in aging and injury, we generated mice with tubule-specific deletion of Cpt1a (Cpt1aCKO mice), and the mice were either aged for 2 years or injured by aristolochic acid or unilateral ureteral obstruction. Surprisingly, Cpt1aCKO mice had no significant differences in kidney function or fibrosis compared with wild-type mice after aging or chronic injury. Primary tubule cells from aged Cpt1aCKO mice had a modest decrease in palmitate oxidation but retained the ability to metabolize long-chain fatty acids. Very-long-chain fatty acids, exclusively oxidized by peroxisomes, were reduced in kidneys lacking tubular CPT1A, consistent with increased peroxisomal activity. Single-nuclear RNA-Seq showed significantly increased expression of peroxisomal FAO enzymes in proximal tubules of mice lacking tubular CPT1A. These data suggest that peroxisomal FAO may compensate in the absence of CPT1A, and future genetic studies are needed to confirm the role of peroxisomal β-oxidation when mitochondrial FAO is impaired.
Collapse
Affiliation(s)
- Safaa Hammoud
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alla Ivanova
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Yosuke Osaki
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Steven Funk
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Haichun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olga Viquez
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Rachel Delgado
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Dongliang Lu
- Division of Endocrinology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Jane Tonello
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Selene Colon
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Louise Lantier
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David H. Wasserman
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin D. Humphreys
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jeffrey Koenitzer
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Justin Kern
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Toren Finkel
- Aging Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Agnes Fogo
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nidia Messias
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Medicine, Veterans Affairs Hospital, St. Louis, Missouri, USA
| |
Collapse
|
41
|
Huang L, Chen W, Tan Z, Huang Y, Gu X, Liu L, Zhang H, Shi Y, Ding J, Zheng C, Guo Z, Yu B. Mrc1 + macrophage-derived IGF1 mitigates crystal nephropathy by promoting renal tubule cell proliferation via the AKT/Rb signaling pathway. Theranostics 2024; 14:1764-1780. [PMID: 38389846 PMCID: PMC10879870 DOI: 10.7150/thno.89174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: The present understanding of the cellular characteristics and communications in crystal nephropathy is limited. Here, molecular and cellular studies combined with single-cell RNA sequencing (scRNA-seq) were performed to investigate the changes in cell components and their interactions in glyoxylate-induced crystallized kidneys to provide promising treatments for crystal nephropathy. Methods: The transcriptomes of single cells from mouse kidneys treated with glyoxylate for 0, 1, 4, or 7 days were analyzed via 10× Genomics, and the single cells were clustered and characterized by the Seurat pipeline. The potential cellular interactions between specific cell types were explored by CellChat. Molecular and cellular findings related to macrophage-to-epithelium crosstalk were validated in sodium oxalate (NaOx)-induced renal tubular epithelial cell injury in vitro and in glyoxylate-induced crystal nephropathy in vivo. Results: Our established scRNA atlas of glyoxylate-induced crystalline nephropathy contained 15 cell populations with more than 40000 single cells, including relatively stable tubular cells of different segments, proliferating and injured proximal tubular cells, T cells, B cells, and myeloid and mesenchymal cells. In this study, we found that Mrc1+ macrophages, as a subtype of myeloid cells, increased in both the number and percentage within the myeloid population as crystal-induced injury progresses, and distinctly express IGF1, which induces the activation of a signal pathway to dominate a significant information flow towards injured and proliferating tubule cells. IGF1 promoted the repair of damaged tubular epithelial cells induced by NaOx in vitro, as well as the repair of damaged tubular epithelial cells and the recovery of disease outcomes in glyoxylate-induced nephrolithic mice in vivo. Conclusion: After constructing a cellular atlas of glyoxylate-induced crystal nephropathy, we found that IGF1 derived from Mrc1+ macrophages attenuated crystal nephropathy through promoting renal tubule cell proliferation via the AKT/Rb signaling pathway. These findings could lead to the identification of potential therapeutic targets for the treatment of crystal nephropathy.
Collapse
Affiliation(s)
- Linxi Huang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Nephrology, PLA Navy No.905 Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhuojing Tan
- Department of Nephrology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Yunxiao Huang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xinji Gu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lantian Liu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongxia Zhang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yihan Shi
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chengjian Zheng
- Faculty of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
42
|
Thareja G, Muthukumar T. Partners in Crime: Inferring Cell-to-cell Interactions in Kidney Allograft Rejection From Single-cell RNA Sequencing. Transplantation 2024; 108:325-326. [PMID: 37638872 PMCID: PMC10840856 DOI: 10.1097/tp.0000000000004763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Thangamani Muthukumar
- Division of Nephrology, Hypertension, and Transplantation Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY
| |
Collapse
|
43
|
Shao X, Shi Y, Wang Y, Zhang L, Bai P, Wang J, Aniwan A, Lin Y, Zhou S, Yu P. Single-Cell Sequencing Reveals the Expression of Immune-Related Genes in Macrophages of Diabetic Kidney Disease. Inflammation 2024; 47:227-243. [PMID: 37777674 DOI: 10.1007/s10753-023-01906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by macrophage infiltration, which requires further investigation. This study aims to identify immune-related genes (IRGs) in macrophage and explore their potential as therapeutic targets. This study analyzed isolated glomerular cells from three diabetic mice and three control mice. A total of 59 glomeruli from normal kidney samples and 66 from DKD samples were acquired from four kidney transcriptomic profiling datasets. Bioinformatics analysis was conducted using both single-cell RNA (scRNA) and bulk RNA sequencing data to investigate inflammatory responses in DKD. Additionally, the "AUCell" function was used to investigate statistically different gene sets. The significance of each interaction pair was determined by assigning a probability using "CellChat." The study also analyzed the biological diagnostic importance of immune hub genes for DKD and validated the expression of these immune genes in mice models. The top 2000 highly variable genes (HVGs) were identified after data normalization. Subsequently, a total of eight clusters were identified. It is worth mentioning that macrophages showed the highest percentage increase among all cell types in the DKD group. Furthermore, the present study observed significant differences in gene sets related to inflammatory responses and complement pathways. The study also identified several receptor-ligand pairs and co-stimulatory interactions between endothelial cells and macrophages. Notably, SYK, ITGB2, FCER1G, and VAV1 were identified as immunological markers of DKD with promising predictive ability. This study identified distinct cell clusters and four marker genes. SYK, ITGB2, FCER1G, and VAV1 may be important roles. Consequently, the present study extends our understanding regarding IRGs in DKD and provides a foundation for future investigations into the underlying mechanisms.
Collapse
Affiliation(s)
- Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yueyue Shi
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300134, China
| | - Yao Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, People's Republic of China
| | - Li Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pufei Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - JunMei Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Ashanjiang Aniwan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
44
|
Leckie-Harre A, Silverman I, Wu H, Humphreys BD, Malone AF. Sequencing of Physically Interacting Cells in Human Kidney Allograft Rejection to Infer Contact-dependent Immune Cell Transcription. Transplantation 2024; 108:421-429. [PMID: 37638864 PMCID: PMC10798591 DOI: 10.1097/tp.0000000000004762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Rejection requires cell-cell contact involving immune cells. Inferring the transcriptional programs of cell-cell interactions from single-cell RNA-sequencing (scRNA-seq) data is challenging as spatial information is lost. METHODS We combined a CD45 pos enrichment strategy with Cellular Indexing of Transcriptomes and Epitopes by sequencing based quantification of leukocyte surface proteins to analyze cell-cell interactions in 11 human kidney transplant biopsies encompassing a spectrum of rejection diagnoses. scRNA-seq was performed using the 10X Genomics platform. We applied the sequencing physically interacting cells computational method to deconvolute the transcriptional profiles of heterotypic physically interacting cells. RESULTS The 11 human allograft biopsies generated 31 203 high-quality single-cell libraries. Clustering was further refined by combining Cellular Indexing of Transcriptomes and Epitopes by sequencing data from 6 different leukocyte-specific surface proteins. Three of 6 doublet clusters were identified as physically interacting cell complexes; macrophages or dendritic cells bound to B cells or plasma cells; natural killer (NK) or T cells bound to macrophages or dendritic cells and NK or T cells bound to endothelial cells. Myeloid-lymphocyte physically interacting cell complexes expressed activated and proinflammatory genes. Lymphocytes physically interacting with endothelial cells were enriched for NK and CD4 T cells. NK cell-endothelial cell contact caused increased expression of endothelial proinflammatory genes CXCL9 and CXCL10 and NK cell proinflammatory genes CCL3 , CCL4 , and GNLY . CONCLUSIONS The transcriptional profiles of physically interacting cells from human kidney transplant biopsies can be inferred from scRNA-seq data using the sequencing physically interacting cells method. This approach complements previous methods that estimate cell-cell physical contact from scRNA-seq data.
Collapse
Affiliation(s)
- Aidan Leckie-Harre
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Isabel Silverman
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Andrew F. Malone
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
45
|
Durkee MS, Ai J, Casella G, Cao T, Chang A, Halper-Stromberg A, Jabri B, Clark MR, Giger ML. Pseudo-spectral angle mapping for automated pixel-level analysis of highly multiplexed tissue image data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574920. [PMID: 38260318 PMCID: PMC10802447 DOI: 10.1101/2024.01.09.574920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The rapid development of highly multiplexed microscopy systems has enabled the study of cells embedded within their native tissue, which is providing exciting insights into the spatial features of human disease [1]. However, computational methods for analyzing these high-content images are still emerging, and there is a need for more robust and generalizable tools for evaluating the cellular constituents and underlying stroma captured by high-plex imaging [2]. To address this need, we have adapted spectral angle mapping - an algorithm used widely in hyperspectral image analysis - to compress the channel dimension of high-plex immunofluorescence images. As many high-plex immunofluorescence imaging experiments probe unique sets of protein markers, existing cell and pixel classification models do not typically generalize well. Pseudospectral angle mapping (pSAM) uses reference pseudospectra - or pixel vectors - to assign each pixel in an image a similarity score to several cell class reference vectors, which are defined by each unique staining panel. Here, we demonstrate that the class maps provided by pSAM can directly provide insight into the prevalence of each class defined by reference pseudospectra. In a dataset of high-plex images of colon biopsies from patients with gut autoimmune conditions, sixteen pSAM class representation maps were combined with instance segmentation of cells to provide cell class predictions. Finally, pSAM detected a diverse set of structure and immune cells when applied to a novel dataset of kidney biopsies imaged with a 43-marker panel. In summary, pSAM provides a powerful and readily generalizable method for evaluating high-plex immunofluorescence image data.
Collapse
Affiliation(s)
| | - Junting Ai
- Department of Medicine, Section on Rheumatology, The University of Chicago, Chicago, IL, USA, 60637
| | - Gabriel Casella
- Department of Radiology, The University of Chicago, Chicago, IL, USA, 60637
- Department of Medicine, Section on Rheumatology, The University of Chicago, Chicago, IL, USA, 60637
| | - Thao Cao
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA, 60637
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, IL, USA, 60637
| | - Ariel Halper-Stromberg
- Department of Medicine, Section on Gastroenterology, Hepatology & Nutrition, The University of Chicago, Chicago, IL, USA, 60637
| | - Bana Jabri
- Department of Medicine, Section on Gastroenterology, Hepatology & Nutrition, The University of Chicago, Chicago, IL, USA, 60637
| | - Marcus R. Clark
- Department of Medicine, Section on Rheumatology, The University of Chicago, Chicago, IL, USA, 60637
| | - Maryellen L. Giger
- Department of Radiology, The University of Chicago, Chicago, IL, USA, 60637
| |
Collapse
|
46
|
Manoharan J, Rana R, Kuenze G, Gupta D, Elwakiel A, Ambreen S, Wang H, Banerjee K, Zimmermann S, Singh K, Gupta A, Fatima S, Kretschmer S, Schaefer L, Zeng-Brouwers J, Schwab C, Al-Dabet MM, Gadi I, Altmann H, Koch T, Poitz DM, Baber R, Kohli S, Shahzad K, Geffers R, Lee-Kirsch MA, Kalinke U, Meiler J, Mackman N, Isermann B. Tissue factor binds to and inhibits interferon-α receptor 1 signaling. Immunity 2024; 57:68-85.e11. [PMID: 38141610 DOI: 10.1016/j.immuni.2023.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
Collapse
Affiliation(s)
- Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuheli Banerjee
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Constantin Schwab
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Heidi Altmann
- Dresden Integrated Liquid Biobank, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany; Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany.
| |
Collapse
|
47
|
Yamashita N, Kramann R. Mechanisms of kidney fibrosis and routes towards therapy. Trends Endocrinol Metab 2024; 35:31-48. [PMID: 37775469 DOI: 10.1016/j.tem.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Kidney fibrosis is the final common pathway of virtually all chronic kidney diseases (CKDs) and is therefore considered to be a promising therapeutic target for these conditions. However, despite great progress in recent years, no targeted antifibrotic therapies for the kidney have been approved, likely because the complex mechanisms that initiate and drive fibrosis are not yet completely understood. Recent single-cell genomic approaches have allowed novel insights into kidney fibrosis mechanisms in mouse and human, particularly the heterogeneity and differentiation processes of myofibroblasts, the role of injured epithelial cells and immune cells, and their crosstalk mechanisms. In this review we summarize the key mechanisms that drive kidney fibrosis, including recent advances in understanding the mechanisms, as well as potential routes for developing novel targeted antifibrotic therapeutics.
Collapse
Affiliation(s)
- Noriyuki Yamashita
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Internal Medicine, Nephrology, and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Paul A, Lawlor A, Cunanan K, Gaheer PS, Kalra A, Napoleone M, Lanktree MB, Bridgewater D. The Good and the Bad of SHROOM3 in Kidney Development and Disease: A Narrative Review. Can J Kidney Health Dis 2023; 10:20543581231212038. [PMID: 38107159 PMCID: PMC10722951 DOI: 10.1177/20543581231212038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose of review Multiple large-scale genome-wide association meta-analyses studies have reliably identified an association between genetic variants within the SHROOM3 gene and chronic kidney disease. This association extends to alterations in known markers of kidney disease including baseline estimated glomerular filtration rate, urinary albumin-to-creatinine ratio, and blood urea nitrogen. Yet, an understanding of the molecular mechanisms behind the association of SHROOM3 and kidney disease remains poorly communicated. We conducted a narrative review to summarize the current state of literature regarding the genetic and molecular relationships between SHROOM3 and kidney development and disease. Sources of information PubMed, PubMed Central, SCOPUS, and Web of Science databases, as well as review of references from relevant studies and independent Google Scholar searches to fill gaps in knowledge. Methods A comprehensive narrative review was conducted to explore the molecular mechanisms underlying SHROOM3 and kidney development, function, and disease. Key findings SHROOM3 is a unique protein, as it is the only member of the SHROOM group of proteins that regulates actin dynamics through apical constriction and apicobasal cell elongation. It holds a dichotomous role in the kidney, as subtle alterations in SHROOM3 expression and function can be both pathological and protective toward kidney disease. Genome-wide association studies have identified genetic variants near the transcription start site of the SHROOM3 gene associated with chronic kidney disease. SHROOM3 also appears to protect the glomerular structure and function in conditions such as focal segmental glomerulosclerosis. However, little is known about the exact mechanisms by which this protection occurs, which is why SHROOM3 binding partners remain an opportunity for further investigation. Limitations Our search was limited to English articles. No structured assessment of study quality was performed, and selection bias of included articles may have occurred. As we discuss future directions and opportunities, this narrative review reflects the academic views of the authors.
Collapse
Affiliation(s)
- Amy Paul
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Allison Lawlor
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kristina Cunanan
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Pukhraj S. Gaheer
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
| | - Aditya Kalra
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Melody Napoleone
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Matthew B. Lanktree
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
49
|
Tabibzadeh N, Satlin LM, Jain S, Morizane R. Navigating the kidney organoid: insights into assessment and enhancement of nephron function. Am J Physiol Renal Physiol 2023; 325:F695-F706. [PMID: 37767571 PMCID: PMC10878724 DOI: 10.1152/ajprenal.00166.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney organoids are three-dimensional structures generated from pluripotent stem cells (PSCs) that are capable of recapitulating the major structures of mammalian kidneys. As this technology is expected to be a promising tool for studying renal biology, drug discovery, and regenerative medicine, the functional capacity of kidney organoids has emerged as a critical question in the field. Kidney organoids produced using several protocols harbor key structures of native kidneys. Here, we review the current state, recent advances, and future challenges in the functional characterization of kidney organoids, strategies to accelerate and enhance kidney organoid functions, and access to PSC resources to advance organoid research. The strategies to construct physiologically relevant kidney organoids include the use of organ-on-a-chip technologies that integrate fluid circulation and improve organoid maturation. These approaches result in increased expression of the major tubular transporters and elements of mechanosensory signaling pathways suggestive of improved functionality. Nevertheless, continuous efforts remain crucial to create kidney tissue that more faithfully replicates physiological conditions for future applications in kidney regeneration medicine and their ethical use in patient care.NEW & NOTEWORTHY Kidney organoids are three-dimensional structures derived from stem cells, mimicking the major components of mammalian kidneys. Although they show great promise, their functional capacity has become a critical question. This review explores the advancements and challenges in evaluating and enhancing kidney organoid function, including the use of organ-on-chip technologies, multiomics data, and in vivo transplantation. Integrating these approaches to further enhance their physiological relevance will continue to advance disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
50
|
Cao S, Pan Y, Terker AS, Arroyo Ornelas JP, Wang Y, Tang J, Niu A, Kar SA, Jiang M, Luo W, Dong X, Fan X, Wang S, Wilson MH, Fogo A, Zhang MZ, Harris RC. Epidermal growth factor receptor activation is essential for kidney fibrosis development. Nat Commun 2023; 14:7357. [PMID: 37963889 PMCID: PMC10645887 DOI: 10.1038/s41467-023-43226-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Fibrosis is the progressive accumulation of excess extracellular matrix and can cause organ failure. Fibrosis can affect nearly every organ including kidney and there is no specific treatment currently. Although Epidermal Growth Factor Receptor (EGFR) signaling pathway has been implicated in development of kidney fibrosis, underlying mechanisms by which EGFR itself mediates kidney fibrosis have not been elucidated. We find that EGFR expression increases in interstitial myofibroblasts in human and mouse fibrotic kidneys. Selective EGFR deletion in the fibroblast/pericyte population inhibits interstitial fibrosis in response to unilateral ureteral obstruction, ischemia or nephrotoxins. In vivo and in vitro studies and single-nucleus RNA sequencing analysis demonstrate that EGFR activation does not induce myofibroblast transformation but is necessary for the initial pericyte/fibroblast migration and proliferation prior to subsequent myofibroblast transformation by TGF-ß or other profibrotic factors. These findings may also provide insight into development of fibrosis in other organs and in other conditions.
Collapse
Affiliation(s)
- Shirong Cao
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Yu Pan
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Juan Pablo Arroyo Ornelas
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Jiaqi Tang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Sarah Abu Kar
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Mengdi Jiang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Wentian Luo
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Xiaofeng Fan
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Matthew H Wilson
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
- Veterans Affairs, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA.
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA.
- Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|