1
|
Wang Y, Lv W, Ma X, Diao R, Luo X, Shen Q, Xu M, Yin M, Jin Y. NDUFS3 alleviates oxidative stress and ferroptosis in sepsis induced acute kidney injury through AMPK pathway. Int Immunopharmacol 2024; 143:113393. [PMID: 39426231 DOI: 10.1016/j.intimp.2024.113393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
In recent years, ferroptosis has been found to play an important role in various acute kidney injury (AKI). However, relatively little research has been conducted on sepsis-induced acute kidney injury (SI-AKI). As an important trigger of ferroptosis, how mitochondrial damage plays a regulatory role in SI-AKI is still unclear. To explore the potential relationship between mitochondria and ferroptosis, we established a SI-AKI rat model by intraperitoneal injection of lipopolysaccharide (LPS). Transcriptome sequencing was used to detect changes in gene transcription levels in the control group, LPS 3 h group, LPS 6 h group and LPS 12 h group. The severity of kidney injury was determined based on serum creatinine (CRE), blood urea nitrogen (BUN), tissue HE staining, TUNEL staining and inflammatory factor levels. Cytoscape software was utilized to screen several mitochondria-related HUB genes, and NADH dehydrogenase [ubiquinone] ferrithionein 3 (NDUFS3) was selected for subsequent validation due to its novelty and feasibility. qRT-PCR, Western blot was employed to evaluate the expression of NDUFS3 in kidney tissues. GO enrichment analysis revealed that up-regulated genes in the LPS 12 h group were enriched in several cell death terms while down-regulated genes were enriched in lipid metabolic process and oxidation-reduction progress terms. Furthermore, Western blot, IHC, MDA, GSH and iron content levels were used to assess ferroptosis in the kidney tissue of the SI-AKI rats, dihydroethidium (DHE) assay and ATP kit were used to assess mitochondrial ROS levels and mitochondrial function. To further validate the function of NDUFS3, we constructed overexpression rats using hydrodynamic method by tail vein injection of pc DNA3.1-NDUFS3 overexpression plasmid. we utilized LPS to stimulate HK-2 cells and establish an in vitro model. We then overexpressed NDUFS3 using pcDNA 3.1. The overexpression of NDUFS3 was found to inhibit LPS-induced ferroptosis and mitochondrial damage in HK-2 cells, as evidenced by Western blot, MDA, GSH, divalent iron, ROS levels, Mitosox red, ATP content and transmission electron microscopy. Finally, the use of Compound C to inhibit AMPK in HK-2 cells demonstrated that NDUFS3 plays a protective role through the AMPK pathway. Therefore, our study supports the emerging role of NDUFS3 in SI-AKI, providing new potential mitochondria-related targets for the treatment of SI-AKI.
Collapse
Affiliation(s)
- YuChen Wang
- Department of Laboratory Diagnosis, The First Afliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, People's Republic of China
| | - WuYang Lv
- Department of Laboratory Diagnosis, The First Afliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, People's Republic of China; Department of Laboratory Diagnosis, Shangluo Central Hospital, 148 Beixin Street, Shangluo 726099, Shaanxi, People's Republic of China
| | - XiaoTong Ma
- Department of Laboratory Diagnosis, The First Afliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, People's Republic of China
| | - RuXue Diao
- Department of Laboratory Diagnosis, The First Afliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, People's Republic of China
| | - XiaoXiao Luo
- Department of Laboratory Diagnosis, The First Afliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, People's Republic of China
| | - QiuLing Shen
- Department of Laboratory Diagnosis, The First Afliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, People's Republic of China
| | - MingYu Xu
- Department of Laboratory Diagnosis, The First Afliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, People's Republic of China
| | - MengJiao Yin
- Department of Laboratory Diagnosis, The First Afliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, People's Republic of China
| | - YingYu Jin
- Department of Laboratory Diagnosis, The First Afliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Li Z, Mao C, Zhao Y, Zhao Y, Yi H, Liu J, Liang J. The STING antagonist SN-011 ameliorates cisplatin induced acute kidney injury via suppression of STING/NF-κB-mediated inflammation. Int Immunopharmacol 2024; 146:113876. [PMID: 39709905 DOI: 10.1016/j.intimp.2024.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Acute kidney injury (AKI) is a critical clinical syndrome associated with both innate and adaptive immune responses and thus increases mortality. Nevertheless, specific therapeutics for AKI are scarce so far. Recent studies have revealed that knockout of STING alleviate AKI, suggesting that STING could be an attractive target for AKI therapy. SN-011, a promising STING inhibitor, has not been reported in studies of its anti-AKI activity. In this study, we sought to examine the effects of SN-011 on AKI and explore its underlying mechanism. Our findings indicate that SN-011 could modulate the NF-κB and MAPK pathways, suppress the expression of inflammatory factors, and decrease ROS release in the cisplatin-induced cell model. In addition, SN-011 blocked the nuclear translocation of NF-κB p65, further mitigating the inflammatory response. In vivo, SN-011 enhanced survival rates and alleviated renal dysfunction. According to gene set enrichment analysis of sequencing data from mouse kidneys, we further confirm that SN-011 modulates the NF-κB and MAPK pathways. Our study suggests that SN-011 could be an attractive anti-inflammatory agent for further anti-AKI research.
Collapse
Affiliation(s)
- Ziyang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Can Mao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yixin Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yanbin Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hanyu Yi
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Jinqiang Liang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Lv X, Liu D, Chen X, Chen L, Wang X, Xu X, Chen L, Huang C. Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:1454. [PMID: 39709376 DOI: 10.1186/s12879-024-10380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Predicting mortality in sepsis-related acute kidney injury facilitates early data-driven treatment decisions. Machine learning is predicting mortality in S-AKI in a growing number of studies. Therefore, we conducted this systematic review and meta-analysis to investigate the predictive value of machine learning for mortality in patients with septic acute kidney injury. METHODS The PubMed, Web of Science, Cochrane Library and Embase databases were searched up to 20 July 2024 This was supplemented by a manual search of study references and review articles. Data were analysed using STATA 14.0 software. The risk of bias in the prediction model was assessed using the Predictive Model Risk of Bias Assessment Tool. RESULTS A total of 8 studies were included, with a total of 53 predictive models and 17 machine learning algorithms used. Meta-analysis using a random effects model showed that the overall C index in the training set was 0.81 (95% CI: 0.78-0.84), sensitivity was 0.39 (0.32-0.47), and specificity was 0.92 (95% CI: 0.89-0.95). The overall C-index in the validation set was 0.73 (95% CI: 0.71-0.74), sensitivity was 0.54 (95% CI: 0.48-0.60) and specificity was 0.90 (95% CI: 0.88-0.91). The results showed that the machine learning algorithms had a good performance in predicting sepsis-related acute kidney injury death prediction. CONCLUSION Machine learning has been shown to be an effective tool for predicting sepsis-associated acute kidney injury deaths, which has important implications for enhancing risk assessment and clinical decision-making to improve sepsis patient care. It is also eagerly anticipated that future research efforts will incorporate larger sample sizes and multi-centre studies to more intensively examine the external validation of these models in different patient populations, allowing for a more in-depth exploration of sepsis-associated acute kidney injury in terms of accurate diagnostic efficacy across a diverse range of model and predictor types. TRIAL REGISTRATION This study was registered with PROSPERO (CRD42024569420).
Collapse
Affiliation(s)
- Xiangui Lv
- Department of Intensive Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Daiqiang Liu
- Department of Intensive Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xinwei Chen
- Department of Intensive Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Lvlin Chen
- Department of Intensive Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xiaohui Wang
- Department of Nursing, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xiaomei Xu
- Department of Nursing, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Lin Chen
- Chengdu University, Chengdu, Sichuan, China
| | - Chao Huang
- Department of Intensive Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Su X, Bai M, Shang Y, Du Y, Xu S, Lin X, Xiao Y, Zhang Y, Chen H, Zhang A. Slc25a21 in cisplatin-induced acute kidney injury: a new target for renal tubular epithelial protection by regulating mitochondrial metabolic homeostasis. Cell Death Dis 2024; 15:891. [PMID: 39695098 DOI: 10.1038/s41419-024-07231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Acute kidney injury (AKI) is a significant global health issue, which is often caused by cisplatin therapy and characterized by mitochondrial dysfunction. Restoring mitochondrial homeostasis in tubular cells could exert therapeutic effects. Here, we investigated Slc25a21, a mitochondrial carrier, as a potential target for AKI intervention. Renal Slc25a21 expression is negatively associated with kidney function in both AKI patients and cisplatin-induced murine models. Sustaining renal expression of Slc25a21 slowed down AKI progression by reducing cellular apoptosis, necroptosis, and the inflammatory response, likely through its regulation of 2-oxoadipate conversion. Slc25a21 is highly expressed in proximal tubular epithelial cells, and its down-regulation contributes to compromised mitochondrial biogenesis and integrity, as well as impaired oxidative phosphorylation. Mechanistically, reduced Slc25a21 in AKI disrupts mitochondrial 2-oxoadipate transport, affecting related metabolites influx and the tricarboxylic acid cycle. These findings demonstrate a previously unappreciated metabolic function of Slc25a21 in tubular cells, and suggest that targeting mitochondrial metabolic homeostasis by sustaining Slc25a21 expression could be a potential novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Xin Su
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yaqiong Shang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Xiuli Lin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yunzhi Xiao
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Huimei Chen
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Yao C, Li Z, Sun K, Zhang Y, Shou S, Jin H. Mitochondrial dysfunction in acute kidney injury. Ren Fail 2024; 46:2393262. [PMID: 39192578 PMCID: PMC11360640 DOI: 10.1080/0886022x.2024.2393262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Acute kidney injury (AKI) is a systemic clinical syndrome increasing morbidity and mortality worldwide in recent years. Renal tubular epithelial cells (TECs) death caused by mitochondrial dysfunction is one of the pathogeneses. The imbalance of mitochondrial quality control is the main cause of mitochondrial dysfunction. Mitochondrial quality control plays a crucial role in AKI. Mitochondrial quality control mechanisms are involved in regulating mitochondrial integrity and function, including antioxidant defense, mitochondrial quality control, mitochondrial DNA (mtDNA) repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Currently, many studies have used mitochondrial dysfunction as a targeted therapeutic strategy for AKI. Therefore, this review aims to present the latest research advancements on mitochondrial dysfunction in AKI, providing a valuable reference and theoretical foundation for clinical prevention and treatment of this condition, ultimately enhancing patient prognosis.
Collapse
Affiliation(s)
- Congcong Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ziwei Li
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Jing D, Liu J, Qin D, Lin J, Li T, Li Y, Duan M. Obeticholic acid ameliorates sepsis-induced renal mitochondrial damage by inhibiting the NF-κb signaling pathway. Ren Fail 2024; 46:2368090. [PMID: 39108162 PMCID: PMC11308967 DOI: 10.1080/0886022x.2024.2368090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Acute kidney injury (AKI), a common complication of sepsis, might be caused by overactivated inflammation, mitochondrial damage, and oxidative stress. However, the mechanisms underlying sepsis-induced AKI (SAKI) have not been fully elucidated, and there is a lack of effective therapies for AKI. To this end, this study aimed to investigate whether obeticholic acid (OCA) has a renoprotective effect on SAKI and to explore its mechanism of action. Through bioinformatics analysis, our study confirmed that the mitochondria might be a critical target for the treatment of SAKI. Thus, a septic rat model was established by cecal ligation puncture (CLP) surgery. Our results showed an evoked inflammatory response via the NF-κB signaling pathway and NLRP3 inflammasome activation in septic rats, which led to mitochondrial damage and oxidative stress. OCA, an Farnesoid X Receptor (FXR) agonist, has shown anti-inflammatory effects in numerous studies. However, the effects of OCA on SAKI remain unclear. In this study, we revealed that pretreatment with OCA can inhibit the inflammatory response by reducing the synthesis of proinflammatory factors (such as IL-1β and NLRP3) via blocking NF-κB and alleviating mitochondrial damage and oxidative stress in the septic rat model. Overall, this study provides insight into the excessive inflammation-induced SAKI caused by mitochondrial damage and evidence for the potential use of OCA in SAKI treatment.
Collapse
Affiliation(s)
- Danyang Jing
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingfeng Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Da Qin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tian Li
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Hu W. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction in lipopolysaccharide-induced tubular epithelial cells. Ren Fail 2024; 46:2369342. [PMID: 39230047 PMCID: PMC11376309 DOI: 10.1080/0886022x.2024.2369342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis represents an organ dysfunction resulting from the host's maladjusted response to infection, and can give rise to acute kidney injury (AKI), which significantly increase the morbidity and mortality of septic patients. This study strived for identifying a novel therapeutic strategy for patients with sepsis-induced AKI (SI-AKI). Rat tubular epithelial NRK-52E cells were subjected to lipopolysaccharide (LPS) exposure for induction of in-vitro SI-AKI. The expressions of E1A binding protein p300 (EP300) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) in NRK-52E cells were assessed by western blot and qRT-PCR, and their interaction was explored by chromatin immunoprecipitation performed with antibody for H3K27 acetylation (H3K27ac). The effect of them on SI-AKI-associated mitochondrial dysfunction of tubular epithelial cells was investigated using transfection, MTT assay, TUNEL staining, 2',7'-Dichlorodihydrofluorescein diacetate probe assay, Mitosox assay, and JC-1 staining. MTHFD2 and EP300 were upregulated by LPS exposure in NRK-52E cells. LPS increased the acetylation of H3 histone in the MTHFD2 promoter region, and EP300 suppressed the effect of LPS. EP300 ablation inhibited the expression of MTHFD2. MTHFD2 overexpression antagonized LPS-induced viability reduction, apoptosis promotion, reactive oxygen species overproduction, and mitochondrial membrane potential collapse of NRK-52E cells. By contrast, MTHFD2 knockdown and EP300 ablation brought about opposite consequences. Furthermore, MTHFD2 overexpress and EP300 ablation counteracted each other's effect in LPS-exposed NRK-52E cells. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction of tubular epithelial cells in SI-AKI.
Collapse
Affiliation(s)
- Weike Hu
- Department of Emergency Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Zhang M, Zhang J, Ma Y, Jin Y, Li Y, Wu X. Nephropathy induced by cisplatin results from mitochondrial disruption, impaired energy metabolism, altered expression of renal transporters, and accumulation of urinary toxins. J Trace Elem Med Biol 2024; 86:127553. [PMID: 39427559 DOI: 10.1016/j.jtemb.2024.127553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/09/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND The administration of platinum-based drugs such as cisplatin and its derivatives, which are frequently used during clinical chemotherapy, is highly restricted due to the incidence of nephrotoxicity. The present study focused on investigating cisplatin-induced nephrotoxicity from the perspective of energy metabolism, renal transporter expression and urinary toxin accumulation. METHODS This study investigated cisplatin's toxic effects, including nephrotoxicity, cardiotoxicity, hepatotoxicity, pulmonary toxicity, and splenotoxicity. We used transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to characterize the accumulation of cisplatin in the kidney and the structure of renal mitochondria. The production of reactive oxygen species (ROS) induced by cisplatin in renal tubular epithelial cells was evaluated by in vitro experiments, and apoptosis of renal tubular epithelial cells and alterations to the renal microvasculature were assessed. Metabolites associated with the glycolytic and tricarboxylic acid pathways were measured, and renal transporters expression, autophagy, and urinary toxins (UTs) accumulation were also assessed. RESULTS Our results reveal that cisplatin-induced varying degrees of damage to the heart, liver, spleen, lungs, and kidneys, including inflammatory and fibrotic damage. Accumulation of cisplatin in renal mitochondria disrupted mitochondrial structure and mitochondrial function, as evidenced by decreased levels of glucose 6-phosphate and ribose 5-phosphate and elevated levels of isocitric acid. Cisplatin-induced accumulation of ROS in renal tubular epithelial cells led to apoptosis and, ultimately, constriction or loss of renal microvasculature. Furthermore, dysregulation of renal transporter expression, activation of autophagy and increased accumulation of UTs was observed. CONCLUSION Accumulation of cisplatin in the kidney led to damage to mitochondrial structure and function, apoptosis of renal tubular epithelial cells, constriction or loss of renal microvasculature, dysfunction of renal transporters, activation of autophagy, and accumulation of UTs.
Collapse
Affiliation(s)
- Mingkang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Jianping Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Yanrong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Yongwen Jin
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Yile Li
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China.
| |
Collapse
|
9
|
Nedel W, Strogulski NR, Kopczynski A, Portela LV. Assessment of mitochondrial function and its prognostic role in sepsis: a literature review. Intensive Care Med Exp 2024; 12:107. [PMID: 39585590 PMCID: PMC11589057 DOI: 10.1186/s40635-024-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Sepsis is characterized by a dysregulated and excessive systemic inflammatory response to infection, associated with vascular and metabolic abnormalities that ultimately lead to organ dysfunction. In immune cells, both non-oxidative and oxidative metabolic rates are closely linked to inflammatory responses. Mitochondria play a central role in supporting these cellular processes by utilizing metabolic substrates and synthesizing ATP through oxygen consumption. To meet fluctuating cellular demands, mitochondria must exhibit adaptive plasticity underlying bioenergetic capacity, biogenesis, fusion, and fission. Given their role as a hub for various cellular functions, mitochondrial alterations induced by sepsis may hold significant pathophysiological implications and impact on clinical outcomes. In patients, mitochondrial DNA concentration, protein expression levels, and bioenergetic profiles can be accessed via tissue biopsies or isolated peripheral blood cells. Clinically, monocytes and lymphocytes serve as promising matrices for evaluating mitochondrial function. These mononuclear cells are highly oxidative, mitochondria-rich, routinely monitored in blood, easy to collect and process, and show a clinical association with immune status. Hence, mitochondrial assessments in immune cells could serve as biomarkers for clinical recovery, immunometabolic status, and responsiveness to oxygen and vasopressor therapies in sepsis. These characteristics underscore mitochondrial parameters in both tissues and immune cells as practical tools for exploring underlying mechanisms and monitoring septic patients in intensive care settings. In this article, we examine pathophysiological aspects, key methods for measuring mitochondrial function, and prominent studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição (GHC), Porto Alegre, Brazil.
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Unidade de Terapia Intensiva, Hospital Nossa Senhora da Conceição, Av Francisco Trein, 596-primeiro andar, Porto Alegre, RS, Brazil.
| | - Nathan Ryzewski Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
10
|
Yubolphan R, Kobroob A, Kongkaew A, Chiranthanut N, Jinadang N, Wongmekiat O. Berberine Mitigates Sepsis-Associated Acute Kidney Injury in Aged Rats by Preserving Mitochondrial Integrity and Inhibiting TLR4/NF-κB and NLRP3 Inflammasome Activations. Antioxidants (Basel) 2024; 13:1398. [PMID: 39594541 PMCID: PMC11591266 DOI: 10.3390/antiox13111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) presents a severe challenge in the elderly due to increasing incidence, high mortality, and the lack of specific effective treatments. Exploring novel and secure preventive and/or therapeutic approaches is critical and urgent. Berberine (BBR), an isoquinoline alkaloid with anti-inflammatory, antioxidant, and immunomodulatory properties, has shown beneficial effects in various kidney diseases. This study examined whether BBR could protect against SA-AKI in aged rats. Sepsis was induced in 26-month-old male Wistar rats by cecal ligation and puncture (CLP), either with or without BBR pretreatment. CLP induction led to SA-AKI, as indicated by elevated serum levels of malondialdehyde, tumor necrosis factor-alpha, urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL), along with histopathological features of kidney damage. Key indicators of kidney oxidative stress, mitochondrial dysfunction, apoptosis, and activations of the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling, including the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome pathway, were also elevated following CLP induction. BBR pretreatment substantially mitigated these adverse effects, suggesting that it protects against SA-AKI in aged rats by reducing oxidative stress, preserving mitochondrial integrity, and inhibiting key inflammatory pathways. These findings highlight the potential of BBR as a therapeutic agent for managing SA-AKI in elderly populations.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (N.C.)
| | - Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Apisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (N.J.)
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (N.C.)
| | - Natthanicha Jinadang
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (N.J.)
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Han D, Chen YB, Zhao K, Li HZ, Chen XY, Zhu GZ, Tu C, Gao JW, Zhuang JS, Wu ZY, Zhong ZM. Tanshinone IIA alleviates inflammation-induced skeletal muscle atrophy by regulating mitochondrial dysfunction. Arch Biochem Biophys 2024; 762:110215. [PMID: 39547552 DOI: 10.1016/j.abb.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Skeletal muscle atrophy, characterized by loss of muscle mass and function, is often linked to systemic inflammation. Tanshinone IIA (Tan IIA), a major active constituent of Salvia miltiorrhiza, has anti-inflammatory and antioxidant properties. However, the effect of Tan IIA on inflammation-induced skeletal muscle atrophy remains unclear. Here, a mice model of the inflammatory muscle atrophy was established using lipopolysaccharide (LPS). Tan IIA intervention significantly increased muscle mass and strength, improved muscle fiber size, and maintained the integrity of skeletal muscle mitochondrial morphology in LPS-treated mice. Myotubes derived from myosatellite cells (MUSCs) were exposed to LPS in vitro. Tan IIA treatment inhibited LPS-induced muscle protein degradation and increased myotube diameter. Notably, Tan IIA attenuated LPS-induced inflammatory response and hyperactive mitophagy both in vivo and in vitro. In addition, Tan IIA treatment effectively diminished oxidative stress, inhibited the accumulation of mitochondrial reactive oxygen species (mtROS), and attenuated mitochondrial fission in LPS-treated myotubes. Reducing mtROS production helped to inhibit LPS-induced excessive mitophagy and myotubes atrophy. Together, our results reveal that Tan IIA can protect against inflammation-induced skeletal muscle atrophy by regulating mitochondrial dysfunction, presenting innovative potential therapeutics for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun-Biao Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hong-Zhou Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Zheng Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Shen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Yong Wu
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Shi Q, Xiao Z, Cai W, Chen Y, Liang H, Ye Z, Li Z, Liang X. Quantitative proteomics analysis reveals the protective role of S14G-humanin in septic acute kidney injury using 4D-label-free and PRM Approaches. Biochem Biophys Res Commun 2024; 733:150630. [PMID: 39332154 DOI: 10.1016/j.bbrc.2024.150630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
Mitochondrial dysfunction contributes to septic acute kidney injury (S-AKI), making mitochondrial protection a potential therapeutic strategy. This study investigates the effects of S14G-humanin (HNG) in S-AKI, utilizing 4D-label-free and parallel reaction monitoring (PRM) techniques for proteomic analysis. An S-AKI model was created in male C57BL/6 mice using lipopolysaccharide (LPS) injection, followed by HNG administration. After 24 h, kidney tissues were analyzed for histology, biochemistry, mitochondrial function, and proteomics. HNG treatment improved renal function, reduced tubular injury, and decreased pro-inflammatory cytokines and oxidative stress markers. Proteomic analysis identified 5900 proteins, with 5111 quantifiable. HNG altered the expression of 132 proteins, with 18 selected for PRM validation. Ten of these proteins were linked to key pathways, including fatty acid degradation and PPAR signaling. This study is the first to show HNG's protective effects in S-AKI, providing insights into its mechanisms through advanced proteomic techniques.
Collapse
Affiliation(s)
- Qingying Shi
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Zhenmeng Xiao
- Blood Purification Center, the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Wenjing Cai
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Huaban Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Zhilian Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China.
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Zhang S, Feng X, Yang G, Tan H, Cheng X, Tang Q, Yang H, Zhao Y, Ding X, Li S, Dou X, Li J, Kang H, Li X, Ji Y, Hou Q, An Q, Fang H, Fan H. Dexmedetomidine ameliorates acute kidney injury by regulating mitochondrial dynamics via the α2-AR/SIRT1/PGC-1α pathway activation in rats. Mol Med 2024; 30:184. [PMID: 39455916 PMCID: PMC11505563 DOI: 10.1186/s10020-024-00964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sepsis-associated acute kidney injury (AKI) is a serious complication of systemic infection with high morbidity and mortality in patients. However, no effective drugs are available for AKI treatment. Dexmedetomidine (DEX) is an alpha 2 adrenal receptor agonist with antioxidant and anti-apoptotic effects. This study aimed to investigate the therapeutic effects of DEX on sepsis-associated AKI and to elucidate the role of mitochondrial dynamics during this process. METHODS A lipopolysaccharide (LPS)-induced AKI rat model and an NRK-52E cell model were used in the study. This study investigated the effects of DEX on sepsis-associated AKI and the molecular mechanisms using histologic assessment, biochemical analyses, ultrastructural observation, western blotting, immunofluorescence, immunohistochemistry, qRT-PCR, flow cytometry, and si-mRNA transfection. RESULTS In rats, the results showed that administration of DEX protected kidney structure and function from LPS-induced septic AKI. In addition, we found that DEX upregulated the α2-AR/SIRT1/PGC-1α pathway, protected mitochondrial structure and function, and decreased oxidative stress and apoptosis compared to the LPS group. In NRK-52E cells, DEX regulated the mitochondrial dynamic balance by preventing intracellular Ca2+ overloading and activating CaMKII. CONCLUSIONS DEX ameliorated septic AKI by reducing oxidative stress and apoptosis in addition to modulating mitochondrial dynamics via upregulation of the α2-AR/SIRT1/PGC-1α pathway. This is a confirmatory study about DEX pre-treatment to ameliorate septic AKI. Our research reveals a novel mechanistic molecular pathway by which DEX provides nephroprotection.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoyang Tan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qichao Tang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Haotian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuanpan Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyi Dou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Junfeng Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Kang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xingxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yaxin Ji
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingdian Hou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiuyue An
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hao Fang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
14
|
Gould S, Herron A, Davis J, Phillips M, Chakrabarti M, Evans CE. Control of inflammatory lung injury and repair by metabolic signaling in endothelial cells. Curr Opin Hematol 2024:00062752-990000000-00093. [PMID: 39450949 DOI: 10.1097/moh.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
PURPOSE OF REVIEW Sepsis-induced inflammatory lung injury includes acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). There are currently no effective treatments for ALI/ARDS, but clinical outcomes could be improved by inhibiting lung injury and/or promoting post-sepsis vascular repair. In this review, we describe studies of endothelial cell metabolic pathways in sepsis-induced ALI/ARDS and vascular repair and identify areas of research that deserve attention in future studies. We also describe studies of metabolic interventions that aim to inhibit ALI/ARDS and/or promote post-sepsis vascular repair, including those that target endothelial cell metabolites, endothelial cell metabolic signaling pathways, and endothelial cell metabolism. RECENT FINDINGS Endothelial cells are integral to both the injury and repair phases of ALI/ARDS. During the injury phase of ALI/ARDS, lung endothelial cell survival decreases, and lung endothelial cell-to-endothelial cell (EC-EC) junctions are weakened. During the repair phase after sepsis-induced lung injury, lung endothelial cell proliferation and lung EC-EC junction reannealing occur. These crucial aspects of ALI/ARDS and post-sepsis vascular repair, that is, endothelial cell viability, growth, and junction integrity, are controlled by a myriad of metabolites and metabolic signaling pathways in endothelial cells. SUMMARY Metabolic signaling pathways in endothelial cells represent a novel class of putative targets for the prevention and treatment of sepsis-induced inflammatory lung injury. Therapies that target metabolic signaling in endothelial cells are currently being explored as potential treatments for sepsis-induced inflammatory lung injury.
Collapse
Affiliation(s)
| | - Ansley Herron
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina
| | | | | | | | - Colin E Evans
- Biomedical Engineering Program
- Cardiovascular Translational Research Center
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
- Institute on Cardiovascular Disease Research, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
15
|
Yang Y, Du J, Gan J, Song X, Shu J, An C, Lu L, Wei H, Che J, Zhao X. Neutrophil-Mediated Nanozyme Delivery System for Acute Kidney Injury Therapy. Adv Healthc Mater 2024; 13:e2401198. [PMID: 38899383 DOI: 10.1002/adhm.202401198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Reactive oxygen species (ROS) scavenging of nanozymes toward acute kidney injury (AKI) is a current promising strategy, however, the glomerular filtration barrier (GFB) limits their application for treating kidney related diseases. Here, a neutrophil-mediated delivery system able to hijack neutrophil to transport nanozyme-loaded cRGD-liposomes to inflamed kidney for AKI treatment by cRGD targeting integrin αvβ1 is reported. The neutrophil-mediated nanozyme delivery system demonstrated great antioxidant and anti-apoptosis ability in HK-2 and NRK-52E cell lines. Moreover, in ischemia-reperfusion (I/R) induced AKI mice, a single dose of LM@cRGD-LPs 12 h post-ischemia significantly reduces renal function indicators, alleviates renal pathological changes, and inhibits apoptosis of renal tubular cells and the expression of renal tubular injured marker, thus remarkably reducing the damage of AKI. Mechanistically, the treatment of LM@cRGD-LPs markedly inhibits the process of Nrf2 to the nucleus and reduces the expression of the downstream HO-1, achieves a 99.51% increase in renal tissue Nrf2 levels, and an 86.31% decrease in HO-1 levels after LM@cRGD-LPs treatment. In short, the strategy of neutrophil-mediated nanozyme delivery system hold great promise as a potential therapy for AKI or other inflammatory diseases.
Collapse
Affiliation(s)
- Yu Yang
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Jiang Du
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jingjing Gan
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xiang Song
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Jiaxin Shu
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Chaoli An
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Li Lu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Junyi Che
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
16
|
Wang XL, Li L, Meng X. Interplay between the Redox System and Renal Tubular Transport. Antioxidants (Basel) 2024; 13:1156. [PMID: 39456410 PMCID: PMC11505102 DOI: 10.3390/antiox13101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney plays a critical role in maintaining the homeostasis of body fluid by filtration of metabolic wastes and reabsorption of nutrients. Due to the overload, a vast of energy is required through aerobic metabolism, which inevitably leads to the generation of reactive oxygen species (ROS) in the kidney. Under unstressed conditions, ROS are counteracted by antioxidant systems and maintained at low levels, which are involved in signal transduction and physiological processes. Accumulating evidence indicates that the reduction-oxidation (redox) system interacts with renal tubular transport. Redox imbalance or dysfunction of tubular transport leads to renal disease. Here, we discuss the ROS and antioxidant systems in the kidney and outline the metabolic dysfunction that is a common feature of renal disease. Importantly, we describe the key molecules involved in renal tubular transport and their relationship to the redox system and, finally, summarize the impact of their dysregulation on the pathogenesis and progression of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lianjian Li
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China;
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Kuang J, Fang J, Hu S, Yang X, Fan X. MECHANISM OF MICRORNA-218-5P IN MITOCHONDRIAL BIOGENESIS OF SEPSIS-INDUCED ACUTE KIDNEY INJURY BY THE REGULATION OF PGC-1Α. Shock 2024; 62:426-436. [PMID: 38888503 DOI: 10.1097/shk.0000000000002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Background: Sepsis-induced acute kidney injury (SI-AKI) is a kind of kidney dysfunction, which brings a lot of suffering. This study aimed to figure out the role of the miR-218-5p/PGC-1α axis in SI-AKI. Methods: AKI mouse model was established through cecal ligation and puncture. PGC-1α expression was activated using an activator ZLN005 before the serum and tissue samples were collected. Next, pathological structure and apoptosis of kidney tissues were observed. Levels of blood urea nitrogen, serum creatinine, and indicators of inflammation and oxidative stress were assessed. Moreover, reactive oxygen species and mitochondrial membrane potential levels, adenosine 5'-triphosphate content, and mitochondrial ultrastructure of kidney tissues were observed. HK2 cells were treated by lipopolysaccharide (LPS) to mimic sepsis in vitro , followed by evaluation of cell survival and apoptosis, inflammation, and oxidative stress. Subsequently, the binding relation between PGC-1α and miR-218-5p was predicted and validated. Then expression of PGC-1α and miR-218-5p was detected. PGC-1α and miR-218-5p expression were intervened to detect their influences in mitochondrial biogenesis. At last, miR-218-5p was overexpressed in ZLN005 (PGC-1α activating agent) pretreated SI-AKI mice to validate the mechanism. Results: PGC-1α is poorly expressed in SI-AKI, but overexpression of PGC-1α using ZLN005 alleviated SI-AKI injury and promoted mitochondrial biogenesis in AKI mice, and relieved LPS-induced cell injury. PGC-1α is a target of miR-218-5p. Downregulation of miR-218-5p expression in HK2 cells attenuated mitochondrial biogenesis disorder. Inhibition of PGC-1α annulled the role of miR-218-5p silencing in cells. In vivo , miR-218-5p overexpression partly reversed the protective role of ZLN005 in SI-AKI mice. Conclusion: miR-218-5p targeted PGC-1α to disrupt mitochondrial biogenesis, thereby exacerbating SI-AKI.
Collapse
Affiliation(s)
- Jing Kuang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Jun Fang
- Department of Liver-Gallbladder and Gastric Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Shuli Hu
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xiuhong Yang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xuepeng Fan
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
18
|
Chen YL, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Kuo TC, Yeh SL, Lin MT. Intravenous calcitriol administration improves the liver redox status and attenuates ferroptosis in mice with high-fat diet-induced obesity complicated with sepsis. Biomed Pharmacother 2024; 177:116926. [PMID: 38906016 DOI: 10.1016/j.biopha.2024.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
Obesity aggravates ferroptosis, and vitamin D (VD) may inhibit ferroptosis. We hypothesized that weight reduction and/or calcitriol administration have benefits against the sepsis-induced liver redox imbalance and ferroptosis in obese mice. Mice were fed a high-fat diet for 11 weeks, then half of the mice continued to consume the diet, while the other half were transferred to a low-energy diet for 5 weeks. After feeding the respective diets for 16 weeks, sepsis was induced by cecal ligation and puncture (CLP). Septic mice were divided into four experimental groups: OS group, obese mice injected with saline; OD group, obese mice with calcitriol; WS group, weight-reduction mice with saline; and WD group, weight-reduction mice with calcitriol. Mice in the respective groups were euthanized at 12 or 24 h after CLP. Results showed that the OS group had the highest inflammatory mediators and lipid peroxide levels in the liver. Calcitriol treatment reduced iron content, enhanced the reduced glutathione/oxidized glutathione ratio, upregulated nuclear factor erythroid 2-related factor 2, ferroptosis-suppressing protein 1, and solute carrier family 7 member 11 expression levels. Also, mitochondrion-associated nicotinamide adenine dinucleotide phosphate oxidase 1, peroxisome proliferator-activated receptor-γ coactivator 1, hypoxia-inducible factor-1α, and heme oxidase-1 expression levels increased in the late phase of sepsis. These results were not noted in the WS group. These findings suggest that calcitriol treatment elicits a more-balanced glutathione redox status, alleviates liver ferroptosis, and enhances mitochondrial biogenesis-associated gene expressions. Weight reduction alone had minimal influences on liver ferroptosis and mitochondrial biogenesis in obese mice with sepsis.
Collapse
Affiliation(s)
- Ya-Ling Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
19
|
Ferrer R, Iba T. Mitochondrial Damage in Sepsis. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2024; 70:269-272. [PMID: 39431175 PMCID: PMC11487371 DOI: 10.14789/jmj.jmj24-0016-p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 10/22/2024]
Abstract
Mitochondria not only generate adenosine triphosphate (ATP) and act as the powerhouse of the cell but also contribute to host defense by producing reactive oxygen species. Therefore, mitochondrial damage in sepsis directly results in a shortage of energy currency and dysregulation of the immune system. Other than those, mitochondrial damage results in the release of highly dangerous mitochondrial DNA, facilitating acidosis by modulating the metabolism and inducing programmed cell death, thereby facilitating disease progression in sepsis. Various forms of cell death are induced by mitochondrial damage. Aponecrosis is a secondary conversion from apoptosis to necrosis. Although apoptosis is initially intended, it cannot be completed due to ATP depletion from mitochondrial damage, ultimately leading to inflammatory necrosis. Besides such accidental cell death, programmed inflammation-inducing cell deaths such as necroptosis, ferroptosis, and pyroptosis are induced by mitochondrial damage in sepsis. Based on these findings, the regulation of mitochondrial damage holds promise for the development of new therapeutic approaches for sepsis.
Collapse
|
20
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
21
|
Li T, Qu J, Hu C, Pang J, Qian Y, Li Y, Peng Z. Macrophage migration inhibitory factor (MIF) suppresses mitophagy through disturbing the protein interaction of PINK1-Parkin in sepsis-associated acute kidney injury. Cell Death Dis 2024; 15:473. [PMID: 38956064 PMCID: PMC11220046 DOI: 10.1038/s41419-024-06826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Damage to renal tubular epithelial cells (RTECs) signaled the onset and progression of sepsis-associated acute kidney injury (SA-AKI). Recent research on mitochondria has revealed that mitophagy plays a crucial physiological role in alleviating injury to RTECs and it is suppressed progressively by the inflammation response in SA-AKI. However, the mechanism by which inflammation influences mitophagy remains poorly understood. We examined how macrophage migration inhibitory factor (MIF), a pro-inflammatory protein, influences the PINK1-Parkin pathway of mitophagy by studying protein-protein interactions when MIF was inhibited or overexpressed. Surprisingly, elevated levels of MIF were found to directly bind to PINK1, disrupting its interaction with Parkin. This interference hindered the recruitment of Parkin to mitochondria and impeded the initiation of mitophagy. Furthermore, this outcome led to significant apoptosis of RTECs, which could, however, be reversed by an MIF inhibitor ISO-1 and/or a new mitophagy activator T0467. These findings highlight the detrimental impact of MIF on renal damage through its disruption of the interaction between PINK1 and Parkin, and the therapeutic potential of ISO-1 and T0467 in mitigating SA-AKI. This study offers a fresh perspective on treating SA-AKI by targeting MIF and mitophagy.
Collapse
Affiliation(s)
- Tianlong Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Jiachen Qu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Jingjing Pang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Yaoyao Qian
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, China.
| |
Collapse
|
22
|
Rui Y, Zhang X, Min X, Xie H, Ma X, Geng F, Liu R. Unlocking renal Restoration: Mesaconine from Aconitum plants restore mitochondrial function to halt cell apoptosis in acute kidney injury. Int Immunopharmacol 2024; 133:112170. [PMID: 38691919 DOI: 10.1016/j.intimp.2024.112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor β1 (TGF-β1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1β (interleukin-1β) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.
Collapse
Affiliation(s)
- Yixin Rui
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xinran Min
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiuying Ma
- Sichuan Engineering Research Center for Medicinal Animals, Sichuan 611137, China
| | - Funeng Geng
- Sichuan Engineering Research Center for Medicinal Animals, Sichuan 611137, China; Guizhou Yunfeng Pharmaceutical, Guizhou 510000, China.
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
23
|
Guo J, Kong Z, Yang S, Da J, Chu L, Han G, Liu J, Tan Y, Zhang J. Therapeutic effects of orexin-A in sepsis-associated encephalopathy in mice. J Neuroinflammation 2024; 21:131. [PMID: 38760784 PMCID: PMC11102217 DOI: 10.1186/s12974-024-03111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1β, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1β and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.
Collapse
Affiliation(s)
- Jing Guo
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sha Yang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
24
|
Tang L, Zhang J, Han J, Zhang D, Zhang H, Liu J, Li X. Molecular mechanism of circHIPK3 in mitochondrial function in septic acute kidney injury. ENVIRONMENTAL TOXICOLOGY 2024; 39:2596-2609. [PMID: 38205898 DOI: 10.1002/tox.24127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Cell senescence, glycolysis, and mitochondrial deficit jointly regulate the development of septic acute kidney injury (SAKI). This study aimed to explore the role of circular RNA HIPK3 (circHIPK3) in mitochondrial function in SAKI. The SAKI mouse model was established by Candida albicans infection, followed by Western blot assay, measurements of serum lactate, and adenosine triphosphate (ATP), 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1) staining and flow cytometry. Human renal tubular epithelial cells were treated with lipopolysaccharide to establish the SAKI cell model, followed by cell counting kit-8 assay, tests of hexokinase activity, lactate production, oxygen consumption rate, extracellular acidification rate, ATP, and JC-1 staining, and Western blot assay. The roles of mitochondrial pyruvate carrier 1 (MPC1) were validated by kidney function tests, hematoxylin and eosin staining, periodic acid-Schiff staining, and SA-β-gal staining. circHIPK3 downregulation reduced glycolysis and mitochondrial dysfunction both in vivo and in vitro through the microRNA (miR)-148b-3p/DNMT1/3a/Klotho axis. Inhibition of miR-148b-3p or Klotho increased glycolysis and mitochondrial dysfunction. Knockdown of MPC1 increased lactate content and decreased ATP levels and MMP both in vivo and in vitro. Collectively, circHIPK3, in concert with the miR-148b-3p/DNMT1/3a/Klotho axis, increased glycolysis, and inhibited the negative regulation of lactate production by MPC1, and aggravated mitochondrial dysfunction and cell senescence in SAKI.
Collapse
Affiliation(s)
- Lili Tang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jie Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jing Han
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Danhong Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Hongtao Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jun Liu
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Xiaoyue Li
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| |
Collapse
|
25
|
Zhu W, Ou Y, Wang C, An R, Lai J, Shen Y, Ye X, Wang H. A neutrophil elastase inhibitor, sivelestat, attenuates sepsis-induced acute kidney injury by inhibiting oxidative stress. Heliyon 2024; 10:e29366. [PMID: 38638960 PMCID: PMC11024609 DOI: 10.1016/j.heliyon.2024.e29366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
Background Sivelestat, a selective inhibitor of neutrophil elastase (NE), can mitigate sepsis-related acute lung injury. However, the role of sivelestat in inhibiting oxidative stress and attenuating sepsis-related acute kidney injury (AKI) remains unclear. Here, we reported the effects of sivelestat against oxidative stress-induced AKI by suppressing the production of oxidative stress indicators. Materials and methods A male Sprague-Dawley rat model of sepsis was established by cecal ligation and puncture (CLP). Sivelestat or normal saline was administered into jugular vein with a sustained-release drug delivery system. Indicators of inflammation and AKI, including white blood cells (WBC), neutrophils, lymphocytes, C-reactive proteins (CRP), procalcitonin (PCT), blood urea nitrogen (BUN), creatinine (Cr) and uric acid (UA), were assessed at 24 h post-sivelestat treatment. Indicators of liver injury, including direct bilirubin (DBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), were also assessed at 24 h post-sivelestat treatment. Indicators of oxidative stress, including superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), were assessed at 12 h and 24 h post-sivelestat treatment. At 24 h post-sivelestat treatment, H&E staining of kidney and liver tissue was performed to observe pathological alterations. Results At 24 h post normal saline or sivelestat (0.2 g/kg body weight) treatment, WBC, neutrophil, CRP, PCT, MDA, BUN, Cr, UA, AST, ALT, DBIL and IBIL were increased, while SOD and GSH-Px were decreased, in septic rats treated with normal saline compared with that in non-septic rats treated with normal saline (all p < 0.05). The changes of these indicators were reversed in septic rats treated with sivelestat compared with that in septic rats treated with normal saline (all p < 0.05). Similar results were found regarding the levels of oxidative stress indicators at 12 h post-sivelestat treatment. The degenerative histopathological changes in both kidney and liver tissues were ameliorated upon sivelestat treatment. Conclusions Sivelestat plays a protective role in sepsis-related AKI by inhibiting oxidative stress. Our study reveals a possible therapeutic potential of sivelestat for oxidative stress-induced AKI.
Collapse
Affiliation(s)
- Wei Zhu
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yingwei Ou
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chunnian Wang
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315000, Zhejiang, China
| | - Rongcheng An
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Junmei Lai
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Ye Shen
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xiangming Ye
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Haochu Wang
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
26
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Jia Y, Li JH, Hu BC, Huang X, Yang X, Liu YY, Cai JJ, Yang X, Lai JM, Shen Y, Liu JQ, Zhu HP, Ye XM, Mo SJ. Targeting SLC22A5 fosters mitophagy inhibition-mediated macrophage immunity against septic acute kidney injury upon CD47-SIRPα axis blockade. Heliyon 2024; 10:e26791. [PMID: 38586373 PMCID: PMC10998134 DOI: 10.1016/j.heliyon.2024.e26791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
Efferocytosis of apoptotic neutrophils (PMNs) by macrophages is helpful for inflammation resolution and injury repair, but the role of efferocytosis in intrinsic nature of macrophages during septic acute kidney injury (AKI) remains unknown. Here we report that CD47 and signal regulatory protein alpha (SIRPα)-the anti-efferocytotic 'don't eat me' signals-are highly expressed in peripheral blood mononuclear cells (PBMCs) from patients with septic AKI and kidney samples from mice with polymicrobial sepsis and endotoxin shock. Conditional knockout (CKO) of SIRPA in macrophages ameliorates AKI and systemic inflammation response in septic mice, accompanied by an escalation in mitophagy inhibition of macrophages. Ablation of SIRPA transcriptionally downregulates solute carrier family 22 member 5 (SLC22A5) in the lipopolysaccharide (LPS)-stimulated macrophages that efferocytose apoptotic neutrophils (PMNs). Targeting SLC22A5 renders mitophagy inhibition of macrophages in response to LPS stimuli, improves survival and deters development of septic AKI. Our study supports further clinical investigation of CD47-SIRPα signalling in sepsis and proposes that SLC22A5 might be a promising immunotherapeutic target for septic AKI.
Collapse
Affiliation(s)
- Yu Jia
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Jun-Hua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Bang-Chuan Hu
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Xi Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Yan-Yan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Juan-Juan Cai
- Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Jun-Mei Lai
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Ye Shen
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Jing-Quan Liu
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Hai-Ping Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Xiang-Ming Ye
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Shi-Jing Mo
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| |
Collapse
|
28
|
Yang M, Liu Y, Luo SL, Liu CB, Jiang N, Li CR, Zhao H, Han YC, Chen W, Li L, Sun L. DsbA-L ameliorates renal aging and renal fibrosis by maintaining mitochondrial homeostasis. Acta Pharmacol Sin 2024; 45:777-789. [PMID: 38200148 PMCID: PMC10943083 DOI: 10.1038/s41401-023-01216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Renal fibrosis is the final pathological change in renal disease, and aging is closely related to renal fibrosis. Mitochondrial dysfunction has been reported to play an important role in aging, but the exact mechanism remains unclear. Disulfide-bond A oxidoreductase-like protein (DsbA-L) is mainly located in mitochondria and plays an important role in regulating mitochondrial function and endoplasmic reticulum (ER) stress. However, the role of DsbA-L in renal aging has not been reported. In this study, we showed a reduction in DsbA-L expression, the disruption of mitochondrial function and an increase in fibrosis in the kidneys of 12- and 24-month-old mice compared to young mice. Furthermore, the deterioration of mitochondrial dysfunction and fibrosis were observed in DsbA-L-/- mice with D-gal-induced accelerated aging. Transcriptome analysis revealed a decrease in Flt4 expression and inhibition of the PI3K-AKT signaling pathway in DsbA-L-/- mice compared to control mice. Accelerated renal aging could be alleviated by an AKT agonist (SC79) or a mitochondrial protector (MitoQ) in mice with D-gal-induced aging. In vitro, overexpression of DsbA-L in HK-2 cells restored the expression of Flt4, AKT pathway factors, SP1 and PGC-1α and alleviated mitochondrial damage and cell senescence. These beneficial effects were partially blocked by inhibiting Flt4. Finally, activating the AKT pathway or improving mitochondrial function with chemical reagents could alleviate cell senescence. Our results indicate that the DsbA-L/AKT/PGC-1α signaling pathway could be a therapeutic target for age-related renal fibrosis and is associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Shi-Lu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Chong-Bin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Chen-Rui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Ya-Chun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, China.
| |
Collapse
|
29
|
Li Y, Zhang C, Zhao Z. KNOCKDOWN OF CIRC_0114428 ALLEVIATES LPS-INDUCED HK2 CELL APOPTOSIS AND INFLAMMATION INJURY VIA TARGETING MIR-215-5P/TRAF6/NF-ΚB AXIS IN SEPTIC ACUTE KIDNEY INJURY. Shock 2024; 61:620-629. [PMID: 38010029 DOI: 10.1097/shk.0000000000002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Background: Sepsis is a systemic inflammatory disease that can cause multiple organ damage. Circular RNAs (circRNAs) have been reported to play a regulatory role in sepsis-induced acute kidney injury (AKI); however, the role of circ_0114428 has not been studied. Methods: In this study, HK2 cells were treated with different concentrations of LPS to induce cell damage, and then the expressions of circ_0114428, microRNA-215-5p (miR-215-5p), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected by quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot examined the Bax and cleaved-Caspase-3 proteins. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) assay. In addition, cell apoptosis was detected by flow cytometry, and the levels of inflammatory factors were detected by enzyme-linked immunosorbent assay. Results: After LPS treatment with different concentrations, we found that LPS at 10 μg/mL had the best effect on HK2 cells. Circ_0114428 was highly expressed in sepsis-AKI patients and LPS-treated HK2 cells. Knockdown of circ_0114428 restored the effects of LPS treatment on proliferation, apoptosis, and inflammatory response of HK2 cells. MiR-215-5p was a target of circ_0114428, and TRAF6 was a downstream target of miR-215-5p. Circ_0114428 regulated TRAF6 expression by sponging miR-215-5p in LPS-treated HK2 cells. Circ_0114428 regulated LPS-induced NF-κB signaling in HK2 cells by targeting miR-215-5p/TRAF6 axis. Conclusion: Circ_0114428 knockdown abolished the cell proliferation, apoptosis, and inflammatory damage in LPS-induced HK2 cells by targeting miR-215-5p/TRAF6/NF-κB.
Collapse
Affiliation(s)
- Yan Li
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunmei Zhang
- Department of Critical Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongyan Zhao
- Department of Critical Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
30
|
Xu J, Zhang Z, Ren D, Liu L, Xing H, Wang D, Wu Y, Zhang Y, Chen Q, Wang T. Astragaloside Ⅳ negatively regulates Gpr97-TPL2 signaling to protect against hyperhomocysteine-exacerbated sepsis associated acute kidney injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155346. [PMID: 38237511 DOI: 10.1016/j.phymed.2024.155346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Hyperhomocysteine (HHcy) plays an important role in promoting inflammation and cell death of tubular epithelial cells. However, the role of HHcy and Astragaloside IV (AS-IV) in sepsis associated acute kidney injury (S-AKI) remain unclear. PURPOSE A significant aspect of this study aimed to elucidate the effect of AS-Ⅳ treatment on HHcy-exacerbated S-AKI and reveal its potential mechanism. METHODS Male C57BL/6 J mice fed with specific diet containing 2% methionine were established as in vivo models, and AS-Ⅳ was orally administrated continuously for 3 weeks, and then LPS (10 mg·kg-1 bodyweight) was given by a single intraperitoneal injection. The renal morphological changes were evaluated by HE and PAS staining. RNA-sequencing analysis was applied to select key signaling. The NRK-52E cells exposed to Hcy or combined with LPS were used as in vitro models. The mRNA and protein expression levels of Gpr97-TPL2 signaling were examined by qRT-PCR and western blotting assays. RESULTS In vivo, HHcy mice developed more severe renal injury and prevalent tubular inflammation after LPS injection. In vitro, the levels of NGAL, Gpr97 and TPL2 were significantly increased in NRK-52E cells induced by Hcy (1.6 mM) or in combination with LPS. Notably, the effects of Hcy on TPL2 signaling was abolished by transfecting TPL2 siRNA or treating TPL2 inhibitor, without alterations in Gpr97. However, the enhancement of Gpr97-TPL2 signaling induced by Hcy was counteracted by Gpr97 siRNA. Subsequently, our findings demonstrated that AS-Ⅳ treatment can improve renal function in HHcy-exacerbated S-AKI mice. Mechanistically, AS-Ⅳ alleviated renal tubular damage characterized by abnormal increases in KIM-1, NGAL, TPL2, Gpr97, Sema3A and TNF-α, and decreases in survivin in vivo and in vitro mainly through suppressing the activation of Gpr97-TPL2 signaling. CONCLUSION The present study suggested that HHcy-exacerbated S-AKI was mediated mechanically by activation of Gpr97-TPL2 signaling for the first time. Furthermore, our research also illustrated that AS-Ⅳ protected against HHcy-exacerbated S-AKI by attenuating renal tubular epithelial cells damage through negatively regulating Gpr97-TPL2 signaling, proposing a natural product treatment strategy for HHcy-exacerbated S-AKI.
Collapse
Affiliation(s)
- Jingge Xu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyu Zhang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dongwen Ren
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Luokun Liu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haitao Xing
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Dan Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Zhang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qian Chen
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Tao Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
31
|
Li Y, Hu C, Zhai P, Zhang J, Jiang J, Suo J, Hu B, Wang J, Weng X, Zhou X, Billiar TR, Kellum JA, Deng M, Peng Z. Fibroblastic reticular cell-derived exosomes are a promising therapeutic approach for septic acute kidney injury. Kidney Int 2024; 105:508-523. [PMID: 38163633 DOI: 10.1016/j.kint.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is highly lethal, and effective drugs for treatment are scarce. Previously, we reported the robust therapeutic efficacy of fibroblastic reticular cells (FRCs) in sepsis. Here, we demonstrate the ability of FRC-derived exosomes (FRC-Exos) to improve C57BL/6 mouse kidney function following cecal ligation and puncture-induced sepsis. In vivo imaging confirmed that FRC-Exos homed to injured kidneys. RNA-Seq analysis of FRC-Exo-treated primary kidney tubular cells (PKTCs) revealed that FRC-Exos influenced PKTC fate in the presence of lipopolysaccharide (LPS). FRC-Exos promoted kinase PINK1-dependent mitophagy and inhibited NLRP3 inflammasome activation in LPS-stimulated PKTCs. To dissect the mechanism underlying the protective role of Exos in S-AKI, we examined the proteins within Exos by mass spectrometry and found that CD5L was the most upregulated protein in FRC-Exos compared to macrophage-derived Exos. Recombinant CD5L treatment in vitro attenuated kidney cell swelling and surface bubble formation after LPS stimulation. FRCs were infected with a CD5L lentivirus to increase CD5L levels in FRC-Exos, which were then modified in vitro with the kidney tubular cell targeting peptide LTH, a peptide that binds to the biomarker protein kidney injury molecule-1 expressed on injured tubule cells, to enhance binding specificity. Compared with an equivalent dose of recombinant CD5L, the modified CD5L-enriched FRC-Exos selectively bound PKTCs, promoted kinase PINK-ubiquitin ligase Parkin-mediated mitophagy, inhibiting pyroptosis and improved kidney function by hindering NLRP3 inflammasome activation, thereby improving the sepsis survival rate. Thus, strategies to modify FRC-Exos could be a new avenue in developing therapeutics against kidney injury.
Collapse
Affiliation(s)
- Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Pan Zhai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jun Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meihong Deng
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Intensive Care Unit of the second affiliated Hospital of Hainan Medical College, Haikou, Hainan, China.
| |
Collapse
|
32
|
Yuan P, Feng A, Wei Y, Li S, Fu Y, Wang X, Guo M, Feng W, Zheng X. Indole-3-carboxaldehyde alleviates cisplatin-induced acute kidney injury in mice by improving mitochondrial dysfunction via PKA activation. Food Chem Toxicol 2024; 186:114546. [PMID: 38408633 DOI: 10.1016/j.fct.2024.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Cisplatin (DDP) is widely used in the treatment of cancer as a chemotherapeutic drug. However, its severe nephrotoxicity limits the extensive application of cisplatin, which is characterized by injury and apoptosis of renal tubular epithelial cells. This study aimed to reveal the protective effect and its underlying mechanism of Indole-3-carboxaldehyde (IC) against DDP-induced AKI in mice and NRK-52E cells pretreated with PKA antagonist (H-89). Here, we reported that IC improved renal artery blood flow velocity and renal function related indicators, attenuated renal pathological changes, which were confirmed by the results of HE staining and PASM staining. Meanwhile, IC inhibited the levels of inflammatory factors, oxidative stress, CTR1, OCT2, and the levels of autophagy and apoptosis. Mitochondrial dysfunction was significantly improved as observed by TEM. To clarify the potential mechanism, NRK-52E cells induced by DDP was used and the results proved that H-89 could blocked the improvement with IC effectively in vitro. Our findings showed that IC has the potential to treat cisplatin-induced AKI, and its role in protecting the kidney was closely related to activating PKA, inhibiting autophagy and apoptosis, improving mitochondrial function, which could provide a theoretical basis for the development of new clinical drugs.
Collapse
Affiliation(s)
- Peipei Yuan
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Aozi Feng
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Yaxin Wei
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Saifei Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yang Fu
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Xiao Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Menghuan Guo
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, PR China.
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, PR China
| |
Collapse
|
33
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
34
|
Kanlaya R, Subkod C, Nanthawuttiphan S, Thongboonkerd V. The protective effect of caffeine against oxalate-induced epithelial-mesenchymal transition in renal tubular cells via mitochondrial preservation. Biomed Pharmacother 2024; 171:116144. [PMID: 38198962 DOI: 10.1016/j.biopha.2024.116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Mitochondrial dysfunction is one of the key mechanisms for developing chronic kidney disease (CKD). Hyperoxaluria and nephrolithiasis are also associated with mitochondrial dysfunction. Increasing evidence has shown that caffeine, the main bioactive compound in coffee, exerts both anti-fibrotic and anti-lithogenic properties but with unclear mechanisms. Herein, we address the protective effect of caffeine against mitochondrial dysfunction during oxalate-induced epithelial-mesenchymal transition (EMT) in renal cells. Analyses revealed that oxalate successfully induced EMT in MDCK renal cells as evidenced by the increased expression of several EMT-related genes (i.e., Snai1, Fn1 and Acta2). Oxalate also suppressed cellular metabolic activity and intracellular ATP level, but increased reactive oxygen species (ROS). Additionally, oxalate reduced abundance of active mitochondria and induced mitochondrial fragmentation (fission). Furthermore, oxalate decreased mitochondrial biogenesis and content as evidenced by decreased expression of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), cytochrome c oxidase subunit 4 (COX4), and total mitochondrial proteins. Nonetheless, these oxalate-induced deteriorations in MDCK cells and their mitochondria were successfully hampered by caffeine. Knockdown of Snai1 gene by small interfering RNA (siRNA) completely abolished the effects of oxalate on suppression of cellular metabolic activity, intracellular ATP and abundance of active mitochondria, indicating that these oxalate-induced renal cell deteriorations were mediated through the Snai1 EMT-related gene. These data, at least in part, unveil the anti-fibrotic mechanism of caffeine during oxalate-induced EMT in renal cells by preserving mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chonnicha Subkod
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Supanan Nanthawuttiphan
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
35
|
Ya-Fen Z, Jing C, Yue-Fei Z, Chang-Ping D. Reduction in NGAL at 48 h predicts the progression to CKD in patients with septic associated AKI: a single-center clinical study. Int Urol Nephrol 2024; 56:607-613. [PMID: 37382770 DOI: 10.1007/s11255-023-03689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND In this study, our objective was to investigate the predictive value of serum and urine fluctuations of neutrophil gelatinase-associated lipid transporters (NGAL) in relation to the progression of chronic kidney disease (CKD) among patients with septic associated AKI (SA-AKI). METHODS A total of 425 SA-AKI patients were enrolled in this study and divided into the recovery group (n = 320) and the AKI-to-CKD group (n = 105) based on 3-month follow-up data. The serum and urine NGAL levels on the day of AKI diagnosis (T0) and 48 h after anti-AKI treatment (T1) were recorded and calculated. RESULTS The levels of NGAL in serum and urine were found to be higher in the AKI-to-CKD group compared to the recovery group at T1 point (P < 0.05). The reductions of NGAL at 48 h in serum and urine were lower in the AKI-to-CKD group than those observed in the recovery group (P < 0.05). In comparison to T0, a significant decrease was noted for both serum and urine NGAL levels on T1 among patients who recovered from AKI (P < 0.05), whereas no such trend was observed among those with AKI-to-CKD transition (P > 0.05). After adjusting age, sex, and BMI through partial correlation analysis, the reduction of serum NGAL was found to be most strongly associated with the transition from AKI to CKD. ROC analysis showed an AUC of 0.832 for serum NGAL reduction, with a cut-off value of - 111.24 ng/ml and sensitivity and rates of 76.2% and 81.2%, respectively. Logistic regression analysis indicated that a reduction of serum NGAL ≥ - 111.24 ng/ml was the early warning indicator for the progression of CKD in SA-AKI patients. CONCLUSION The reduction of serum NGAL following 48 h of anti-AKI therapy represents a distinct hazard factor for the advancement of CKD in patients with SA-AKI, independent of other variables.
Collapse
Affiliation(s)
- Zhang Ya-Fen
- Department of Medical Laboratory, Yangzhou University Affiliated Hospital, Yangzhou, Jiangsu, China
| | - Chen Jing
- Department of Medical Laboratory, Yangzhou University Affiliated Hospital, Yangzhou, Jiangsu, China
| | - Zhang Yue-Fei
- Department of Emergence, Yangzhou University Affiliated Hospital, Yangzhou, Jiangsu, China
| | - Ding Chang-Ping
- Department of Medical Laboratory, Yangzhou University Affiliated Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
36
|
Yu B, Jin Q, Ji J. Natural products applied in acute kidney injury treatment: polymer matters. Biomater Sci 2024; 12:621-633. [PMID: 38131274 DOI: 10.1039/d3bm01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Acute kidney injury (AKI) is a global health threat due to its high morbidity and mortality. There is still a lack of effective therapeutic methods to deal with AKI clinically. Natural products with outstanding accessibility and bioactivity are potential candidates for AKI treatment. Natural product-based prodrugs or nano-structures with improved properties are frequently fabricated for maximizing bioavailability and decreasing side effects, in which natural polymers are selected as carriers, or natural drugs are loaded as cargos on designed polymers. In this review, the etiologies of AKI are briefly presented, and emerging natural products delivered rationally for AKI therapy, as either carriers or cargos, are both introduced. Moreover, the challenges of the future development of nature-based nanodrugs or prodrugs for AKI have also been discussed.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
37
|
Chang LY, Chao YL, Chiu CC, Chen PL, Lin HYH. Mitochondrial Signaling, the Mechanisms of AKI-to-CKD Transition and Potential Treatment Targets. Int J Mol Sci 2024; 25:1518. [PMID: 38338797 PMCID: PMC10855342 DOI: 10.3390/ijms25031518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Acute kidney injury (AKI) is increasing in prevalence and causes a global health burden. AKI is associated with significant mortality and can subsequently develop into chronic kidney disease (CKD). The kidney is one of the most energy-demanding organs in the human body and has a role in active solute transport, maintenance of electrochemical gradients, and regulation of fluid balance. Renal proximal tubular cells (PTCs) are the primary segment to reabsorb and secrete various solutes and take part in AKI initiation. Mitochondria, which are enriched in PTCs, are the main source of adenosine triphosphate (ATP) in cells as generated through oxidative phosphorylation. Mitochondrial dysfunction may result in reactive oxygen species (ROS) production, impaired biogenesis, oxidative stress multiplication, and ultimately leading to cell death. Even though mitochondrial damage and malfunction have been observed in both human kidney disease and animal models of AKI and CKD, the mechanism of mitochondrial signaling in PTC for AKI-to-CKD transition remains unknown. We review the recent findings of the development of AKI-to-CKD transition with a focus on mitochondrial disorders in PTCs. We propose that mitochondrial signaling is a key mechanism of the progression of AKI to CKD and potential targeting for treatment.
Collapse
Affiliation(s)
- Li-Yun Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (L.-Y.C.); (Y.-L.C.)
| | - Yu-Lin Chao
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (L.-Y.C.); (Y.-L.C.)
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Phang-Lang Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA;
| | - Hugo Y.-H. Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (L.-Y.C.); (Y.-L.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
38
|
Fan H, Sun Y, Zhang X, Xu Y, Ming Y, Zhang L, Zhao P. Malvidin promotes PGC-1α/Nrf2 signaling to attenuate the inflammatory response and restore mitochondrial activity in septic acute kidney injury. Chem Biol Interact 2024; 388:110850. [PMID: 38135199 DOI: 10.1016/j.cbi.2023.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Acute kidney injury (AKI) in sepsis is a vital and dangerous organ failure caused by an infection-induced dysregulation of the host reaction. Malvidin possesses significant anti-inflammatory and antioxidant bioactivities. This study explored the critical roles of malvidin in sepsis AKI and the crosstalk among mitochondrial function, nucleotide-binding oligomerization-like receptor 3 (NLRP3) inflammasome and nuclear factor erythroid 2 (Nrf2) signaling pathway. First, C57BL/6 mice were administered lipopolysaccharide intraperitoneally for 6 h to create an AKI model of sepsis. Hematoxylin-eosin staining and serum biomarker assays showed that malvidin protected from AKI in sepsis. Real-time fluorescence quantitative polymerase chain reaction analysis revealed that malvidin was able to inhibit inflammatory cytokines and mediators. Western blot assays indicated that malvidin suppressed NLRP3 inflammasome activation and enhanced antioxidant properties. Additionally, human renal tubular epithelial cells were stimulated by lipopolysaccharide/adenosine triphosphate to establish an NLRP3 inflammasome activation model in vitro, and in line with findings in vivo, malvidin significantly inhibited NLRP3 inflammasome activation. Furthermore, our data indicate that malvidin restored mitochondrial quality and function, reduced reactive oxygen species production, increased mitochondrial membrane potential, enhanced mitochondrial DNA copy number, and promoted peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) nuclear translocation. Moreover, inhibitor blockade assays indicated that both PGC-1α and Nrf2 affected the inhibition of the NLRP3 inflammasome by malvidin. Finally, immunoprecipitation assays showed that malvidin promoted PGC-1α and Nrf2 interactions. Overall, malvidin alleviated lipopolysaccharide-induced sepsis AKI, improved mitochondrial function and mitochondrial biogenesis, and inhibited the NLRP3 inflammasome through the PGC-1α/Nrf2 signaling pathway, suggesting that malvidin might translate into clinical applications for sepsis AKI therapy.
Collapse
Affiliation(s)
- Hui Fan
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Sun
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Xiao Zhang
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yao Xu
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Yuanyuan Ming
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Le Zhang
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Panpan Zhao
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| |
Collapse
|
39
|
Wang T, Huang Y, Zhang X, Zhang Y, Zhang X. Advances in metabolic reprogramming of renal tubular epithelial cells in sepsis-associated acute kidney injury. Front Physiol 2024; 15:1329644. [PMID: 38312312 PMCID: PMC10834781 DOI: 10.3389/fphys.2024.1329644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Sepsis-associated acute kidney injury presents as a critical condition characterized by prolonged hospital stays, elevated mortality rates, and an increased likelihood of transition to chronic kidney disease. Sepsis-associated acute kidney injury suppresses fatty acid oxidation and oxidative phosphorylation in the mitochondria of renal tubular epithelial cells, thus favoring a metabolic shift towards glycolysis for energy production. This shift acts as a protective mechanism for the kidneys. However, an extended reliance on glycolysis may contribute to tubular atrophy, fibrosis, and subsequent chronic kidney disease progression. Metabolic reprogramming interventions have emerged as prospective strategies to counteract sepsis-associated acute kidney injury by restoring normal metabolic function, offering potential therapeutic and preventive modalities. This review delves into the metabolic alterations of tubular epithelial cells associated with sepsis-associated acute kidney injury, stressing the importance of metabolic reprogramming for the immune response and the urgency of metabolic normalization. We present various intervention targets that could facilitate the recovery of oxidative phosphorylation-centric metabolism. These novel insights and strategies aim to transform the clinical prevention and treatment landscape of sepsis-associated acute kidney injury, with a focus on metabolic mechanisms. This investigation could provide valuable insights for clinicians aiming to enhance patient outcomes in the context of sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Critical Care Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Ying Huang
- Department of Critical Care Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xiaobei Zhang
- Department of Critical Care Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Yi Zhang
- Department of Critical Care Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xiangcheng Zhang
- Department of Critical Care Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
40
|
Xu J, Zhong Y, Wang W, Gao R, Wang Y, Tong F, Sun J, Hong M, Qiao L, Qiao W, Mei Q, Wu J. H 2O 2-stimulated Janus-shaped self-propelled nanomotors as an active treatment for acute renal injury. NANOSCALE 2024; 16:1282-1290. [PMID: 38126775 DOI: 10.1039/d3nr04808j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
As emerging nanosystems, nanomotors have been applied in the active treatment of many diseases. In this paper, Pt@chitosan-loaded melatonin asymmetrical nanomaterials embedded with L-serine (S, kidney injury molecule 1-targeting agent) were constructed to alleviate acute kidney injury (AKI). The Janus nanocarriers arrived at the renal injury site via the bloodstream and exhibited high permeability. Because of melatonin distribution in the kidneys combined with H2O2-stimulated O2 release, the administration of the Janus nanosystem resulted in active treatment through the motion of nanomotors by asymmetrical O2 release.
Collapse
Affiliation(s)
- Jun Xu
- Department of Emergency, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China.
| | - Yali Zhong
- Southwest University of Science and Technology, Mianyang, 621000, China.
| | - Weixin Wang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| | - Rui Gao
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| | - Yini Wang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| | - Fei Tong
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
- School of Basic Medical Sciences, Zhejiang University Medicine, Hangzhou, 310000, PR China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China
| | - Jiahui Sun
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| | - Miaofang Hong
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| | - Lingyan Qiao
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| | - Weiwei Qiao
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| | - Qibing Mei
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China
- Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Jianming Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China
- Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
41
|
Terpe P, Ruhs S, Dubourg V, Bucher M, Gekle M. The synergism of cytosolic acidosis and reduced NAD +/NADH ratio is responsible for lactic acidosis-induced vascular smooth muscle cell impairment in sepsis. J Biomed Sci 2024; 31:3. [PMID: 38195466 PMCID: PMC10775599 DOI: 10.1186/s12929-023-00992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND During sepsis, serve vascular dysfunctions lead to life-threatening multiple organ failure, due to vascular smooth muscle cells (VSMC) impairments, resulting in vasoplegia, hypotension and hypoperfusion. In addition, septic patients have an altered cell metabolism that leads to lactic acidosis. Septic patients suffering from lactic acidosis have a high risk of mortality. In addition, septic survivors are at risk of secondary vascular disease. The underlying mechanisms of whether and how lactic acidosis leads to the changes in VSMCs is not well understood. The aim of this study was to comprehensively investigate the effect of lactic acidosis on VSMCs and additionally compare the effects with those induced by pure acidosis and sodium lactate. METHODS Primary human aortic smooth muscle cells (HAoSMCs) were treated for 48 h with lactic acidosis (LA_pH 6.8), hydrochloric acid (HCl_pH 6.8), sodium lactate (Na+-lactate_pH 7.4) and the respective controls (ctrl._pH 7.4; hyperosmolarity control: mannitol_pH 7.4) and comparatively analyzed for changes in (i) transcriptome, (ii) energy metabolism, and (iii) phenotype. RESULTS Both types of acidosis led to comparable and sustained intracellular acidification without affecting cell viability. RNA sequencing and detailed transcriptome analysis revealed more significant changes for lactic acidosis than for hydrochloric acidosis, with lactate being almost ineffective, suggesting qualitative and quantitative synergism of acidosis and lactate. Bioinformatic predictions in energy metabolism and phenotype were confirmed experimentally. Lactic acidosis resulted in strong inhibition of glycolysis, glutaminolysis, and altered mitochondrial respiration which reduced cellular ATP content, likely due to increased TXNIP expression and altered NAD+/NADH ratio. Hydrochloric acidosis induced significantly smaller effects without changing the NAD+/NADH ratio, with the ATP content remaining constant. These metabolic changes led to osteo-/chondrogenic/senescent transdifferentiation of VSMCs, with the effect being more pronounced in lactic acidosis than in pure acidosis. CONCLUSIONS Overall, lactic acidosis exerted a much stronger effect on energy metabolism than pure acidosis, whereas lactate had almost no effect, reflecting the qualitative and quantitative synergism of acidosis and lactate. As a consequence, lactic acidosis may lead to acute functional impairments of VSMC, sustained perturbations of the transcriptome and cellular dedifferentiation. Moreover, these effects may contribute to the acute and prolonged vascular pathomechanisms in septic patients.
Collapse
Affiliation(s)
- Philipp Terpe
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany
| | - Stefanie Ruhs
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Michael Bucher
- Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| |
Collapse
|
42
|
Zhao M, Guo J, Tian C, Yan M, Zhou Y, Liu C, Pang M, Du B, Cheng G. Dual-targeted nanoparticles with removing ROS inside and outside mitochondria for acute kidney injury treatment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102725. [PMID: 38007068 DOI: 10.1016/j.nano.2023.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 11/27/2023]
Abstract
Mitochondrial oxidative stress and inflammation are the main pathological features of acute kidney injury (AKI). However, systemic toxicity of anti-inflammatory drugs and low bioavailability of antioxidants limit the treatment of AKI. Here, the lipid micelle nanosystem modified with l-serine was designed to improve treatment of AKI. The micelle kernels coating the antioxidant drug 4-carboxybutyl triphenylph-osphine bromide-modified curcumin (Cur-TPP) and quercetin (Que). In the cisplatin (CDDP)-induced AKI model, the nanosystem protected mitochondrial structure and improved renal function. Compared to mono-targeted group, the mitochondrial ROS content of renal tubular epithelial cells acting in the dual-target group decreased about 1.66-fold in vitro, serum creatinine (Scr) and urea nitrogen (BUN) levels were reduced by 1.5 and 1.2 mmol/L in vivo, respectively. Mechanistic studies indicated that the nanosystem inhibited the inflammatory response by interfering with the NF-κB and Nrf2 pathways. This study provides an efficient and low-toxicity strategy for AKI therapy.
Collapse
Affiliation(s)
- Mengmeng Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Chaoying Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Mei Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Chenxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Mengxue Pang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China.
| | - Genyang Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, China.
| |
Collapse
|
43
|
Xu S, Luo J, Wang Y, Chen X. Fatty Acid Binding Protein-4 Silencing Inhibits Ferroptosis to Alleviate Lipopolysaccharide-induced Injury of Renal Tubular Epithelial Cells by Blocking Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Signaling. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:47-56. [PMID: 38780272 DOI: 10.4103/ejpi.ejpi-d-23-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/05/2024] [Indexed: 05/25/2024]
Abstract
Sepsis-induced kidney injury (SAKI) has been frequently established as a prevailing complication of sepsis which is linked to unfavorable outcomes. Fatty acid-binding protein-4 (FABP4) has been proposed as a possible target for the treatment of SAKI. In the current work, we aimed to explore the role and underlying mechanism of FABP4 in lipopolysaccharide (LPS)-induced human renal tubular epithelial cell damage. In LPS-induced human kidney 2 (HK2) cells, FABP4 expression was tested by the reverse transcription-quantitative polymerase chain reaction and Western blot. Cell counting kit-8 method assayed cell viability. Inflammatory levels were detected using the enzyme-linked immunosorbent assay. Immunofluorescence staining measured the nuclear translocation of nuclear factor kappa B p65. Thiobarbituric acid-reactive substances assay and C11 BODIPY 581/591 probe were used to estimate the level of cellular lipid peroxidation. Fe2+ content was examined by the kit. In addition, the expression of proteins related to inflammation-, ferroptosis- and Janus kinase 2 (JAK2)/signal transducer, and activator of transcription 3 (STAT3) signaling was detected by the Western blot analysis. The results revealed that FABP4 was significantly upregulated in LPS-treated HK2 cells, the knockdown of which elevated the viability, whereas alleviated the inflammation and ferroptosis in HK2 cells challenged with LPS. In addition, down-regulation of FABP4 inactivated JAK2/STAT3 signaling. JAK2/STAT3 stimulator (colivelin) and ferroptosis activator (Erastin) partially restored the effects of FABP4 interference on LPS-triggered inflammation and ferroptosis in HK2 cells. Together, FABP4 knockdown inhibited ferroptosis to alleviate LPS-induced injury of renal tubular epithelial cells through suppressing JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Suo Xu
- Department of Emergency Medicine, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | | | | | | |
Collapse
|
44
|
Zhou P, Zhao C, Chen Y, Liu X, Wu C, Hu Z. Klotho activation of Nrf2 inhibits the ferroptosis signaling pathway to ameliorate sepsis-associated acute kidney injury. Transl Androl Urol 2023; 12:1871-1884. [PMID: 38196698 PMCID: PMC10772648 DOI: 10.21037/tau-23-573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Background Sepsis-associated acute kidney injury (SA-AKI) is a common complication of sepsis and greatly increases patient mortality. Recombinant human Klotho protein (Klotho) is a protective protein that can be secreted by the kidney. The aim of this study was to explore the protective effect of Klotho on SA-AKI and its molecular mechanism. Methods In vivo, a mouse SA-AKI model was constructed by cecum ligation perforation (CLP). In vitro, a human renal tubular cell epithelial cell line (HK2) was induced with lipopolysaccharide (LPS) in the SA-AKI model. Determine renal injury markers, inflammatory factors, oxidative stress and molecular proteins related to the ferroptosis signaling pathway. Results Klotho reduced the release of renal injury markers and inflammatory cytokines, decreased oxidative stress, improved renal histopathological changes, ameliorated mitochondrial damage in mouse renal tubular epithelial cells, increased HK2 cell viability and reduced reactive oxygen species (ROS) accumulation. Exogenous supplementation with Klotho increased the Klotho content in circulating blood, renal tissue and HK2 cells. Conclusions In the SA-AKI model, Klotho attenuated renal tissue injury, increased HK2 cell viability, decreased inflammatory factor expression and oxidative stress, restored tubular epithelial mitochondrial function, and increased its level in circulating blood, renal tissue and HK2 cells. Klotho probably exerts its protective effects by activating Nrf2 to inhibit the ferroptosis signaling pathway.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Congcong Zhao
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhong Chen
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
| | - Xuefang Liu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunxue Wu
- Intensive Care Unit of Emergency Department, Neurology Branch of Cangzhou Central Hospital, Cangzhou, China
| | - Zhenjie Hu
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
| |
Collapse
|
45
|
Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular Mechanisms of Oxidative Stress in Acute Kidney Injury: Targeting the Loci by Resveratrol. Int J Mol Sci 2023; 25:3. [PMID: 38203174 PMCID: PMC10779152 DOI: 10.3390/ijms25010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Reactive oxygen species are a group of cellular molecules that stand as double-edged swords, their good and bad being discriminated by a precise balance. Several metabolic reactions in the biological system generate these molecules that interact with cellular atoms to regulate functions ranging from cell homeostasis to cell death. A prooxidative state of the cell concomitant with decreased clearance of such molecules leads to oxidative stress, which contributes as a prime pathophysiological mechanism in various diseases including renal disorders, such as acute kidney injury. However, targeting the generation of oxidative stress in renal disorders by an antioxidant, resveratrol, is gaining considerable therapeutic importance and is known to improve the condition in preclinical studies. This review aims to discuss molecular mechanisms of oxidative stress in acute kidney injury and its amelioration by resveratrol. The major sources of data were PubMed and Google Scholar, with studies from the last five years primarily included, with significant earlier data also considered. Mitochondrial dysfunction, various enzymatic reactions, and protein misfolding are the major sources of reactive oxygen species in acute kidney injury, and interrupting these loci of generation or intersection with other cellular components by resveratrol can mitigate the severity of the condition.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jizan 45142, Saudi Arabia
| | - Sayed Aliul Hasan Abdi
- Department of Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65711, Saudi Arabia
| |
Collapse
|
46
|
Lira Chavez FM, Gartzke LP, van Beuningen FE, Wink SE, Henning RH, Krenning G, Bouma HR. Restoring the infected powerhouse: Mitochondrial quality control in sepsis. Redox Biol 2023; 68:102968. [PMID: 38039825 PMCID: PMC10711241 DOI: 10.1016/j.redox.2023.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Sepsis is a dysregulated host response to an infection, characterized by organ failure. The pathophysiology is complex and incompletely understood, but mitochondria appear to play a key role in the cascade of events that culminate in multiple organ failure and potentially death. In shaping immune responses, mitochondria fulfil dual roles: they not only supply energy and metabolic intermediates crucial for immune cell activation and function but also influence inflammatory and cell death pathways. Importantly, mitochondrial dysfunction has a dual impact, compromising both immune system efficiency and the metabolic stability of end organs. Dysfunctional mitochondria contribute to the development of a hyperinflammatory state and loss of cellular homeostasis, resulting in poor clinical outcomes. Already in early sepsis, signs of mitochondrial dysfunction are apparent and consequently, strategies to optimize mitochondrial function in sepsis should not only prevent the occurrence of mitochondrial dysfunction, but also cover the repair of the sustained mitochondrial damage. Here, we discuss mitochondrial quality control (mtQC) in the pathogenesis of sepsis and exemplify how mtQC could serve as therapeutic target to overcome mitochondrial dysfunction. Hence, replacing or repairing dysfunctional mitochondria may contribute to the recovery of organ function in sepsis. Mitochondrial biogenesis is a process that results in the formation of new mitochondria and is critical for maintaining a pool of healthy mitochondria. However, exacerbated biogenesis during early sepsis can result in accumulation of structurally aberrant mitochondria that fail to restore bioenergetics, produce excess reactive oxygen species (ROS) and exacerbate the disease course. Conversely, enhancing mitophagy can protect against organ damage by limiting the release of mitochondrial-derived damage-associated molecules (DAMPs). Furthermore, promoting mitophagy may facilitate the growth of healthy mitochondria by blocking the replication of damaged mitochondria and allow for post sepsis organ recovery through enabling mitophagy-coupled biogenesis. The remaining healthy mitochondria may provide an undamaged scaffold to reproduce functional mitochondria. However, the kinetics of mtQC in sepsis, specifically mitophagy, and the optimal timing for intervention remain poorly understood. This review emphasizes the importance of integrating mitophagy induction with mtQC mechanisms to prevent undesired effects associated with solely the induction of mitochondrial biogenesis.
Collapse
Affiliation(s)
- F M Lira Chavez
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands.
| | - L P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - F E van Beuningen
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - S E Wink
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - R H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - G Krenning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Sulfateq B.V, Admiraal de Ruyterlaan 5, 9726, GN Groningen, the Netherlands
| | - H R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| |
Collapse
|
47
|
Xing H, Li S, Fu Y, Wan X, Zhou A, Cao F, Sun Q, Hu N, Ma M, Li W, Cao C. HYAL1 deficiency attenuates lipopolysaccharide-triggered renal injury and endothelial glycocalyx breakdown in septic AKI in mice. Ren Fail 2023; 45:2188966. [PMID: 37563795 PMCID: PMC10424626 DOI: 10.1080/0886022x.2023.2188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Renal dysfunction and disruption of renal endothelial glycocalyx are two important events during septic acute kidney injury (AKI). Here, the role and mechanism of hyaluronidase 1 (HYAL1) in regulating renal injury and renal endothelial glycocalyx breakdown in septic AKI were explored for the first time. METHODS BALB/c mice were injected with lipopolysaccharide (LPS, 10 mg/kg) to induce AKI. HYAL1 was blocked in vivo using lentivirus-mediated short hairpin RNA targeting HYAL1 (LV-sh-HYAL1). Biochemical assays were performed to measure the levels and concentrations of biochemical parameters associated with AKI as well as levels of inflammatory cytokines. Renal pathological lesions were determined by hematoxylin-eosin (HE) staining. Cell apoptosis in the kidney was detected using terminal-deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL) assay. Immunofluorescence and immunohistochemical (IHC) staining assays were used to examine the levels of hyaluronic acid in the kidney. The protein levels of adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling, endothelial glycocalyx, and autophagy-associated indicators were assessed by western blotting. RESULTS The knockdown of HYAL1 in LPS-subjected mice by LV-sh-HYAL1 significantly reduced renal inflammation, oxidative stress, apoptosis and kidney dysfunction in AKI, as well as alleviated renal endothelial glycocalyx disruption by preventing the release of hyaluronic acid to the bloodstream. Additionally, autophagy-related protein analysis indicated that knockdown of HYAL1 significantly enhanced autophagy in LPS mice. Furthermore, the beneficial actions of HYAL1 blockade were closely associated with the AMPK/mTOR signaling. CONCLUSION HYAL1 deficiency attenuates LPS-triggered renal injury and endothelial glycocalyx breakdown in septic AKI in mice.
Collapse
Affiliation(s)
- Hongxia Xing
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Shensen Li
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Yongchao Fu
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Annan Zhou
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Feifei Cao
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Qing Sun
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Nana Hu
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Mengqing Ma
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Wenwen Li
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Changchun Cao
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| |
Collapse
|
48
|
Wang M, Wang X, Zhu B, Li W, Jiang Q, Zuo Y, Wen J, He Y, Xi X, Jiang L. The effects of timing onset and progression of AKI on the clinical outcomes in AKI patients with sepsis: a prospective multicenter cohort study. Ren Fail 2023; 45:1-10. [PMID: 37096423 PMCID: PMC10132224 DOI: 10.1080/0886022x.2022.2138433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Limited studies are available concerning on the earlier identification of AKI with sepsis. The aim of the study was to identify the risk factors of AKI early which depended on the timing onset and progression of AKI and investigate the effects of timing onset and progression of AKI on clinical outcomes. METHODS Patients who developed sepsis during their first 48-h admission to ICU were included. The primary outcome was major adverse kidney events (MAKE) consisted of all-cause mortality, RRT-dependence, or an inability to recover to 1.5 times of the baseline creatinine value up to 30 days. We determined MAKE and in-hospital mortality by multivariable logistic regression and explored the risk factors of early persistent-AKI. C statistics were used to evaluate model fit. RESULTS 58.7% sepsis patients developed AKI. According to the timing onset and progression of AKI, Early transient-AKI, early persistent-AKI, late transient-AKI, late persistent-AKI were identified. Clinical outcomes were quite different among subgroups. Early persistent-AKI had 3.0-fold (OR 3.04, 95% CI 1.61 - 4.62) risk of MAKE and 2.6-fold (OR 2.60, 95%CI 1.72 - 3.76) risk of in-hospital mortality increased compared with the late transients-AKI. Older age, underweight, obese, faster heart rate, lower MAP, platelet, hematocrit, pH and energy intake during the first 24 h on ICU admission could well predict the early persistent-AKI in patients with sepsis. CONCLUSION Four AKI subphenotypes were identified based on the timing onset and progression of AKI. Early persistent-AKI showed higher risk of major adverse kidney events and in-hospital mortality. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trials Registry (www.chictr.org/cn) under registration number ChiCTR-ECH-13003934.
Collapse
Affiliation(s)
- Meiping Wang
- Department of Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University, Beijing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xia Wang
- Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Bo Zhu
- Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Wen Li
- Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University, Beijing, China
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Qi Jiang
- Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yingting Zuo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Jing Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xiuming Xi
- Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Li Jiang
- Department of Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Wei Y, Qiu J, Han Z, Wang X, Zhang H, Hou X, Lv X, Mao X. Antifungal bio-coating of endotracheal tube built by overexpressing the MCP1 gene of Saccharomyces boulardii and employing hydrogel as a "house" to antagonize Candida albicans. Biomater Res 2023; 27:97. [PMID: 37798667 PMCID: PMC10557164 DOI: 10.1186/s40824-023-00443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND For some ICU patients, an artificial airway must be established with an endotracheal tube, but Candida albicans can easily adhere to the tube surface and form a biofilm, leading to potentially life threatening fungal infections. Therefore, it is urgent to prevent and reduce C. albicans infections introduced by the endotracheal tube. However, there are few antifungal drugs effective against C. albicans, and each of these drugs may have adverse effects on human cells. Saccharomyces boulardii is regarded as an alternative strategy to inhibit the adhesion of C. albicans, but it is affected by environmental stress. We hypothesized that it is feasible to strengthen the antagonistic ability of S. boulardii via encapsulating and genetically modification. METHODS In this study, a bioactive material carrying the overexpressed MCP1 gene of Saccharomyces boulardii was constructed based on one-step photo-crosslinking. This material achieved spatial growth control of S. boulardii by encapsulating each S. boulardii cell within a hydrogel pore. The bioactive material was coated on an endotracheal tube and tested for its ability to inhibit the adhesion of C. albicans. Additionally, the material's antagonistic activity towards C. albicans was evaluated by detecting intracellular Adenosine-triphosphate content, reactive oxygen species level and the activity of antioxidative enzymes. Tissue invasion experiment was executed to further evaluate the anti-adhesion ability of S. boulardii bio-coating. RESULTS Encapsulating the overexpression of MCP1 by S. boulardii in hydrogel pores enhanced the viability of probiotics in the presence of high salt and oxidation stress. When used as the coating of an endotracheal tube, the S. boulardii bioactive material efficiently inhibited the adhesion of C. albicans by impairing the activities of superoxide dismutase and catalase and disturbing mitochondrial functions. In vivo, the S. boulardii bioactive material coating displayed good biocompatibility and reduced the host tissue invasion and virulence of C. albicans. CONCLUSIONS The integration of genetic modification and immobilization model breaks the bottleneck of previous application of microorganisms, and provides a new way to prevent fungal infections introduced by endotracheal tubes.
Collapse
Affiliation(s)
- Yunyun Wei
- School of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271016, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Ziqiang Han
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Xuanyi Wang
- Department of Clinical Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Hui Zhang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Xinya Hou
- Department of Clinical Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xiangwei Lv
- Department of Clinical Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xiaolong Mao
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| |
Collapse
|
50
|
Ye W, Miao Q, Xu G, Jin K, Li X, Wu W, Yu L, Yan M. CircRNA itchy E3 ubiquitin protein ligase improves mitochondrial dysfunction in sepsis-induced acute kidney injury by targeting microRNA-214-3p/ATP-binding cassette A1 axis. Ren Fail 2023; 45:2261552. [PMID: 37782276 PMCID: PMC10547449 DOI: 10.1080/0886022x.2023.2261552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are promising biomarkers and therapeutic targets for acute kidney injury (AKI). In this study, we investigated the mechanism by which circRNA itchy E3 ubiquitin protein ligase (circ-ITCH) regulates sepsis-induced AKI. METHODS A sepsis-induced AKI mouse model was created using LPS induction and circ-ITCH overexpression. Circ-ITCH levels were confirmed via RT-qPCR. Kidney tissue changes were examined through various stains and TUNEL. Enzyme-linked immunosorbent assay (ELISA) gauged oxidative stress and inflammation. Mitochondrial features were studied with electron microscopy. RT-qPCR and western blotting assessed mitochondrial function parameters. Using starBase, binding sites between circ-ITCH and miR-214-3p, as well as miR-214-3p and ABCA1, were predicted. Regulatory connections were proven by dual-luciferase assay, RT-qPCR, and western blotting. RESULTS Circ-ITCH expression was downregulated in LPS-induced sepsis mice. Overexpression of circ-ITCH ameliorates indicators of renal function (serum creatinine [SCr], blood urea nitrogen [BUN], neutrophil gelatinase-associated lipocalin [NGAL], and kidney injury molecule-1 [Kim-1]), reduces renal cell apoptosis, mitigates oxidative stress markers (reactive oxygen species [ROS] and malondialdehyde [MDA]), and diminishes inflammatory markers (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF-α]). Moreover, circ-ITCH overexpression alleviated mitochondrial damage and dysfunction. Furthermore, circ-ITCH acts as a sponge for miR-214-3p, thereby upregulating ABCA1 expression. In addition, the miR-214-3p inhibitor repressed oxidative stress, inflammation, and mitochondrial dysfunction, which was reversed by circ-ITCH knockdown. Further cellular analysis in HK-2 cells supported these findings, highlighting the protective role of circ-ITCH against sepsis-induced AKI, particularly through the miR-214-3p/ABCA1 axis. CONCLUSION The novel circ-ITCH/miR-214-3p/ABCA1 pathway plays an essential role in the regulation of oxidative stress and mitochondrial dysfunction in sepsis-induced AKI.
Collapse
Affiliation(s)
- Weidi Ye
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qi Miao
- Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Eye Center Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Guangxin Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Kai Jin
- Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Eye Center Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xue Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Weidong Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|