1
|
Wooden B, Beenken A, Martinelli E, Saida K, Knob AL, Ke J, Pisani I, Jin G, Lane B, Mitrotti A, Colby E, Lim TY, Guglielmi F, Osborne AJ, Ahram DF, Wang C, Armand F, Zanoni F, Bomback AS, Delsante M, Appel GB, Ferrari MRA, Martino J, Sahdeo S, Breckenridge D, Petrovski S, Paul DS, Hall G, Magistroni R, Murtas C, Feriozzi S, Rampino T, Esposito P, Helmuth ME, Sampson MG, Kretzler M, Kiryluk K, Shril S, Gesualdo L, Maggiore U, Fiaccadori E, Gbadegesin R, Santoriello D, D'Agati VD, Saleem MA, Gharavi AG, Hildebrandt F, Pollak MR, Goldstein DB, Sanna-Cherchi S. Natural History and Clinicopathological Associations of TRPC6-Associated Podocytopathy. J Am Soc Nephrol 2025; 36:274-289. [PMID: 39352759 DOI: 10.1681/asn.0000000501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Key Points
We conducted a clinical, genetic, and pathological analysis on 64 cases from 39 families with TRPC6-associated podocytopathy (TRPC6-AP).Analysis of 37,542 individuals excluded a major contribution of loss-of-function variants to TRPC6-AP, legitimating current drug discovery approaches.This study identifies key features of disease that can help intervention studies design and suggests similarities between TRPC6-AP and primary FSGS.
Background
Understanding the genetic basis of human diseases has become integral to drug development and precision medicine. Recent advancements have enabled the identification of molecular pathways driving diseases, leading to targeted treatment strategies. The increasing investment in rare diseases by the biotech industry underscores the importance of genetic evidence in drug discovery and approval processes. Here we studied a monogenic Mendelian kidney disease, TRPC6-associated podocytopathy (TRPC6-AP), to present its natural history, genetic spectrum, and clinicopathological associations in a large cohort of patients with causal variants in TRPC6 to help define the specific features of disease and further facilitate drug development and clinical trials design.
Methods
The study involved 64 individuals from 39 families with TRPC6 causal missense variants. Clinical data, including age of onset, laboratory results, response to treatment, kidney biopsy findings, and genetic information, were collected from multiple centers nationally and internationally. Exome or targeted sequencing was performed, and variant classification was based on strict criteria. Structural and functional analyses of TRPC6 variants were conducted to understand their effect on protein function. In-depth reanalysis of light and electron microscopy specimens for nine available kidney biopsies was conducted to identify pathological features and correlates of TRPC6-AP.
Results
Large-scale sequencing data did not support causality for TRPC6 protein-truncating variants. We identified 21 unique TRPC6 missense variants, clustering in three distinct regions of the protein, and with different effects on TRPC6 3D protein structure. Kidney biopsy analysis revealed FSGS patterns of injury in most cases, along with distinctive podocyte features including diffuse foot process effacement and swollen cell bodies. Most patients presented in adolescence or early adulthood but with ample variation (average 22, SD ±14 years), with frequent progression to kidney failure but with variability in time between presentation and kidney failure.
Conclusions
This study provides insights into the genetic spectrum, clinicopathological associations, and natural history of TRPC6-AP.
Clinical Trial registry name and registration number:
A Study to Test BI 764198 in People With a Type of Kidney Disease Called Focal Segmental Glomerulosclerosis, NCT05213624.
Collapse
Affiliation(s)
- Benjamin Wooden
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Elena Martinelli
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ken Saida
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Andrea L Knob
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Juntao Ke
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Isabella Pisani
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gina Jin
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Brandon Lane
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Adele Mitrotti
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Elizabeth Colby
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Francesca Guglielmi
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amy J Osborne
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Dina F Ahram
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Chen Wang
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Farid Armand
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Francesca Zanoni
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Divisione di Nefrologia, Dialisi e Trapianti di Rene, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Andrew S Bomback
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Marco Delsante
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Massimo R A Ferrari
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | | | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R D, AstraZeneca, Cambridge, United Kingdom
| | - Dirk S Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R D, AstraZeneca, Cambridge, United Kingdom
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Riccardo Magistroni
- Section of Nephrology, Surgical, Medical and Dental Department of Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, Modena, Italy
| | - Corrado Murtas
- Division of Nephrology and Dialysis, Belcolle Hospital, Viterbo, Italy
| | - Sandro Feriozzi
- Division of Nephrology and Dialysis, Belcolle Hospital, Viterbo, Italy
| | - Teresa Rampino
- Unit of Nephrology, Department of Internal Medicine, Pavia University, Dialysis and Transplantation Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Esposito
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Nephrology, Dialysis and Transplantation Clinics, IRCCS Policlinico San Martino, Genova, Italy
| | - Margaret E Helmuth
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Shirlee Shril
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Umberto Maggiore
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Dominick Santoriello
- The Renal Pathology Laboratory of the Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Vivette D D'Agati
- The Renal Pathology Laboratory of the Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Moin A Saleem
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Friedhelm Hildebrandt
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Martin R Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
2
|
Hao X, Yu S, Weng Q, Fang Z, Zheng Q, Zhao Y, Liu J, Ma J, Zhang C, Liu Y, Li J, Yang M, Ren H, Xie J. Clinical Characteristics and Prognosis of Genetic Focal Segment Glomerulosclerosis. Am J Kidney Dis 2024; 84:660-662. [PMID: 38908424 DOI: 10.1053/j.ajkd.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 06/24/2024]
Affiliation(s)
- Xu Hao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuwen Yu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Weng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengying Fang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Zheng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Zhao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ma
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunli Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzi Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junru Li
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxin Yang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Ren
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Platt CJ, Bierzynska A, Ding W, Saleem SA, Koziell A, Saleem MA. Rare heterozygous variants in paediatric steroid resistant nephrotic syndrome - a population-based analysis of their significance. Sci Rep 2024; 14:18568. [PMID: 39127776 DOI: 10.1038/s41598-024-68837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Genetic testing in nephrotic syndrome may identify heterozygous predicted-pathogenic variants (HPPVs) in autosomal recessive (AR) genes that are known to cause disease in the homozygous or compound heterozygous state. In such cases, it can be difficult to define the variant's true significance and questions remain about whether a second pathogenic variant has been missed during analysis or whether the variant is an incidental finding. There are now known to be over 70 genes associated with nephrotic syndrome, the majority inherited as an AR trait. Knowledge of whether such HPPVs occur with equal frequency in patients compared to the general population would assist interpretation of their significance. Exome sequencing was performed on 187 Steroid-Resistant Nephrotic Syndrome (SRNS) paediatric patients recruited to a UK rare disease registry plus originating from clinics at Evelina, London. 59 AR podocytopathy linked genes were analysed in each patient and a list of HPPVs created. We compared the frequency of detected HPPVs with a 'control' population from the gnomAD database containing exome data from approximately 50,000 individuals. A bespoke filtering process was used for both patients and controls to predict 'likely pathogenicity' of variants. In total 130 Caucasian SRNS patients were screened across 59 AR genes and 201 rare heterozygous variants were identified. 17/201 (8.5%) were assigned as 'likely pathogenic' (HPPV) using our bespoke filtering method. Comparing each gene in turn, for SRNS patients with a confirmed genetic diagnosis, in 57 of the 59 genes we found no statistically significant difference in the frequency of these HPPVs between patients and controls (In genes ARHGDIA and TP53RK, we identified a significantly higher number of HPPVs in the control population compared with the patients when filtering was performed with 'high stringency' settings only). In the SRNS patients without a genetics diagnosis confirmed, there was no statistically significant difference identified in any gene between patient and control. In children with SRNS, we propose that identification of HPPV in AR podocytopathy linked genes is not necessarily representative of pathogenicity, given that the frequency is similar to that seen in controls for the majority. Whilst this may not exclude the presence of genetic kidney disease, this type of heterozygous variant is unlikely to be causal and each result must be interpreted in its clinical context.
Collapse
Affiliation(s)
- C J Platt
- Bristol Royal Hospital for Children, Bristol, BS2 8NJ, UK.
| | - A Bierzynska
- Bristol Renal, University of Bristol, Bristol, UK
| | - W Ding
- Bristol Renal, University of Bristol, Bristol, UK
| | | | - A Koziell
- King's College and Evelina, London, UK
| | - M A Saleem
- Bristol Renal, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Gipson DS, Wang CS, Salmon E, Gbadegesin R, Naik A, Sanna-Cherchi S, Fornoni A, Kretzler M, Merscher S, Hoover P, Kidwell K, Saleem M, Riella L, Holzman L, Jackson A, Olabisi O, Cravedi P, Freedman BS, Himmelfarb J, Vivarelli M, Harder J, Klein J, Burke G, Rheault M, Spino C, Desmond HE, Trachtman H. FSGS Recurrence Collaboration: Report of a Symposium. GLOMERULAR DISEASES 2024; 4:1-10. [PMID: 38348154 PMCID: PMC10859699 DOI: 10.1159/000535138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 02/15/2024]
Affiliation(s)
- Debbie S. Gipson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Shi Wang
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Eloise Salmon
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Rasheed Gbadegesin
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Abhijit Naik
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Paul Hoover
- Department of Medicine, Harvard University, Cambridge, MA, USA
| | - Kelley Kidwell
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Moin Saleem
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Leonardo Riella
- Department of Medicine, Harvard University, Cambridge, MA, USA
| | - Lawrence Holzman
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Marina Vivarelli
- Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Jennifer Harder
- Department of Internal Medicine, University of Louisville, Louisville, KY, USA
| | - Jon Klein
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - George Burke
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Michelle Rheault
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hailey E. Desmond
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Howard Trachtman
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Kalmár T, Turkevi-Nagy S, Bitó L, Kaiser L, Maróti Z, Jakab D, Letoha A, Légrády P, Iványi B. Phenotype-Genotype Correlations in Three Different Cases of Adult-Onset Genetic Focal Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:17489. [PMID: 38139322 PMCID: PMC10743622 DOI: 10.3390/ijms242417489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
This study highlights the importance of a combined diagnostic approach in the diagnosis of rare diseases, such as adult-onset genetic FSGS. We present three adult patient cases evaluated with kidney biopsy for proteinuria, chronic kidney disease, and hypertension, which were suggestive of adult-onset genetic FSGS. Renal biopsy samples and formalin-fixed, paraffin-embedded fetal kidneys were evaluated using standard light microscopical stainings, direct immunofluorescence on cryostat sections, and electron microscopy. Clinical exome sequencing was performed for each case, and 45 FSGS-related genes were analyzed. Identifying mutations in the PAX2, ACTN4, and COL4A5 genes have prompted a re-evaluation of the previous histopathological examinations. The PAX2 mutation led to a thinner nephrogenic zone and decreased number of glomeruli, resulting in oligohydramnios during fetal development and oligomeganephronia and adaptive focal-segmental glomerulosclerosis in adulthood. The ACTN4 mutation caused distinct electron-dense aggregates in podocyte cell bodies, while the COL4A5 mutation led to segmental sclerosis of glomeruli with marked interstitial fibrosis and tubular atrophy. The identification of specific mutations and their histopathological consequences can lead to a better understanding of the disease and its progression, as well as potential treatment options.
Collapse
Affiliation(s)
- Tibor Kalmár
- Department of Pediatrics, Albert Szent-Györgyi Health Centre, University of Szeged, Temesvari krt 35-37, 6726 Szeged, Hungary (Z.M.)
| | - Sándor Turkevi-Nagy
- Department of Pediatrics, Albert Szent-Györgyi Health Centre, University of Szeged, Temesvari krt 35-37, 6726 Szeged, Hungary (Z.M.)
| | - László Bitó
- Department of Internal Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, 6726 Szeged, Hungary
| | - László Kaiser
- Department of Pediatrics, Albert Szent-Györgyi Health Centre, University of Szeged, Temesvari krt 35-37, 6726 Szeged, Hungary (Z.M.)
| | - Zoltán Maróti
- Department of Pediatrics, Albert Szent-Györgyi Health Centre, University of Szeged, Temesvari krt 35-37, 6726 Szeged, Hungary (Z.M.)
| | - Dániel Jakab
- Department of Pediatrics, Albert Szent-Györgyi Health Centre, University of Szeged, Temesvari krt 35-37, 6726 Szeged, Hungary (Z.M.)
| | - Annamária Letoha
- Department of Internal Medicine, Centre of Clinical Infectology and Acute Internal Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, 6726 Szeged, Hungary
| | - Péter Légrády
- Department of Internal Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, 6726 Szeged, Hungary
| | - Béla Iványi
- Department of Pediatrics, Albert Szent-Györgyi Health Centre, University of Szeged, Temesvari krt 35-37, 6726 Szeged, Hungary (Z.M.)
| |
Collapse
|
6
|
Skitchenko R, Modrusan Z, Loboda A, Kopp JB, Winkler CA, Sergushichev A, Gupta N, Stevens C, Daly MJ, Shaw A, Artomov M. CR1 variants contribute to FSGS susceptibility across multiple populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.20.23298462. [PMID: 38076851 PMCID: PMC10705641 DOI: 10.1101/2023.11.20.23298462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common cause of nephrotic syndrome with an annual incidence in the United States in African-Americans compared to European-Americans of 24 cases and 5 cases per million, respectively. Among glomerular diseases in Europe and Latin-America, FSGS was the second most frequent diagnosis, and in Asia the fifth. We expand previous efforts in understanding genetics of FSGS by performing a case-control study involving ethnically-diverse groups FSGS cases (726) and a pool of controls (13,994), using panel sequencing of approximately 2,500 podocyte-expressed genes. Through rare variant association tests, we replicated known risk genes - KANK1, COL4A4, and APOL1. A novel significant association was observed for the gene encoding complement receptor 1 (CR1). High-risk rare variants in CR1 in the European-American cohort were commonly observed in Latin- and African-Americans. Therefore, a combined rare and common variant analysis was used to replicate the CR1 association in non-European populations. The CR1 risk variant, rs17047661, gives rise to the Sl1/Sl2 (R1601G) allele that was previously associated with protection against cerebral malaria. Pleiotropic effects of rs17047661 may explain the difference in allele frequencies across continental ancestries and suggest a possible role for genetically-driven alterations of adaptive immunity in the pathogenesis of FSGS.
Collapse
Affiliation(s)
- Rostislav Skitchenko
- ITMO University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Zora Modrusan
- Research Biology, Genentech Inc., San Francisco, CA, USA
| | - Alexander Loboda
- ITMO University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Broad Institute, Cambridge, MA, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Cheryl A. Winkler
- Molecular Genetic Epidemiology Studies Section, National Cancer Institute (NCI), Frederick, Maryland, USA
| | | | | | | | - Mark J. Daly
- Broad Institute, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Andrey Shaw
- Research Biology, Genentech Inc., San Francisco, CA, USA
| | - Mykyta Artomov
- Broad Institute, Cambridge, MA, USA
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
7
|
Tato AM, Carrera N, García-Murias M, Shabaka A, Ávila A, Mora Mora MT, Rabasco C, Soto K, de la Prada Alvarez FJ, Fernández-Lorente L, Rodríguez-Moreno A, Huerta A, Mon C, García-Carro C, González Cabrera F, Navarro JAM, Romera A, Gutiérrez E, Villacorta J, de Lorenzo A, Avilés B, Garca-González MA, Fernández-Juárez G. Genetic testing in focal segmental glomerulosclerosis: in whom and when? Clin Kidney J 2023; 16:2011-2022. [PMID: 37915894 PMCID: PMC10616495 DOI: 10.1093/ckj/sfad193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Indexed: 11/03/2023] Open
Abstract
Background Genetic causes are increasingly recognized in patients with focal segmental glomerulosclerosis (FSGS), but it remains unclear which patients should undergo genetic study. Our objective was to determine the frequency and distribution of genetic variants in steroid-resistant nephrotic syndrome FSGS (SRNS-FSGS) and in FSGS of undetermined cause (FSGS-UC). Methods We performed targeted exome sequencing of 84 genes associated with glomerulopathy in patients with adult-onset SRNS-FSGS or FSGS-UC after ruling out secondary causes. Results Seventy-six patients met the study criteria; 24 presented with SRNS-FSGS and 52 with FSGS-UC. We detected FSGS-related disease-causing variants in 27/76 patients (35.5%). There were no differences between genetic and non-genetic causes in age, proteinuria, glomerular filtration rate, serum albumin, body mass index, hypertension, diabetes or family history. Hematuria was more prevalent among patients with genetic causes. We found 19 pathogenic variants in COL4A3-5 genes in 16 (29.3%) patients. NPHS2 mutations were identified in 6 (16.2%) patients. The remaining cases had variants affecting INF2, OCRL, ACTN4 genes or APOL1 high-risk alleles. FSGS-related genetic variants were more common in SRNS-FSGS than in FSGS-UC (41.7% vs 32.7%). Four SRNS-FSGS patients presented with NPHS2 disease-causing variants. COL4A variants were the most prevalent finding in FSGS-UC patients, with 12 patients carrying disease-causing variants in these genes. Conclusions FSGS-related variants were detected in a substantial number of patients with SRNS-FSGS or FSGS-UC, regardless of age of onset of disease or the patient's family history. In our experience, genetic testing should be performed in routine clinical practice for the diagnosis of this group of patients.
Collapse
Affiliation(s)
- Ana María Tato
- Department of Nephrology, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Noa Carrera
- Laboratorio de Nefroloxía (No. 11), Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Instituto de investigación sanitaria de Santiago de Compostela – IDIS, Santiago de Compostela, Spain
| | - Maria García-Murias
- Laboratorio de Nefroloxía (No. 11), Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Instituto de investigación sanitaria de Santiago de Compostela – IDIS, Santiago de Compostela, Spain
| | - Amir Shabaka
- Department of Nephrology, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Ana Ávila
- Department of Nephrology, Hospital Universitario Doctor Peset, Valencia, Spain
| | | | - Cristina Rabasco
- Department of Nephrology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Karina Soto
- Department of Nephrology, Hospital Fernando Fonseca, Lisbon, Portugal
| | | | | | | | - Ana Huerta
- Department of Nephrology, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Carmen Mon
- Department of Nephrology, Hospital Universitario Severo Ochoa, Leganés, Spain
| | | | - Fayna González Cabrera
- Department of Nephrology, Hospital Universitario de Gran Canaria Doctor Negrín, Gran Canaria, Spain
| | | | - Ana Romera
- Department of Nephrology, Hospital de Ciudad Real, Ciudad Real, Spain
| | - Eduardo Gutiérrez
- Department of Nephrology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Javier Villacorta
- Department of Nephrology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Beatriz Avilés
- Department of Nephrology, Hospital Costa del Sol, Marbella, Spain
| | - Miguel Angel Garca-González
- Laboratorio de Nefroloxía (No. 11), Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Instituto de investigación sanitaria de Santiago de Compostela – IDIS, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gema Fernández-Juárez
- Department of Nephrology, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación de la Paz (IdIPAZ), Madrid, Spain
| |
Collapse
|
8
|
Solanki KV, Hu Y, Moore BS, Abedi V, Avula V, Mirshahi T, Strande NT, Bucaloiu ID, Chang AR. The Phenotypic Spectrum of COL4A3 Heterozygotes. Kidney Int Rep 2023; 8:2088-2099. [PMID: 37849993 PMCID: PMC10577321 DOI: 10.1016/j.ekir.2023.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction The penetrance and phenotypic spectrum of autosomal dominant Alport Syndrome (ADAS), affecting 1 in 106, remains understudied. Methods Using data from 174,418 participants in the Geisinger MyCode/DiscovEHR study, an unselected health system-based cohort with whole exome sequencing, we identified 403 participants who were heterozygous for likely pathogenic COL4A3 variants. Phenotypic data was evaluated using International Classification of Diseases (ICD) codes, laboratory data, and chart review. To evaluate the phenotypic spectrum of genetically-determined ADAS, we matched COL4A3 heterozygotes 1:5 to nonheterozygotes using propensity scores by demographics, hypertension, diabetes, and nephrolithiasis. Results COL4A3 heterozygotes were at significantly increased risks of hematuria, decreased estimated glomerular filtration rate (eGFR), albuminuria, and kidney failure (P < 0.05 for all comparisons) but not bilateral sensorineural hearing loss (P = 0.9). Phenotypic severity was more severe for collagenous domain glycine missense variants than protein truncating variants (PTVs). For example, patients with Gly695Arg (n = 161) had markedly increased risk of dipstick hematuria (odds ratio [OR] 9.50; 95% confidence interval [CI]: 6.32, 14.28) and kidney failure (OR 7.02; 95% CI: 3.48, 14.16) whereas those with PTVs (n = 119) had moderately increased risks of dipstick hematuria (OR 1.64; 95% CI: 1.03, 2.59) and kidney failure (OR 3.44; 95% CI: 1.28, 9.22). Less than a third of patients had albuminuria screening completed, and fewer than 1 of 3 were taking inhibitors of the renin-angiotensin-aldosterone system. Conclusion This study demonstrates a wide spectrum of phenotypic severity in ADAS due to COL4A3 with phenotypic variability by genotype. Future studies are needed to evaluate the impact of earlier diagnosis, appropriate evaluation, and treatment of ADAS.
Collapse
Affiliation(s)
- Kaushal V Solanki
- Center for Kidney Health Research, Geisinger, Danville, Pennsylvania, USA
| | - Yirui Hu
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania, USA
| | - Bryn S Moore
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
| | - Vida Abedi
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Road, Tarrytown, New York, USA
| | - Venkatesh Avula
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
| | - Tooraj Mirshahi
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
| | - Natasha T Strande
- Department of Genomic Health, Geisinger, Danville, Pennsylvania, USA
- Autism and Developmental Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Ion D Bucaloiu
- Department of Nephrology, Geisinger, Danville, Pennsylvania, USA
| | - Alexander R Chang
- Center for Kidney Health Research, Geisinger, Danville, Pennsylvania, USA
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania, USA
| |
Collapse
|
9
|
Beck LH, Ayoub I, Caster D, Choi MJ, Cobb J, Geetha D, Rheault MN, Wadhwani S, Yau T, Whittier WL. KDOQI US Commentary on the 2021 KDIGO Clinical Practice Guideline for the Management of Glomerular Diseases. Am J Kidney Dis 2023; 82:121-175. [PMID: 37341661 DOI: 10.1053/j.ajkd.2023.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 06/22/2023]
Abstract
The KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases represents the first update to this set of recommendations since the initial set of KDIGO guideline recommendations was published in 2012. The pace of growth in our molecular understanding of glomerular disease has quickened and a number of newer immunosuppressive and targeted therapies have been introduced since the original set of guideline recommendations, making such an update necessary. Despite these updates, many areas of controversy remain. In addition, further updates since the publication of KDIGO 2021 have occurred which this guideline does not encompass. With this commentary, the KDOQI work group has generated a chapter-by-chapter companion opinion article that provides commentary specific to the implementation of the KDIGO 2021 guideline in the United States.
Collapse
Affiliation(s)
- Laurence H Beck
- Division of Nephrology, Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Isabelle Ayoub
- Department of Medicine, Division of Nephrology, Wexner Medical, The Ohio State University, Columbus, Ohio
| | - Dawn Caster
- Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky
| | | | - Jason Cobb
- Division of Renal Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Duvuru Geetha
- Division of Nephrology, Johns Hopkins University, Baltimore, Maryland
| | - Michelle N Rheault
- Department of Pediatrics, Division of Pediatric Nephrology, Masonic Children's Hospital, University of Minnesota, Minneapolis, Minnesota
| | - Shikha Wadhwani
- Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois
| | - Timothy Yau
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University, St. Louis, Missouri
| | - William L Whittier
- Division of Nephrology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
10
|
Zhou L, Xi B, Xu Y, Han Y, Yang Y, Yang J, Wang Y, Qiu L, Zhang Y, Zhou J. Clinical, histological and molecular characteristics of Alport syndrome in Chinese children. J Nephrol 2023; 36:1415-1423. [PMID: 37097554 DOI: 10.1007/s40620-023-01570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/01/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Alport syndrome is caused by COL4A3, COL4A4, or COL4A5 gene mutations. The present study aims to compare the clinicopathological features, gene mutations, and outcome of Chinese children with different forms of Alport syndrome. METHODS One hundred twenty-eight children from 126 families diagnosed with Alport syndrome through pathological and genetic examination between 2003 and 2021 were included in this single-center retrospective study. The laboratory and clinicopathological features of the patients with different inheritance patterns were analyzed. The patients were followed-up for disease progression and phenotype-genotype correlation. RESULTS Of the 126 Alport syndrome families, X-linked forms accounted for 77.0%, autosomal recessive for 11.9%, autosomal dominant for 7.1%, and digenic for 4.0%. Among the patients, 59.4% were males and 40.6% were females. Altogether, 114 different mutations were identified in 101 patients from 99 families by whole-exome sequencing, of which 68 have not been previously reported. The most prevalent type of mutation was glycine substitution, which was identified in 52.1%, 36.7%, and 60% of the patients with X-linked Alport syndrome, autosomal recessive and autosomal dominant Alport syndrome, respectively. At the end of a median follow up of 3.3 (1.8-6.3) years, Kaplan-Meier curves showed kidney survival was significantly lower in autosomal recessive compared to X-linked Alport syndrome (P = 0.004). Pediatric patients with Alport syndrome seldom presented extrarenal involvement. CONCLUSIONS X-linked Alport syndrome is the most frequent form found in this cohort. Progression was more rapid in autosmal recessive than in X-linked Alport syndrome.
Collapse
Affiliation(s)
- Lanqi Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Bijun Xi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yongli Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yanxinli Han
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yuan Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Jing Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yi Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Liru Qiu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yu Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
11
|
Del Nogal Avila M, Das R, Kharlyngdoh J, Molina-Jijon E, Donoro Blazquez H, Gambut S, Crowley M, Crossman DK, Gbadegesin RA, Chugh SS, Chugh SS, Avila-Casado C, Macé C, Clement LC, Chugh SS. Cytokine storm-based mechanisms for extrapulmonary manifestations of SARS-CoV-2 infection. JCI Insight 2023; 8:e166012. [PMID: 37040185 PMCID: PMC10322692 DOI: 10.1172/jci.insight.166012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Viral illnesses like SARS-CoV-2 have pathologic effects on nonrespiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting from SARS-CoV-2/COVID-19 or rhinovirus common cold infection. At low doses, COVID-19 cocktails induced glomerular injury and albuminuria in zinc fingers and homeoboxes 2 (Zhx2) hypomorph and Zhx2+/+ mice to mimic COVID-19-related proteinuria. Common Cold cocktail induced albuminuria selectively in Zhx2 hypomorph mice to model relapse of minimal change disease, which improved after depletion of TNF-α, soluble IL-4Rα, or IL-6. The Zhx2 hypomorph state increased cell membrane to nuclear migration of podocyte ZHX proteins in vivo (both cocktails) and lowered phosphorylated STAT6 activation (COVID-19 cocktail) in vitro. At higher doses, COVID-19 cocktails induced acute heart injury, myocarditis, pericarditis, acute liver injury, acute kidney injury, and high mortality in Zhx2+/+ mice, whereas Zhx2 hypomorph mice were relatively protected, due in part to early, asynchronous activation of STAT5 and STAT6 pathways in these organs. Dual depletion of cytokine combinations of TNF-α with IL-2, IL-13, or IL-4 in Zhx2+/+ mice reduced multiorgan injury and eliminated mortality. Using genome sequencing and CRISPR/Cas9, an insertion upstream of ZHX2 was identified as a cause of the human ZHX2 hypomorph state.
Collapse
Affiliation(s)
- Maria Del Nogal Avila
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ranjan Das
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Joubert Kharlyngdoh
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Eduardo Molina-Jijon
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Hector Donoro Blazquez
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stéphanie Gambut
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Michael Crowley
- Genomics Core Lab, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K. Crossman
- Genomics Core Lab, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rasheed A. Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Sunveer S. Chugh
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Sunjeet S. Chugh
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Carmen Avila-Casado
- Department of Anatomical Pathology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
- Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Camille Macé
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Lionel C. Clement
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Sumant S. Chugh
- Glomerular Disease Therapeutics Laboratory, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
12
|
Thomas CP, Daloul R, Lentine KL, Gohh R, Anand PM, Rasouly HM, Sharfuddin AA, Schlondorff JS, Rodig NM, Freese ME, Garg N, Lee BK, Caliskan Y. Genetic evaluation of living kidney donor candidates: A review and recommendations for best practices. Am J Transplant 2023; 23:597-607. [PMID: 36868514 DOI: 10.1016/j.ajt.2023.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
The growing accessibility and falling costs of genetic sequencing techniques has expanded the utilization of genetic testing in clinical practice. For living kidney donation, genetic evaluation has been increasingly used to identify genetic kidney disease in potential candidates, especially in those of younger ages. However, genetic testing on asymptomatic living kidney donors remains fraught with many challenges and uncertainties. Not all transplant practitioners are aware of the limitations of genetic testing, are comfortable with selecting testing methods, comprehending test results, or providing counsel, and many do not have access to a renal genetic counselor or a clinical geneticist. Although genetic testing can be a valuable tool in living kidney donor evaluation, its overall benefit in donor evaluation has not been demonstrated and it can also lead to confusion, inappropriate donor exclusion, or misleading reassurance. Until more published data become available, this practice resource should provide guidance for centers and transplant practitioners on the responsible use of genetic testing in the evaluation of living kidney donor candidates.
Collapse
Affiliation(s)
- Christie P Thomas
- Department of of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; VA Medical Center, Iowa City, Iowa, USA.
| | - Reem Daloul
- Division of Nephrology, Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Krista L Lentine
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Reginald Gohh
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Prince M Anand
- Mid-Carolinas Transplant Center, Medical University of South Carolina, Lancaster, South Carolina, USA
| | - Hila Milo Rasouly
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York City, New York, USA
| | - Asif A Sharfuddin
- Division of Nephrology and Transplant, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Johannes S Schlondorff
- Department of Internal Medicine, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Nancy M Rodig
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret E Freese
- Department of of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Neetika Garg
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Brian K Lee
- Kidney/Pancreas Transplant Center, Dell Seton Medical Center, University of Texas at Austin, Austin, Texas, USA
| | - Yasar Caliskan
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Solanki KV, Hu Y, Moore BS, Abedi V, Avula V, Mirshahi T, Strande NT, Bucaloiu ID, Chang AR. The Phenotypic Spectrum of COL4A3 Heterozygotes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.11.23288298. [PMID: 37163122 PMCID: PMC10168410 DOI: 10.1101/2023.04.11.23288298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Most data on Alport Syndrome (AS) due to COL4A3 are limited to families with autosomal recessive AS or severe manifestations such as focal segmental glomerulosclerosis (FSGS). Using data from 174,418 participants in the Geisinger MyCode/DiscovEHR study, an unselected health system-based cohort with whole exome sequencing, we identified 403 participants (0.2%) who were heterozygous for likely pathogenic COL4A3 variants. Phenotypic data was evaluated using International Classification of Diseases (ICD) codes, laboratory data, and chart review. To evaluate the phenotypic spectrum of genetically-determined autosomal dominant AS, we matched COL4A3 heterozygotes 1:5 to non-heterozygotes using propensity scores by demographics, hypertension, diabetes, and nephrolithiasis. COL4A3 heterozygotes were at significantly increased risks of hematuria, decreased estimated glomerular filtration rate (eGFR), albuminuria, and end-stage kidney disease (ESKD) (p<0.05 for all comparisons) but not bilateral sensorineural hearing loss (p=0.9). Phenotypic severity tended to be more severe among patients with glycine missense variants located within the collagenous domain. For example, patients with Gly695Arg (n=161) had markedly increased risk of dipstick hematuria (OR 9.47, 95% CI: 6.30, 14.22) and ESKD diagnosis (OR 7.01, 95% CI: 3.48, 14.12) whereas those with PTVs (n=119) had moderately increased risks of dipstick hematuria (OR 1.63, 95% CI: 1.03, 2.58) and ESKD diagnosis (OR 3.43, 95% CI: 1.28, 9.19). Less than a third of patients had albuminuria screening completed, and fewer than 1/3 were taking inhibitors of the renin-angiotensin-aldosterone system (RAASi). Future studies are needed to evaluate the impact of earlier diagnosis, appropriate evaluation, and treatment of ADAS.
Collapse
Affiliation(s)
| | - Yirui Hu
- Department of Population Health Sciences, Geisinger, Danville, PA
| | - Bryn S Moore
- Department of Genomic Health, Geisinger, Danville, PA
| | - Vida Abedi
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | | | | | - Natasha T Strande
- Department of Genomic Health, Geisinger, Danville, PA
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA
| | | | - Alexander R Chang
- Center for Kidney Health Research, Geisinger, Danville, PA
- Department of Population Health Sciences, Geisinger, Danville, PA
- Regeneron Genetics Center, Sawmill Road, Tarrytown, NY
| |
Collapse
|
14
|
Fang Z, Zhang C, Jin Y, Tong J, Liu J, Hao X, Weng Q, Yu S, Du W, Cai Y, Zheng Q, Yang L, Ren H, Pan X, Xie J. Adult-Onset Focal Segmental Glomerulosclerosis With Steroid-Dependent Nephrotic Syndrome Caused by a Novel TBC1D8B Variant: A Case Report and Literature Review. Am J Kidney Dis 2023; 81:240-244. [PMID: 35970429 DOI: 10.1053/j.ajkd.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histological lesion with a variety of potential causes, including rare variants of podocyte-related genes. Recently, it has been found that variants in the TBC1D8B gene on the X chromosome can lead to early-onset focal segmental glomerulosclerosis and steroid-resistant nephrotic syndrome by affecting endocytosis and recycling of nephrin. Here, we report a 19-year-old Chinese patient with nephrotic syndrome and normal kidney function. He had a complete remission of nephrotic syndrome after full-dose prednisone and cyclosporine treatment. Unfortunately, a relapse of nephrotic syndrome occurred during prednisone tapering. Focal segmental glomerulosclerosis was proven by a kidney biopsy, and a hemizygous pathogenic variant located in the TBC (Tre-2-Bub2-Cdc16) domain of TBC1D8B was detected by whole-exome sequencing. By comparing our case with reports of other patients with TBC1D8B variants, we suggest possible genotype-phenotype correlations. To our knowledge, this is the first report identifying a pathogenetic variant in the TBC domain of TBC1D8B in an adult-onset focal segmental glomerulosclerosis patient with steroid-dependent NS. With this report, we broaden the clinical and genetic spectrum of X-linked genetic FSGS.
Collapse
Affiliation(s)
- Zhengying Fang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunli Zhang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanmeng Jin
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Tong
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Hao
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Weng
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuwen Yu
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Du
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikai Cai
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Zheng
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Ren
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Pan
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Abstract
Hundreds of different genetic causes of chronic kidney disease are now recognized, and while individually rare, taken together they are significant contributors to both adult and pediatric diseases. Traditional genetics approaches relied heavily on the identification of large families with multiple affected members and have been fundamental to the identification of genetic kidney diseases. With the increased utilization of massively parallel sequencing and improvements to genotype imputation, we can analyze rare variants in large cohorts of unrelated individuals, leading to personalized care for patients and significant research advancements. This review evaluates the contribution of rare disorders to patient care and the study of genetic kidney diseases and highlights key advancements that utilize new techniques to improve our ability to identify new gene-disease associations.
Collapse
Affiliation(s)
- Mark D Elliott
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
16
|
Milosavljevic J, Lempicki C, Lang K, Heinkele H, Kampf LL, Leroy C, Chen M, Gerstner L, Spitz D, Wang M, Knob AU, Kayser S, Helmstädter M, Walz G, Pollak MR, Hermle T. Nephrotic Syndrome Gene TBC1D8B Is Required for Endosomal Maturation and Nephrin Endocytosis in Drosophila. J Am Soc Nephrol 2022; 33:2174-2193. [PMID: 36137753 PMCID: PMC9731638 DOI: 10.1681/asn.2022030275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Variants in TBC1D8B cause nephrotic syndrome. TBC1D8B is a GTPase-activating protein for Rab11 (RAB11-GAP) that interacts with nephrin, but how it controls nephrin trafficking or other podocyte functions remains unclear. METHODS We generated a stable deletion in Tbc1d8b and used microhomology-mediated end-joining for genome editing. Ex vivo functional assays utilized slit diaphragms in podocyte-like Drosophila nephrocytes. Manipulation of endocytic regulators and transgenesis of murine Tbc1d8b provided a comprehensive functional analysis of Tbc1d8b. RESULTS A null allele of Drosophila TBC1D8B exhibited a nephrocyte-restricted phenotype of nephrin mislocalization, similar to patients with isolated nephrotic syndrome who have variants in the gene. The protein was required for rapid nephrin turnover in nephrocytes and for endocytosis of nephrin induced by excessive Rab5 activity. The protein expressed from the Tbc1d8b locus bearing the edited tag predominantly localized to mature early and late endosomes. Tbc1d8b was required for endocytic cargo processing and degradation. Silencing Hrs, a regulator of endosomal maturation, phenocopied loss of Tbc1d8b. Low-level expression of murine TBC1D8B rescued loss of the Drosophila gene, indicating evolutionary conservation. Excessive murine TBC1D8B selectively disturbed nephrin dynamics. Finally, we discovered four novel TBC1D8B variants within a cohort of 363 patients with FSGS and validated a functional effect of two variants in Drosophila, suggesting a personalized platform for TBC1D8B-associated FSGS. CONCLUSIONS Variants in TBC1D8B are not infrequent among patients with FSGS. TBC1D8B, functioning in endosomal maturation and degradation, is essential for nephrin trafficking.
Collapse
Affiliation(s)
- Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Camille Lempicki
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Helena Heinkele
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Lina L. Kampf
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Claire Leroy
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Dominik Spitz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Minxian Wang
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Andrea U. Knob
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Séverine Kayser
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Martin R. Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Sambharia M, Rastogi P, Thomas CP. Monogenic focal segmental glomerulosclerosis: A conceptual framework for identification and management of a heterogeneous disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:377-398. [PMID: 35894442 PMCID: PMC9796580 DOI: 10.1002/ajmg.c.31990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 01/29/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a disease, rather a pattern of histological injury occurring from a variety of causes. The exact pathogenesis has yet to be fully elucidated but is likely varied based on the type of injury and the primary target of that injury. However, the approach to treatment is often based on the degree of podocyte foot process effacement and clinical presentation without sufficient attention paid to etiology. In this regard, there are many monogenic causes of FSGS with variable presentation from nephrotic syndrome with histological features of primary podocytopathy to more modest degrees of proteinuria with limited evidence of podocyte foot process injury. It is likely that genetic causes are largely underdiagnosed, as the role and the timing of genetic testing in FSGS is not established and genetic counseling, testing options, and interpretation of genotype in the context of phenotype may be outside the scope of practice for both nephrologists and geneticists. Yet most clinicians believe that a genetic diagnosis can lead to targeted therapy, limit the use of high-dose corticosteroids as a therapeutic trial, and allow the prediction of the natural history and risk for recurrence in the transplanted kidney. In this manuscript, we emphasize that genetic FSGS is not monolithic in its presentation, opine on the importance of genetic testing and provide an algorithmic approach to deployment of genetic testing in a timely fashion when faced with a patient with FSGS.
Collapse
Affiliation(s)
- Meenakshi Sambharia
- Division of Nephrology, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Prerna Rastogi
- Department of PathologyUniversity of IowaIowa CityIowaUSA
| | - Christie P. Thomas
- Division of Nephrology, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA,Department of PediatricsUniversity of IowaIowa CityIowaUSA,The Iowa Institute of Human GeneticsUniversity of IowaIowa CityIowaUSA,Medical ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| |
Collapse
|
18
|
Brown BJ, Boekell KL, Stotter BR, Talbot BE, Schlondorff JS. Gain-of-function, focal segmental glomerulosclerosis Trpc6 mutation minimally affects susceptibility to renal injury in several mouse models. PLoS One 2022; 17:e0272313. [PMID: 35913909 PMCID: PMC9342776 DOI: 10.1371/journal.pone.0272313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations in TRPC6 are a cause of autosomal dominant focal segmental glomerulosclerosis in humans. Many of these mutations are known to have a gain-of-function effect on the non-specific cation channel function of TRPC6. In vitro studies have suggested these mutations affect several signaling pathways, but in vivo studies have largely compared wild-type and Trpc6-deficient rodents. We developed mice carrying a gain-of-function Trpc6 mutation encoding an E896K amino acid change, corresponding to a known FSGS mutation in TRPC6. Homozygous mutant Trpc6 animals have no appreciable renal pathology, and do not develop albuminuria until very advanced age. The Trpc6E896K mutation does not impart susceptibility to PAN nephrosis. The animals show a slight delay in recovery from the albumin overload model. In response to chronic angiotensin II infusion, Trpc6E896K/E896K mice have slightly greater albuminuria initially compared to wild-type animals, an effect that is lost at later time points, and a statistically non-significant trend toward more glomerular injury. This phenotype is nearly opposite to that of Trpc6-deficient animals previously described. The Trpc6 mutation does not appreciably impact renal interstitial fibrosis in response to either angiotensin II infusion, or folate-induced kidney injury. TRPC6 protein and TRPC6-agonist induced calcium influx could not be detected in glomeruli. In sum, these findings suggest that a gain-of-function Trpc6 mutation confers only a mild susceptibility to glomerular injury in the mouse.
Collapse
Affiliation(s)
- Brittney J. Brown
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kimber L. Boekell
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian R. Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna E. Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Johannes S. Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Wu M, Chen Y, Chiu I, Wu M. Genetic Insight into Primary Glomerulonephritis. Nephrology (Carlton) 2022; 27:649-657. [DOI: 10.1111/nep.14074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/18/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Mei‐Yi Wu
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health National Taiwan University Taipei Taiwan
- TMU Research Center of Urology and Kidney Taipei Medical University Taipei Taiwan
| | - Ying‐Chun Chen
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
| | - I‐Jen Chiu
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- TMU Research Center of Urology and Kidney Taipei Medical University Taipei Taiwan
| | - Mai‐Szu Wu
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- TMU Research Center of Urology and Kidney Taipei Medical University Taipei Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University Taipei Taiwan
| |
Collapse
|
20
|
Baxter SM, Posey JE, Lake NJ, Sobreira N, Chong JX, Buyske S, Blue EE, Chadwick LH, Coban-Akdemir ZH, Doheny KF, Davis CP, Lek M, Wellington C, Jhangiani SN, Gerstein M, Gibbs RA, Lifton RP, MacArthur DG, Matise TC, Lupski JR, Valle D, Bamshad MJ, Hamosh A, Mane S, Nickerson DA, Rehm HL, O'Donnell-Luria A. Centers for Mendelian Genomics: A decade of facilitating gene discovery. Genet Med 2022; 24:784-797. [PMID: 35148959 PMCID: PMC9119004 DOI: 10.1016/j.gim.2021.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration. METHODS Over the past 10 years, the National Institutes of Health-supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution. RESULTS We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher. CONCLUSION The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients.
Collapse
Affiliation(s)
- Samantha M Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT; Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA; Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ; Department of Genetics, Rutgers University, Piscataway, NJ
| | - Elizabeth E Blue
- Brotman Baty Institute for Precision Medicine, Seattle, WA; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Lisa H Chadwick
- Division of Genome Sciences, National Human Genome Research Institute, Bethesda, MD
| | - Zeynep H Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Kimberly F Doheny
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Colleen P Davis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Genetics, Yale School of Medicine, New Haven, CT
| | | | | | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Tara C Matise
- Department of Genetics, Rutgers University, Piscataway, NJ
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA; Brotman Baty Institute for Precision Medicine, Seattle, WA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Deborah A Nickerson
- Brotman Baty Institute for Precision Medicine, Seattle, WA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA.
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA; Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA.
| |
Collapse
|
21
|
Caliskan Y, Lee B, Whelan AM, Abualrub F, Lentine KL, Jittirat A. Evaluation of Genetic Kidney Diseases in Living Donor Kidney Transplantation: Towards Precision Genomic Medicine in Donor Risk Assessment. CURRENT TRANSPLANTATION REPORTS 2022; 9:127-142. [DOI: 10.1007/s40472-021-00340-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Purpose of Review
To provide a comprehensive update on the role of genetic testing for the evaluation of kidney transplant recipient and living donor candidates.
Recent Findings
The evaluation of candidates for living donor transplantation and their potential donors occurs within an ever-changing landscape impacted by new evidence and risk assessment techniques. Criteria that were once considered contraindications to living kidney donation are now viewed as standard of care, while new tools identify novel risk markers that were unrecognized in past decades. Recent work suggests that nearly 10% of a cohort of patients with chronic/end-stage kidney disease had an identifiable genetic etiology, many whose original cause of renal disease was either unknown or misdiagnosed. Some also had an incidentally found genetic variant, unrelated to their nephropathy, but medically actionable. These patterns illustrate the substantial potential for genetic testing to better guide the selection of living donors and recipients, but guidance on the proper application and interpretation of novel technologies is in its infancy. In this review, we examine the utility of genetic testing in various kidney conditions, and discuss risks and unresolved challenges. Suggested algorithms in the context of related and unrelated donation are offered.
Summary
Genetic testing is a rapidly evolving strategy for the evaluation of candidates for living donor transplantation and their potential donors that has potential to improve risk assessment and optimize the safety of donation.
Collapse
|
22
|
Elhassan EAE, Murray SL, Connaughton DM, Kennedy C, Cormican S, Cowhig C, Stapleton C, Little MA, Kidd K, Bleyer AJ, Živná M, Kmoch S, Fennelly NK, Doyle B, Dorman A, Griffin MD, Casserly L, Harris PC, Hildebrandt F, Cavalleri GL, Benson KA, Conlon PJ. The utility of a genetic kidney disease clinic employing a broad range of genomic testing platforms: experience of the Irish Kidney Gene Project. J Nephrol 2022; 35:1655-1665. [PMID: 35099770 PMCID: PMC9300532 DOI: 10.1007/s40620-021-01236-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND AIMS Genetic testing presents a unique opportunity for diagnosis and management of genetic kidney diseases (GKD). Here, we describe the clinical utility and valuable impact of a specialized GKD clinic, which uses a variety of genomic sequencing strategies. METHODS In this prospective cohort study, we undertook genetic testing in adults with suspected GKD according to prespecified criteria. Over 7 years, patients were referred from tertiary centres across Ireland to an academic medical centre as part of the Irish Kidney Gene Project. RESULTS Among 677 patients, the mean age was of 37.2 ± 13 years, and 73.9% of the patients had family history of chronic kidney disease (CKD). We achieved a molecular diagnostic rate of 50.9%. Four genes accounted for more than 70% of identified pathogenic variants: PKD1 and PKD2 (n = 186, 53.4%), MUC1 (8.9%), and COL4A5 (8.3%). In 162 patients with a genetic diagnosis, excluding PKD1/PKD2, the a priori diagnosis was confirmed in 58% and in 13% the diagnosis was reclassified. A genetic diagnosis was established in 22 (29.7%) patients with CKD of uncertain aetiology. Based on genetic testing, a diagnostic kidney biopsy was unnecessary in 13 (8%) patients. Presence of family history of CKD and the underlying a priori diagnosis were independent predictors (P < 0.001) of a positive genetic diagnosis. CONCLUSIONS A dedicated GKD clinic is a valuable resource, and its implementation of various genomic strategies has resulted in a direct, demonstrable clinical and therapeutic benefits to affected patients.
Collapse
Affiliation(s)
- Elhussein A E Elhassan
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland. .,Department of Medicine, Dublin, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Susan L Murray
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Dublin, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dervla M Connaughton
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, ON, Canada
| | - Claire Kennedy
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
| | - Sarah Cormican
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
| | - Cliona Cowhig
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
| | - Caragh Stapleton
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St James' Street, Dublin 8, Ireland
| | - Kendrah Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony J Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Stanislav Kmoch
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | - Brendan Doyle
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont Hospital, Dublin, Ireland.,Department of Pathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Matthew D Griffin
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland, Galway, Ireland
| | - Liam Casserly
- Department of Nephrology and Internal Medicine, University Hospital Limerick, Limerick, Ireland
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Friedhelm Hildebrandt
- Department of Paediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Katherine A Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Dublin, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
23
|
Piras D, Lepori N, Cabiddu G, Pani A. How Genetics Can Improve Clinical Practice in Chronic Kidney Disease: From Bench to Bedside. J Pers Med 2022; 12:jpm12020193. [PMID: 35207681 PMCID: PMC8875178 DOI: 10.3390/jpm12020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) is considered a major global health problem with high socio-economic costs: the risk of CKD in individuals with an affected first degree relative has been found to be three times higher than in the general population. Genetic factors are known to be involved in CKD pathogenesis, both due to the possible presence of monogenic pathologies as causes of CKD, and to the role of numerous gene variants in determining susceptibility to the development of CKD. The genetic study of CKD patients can represent a useful tool in the hands of the clinician; not only in the diagnostic and prognostic field, but potentially also in guiding therapeutic choices and in designing clinical trials. In this review we discuss the various aspects of the role of genetic analysis on clinical management of patients with CKD with a focus on clinical applications. Several topics are discussed in an effort to provide useful information for daily clinical practice: definition of susceptibility to the development of CKD, identification of unrecognized monogenic diseases, reclassification of the etiological diagnosis, role of pharmacogenetics.
Collapse
Affiliation(s)
- Doloretta Piras
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Correspondence:
| | - Nicola Lepori
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
| | - Gianfranca Cabiddu
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
| | - Antonello Pani
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerce (CNR), 09042 Monserrato, Italy
| |
Collapse
|
24
|
Steers NJ, Gupta Y, D’Agati VD, Lim TY, DeMaria N, Mo A, Liang J, Stevens KO, Ahram DF, Lam WY, Gagea M, Nagarajan L, Sanna-Cherchi S, Gharavi AG. GWAS in Mice Maps Susceptibility to HIV-Associated Nephropathy to the Ssbp2 Locus. J Am Soc Nephrol 2022; 33:108-120. [PMID: 34893534 PMCID: PMC8763192 DOI: 10.1681/asn.2021040543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To gain insight into the pathogenesis of collapsing glomerulopathy, a rare form of FSGS that often arises in the setting of viral infections, we performed a genome-wide association study (GWAS) among inbred mouse strains using a murine model of HIV-1 associated nephropathy (HIVAN). METHODS We first generated F1 hybrids between HIV-1 transgenic mice on the FVB/NJ background and 20 inbred laboratory strains. Analysis of histology, BUN, and urinary NGAL demonstrated marked phenotypic variation among the transgenic F1 hybrids, providing strong evidence for host genetic factors in the predisposition to nephropathy. A GWAS in 365 transgenic F1 hybrids generated from these 20 inbred strains was performed. RESULTS We identified a genome-wide significant locus on chromosome 13-C3 and multiple additional suggestive loci. Crossannotation of the Chr. 13 locus, including single-cell transcriptomic analysis of wildtype and HIV-1 transgenic mouse kidneys, nominated Ssbp2 as the most likely candidate gene. Ssbp2 is highly expressed in podocytes, encodes a transcriptional cofactor that interacts with LDB1 and LMX1B, which are both previously implicated in FSGS. Consistent with these data, older Ssbp2 null mice spontaneously develop glomerulosclerosis, tubular casts, interstitial fibrosis, and inflammation, similar to the HIVAN mouse model. CONCLUSIONS These findings demonstrate the utility of GWAS in mice to uncover host genetic factors for rare kidney traits and suggest Ssbp2 as susceptibility gene for HIVAN, potentially acting via the LDB1-LMX1B transcriptional network.
Collapse
Affiliation(s)
- Nicholas J. Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Natalia DeMaria
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Anna Mo
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Judy Liang
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Kelsey O. Stevens
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Dina F. Ahram
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Wan Yee Lam
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
25
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
26
|
De Vriese AS, Wetzels JF, Glassock RJ, Sethi S, Fervenza FC. Therapeutic trials in adult FSGS: lessons learned and the road forward. Nat Rev Nephrol 2021; 17:619-630. [PMID: 34017116 PMCID: PMC8136112 DOI: 10.1038/s41581-021-00427-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a specific disease entity but a lesion that primarily targets the podocyte. In a broad sense, the causes of the lesion can be divided into those triggered by a presumed circulating permeability factor, those that occur secondary to a process that might originate outside the kidneys, those caused by a genetic mutation in a podocyte or glomerular basement membrane protein, and those that arise through an as yet unidentifiable process, seemingly unrelated to a circulating permeability factor. A careful attempt to correctly stratify patients with FSGS based on their clinical presentation and pathological findings on kidney biopsy is essential for sound treatment decisions in individual patients. However, it is also essential for the rational design of therapeutic trials in FSGS. Greater recognition of the pathophysiology underlying podocyte stress and damage in FSGS will increase the likelihood that the cause of an FSGS lesion is properly identified and enable stratification of patients in future interventional trials. Such efforts will facilitate the identification of effective therapeutic agents.
Collapse
Affiliation(s)
- An S De Vriese
- Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge, Brugge, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Richard J Glassock
- Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
27
|
A girl with a mutation of the ciliary gene CC2D2A presenting with FSGS and nephronophthisis. CEN Case Rep 2021; 11:116-119. [PMID: 34435324 DOI: 10.1007/s13730-021-00640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022] Open
Abstract
Mutations in the ciliary gene TTC21B, NPHP4, and CRB2 cause familial focal and segmental glomerulosclerosis (FSGS). We report a girl with a mutation of the ciliary gene CC2D2A presenting with FSGS and nephronophthisis. The patient had mental retardation, postaxial polydactyly, and ataxic breathing, and was diagnosed as having compound heterozygous CC2D2A missense mutations at age 5. Retrospectively, azotemia at 1 year and proteinuria at 5 years were recorded but not investigated. At age 6, she was referred to the pediatric nephrology service because of hypertension, pretibial pitting edema, heavy proteinuria, and hematuria. eGFR was 66 ml/min/1.73 m2, total protein 5.3 g/dl, albumin 2.4 g/dl, and cholesterol 317 mg/dl. Ultrasonography showed normal-sized kidneys with a cyst in the right. Losartan was started. On renal biopsy, 8 out of 24 glomeruli were globally sclerosed, and three showed segmental sclerosis and/or hyalinosis with no immune deposits. Mild tubular dilatation, tubular atrophy, and interstitial fibrosis were observed. On electron microscopy, glomeruli showed focal foot process effacement with no electron dense deposits. Since losartan did not exert an obvious effect, treatment with prednisolone was tried. Urine protein decreased from 6.6 to 3.7 g/gCr. Prednisolone was discontinued after 10 days, however, because she developed duodenal ulcer perforation that necessitated omentoplasty. Subsequently, she was treated with losartan only. Her renal function deteriorated and peritoneal dialysis was initiated 8 months later. FSGS in this patient could be primary glomerular associated with CC2D2A mutation, rather than the consequences of tubulointerstitial fibrosis.
Collapse
|
28
|
Rechsteiner D, Issler L, Koller S, Lang E, Bähr L, Feil S, Rüegger CM, Kottke R, Toelle SP, Zweifel N, Steindl K, Joset P, Zweier M, Suter AA, Gogoll L, Haas C, Berger W, Gerth-Kahlert C. Genetic Analysis in a Swiss Cohort of Bilateral Congenital Cataract. JAMA Ophthalmol 2021; 139:691-700. [PMID: 34014271 DOI: 10.1001/jamaophthalmol.2021.0385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Identification of geographic population-based differences in genotype and phenotype heterogeneity are important for targeted and patient-specific diagnosis and treatment, counseling, and screening strategies. Objective To report disease-causing variants and their detailed phenotype in patients with bilateral congenital cataract from a single center in Switzerland and thereby draw a genetic map and perform a genotype-phenotype comparison of this cohort. Design, Setting, and Participants This clinical and molecular-genetic cohort study took place through the collaboration of the Department of Ophthalmology at the University Hospital Zurich and the Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland. Thirty-seven patients from 25 families with different types of bilateral congenital cataract were included. All participating family members received a comprehensive eye examination. Whole exome sequencing was performed in the index patients, followed by a filtering process to detect possible disease-associated variants in genes previously described in association with congenital cataract. Probable disease-causing variants were confirmed by Sanger sequencing in available family members. All data were collected from January 2018 to June 2020, and the molecular-genetic analyses were performed from January 2019 to July 2020. Main Outcomes and Measures Identification of the underlying genetic causes of bilateral congenital cataract, including novel disease-causing variants and phenotype correlation. Results Among the 37 patients (18 [49%] male and 19 [51%] female; mean [SD] age, 17.3 [15.9] years) from 25 families, pathogenic variants were detected in 20 families (80% detection rate), which included 13 novel variants in the following genes: BCOR, COL4A1, CRYBA2, CRYBB2, CRYGC, CRYGS, GJA3, MAF, NHS, and WFS1. Putative disease-causing variants were identified in 14 of 20 families (70%) as isolated cases and in 6 of 20 families (30%) with syndromic cases. A recessive variant in the CRYBB2 gene in a consanguineous family with 2 affected siblings showing a nuclear and sutural cataract was reported in contrast to previously published reports. In addition, the effect on splicing in a minigene assay of a novel splice site variant in the NHS gene (c.[719-2A>G]) supported the pathogenicity of this variant. Conclusions and Relevance This study emphasizes the importance of genetic testing of congenital cataracts. Known dominant genes need to be considered for recessive inheritance patterns. Syndromic types of cataract may be underdiagnosed in patients with mild systemic features.
Collapse
Affiliation(s)
- Delia Rechsteiner
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Lydia Issler
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Elena Lang
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Luzy Bähr
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Christoph M Rüegger
- Newborn Research, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland
| | - Sandra P Toelle
- Department of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
| | - Noëmi Zweifel
- Department of Pediatric Surgery, University Children's Hospital, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Aude-Annick Suter
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Cordula Haas
- Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Furlano M, Martínez V, Pybus M, Arce Y, Crespí J, Venegas MDP, Bullich G, Domingo A, Ayasreh N, Benito S, Lorente L, Ruíz P, Gonzalez VL, Arlandis R, Cabello E, Torres F, Guirado L, Ars E, Torra R. Clinical and Genetic Features of Autosomal Dominant Alport Syndrome: A Cohort Study. Am J Kidney Dis 2021; 78:560-570.e1. [PMID: 33838161 DOI: 10.1053/j.ajkd.2021.02.326] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022]
Abstract
RATIONALE & OBJECTIVE Alport syndrome is a common genetic kidney disease accounting for approximately 2% of patients receiving kidney replacement therapy (KRT). It is caused by pathogenic variants in the gene COL4A3, COL4A4, or COL4A5. The aim of this study was to evaluate the clinical and genetic spectrum of patients with autosomal dominant Alport syndrome (ADAS). STUDY DESIGN Retrospective cohort study. SETTING & PARTICIPANTS 82 families (252 patients) with ADAS were studied. Clinical, genetic, laboratory, and pathology data were collected. OBSERVATIONS A pathogenic DNA variant in COL4A3 was identified in 107 patients (35 families), whereas 133 harbored a pathogenic variant in COL4A4 (43 families). Digenic/complex inheritance was observed in 12 patients. Overall, the median kidney survival was 67 (95% CI, 58-73) years, without significant differences across sex (P=0.8), causative genes (P=0.6), or type of variant (P=0.9). Microhematuria was the most common kidney manifestation (92.1%), and extrarenal features were rare. Findings on kidney biopsies ranged from normal to focal segmental glomerulosclerosis. The slope of estimated glomerular filtration rate change was-1.46 (-1.66 to-1.26) mL/min/1.73m2 per year for the overall group, with no significant differences between ADAS genes (P=0.2). LIMITATIONS The relatively small size of this series from a single country, potentially limiting generalizability. CONCLUSIONS Patients with ADAS have a wide spectrum of clinical presentations, ranging from asymptomatic to kidney failure, a pattern not clearly related to the causative gene or type of variant. The diversity of ADAS phenotypes contributes to its underdiagnosis in clinical practice.
Collapse
Affiliation(s)
- Mónica Furlano
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Victor Martínez
- Nephrology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Yolanda Arce
- Department of Pathology, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Jaume Crespí
- Departments of Ophthalmology, Hospital de Sant Pau i la Santa Creu, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - María Del Prado Venegas
- Otolaryngology-Head and Neck Surgery, Hospital de Sant Pau i la Santa Creu, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Gemma Bullich
- Centre Nacional d'Anàlisi Genómica, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Domingo
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Nadia Ayasreh
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Silvia Benito
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Laura Lorente
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Patricia Ruíz
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Vanesa López Gonzalez
- Genetics Laboratory, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Rosa Arlandis
- Nephrology Department, Hospital General de la Palma, Islas Canarias, Spain
| | - Elisa Cabello
- Nephrology Department, Hospital General Universitario de Castellón, Castellón de la Plana, Spain
| | - Ferran Torres
- Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Medical Statistics Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Lluis Guirado
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain.
| | - Roser Torra
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain.
| |
Collapse
|
30
|
Lazaro-Guevara J, Morales JF, Wright AH, Gunville R, Simeone C, Frodsham SG, Pezzolesi MH, Zaffino CA, Al-Rabadi L, Ramkumar N, Pezzolesi MG. Targeted Next-Generation Sequencing Identifies Pathogenic Variants in Diabetic Kidney Disease. Am J Nephrol 2021; 52:239-249. [PMID: 33774617 PMCID: PMC8653779 DOI: 10.1159/000514578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Diabetes is the most common cause of chronic kidney disease (CKD). For patients with diabetes and CKD, the underlying cause of their kidney disease is often assumed to be a consequence of their diabetes. Without histopathological confirmation, however, the underlying cause of their disease is unclear. Recent studies have shown that next-generation sequencing (NGS) provides a promising avenue toward uncovering and establishing precise genetic diagnoses in various forms of kidney disease. METHODS Here, we set out to investigate the genetic basis of disease in nondiabetic kidney disease (NDKD) and diabetic kidney disease (DKD) patients by performing targeted NGS using a custom panel comprising 345 kidney disease-related genes. RESULTS Our analysis identified rare diagnostic variants based on ACMG-AMP guidelines that were consistent with the clinical diagnosis of 19% of the NDKD patients included in this study. Similarly, 22% of DKD patients were found to carry rare pathogenic/likely pathogenic variants in kidney disease-related genes included on our panel. Genetic variants suggestive of NDKD were detected in 3% of the diabetic patients included in this study. DISCUSSION/CONCLUSION Our findings suggest that rare variants in kidney disease-related genes in a diabetic background may play a role in the pathogenesis of DKD and NDKD in patients with diabetes.
Collapse
Affiliation(s)
- Jose Lazaro-Guevara
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Julio Fierro Morales
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - A. Hunter Wright
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - River Gunville
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christopher Simeone
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Scott G. Frodsham
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Melissa H. Pezzolesi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Courtney A. Zaffino
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laith Al-Rabadi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Marcus G. Pezzolesi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
31
|
Li Q, Gulati A, Lemaire M, Nottoli T, Bale A, Tufro A. Rho-GTPase Activating Protein myosin MYO9A identified as a novel candidate gene for monogenic focal segmental glomerulosclerosis. Kidney Int 2021; 99:1102-1117. [PMID: 33412162 DOI: 10.1016/j.kint.2020.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a podocytopathy leading to kidney failure, whose molecular cause frequently remains unresolved. Here, we describe a rare MYO9A loss of function nonsense heterozygous mutation (p.Arg701∗) as a possible contributor to disease in a sibling pair with familial FSGS/proteinuria. MYO9A variants of uncertain significance were identified by whole exome sequencing in a cohort of 94 biopsy proven patients with FSGS. MYO9A is an unconventional myosin with a Rho-GAP domain that controls epithelial cell junction assembly, crosslinks and bundles actin and deactivates the small GTPase protein encoded by the RHOA gene. RhoA activity is associated with cytoskeleton regulation of actin stress fiber formation and actomyosin contractility. Myo9A was detected in mouse and human podocytes in vitro and in vivo. Knockin mice carrying the p.Arg701∗MYO9A (Myo9AR701X) generated by gene editing developed proteinuria, podocyte effacement and FSGS. Kidneys and podocytes from Myo9AR701X/+ mutant mice revealed Myo9A haploinsufficiency, increased RhoA activity, decreased Myo9A-actin-calmodulin interaction, impaired podocyte attachment and migration. Our results indicate that Myo9A is a novel component of the podocyte cytoskeletal apparatus that regulates RhoA activity and podocyte function. Thus, Myo9AR701X/+ knock-in mice recapitulate the proband FSGS phenotype, demonstrate that p.R701X Myo9A is an FSGS-causing mutation in mice and suggest that heterozygous loss-of-function MYO9A mutations may cause a novel form of human autosomal dominant FSGS. Hence, identification of MYO9A pathogenic variants in additional individuals with familial or sporadic FSGS is needed to ascertain the gene contribution to disease.
Collapse
Affiliation(s)
- Qi Li
- Department of Pediatrics, Nephrology Section, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ashima Gulati
- Department of Internal Medicine, Nephrology Section, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mathieu Lemaire
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Timothy Nottoli
- Yale Gene Editing Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Allen Bale
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alda Tufro
- Department of Pediatrics, Nephrology Section, Yale School of Medicine, New Haven, Connecticut, USA; Department of Cell and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
32
|
Abstract
The glomerular filtration barrier is a highly specialized capillary wall comprising fenestrated endothelial cells, podocytes, and an intervening basement membrane. In glomerular disease, this barrier loses functional integrity, allowing the passage of macromolecules and cells, and there are associated changes in both cell morphology and the extracellular matrix. Over the past 3 decades, there has been a transformation in our understanding about glomerular disease, fueled by genetic discovery, and this is leading to exciting advances in our knowledge about glomerular biology and pathophysiology. In current clinical practice, a genetic diagnosis already has important implications for management, ranging from estimating the risk of disease recurrence post-transplant to the life-changing advances in the treatment of atypical hemolytic uremic syndrome. Improving our understanding about the mechanistic basis of glomerular disease is required for more effective and personalized therapy options. In this review, we describe genotype and phenotype correlations for genetic disorders of the glomerular filtration barrier, with a particular emphasis on how these gene defects cluster by both their ontology and patterns of glomerular pathology.
Collapse
Affiliation(s)
- Anna S. Li
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Nephrology, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jack F. Ingham
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
33
|
Murray SL, Fennelly NK, Doyle B, Lynch SA, Conlon PJ. Integration of genetic and histopathology data in interpretation of kidney disease. Nephrol Dial Transplant 2020; 35:1113-1132. [PMID: 32777081 DOI: 10.1093/ndt/gfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
For many years renal biopsy has been the gold standard for diagnosis in many forms of kidney disease. It provides rapid, accurate and clinically useful information in most individuals with kidney disease. However, in recent years, other diagnostic modalities have become available that may provide more detailed and specific diagnostic information in addition to, or instead of, renal biopsy. Genomics is one of these modalities. Previously prohibitively expensive and time consuming, it is now increasingly available and practical in a clinical setting for the diagnosis of inherited kidney disease. Inherited kidney disease is a significant cause of kidney disease, in both the adult and paediatric populations. While individual inherited kidney diseases are rare, together they represent a significant burden of disease. Because of the heterogenicity of inherited kidney disease, diagnosis and management can be a challenge and often multiple diagnostic modalities are needed to arrive at a diagnosis. We present updates in genomic medicine for renal disease, how genetic testing integrates with our knowledge of renal histopathology and how the two modalities may interact to enhance patient care.
Collapse
Affiliation(s)
- Susan L Murray
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| | | | - Brendan Doyle
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Sally Ann Lynch
- National Rare Disease Office Mater Hospital Dublin, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
34
|
Labat-de-Hoz L, Alonso MA. The formin INF2 in disease: progress from 10 years of research. Cell Mol Life Sci 2020; 77:4581-4600. [PMID: 32451589 PMCID: PMC11104792 DOI: 10.1007/s00018-020-03550-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Formins are a conserved family of proteins that primarily act to form linear polymers of actin. Despite their importance to the normal functioning of the cytoskeleton, for a long time, the only two formin genes known to be a genetic cause of human disorders were DIAPH1 and DIAPH3, whose mutation causes two distinct forms of hereditary deafness. In the last 10 years, however, the formin INF2 has emerged as an important target of mutations responsible for the appearance of focal segmental glomerulosclerosis, which are histological lesions associated with glomerulus degeneration that often leads to end-stage renal disease. In some rare cases, focal segmental glomerulosclerosis concurs with Charcot-Marie-Tooth disease, which is a degenerative neurological disorder affecting peripheral nerves. All known INF2 gene mutations causing disease map to the exons encoding the amino-terminal domain. In this review, we summarize the structure, biochemical features and functions of INF2, conduct a systematic and comprehensive analysis of the pathogenic INF2 mutations, including a detailed study exon-by-exon of patient cases and mutations, address the impact of the pathogenic mutations on the structure, regulation and known functions of INF2, draw a series of conclusions that could be useful for INF2-related disease diagnosis, and suggest lines of research for future work on the molecular mechanisms by which INF2 causes disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
35
|
Torra R, Furlano M, Ars E. How genomics reclassifies diseases: the case of Alport syndrome. Clin Kidney J 2020; 13:933-935. [PMID: 33391736 PMCID: PMC7769510 DOI: 10.1093/ckj/sfaa170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 01/15/2023] Open
Abstract
In this issue, Matthews et al. provide a comprehensive review of published cohorts with heterozygous pathogenic variants in COL4A3 or COL4A4, documenting the wide spectrum of the disease. Due to the extreme phenotypes that patients with heterozygous pathogenic variants in COL4A3 or COL4A4 may show, the disease has been referred to in a variety of ways, including 'autosomal dominant Alport syndrome', 'thin basement membrane disease', 'thin basement membrane nephropathy', 'familial benign hematuria' and 'carriers of autosomal dominant Alport syndrome'. This confusion over terminology has prevented nephrologists from being sufficiently aware of the relevance of the entity. Nowadays, however, next-generation sequencing facilitates the diagnosis and it is becoming a relatively frequent finding in haematuric-proteinuric nephropathies of unknown origin, even in non-familial cases. There is a need to raise awareness among nephrologists about the disease in order to improve diagnosis and provide better management for these patients.
Collapse
Affiliation(s)
- Roser Torra
- Department of Nephrology, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Medicine Department-Universitat Autónoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Monica Furlano
- Department of Nephrology, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Medicine Department-Universitat Autónoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autónoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| |
Collapse
|
36
|
Weinstock BA, Feldman DL, Fornoni A, Gross O, Kashtan CE, Lagas S, Lennon R, Miner JH, Rheault MN, Simon JF. Clinical trial recommendations for potential Alport syndrome therapies. Kidney Int 2020; 97:1109-1116. [PMID: 32386680 PMCID: PMC7614298 DOI: 10.1016/j.kint.2020.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Alport syndrome is experiencing a remarkable increase in preclinical investigations. To proactively address the needs of the Alport syndrome community, as well as offer clarity for future clinical research sponsors, the Alport Syndrome Foundation hosted a workshop to generate consensus recommendations for prospective trials for conventional drugs. Opinions of key stakeholders were carefully considered, including those of the biopharmaceutical industry representatives, academic researchers, clinicians, regulatory agency representatives, and-most critically-patients with Alport syndrome. Recommendations were established for preclinical researchers, the use and selection of biomarkers, standards of care, clinical trial designs, trial eligibility criteria and outcomes, pediatric trial considerations, and considerations for patient engagement, recruitment, and treatment. This paper outlines their recommendations.
Collapse
Affiliation(s)
| | | | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Oliver Gross
- Department of Nephrology and Rheumatology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Clifford E Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sharon Lagas
- Alport Syndrome Foundation, Phoenix, Arizona, USA
| | - Rachel Lennon
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, Manchester, England, UK.
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michelle N Rheault
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - James F Simon
- Department of Nephrology and Hypertension, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Marin EP, Cohen E, Dahl N. Clinical Applications of Genetic Discoveries in Kidney Transplantation: a Review. KIDNEY360 2020; 1:300-305. [PMID: 35372915 PMCID: PMC8809267 DOI: 10.34067/kid.0000312019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Growth in knowledge of the genetics of kidney disease has revealed that significant percentages of patients with diverse types of nephropathy have causative mutations. Genetic testing is poised to play an increasing role in the care of patients with kidney disease. The role of genetic testing in kidney transplantation is not well established. This review will explore the ways in which genetic testing may be applied to improve the care of kidney transplant recipients and donors.
Collapse
Affiliation(s)
- Ethan P. Marin
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | | | - Neera Dahl
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
38
|
Chun J, Wang M, Wilkins MS, Knob AU, Benjamin A, Bu L, Pollak MR. Autosomal Dominant Tubulointerstitial Kidney Disease-Uromodulin Misclassified as Focal Segmental Glomerulosclerosis or Hereditary Glomerular Disease. Kidney Int Rep 2020; 5:519-529. [PMID: 32274456 PMCID: PMC7136358 DOI: 10.1016/j.ekir.2019.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/11/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Focal segmental glomerulosclerosis (FSGS) is a histopathologically defined kidney lesion. FSGS can be observed with various underlying causes, including highly penetrant monogenic renal disease. We recently identified pathogenic variants of UMOD, a gene encoding the tubular protein uromodulin, in 8 families with suspected glomerular disease. Methods To validate pathogenic variants of UMOD, we reviewed the clinical and pathology reports of members of 8 families identified to have variants of UMOD. Clinical, laboratory, and pathologic data were collected, and genetic confirmation for UMOD was performed by Sanger sequencing. Results Biopsy-proven cases of FSGS were verified in 21% (7 of 34) of patients with UMOD variants. The UMOD variants seen in 7 families were mutations previously reported in autosomal dominant tubulointerstitial kidney disease-uromodulin (ADTKD-UMOD). For one family with 3 generations affected, we identified p.R79G in a noncanonical transcript variant of UMOD co-segregating with disease. Consistent with ADTKD, most patients in our study presented with autosomal dominant inheritance, subnephrotic range proteinuria, minimal hematuria, and renal impairment. Kidney biopsies showed histologic features of glomerular injury consistent with secondary FSGS, including focal sclerosis and partial podocyte foot process effacement. Conclusion Our study demonstrates that with the use of standard clinical testing and kidney biopsy, clinicians were unable to make the diagnosis of ADTKD-UMOD; patients were often labeled with a clinical diagnosis of FSGS. We show that genetic testing can establish the diagnosis of ADTKD-UMOD with secondary FSGS. Genetic testing in individuals with FSGS histology should not be limited to genes that directly impair podocyte function.
Collapse
Affiliation(s)
- Justin Chun
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Nephrology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Minxian Wang
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Medical and Population Genetics Program of the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maris S Wilkins
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea U Knob
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Ava Benjamin
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Lihong Bu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin R Pollak
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Yu C, Zhuang S. Histone Methyltransferases as Therapeutic Targets for Kidney Diseases. Front Pharmacol 2019; 10:1393. [PMID: 31866860 PMCID: PMC6908484 DOI: 10.3389/fphar.2019.01393] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has demonstrated that epigenetic regulation plays a vital role in gene expression under normal and pathological conditions. Alterations in the expression and activation of histone methyltransferases (HMTs) have been reported in preclinical models of multiple kidney diseases, including acute kidney injury, chronic kidney disease, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Pharmacological inhibition of these enzymes has shown promise in preclinical models of those renal diseases. In this review, we summarize recent knowledge regarding expression and activation of various HMTs and their functional roles in some kidney diseases. The preclinical activity of currently available HMT inhibitors and the mechanisms of their actions are highlighted.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
40
|
Guaragna MS, de Brito Lutaif ACG, de Souza ML, Maciel-Guerra AT, Belangero VMS, Guerra-Júnior G, de Mello MP. Promises and pitfalls of whole-exome sequencing exemplified by a nephrotic syndrome family. Mol Genet Genomics 2019; 295:135-142. [PMID: 31520189 DOI: 10.1007/s00438-019-01609-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023]
Abstract
High-throughput techniques such as whole-exome sequencing (WES) show promise for the identification of candidate genes that underlie Mendelian diseases such as nephrotic syndrome (NS). These techniques have enabled the identification of a proportion of the approximately 54 genes associated with NS. However, the main pitfall of using WES in clinical and research practice is the identification of multiple variants, which hampers interpretation during downstream analysis. One useful strategy is to evaluate the co-inheritance of rare variants in affected family members. Here, we performed WES of a patient with steroid-resistant NS (SRNS) and intermittent microhematuria. Currently, 15 years after kidney transplantation, this patient presents normal kidney function. The patient was found to be homozygous for a rare MYO1E stop-gain variant, and was heterozygous for rare variants in NS-associated genes, COL4A4, KANK1, LAMB2, ANLN, E2F3, and APOL1. We evaluated the presence or absence of these variants in both parents and 11 siblings, three of whom exhibited a milder phenotype of the kidney disease. Analysis of variant segregation in the family, indicated the MYO1E stop-gain variant as the putative causal variant underlying the kidney disease in the patient and two of her affected sisters. Two secondary variants in COL4A4-identified in some other affected family members-require further functional studies to determine whether they play a role in the development of microhematuria in affected family members. Our data illustrate the difficulties in distinguishing the causal pathogenic variants from incidental findings after WES-based variant analysis, especially in heterogenous genetic conditions, such as NS.
Collapse
Affiliation(s)
- Mara Sanches Guaragna
- Laboratory of Human Molecular Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas, UNICAMP, Caixa Postal 6010, 13083-875, Campinas, SP, Brazil.
| | - Anna Cristina Gervásio de Brito Lutaif
- Integrated Center of Pediatric Nephrology (CIN), Department of Pediatrics, School of Medical Sciences (FCM), State University of Campinas, UNICAMP, Campinas, Brazil
| | - Marcela Lopes de Souza
- Laboratory of Human Molecular Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas, UNICAMP, Caixa Postal 6010, 13083-875, Campinas, SP, Brazil
| | | | - Vera Maria Santoro Belangero
- Integrated Center of Pediatric Nephrology (CIN), Department of Pediatrics, School of Medical Sciences (FCM), State University of Campinas, UNICAMP, Campinas, Brazil.,Department of Pediatrics, School of Medical Sciences (FCM), UNICAMP, Campinas, SP, Brazil
| | - Gil Guerra-Júnior
- Department of Pediatrics, School of Medical Sciences (FCM), UNICAMP, Campinas, SP, Brazil.,Growth and Development Laboratory, Center for Investigation in Pediatrics (CIPED), School of Medical Sciences (FCM), UNICAMP, Campinas, SP, Brazil
| | - Maricilda Palandi de Mello
- Laboratory of Human Molecular Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas, UNICAMP, Caixa Postal 6010, 13083-875, Campinas, SP, Brazil
| |
Collapse
|
41
|
Donnan MD, Scott RP, Onay T, Tarjus A, Onay UV, Quaggin SE. Genetic Deletion of Emp2 Does Not Cause Proteinuric Kidney Disease in Mice. Front Med (Lausanne) 2019; 6:189. [PMID: 31508419 PMCID: PMC6718710 DOI: 10.3389/fmed.2019.00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Nephrotic syndrome is one of the most common glomerular diseases in children and can be classified on the basis of steroid responsiveness. While multiple genetic causes have been discovered for steroid resistant nephrotic syndrome, the genetics of steroid sensitive nephrotic syndrome remains elusive. Mutations in Epithelial Membrane Protein 2 (EMP2), a member of the GAS3/PMP22 tetraspan family of proteins, were recently implicated as putative monogenic cause of steroid sensitive nephrotic syndrome. We investigated this hypothesis by developing Emp2 reporter and knockout mouse models. In lacZ reporter mice (engineered to drive expression of the enzyme β-galactosidase under the control of the endogenous murine Emp2 promoter), Emp2 promoter activity was not observed in podocytes but was particularly prominent in medium- and large-caliber arterial vessels in the kidney and other tissues where it localizes specifically in vascular smooth muscle cells (vSMCs) but not in the endothelium. Strong Emp2 expression was also found in non-vascular smooth muscle cells found in other organs like the stomach, bladder, and uterus. Global and podocyte-specific Emp2 knockout mice were viable and did not develop nephrotic syndrome showing no evidence of abnormal glomerular histology or ultrastructure. Altogether, our results do not support that loss of function of EMP2 represent a monogenic cause of proteinuric kidney disease. However, the expression pattern of Emp2 indicates that it may be relevant in smooth muscle function in various organs and tissues including the vasculature.
Collapse
Affiliation(s)
- Michael D Donnan
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rizaldy P Scott
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tuncer Onay
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Antoine Tarjus
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ummiye Venus Onay
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan E Quaggin
- Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|