1
|
Zhong J, Liu J, Mutchler AL, Yang H, Kirabo A, Shelton EL, Kon V. Moving toward a better understanding of renal lymphatics: challenges and opportunities. Pediatr Nephrol 2025:10.1007/s00467-025-06692-7. [PMID: 39899153 DOI: 10.1007/s00467-025-06692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025]
Abstract
The development of lymphatic-specific markers has enabled detailed visualization of the lymphatic vascular network that has greatly enhanced our ability to explore this often-overlooked system. Lymphatics remove fluid, solutes, macromolecules, and cells from the interstitium and return them to circulation. The kidneys have lymphatics. As in other organs, the kidney lymphatic vessels are highly sensitive to changes in the local microenvironment. The sensitivity to its milieu may be especially relevant in kidneys because they are central in regulating fluid homeostasis and clearance of metabolites delivered into and eliminated from the renal interstitial compartment. Numerous physiologic conditions and diseases modify the renal interstitial volume, pressure, and composition that can, in turn, influence the growth and function of the renal lymphatics. The impact of the renal microenvironment is further heightened by the fact that kidneys are encapsulated. This review considers the development, structure, and function of the renal lymphatic vessels and explores how factors within the kidney interstitial compartment modify their structure and functionality. Moreover, although currently there are no pharmaceutical agents that specifically target the lymphatic network, we highlight several medications currently used in children with kidney disease and hypertension that have significant but underappreciated effects on lymphatics.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing Liu
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA
- Department of Nephrology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Ashley L Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Haichun Yang
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elaine L Shelton
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA
| | - Valentina Kon
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA.
| |
Collapse
|
2
|
Ghajar-Rahimi G, Barwinska D, Whipple GE, Kamocka MM, Khan S, Winfree S, Lafontaine J, Soliman RH, Melkonian AL, Zmijewska AA, Cheung MD, Traylor AM, Jiang Y, Yang Z, Bolisetty S, Zarjou A, Lee T, George JF, El-Achkar TM, Agarwal A. Acute kidney injury results in long-term alterations of kidney lymphatics in mice. Am J Physiol Renal Physiol 2024; 327:F869-F884. [PMID: 39323387 PMCID: PMC11563594 DOI: 10.1152/ajprenal.00120.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The long-term effects of a single episode of acute kidney injury (AKI) induced by bilateral ischemia-reperfusion injury (BIRI) on kidney lymphatic dynamics are not known. The purpose of this study was to determine if alterations in kidney lymphatics are sustained in the long term and how they relate to inflammation and injury. Mice underwent BIRI as a model of AKI and were followed up to 9 mo. Although kidney function markers normalized following initial injury, histological analysis revealed sustained tissue damage and inflammation for up to 9 mo. Transcriptional analysis showed both acute and late-stage lymphangiogenesis, supported by increased expression of lymphatic markers, with unique signatures at each phase. Expression of Ccl21a was distinctly upregulated during late-stage lymphangiogenesis. Three-dimensional tissue cytometry confirmed increased lymphatic vessel abundance, particularly in the renal cortex, at early and late timepoints postinjury. In addition, the study identified the formation of tertiary lymphoid structures composed of CCR7+ lymphocytes and observed changes in immune cell composition over time, suggesting a complex and dynamic response to AKI involving tissue remodeling and immune cell involvement. This study provides new insights into the role of lymphatics in the progression of AKI to chronic kidney disease.NEW & NOTEWORTHY Here, we perform the first, comprehensive study of long-term lymphatic dynamics following a single acute kidney injury (AKI) event. Using improved three-dimensional image analysis and an expanded panel of transcriptional markers, we identify multiple stages of lymphatic responses with distinct transcriptional signatures, associations with the immune microenvironment, and collagen deposition. This research advances kidney lymphatic biology, emphasizing the significance of longitudinal studies in understanding AKI and the transition to chronic kidney disease.
Collapse
Affiliation(s)
- Gelare Ghajar-Rahimi
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Grace E Whipple
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Malgorzata M Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Seth Winfree
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Jennifer Lafontaine
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Arin L Melkonian
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna A Zmijewska
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Matthew D Cheung
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yanlin Jiang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zhengqin Yang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Timmy Lee
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, United States
| | - James F George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Creed HA, Kannan S, Tate BL, Godefroy D, Banerjee P, Mitchell BM, Brakenhielm E, Chakraborty S, Rutkowski JM. Single-Cell RNA Sequencing Identifies Response of Renal Lymphatic Endothelial Cells to Acute Kidney Injury. J Am Soc Nephrol 2024; 35:549-565. [PMID: 38506705 PMCID: PMC11149045 DOI: 10.1681/asn.0000000000000325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
SIGNIFICANCE STATEMENT The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
Affiliation(s)
- Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Saranya Kannan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brittany L. Tate
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - David Godefroy
- Inserm UMR1239 (Nordic Laboratory), UniRouen, Normandy University, Mont Saint Aignan, France
| | - Priyanka Banerjee
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Ebba Brakenhielm
- INSERM EnVI, UMR1096, University of Rouen Normandy, Rouen, France
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
4
|
Rossitto G, Bertoldi G, Rutkowski JM, Mitchell BM, Delles C. Sodium, Interstitium, Lymphatics and Hypertension-A Tale of Hydraulics. Hypertension 2024; 81:727-737. [PMID: 38385255 PMCID: PMC10954399 DOI: 10.1161/hypertensionaha.123.17942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Blood pressure is regulated by vascular resistance and intravascular volume. However, exchanges of electrolytes and water between intra and extracellular spaces and filtration of fluid and solutes in the capillary beds blur the separation between intravascular, interstitial and intracellular compartments. Contemporary paradigms of microvascular exchange posit filtration of fluids and solutes along the whole capillary bed and a prominent role of lymphatic vessels, rather than its venous end, for their reabsorption. In the last decade, these concepts have stimulated greater interest in and better understanding of the lymphatic system as one of the master regulators of interstitial volume homeostasis. Here, we describe the anatomy and function of the lymphatic system and focus on its plasticity in relation to the accumulation of interstitial sodium in hypertension. The pathophysiological relevance of the lymphatic system is exemplified in the kidneys, which are crucially involved in the control of blood pressure, but also hypertension-mediated cardiac damage. Preclinical modulation of the lymphatic reserve for tissue drainage has demonstrated promise, but has also generated conflicting results. A better understanding of the hydraulic element of hypertension and the role of lymphatics in maintaining fluid balance can open new approaches to prevent and treat hypertension and its consequences, such as heart failure.
Collapse
Affiliation(s)
- Giacomo Rossitto
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | - Giovanni Bertoldi
- Emergency Medicine and Hypertension, DIMED; Università degli Studi di Padova, Italy
| | | | - Brett M. Mitchell
- Dept. of Medical Physiology, Texas A&M University School of Medicine, USA
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| |
Collapse
|
5
|
Yamada H, Makino SI, Okunaga I, Miyake T, Yamamoto-Nonaka K, Oliva Trejo JA, Tominaga T, Empitu MA, Kadariswantiningsih IN, Kerever A, Komiya A, Ichikawa T, Arikawa-Hirasawa E, Yanagita M, Asanuma K. Beyond 2D: A scalable and highly sensitive method for a comprehensive 3D analysis of kidney biopsy tissue. PNAS NEXUS 2024; 3:pgad433. [PMID: 38193136 PMCID: PMC10772983 DOI: 10.1093/pnasnexus/pgad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
The spatial organization of various cell populations is critical for the major physiological and pathological processes in the kidneys. Most evaluation of these processes typically comes from a conventional 2D tissue cross-section, visualizing a limited amount of cell organization. Therefore, the 2D analysis of kidney biopsy introduces selection bias. The 2D analysis potentially omits key pathological findings outside a 1- to 10-μm thin-sectioned area and lacks information on tissue organization, especially in a particular irregular structure such as crescentic glomeruli. In this study, we introduce an easy-to-use and scalable method for obtaining high-quality images of molecules of interest in a large tissue volume, enabling a comprehensive evaluation of the 3D organization and cellular composition of kidney tissue, especially the glomerular structure. We show that CUBIC and ScaleS clearing protocols could allow a 3D analysis of the kidney tissues in human and animal models of kidney disease. We also demonstrate that the paraffin-embedded human biopsy specimens previously examined via 2D evaluation could be applicable to 3D analysis, showing a potential utilization of this method in kidney biopsy tissue collected in the past. In summary, the 3D analysis of kidney biopsy provides a more comprehensive analysis and a minimized selection bias than 2D tissue analysis. Additionally, this method enables a quantitative evaluation of particular kidney structures and their surrounding tissues, with the potential utilization from basic science investigation to applied diagnostics in nephrology.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Primary Care and Emergency, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shin-ichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Issei Okunaga
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Takafumi Miyake
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kanae Yamamoto-Nonaka
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Juan Alejandro Oliva Trejo
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
| | - Takahiro Tominaga
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Maulana A Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | | | - Aurelien Kerever
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Akira Komiya
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Motoko Yanagita
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
6
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Creed HA, Kannan S, Tate BL, Banerjee P, Mitchell BM, Chakraborty S, Rutkowski JM. Single-cell RNA sequencing identifies response of renal lymphatic endothelial cells to acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544380. [PMID: 37333313 PMCID: PMC10274866 DOI: 10.1101/2023.06.09.544380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The inflammatory response to acute kidney injury (AKI) likely dictates future renal health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Due to the relative sparsity of lymphatic endothelial cells (LECs) in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. Here we characterized murine renal LEC subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI. We validated our findings by qPCR in LECs isolated from both cisplatin-injured and ischemia reperfusion injury, by immunofluorescence, and confirmation in in vitro human LECs. We have identified renal LECs and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin injured conditions. Following AKI, renal LECs alter genes involved endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models are also identified with renal LECs further demonstrating changed gene expression between cisplatin and ischemia reperfusion injury models, indicating the renal LEC response is both specific to where they lie in the lymphatic vasculature and the renal injury type. How LECs respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
|
8
|
Blei F. Update April 2023. Lymphat Res Biol 2023; 21:194-226. [PMID: 37093172 DOI: 10.1089/lrb.2023.29139.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Affiliation(s)
- Francine Blei
- Hassenfeld Children's Hospital at NYU Langone, The Laurence D. And Lori Weider Fink Children's Ambulatory Care Center, New York, New York, USA
| |
Collapse
|
9
|
Donnan MD, Deb DK, Onay T, Scott RP, Ni E, Zhou Y, Quaggin SE. Formation of the glomerular microvasculature is regulated by VEGFR-3. Am J Physiol Renal Physiol 2023; 324:F91-F105. [PMID: 36395385 PMCID: PMC9836230 DOI: 10.1152/ajprenal.00066.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Microvascular dysfunction is a key driver of kidney disease. Pathophysiological changes in the kidney vasculature are regulated by vascular endothelial growth factor receptors (VEGFRs), supporting them as potential therapeutic targets. The tyrosine kinase receptor VEGFR-3, encoded by FLT4 and activated by the ligands VEGF-C and VEGF-D, is best known for its role in lymphangiogenesis. Therapeutically targeting VEGFR-3 to modulate lymphangiogenesis has been proposed as a strategy to treat kidney disease. However, outside the lymphatics, VEGFR-3 is also expressed in blood vascular endothelial cells in several tissues including the kidney. Here, we show that Vegfr-3 is expressed in fenestrated microvascular beds within the developing and adult mouse kidney, which include the glomerular capillary loops. We found that expression levels of VEGFR-3 are dynamic during glomerular capillary loop development, with the highest expression observed during endothelial cell migration into the S-shaped glomerular body. We developed a conditional knockout mouse model for Vegfr-3 and found that loss of Vegfr-3 resulted in a striking glomerular phenotype characterized by aneurysmal dilation of capillary loops, absence of mesangial structure, abnormal interendothelial cell junctions, and poor attachment between glomerular endothelial cells and the basement membrane. In addition, we demonstrated that expression of the VEGFR-3 ligand VEGF-C by podocytes and mesangial cells is dispensable for glomerular development. Instead, VEGFR-3 in glomerular endothelial cells attenuates VEGFR-2 phosphorylation. Together, the results of our study support a VEGF-C-independent functional role for VEGFR-3 in the kidney microvasculature outside of lymphatic vessels, which has implications for clinical therapies that target this receptor.NEW & NOTEWORTHY Targeting VEGFR-3 in kidney lymphatics has been proposed as a method to treat kidney disease. However, expression of VEGFR-3 is not lymphatic-specific. We demonstrated developmental expression of VEGFR-3 in glomerular endothelial cells, with loss of Vegfr-3 leading to malformation of glomerular capillary loops. Furthermore, we showed that VEGFR-3 attenuates VEGFR-2 activity in glomerular endothelial cells independent of paracrine VEGF-C signaling. Together, these data provide valuable information for therapeutic development targeting these pathways.
Collapse
Affiliation(s)
- Michael D Donnan
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Dilip K Deb
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Tuncer Onay
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Rizaldy P Scott
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Eric Ni
- Lake Erie College of Osteopathic Medicine, Greensburg, Pennsylvania
| | - Yalu Zhou
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| |
Collapse
|
10
|
Röck R, Rizzo L, Lienkamp SS. Kidney Development: Recent Insights from Technological Advances. Physiology (Bethesda) 2022; 37:0. [PMID: 35253460 DOI: 10.1152/physiol.00041.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The kidney is a complex organ, and how it forms is a fascinating process. New technologies, such as single-cell transcriptomics, and enhanced imaging modalities are offering new approaches to understand the complex and intertwined processes during embryonic kidney development.
Collapse
Affiliation(s)
- Ruth Röck
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Ludovica Rizzo
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland.,PhD program "Molecular and Translational Biomedicine," Life Science Zurich Graduate School, Zurich, Switzerland
| | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| |
Collapse
|
11
|
Liu J, Yu C. Lymphangiogenesis and Lymphatic Barrier Dysfunction in Renal Fibrosis. Int J Mol Sci 2022; 23:ijms23136970. [PMID: 35805972 PMCID: PMC9267103 DOI: 10.3390/ijms23136970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
As an integral part of the vascular system, the lymphatic vasculature is essential for tissue fluid homeostasis, nutritional lipid assimilation and immune regulation. The composition of the lymphatic vasculature includes fluid-absorbing initial lymphatic vessels (LVs), transporting collecting vessels and anti-regurgitation valves. Although, in recent decades, research has drastically enlightened our view of LVs, investigations of initial LVs, also known as lymphatic capillaries, have been stagnant due to technical limitations. In the kidney, the lymphatic vasculature mainly presents in the cortex, keeping the local balance of fluid, solutes and immune cells. The contribution of renal LVs to various forms of pathology, especially chronic kidney diseases, has been addressed in previous studies, however with diverging and inconclusive results. In this review, we discuss the most recent advances in the proliferation and permeability of lymphatic capillaries as well as their influencing factors. Novel technologies to visualize and measure LVs function are described. Then, we highlight the role of the lymphatic network in renal fibrosis and the crosstalk between kidney and other organs, such as gut and heart.
Collapse
|
12
|
El-Achkar TM, Winfree S, Talukder N, Barwinska D, Ferkowicz MJ, Al Hasan M. Tissue Cytometry With Machine Learning in Kidney: From Small Specimens to Big Data. Front Physiol 2022; 13:832457. [PMID: 35309077 PMCID: PMC8931540 DOI: 10.3389/fphys.2022.832457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Advances in cellular and molecular interrogation of kidney tissue have ushered a new era of understanding the pathogenesis of kidney disease and potentially identifying molecular targets for therapeutic intervention. Classifying cells in situ and identifying subtypes and states induced by injury is a foundational task in this context. High resolution Imaging-based approaches such as large-scale fluorescence 3D imaging offer significant advantages because they allow preservation of tissue architecture and provide a definition of the spatial context of each cell. We recently described the Volumetric Tissue Exploration and Analysis cytometry tool which enables an interactive analysis, quantitation and semiautomated classification of labeled cells in 3D image volumes. We also established and demonstrated an imaging-based classification using deep learning of cells in intact tissue using 3D nuclear staining with 4',6-diamidino-2-phenylindole (DAPI). In this mini-review, we will discuss recent advancements in analyzing 3D imaging of kidney tissue, and how combining machine learning with cytometry is a powerful approach to leverage the depth of content provided by high resolution imaging into a highly informative analytical output. Therefore, imaging a small tissue specimen will yield big scale data that will enable cell classification in a spatial context and provide novel insights on pathological changes induced by kidney disease.
Collapse
Affiliation(s)
- Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Seth Winfree
- Department of Pathology and Microbiology, University of Nebraska Omaha, Omaha, NE, United States
| | - Niloy Talukder
- Department of Computer and Information Science, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Michael J. Ferkowicz
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Mohammad Al Hasan
- Department of Computer and Information Science, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
13
|
Black LM, Farrell ER, Barwinska D, Osis G, Zmijewska AA, Traylor AM, Esman SK, Bolisetty S, Whipple G, Kamocka MM, Winfree S, Spangler DR, Khan S, Zarjou A, El-Achkar TM, Agarwal A. VEGFR3 tyrosine kinase inhibition aggravates cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2021; 321:F675-F688. [PMID: 34658261 PMCID: PMC8714977 DOI: 10.1152/ajprenal.00186.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Laurence M Black
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elisa R Farrell
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Gunars Osis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna A Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie M Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephanie K Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Grace Whipple
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata M Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Daryll R Spangler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|