1
|
Dong Q, Chen C, Taubert M, Bilal M, Kinzig M, Sörgel F, Scherf-Clavel O, Fuhr U, Dokos C. Understanding adefovir pharmacokinetics as a component of a transporter phenotyping cocktail. Eur J Clin Pharmacol 2024; 80:1069-1078. [PMID: 38546841 PMCID: PMC11156719 DOI: 10.1007/s00228-024-03673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 06/09/2024]
Abstract
PURPOSE Adefovir (as dipivoxil) was selected as a probe drug in a previous transporter cocktail phenotyping study to assess renal organic anion transporter 1 (OAT1), with renal clearance (CLR) as the primary parameter describing renal elimination. An approximately 20% higher systemic exposure of adefovir was observed when combined with other cocktail components (metformin, sitagliptin, pitavastatin, and digoxin) compared to sole administration. The present evaluation applied a population pharmacokinetic (popPK) modeling approach to describe adefovir pharmacokinetics as a cocktail component in more detail. METHODS Data from 24 healthy subjects were reanalyzed. After establishing a base model, covariate effects, including the impact of co-administered drugs, were assessed using forward inclusion then backward elimination. RESULTS A one-compartment model with first-order absorption (including lag time) and a combination of nonlinear renal and linear nonrenal elimination best described the data. A significantly higher apparent bioavailability (73.6% vs. 59.0%) and a lower apparent absorption rate constant (2.29 h-1 vs. 5.18 h-1) were identified in the combined period compared to the sole administration period, while no difference was seen in renal elimination. The population estimate for the Michaelis-Menten constant (Km) of the nonlinear renal elimination was 170 nmol/L, exceeding the observed range of adefovir plasma maximum concentration, while the maximum rate (Vmax) of nonlinear renal elimination was 2.40 µmol/h at the median absolute estimated glomerular filtration rate of 105 mL/min. CONCLUSION The popPK modeling approach indicated that the co-administration primarily affected the apparent absorption and/or prodrug conversion of adefovir dipivoxil, resulting in the minor drug-drug interaction observed for adefovir as a victim. However, renal elimination remained unaffected. The high Km value suggests that assessing renal OAT1 activity by CLR has no relevant misspecification error with the cocktail doses used.
Collapse
Affiliation(s)
- Qian Dong
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, Cologne, 50931, Germany.
| | - Chunli Chen
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, Cologne, 50931, Germany
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Max Taubert
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, Cologne, 50931, Germany
| | - Muhammad Bilal
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, Cologne, 50931, Germany
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Martina Kinzig
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Fritz Sörgel
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Oliver Scherf-Clavel
- Department Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377, München, Germany
| | - Uwe Fuhr
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, Cologne, 50931, Germany
| | - Charalambos Dokos
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, Cologne, 50931, Germany
| |
Collapse
|
2
|
Hoogstraten CA, Koenderink JB, van Straaten CE, Scheer-Weijers T, Smeitink JAM, Schirris TJJ, Russel FGM. Pyruvate dehydrogenase is a potential mitochondrial off-target for gentamicin based on in silico predictions and in vitro inhibition studies. Toxicol In Vitro 2024; 95:105740. [PMID: 38036072 DOI: 10.1016/j.tiv.2023.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
During the drug development process, organ toxicity leads to an estimated failure of one-third of novel chemical entities. Drug-induced toxicity is increasingly associated with mitochondrial dysfunction, but identifying the underlying molecular mechanisms remains a challenge. Computational modeling techniques have proven to be a good tool in searching for drug off-targets. Here, we aimed to identify mitochondrial off-targets of the nephrotoxic drugs tenofovir and gentamicin using different in silico approaches (KRIPO, ProBis and PDID). Dihydroorotate dehydrogenase (DHODH) and pyruvate dehydrogenase (PDH) were predicted as potential novel off-target sites for tenofovir and gentamicin, respectively. The predicted targets were evaluated in vitro, using (colorimetric) enzymatic activity measurements. Tenofovir did not inhibit DHODH activity, while gentamicin potently reduced PDH activity. In conclusion, the use of in silico methods appeared a valuable approach in predicting PDH as a mitochondrial off-target of gentamicin. Further research is required to investigate the contribution of PDH inhibition to overall renal toxicity of gentamicin.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Jan B Koenderink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Carolijn E van Straaten
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Tom Scheer-Weijers
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Jan A M Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Khondrion BV, Nijmegen 6525 EX, the Netherlands
| | - Tom J J Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands.
| |
Collapse
|
3
|
Dou T, Lian T, Shu S, He Y, Jiang J. The substrate and inhibitor binding mechanism of polyspecific transporter OAT1 revealed by high-resolution cryo-EM. Nat Struct Mol Biol 2023; 30:1794-1805. [PMID: 37845412 PMCID: PMC11406556 DOI: 10.1038/s41594-023-01123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Organic anion transporters (OATs) of the SLC22 family have crucial roles in the transport of organic anions, including metabolites and therapeutic drugs, and in transporter-mediated drug-drug interactions. In the kidneys, OATs facilitate the elimination of metabolic waste products and xenobiotics. However, their transport activities can lead to the accumulation of certain toxic compounds within cells, causing kidney damage. Moreover, OATs are important drug targets, because their inhibition modulates the elimination or retention of substrates linked to diseases. Despite extensive research on OATs, the molecular basis of their substrate and inhibitor binding remains poorly understood. Here we report the cryo-EM structures of rat OAT1 (also known as SLC22A6) and its complexes with para-aminohippuric acid and probenecid at 2.1, 2.8 and 2.9 Å resolution, respectively. Our findings reveal a highly conserved substrate binding mechanism for SLC22 transporters, wherein four aromatic residues form a cage to accommodate the polyspecific binding of diverse compounds.
Collapse
Affiliation(s)
- Tongyi Dou
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Tengfei Lian
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Shi Shu
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Hsin CH, Kuehne A, Gu Y, Jedlitschky G, Hagos Y, Gründemann D, Fuhr U. In vitro validation of an in vivo phenotyping drug cocktail for major drug transporters in humans. Eur J Pharm Sci 2023; 186:106459. [PMID: 37142000 DOI: 10.1016/j.ejps.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Cocktails of transporter probe drugs are used in vivo to assess transporter activity and respective drug-drug interactions. An inhibitory effect of components on transporter activities should be ruled out. Here, for a clinically tested cocktail consisting of adefovir, digoxin, metformin, sitagliptin, and pitavastatin, inhibition of major transporters by individual probe substrates was investigated in vitro. METHODS Transporter transfected HEK293 cells were used in all evaluations. Cell-based assays were applied for uptake by human organic cation transporters 1/2 (hOCT1/2), organic anion transporters 1/3 (hOAT1/3), multidrug and toxin extrusion proteins 1/2K (hMATE1/2K), and organic anion transporter polypeptide 1B1 (hOATP1B1). For P-glycoprotein (hMDR1) a cell-based efflux assay was used whereas an inside-out vesicle-based assay was used for the bile salt export pump (hBSEP). All assays used standard substrates and established inhibitors (as positive controls). Inhibition experiments using clinically achievable concentrations of potential perpetrators at the relevant transporter expression site were carried out initially. If there was a significant effect, the inhibition potency (Ki) was studied in detail. RESULTS In the inhibition tests, only sitagliptin had an effect and reduced hOCT1- and hOCT2- mediated metformin uptake and hMATE2K mediated MPP+ uptake by more than 70%, 80%, and 30%, respectively. The ratios of unbound Cmax (observed clinically) to Ki of sitagliptin were low with 0.009, 0.03, and 0.001 for hOCT1, hOCT2, and hMATE2K, respectively. CONCLUSION The inhibition of hOCT2 in vitro by sitagliptin is in agreement with the borderline inhibition of renal metformin elimination observed clinically, supporting a dose reduction of sitagliptin in the cocktail.
Collapse
Affiliation(s)
- Chih-Hsuan Hsin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | | | - Yi Gu
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | | - Dirk Gründemann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany.
| |
Collapse
|
5
|
Zirconium Molybdate Nanocomposites’ Sensing Platform for the Sensitive and Selective Electrochemical Detection of Adefovir. Molecules 2022; 27:molecules27186022. [PMID: 36144756 PMCID: PMC9503393 DOI: 10.3390/molecules27186022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Adefovir (ADV) is an anti-retroviral drug, which can be used to treat acquired immune deficiency syndrome (AIDS) and chronic hepatitis B (CHB), so its quantitative analysis is of great significance. In this work, zirconium molybdate (ZrMo2O8) was synthesized by a wet chemical method, and a composite with multi-walled carbon nanotubes (MWCNTs) was made. ZrMo2O8-MWCNTs composite was dropped onto the surface of a glassy carbon electrode (GCE) to prepare ZrMo2O8-MWCNTs/GCE, and ZrMo2O8-MWCNTs/GCE was used in the electrochemical detection of ADV for the first time. The preparation method is fast and simple. The materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and cyclic voltammetry (CV). It was electrochemically analysed by differential pulse voltammetry (DPV). Compared with single-material modified electrodes, ZrMo2O8-MWCNTs/GCE showed a vastly improved electrochemical response to ADV. Moreover, the sensor complements the study of the electrochemical detection of ADV. Under optimal conditions, the proposed electrochemical method showed a wide linear range (from 1 to 100 μM) and a low detection limit (0.253 μM). It was successfully tested in serum and urine. In addition, the sensor has the advantages of a simple preparation, fast response, good reproducibility and repeatability. It may be helpful in the potential applications of other substances with similar structures.
Collapse
|
6
|
Mally A, Jarzina S. Mapping Adverse Outcome Pathways for Kidney Injury as a Basis for the Development of Mechanism-Based Animal-Sparing Approaches to Assessment of Nephrotoxicity. FRONTIERS IN TOXICOLOGY 2022; 4:863643. [PMID: 35785263 PMCID: PMC9242087 DOI: 10.3389/ftox.2022.863643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).
Collapse
|
7
|
Lawrence M, Elhendawi M, Morlock M, Liu W, Liu S, Palakkan A, Seidl L, Hohenstein P, Sjögren A, Davies J. Human iPSC-derived renal organoids engineered to report oxidative stress can predict drug-induced toxicity. iScience 2022; 25:103884. [PMID: 35243244 PMCID: PMC8861638 DOI: 10.1016/j.isci.2022.103884] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/10/2021] [Accepted: 02/03/2022] [Indexed: 01/08/2023] Open
Abstract
Advances in regenerative medicine have led to the construction of many types of organoids, which reproduce important aspects of endogenous organs but may be limited or disorganized in nature. While their usefulness for restoring function remains unclear, they have undoubted usefulness in research, diagnostics, and toxicology. In toxicology, there is an urgent need for better models for human kidneys. We used human iPS-cell (hiPSC)-derived renal organoids to identify HMOX1 as a useful marker of toxic stress via the oxidative stress pathway, and then constructed an HMOX1 reporter in hiPSCs. We used two forms of hiPSC-derived HMOX1-reporter renal organoids to probe their ability to detect nephrotoxicants in a panel of blind-coded compounds. Our results highlight the potential usefulness, and some limitations, of HMOX1-reporter renal organoids as screening tools. The results may guide development of similar stress-reporting organoid assays for other stem-cell-derived organs and tissues.
Collapse
Affiliation(s)
- M.L. Lawrence
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - M. Elhendawi
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - M. Morlock
- R&D Graduate, R&D, AstraZeneca, Gothenburg, Sweden
| | - W. Liu
- SynthSys Centre for Synthetic and Systems Biology, UK Centre for Mammalian Synthetic Biology, School of Biological Sciences, University of Edinburgh, C.H Waddington Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - S. Liu
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - A. Palakkan
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - L.F. Seidl
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - P. Hohenstein
- Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - A.K. Sjögren
- CVRM Safety, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - J.A. Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| |
Collapse
|
8
|
Kidney Transporters Drug Discovery, Development, and Safety. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Glucocorticoid-Induced Hypokalemic Periodic Paralysis after Short-Term Use of Tenofovir with Hypophosphatemia: A Case Report. Medicina (B Aires) 2021; 58:medicina58010052. [PMID: 35056361 PMCID: PMC8777751 DOI: 10.3390/medicina58010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Hypokalemic periodic paralysis (HPP) is a neuromuscular disorder associated with muscular dysfunction caused by hypokalemia. There are various causes of HPPs and rarely, HPP appears to be relevant to tenofovir or glucocorticoid treatment. There have been several case reports of tenofovir-related nephrotoxicity or tenofovir-induced HPP. However, a case report of glucocorticoid-induced HPP in a patient using tenofovir temporarily has not been reported. Herein, we report a case of glucocorticoid-induced HPP with short-term use of tenofovir. A 28-year-old man visited the emergency room with decreased muscle power in all extremities (2/5 grade). In their past medical history, the patient was treated with tenofovir for two months for a hepatitis B virus infection. At the time of the visit, the drug had been discontinued for four months. The day before visiting the emergency room, betamethasone was administered at a local clinic for herpes on the lips. Laboratory tests showed hypokalemia, hypophosphatemia, and mild metabolic acidosis. However, urinalysis revealed no abnormal findings. Consequently, it can be postulated that this patient developed HPP by glucocorticoids after taking tenofovir temporarily. This is the first case report of glucocorticoid-induced HPP in a patient using tenofovir. Clinicians who prescribe tenofovir should be aware of HPP occurring when glucocorticoids are used.
Collapse
|
10
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
11
|
Abstract
Drug induced kidney injury is one of the leading causes of failure of drug development programs in the clinic. Early prediction of renal toxicity potential of drugs is crucial to the success of drug candidates in the clinic. The dynamic nature of the functioning of the kidney and the presence of drug uptake proteins introduce additional challenges in the prediction of renal injury caused by drugs. Renal injury due to drugs can be caused by a wide variety of mechanisms and can be broadly classified as toxic or obstructive. Several biomarkers are available for in vitro and in vivo detection of renal injury. In vitro static and dynamic (microfluidic) cellular models and preclinical models can provide valuable information regarding the toxicity potential of drugs. Differences in pharmacology and subsequent disconnect in biomarker response, differences in the expression of transporter and enzyme proteins between in vitro to in vivo systems and between preclinical species and humans are some of the limitations of current experimental models. The progress in microfluidic (kidney-on-chip) platforms in combination with the ability of 3-dimensional cell culture can help in addressing some of these issues in the future. Finally, newer in silico and computational techniques like physiologically based pharmacokinetic modeling and machine learning have demonstrated potential in assisting prediction of drug induced kidney injury.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Drug Metabolism and Pharmacokinetics, Millennium Pharmaceuticals, a fully owned subsidiary of Takeda Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
12
|
Song K, Yan Q, Yang Y, Lv M, Chen Y, Dai Y, Zhang L, Huang Y, Zhang C, Gao H. Fanconi syndrome induced by adefovir dipivoxil: a case report and clinical review. J Int Med Res 2021; 48:300060520954713. [PMID: 33100076 PMCID: PMC7607140 DOI: 10.1177/0300060520954713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
More than 150 cases of Fanconi syndrome (FS) or hypophosphatemia osteomalacia induced by low-dose adefovir dipivoxil (ADV) have been reported since 2002, when ADV was introduced for the long-term treatment of hepatitis B virus (HBV) infection. Because the life expectancy of HBV-infected individuals has increased, the adverse effects of long-term treatment with antiviral therapies are increasingly observed, and nephrotoxicity is one of the most severe adverse effects of ADV. Therefore, the number of cases may be far higher than reported. Moreover, ADV-induced FS is often misdiagnosed or diagnosed long after it first develops. ADV-induced FS may seriously decrease patient quality of life and lead to bone fractures and even disability. Although progress has been made in the identification of biomarkers and treatments, few systematic clinical guidelines or clinical reviews for FS induced by ADV have been reported. In this study, we highlighted the recent progress toward understanding of FS induced by ADV, described a clinical case, and summarized the primary characteristics and laboratory findings of this disease.
Collapse
Affiliation(s)
- Kaixin Song
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyue Lv
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyu Gao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Eke AC, Shoji K, Best BM, Momper JD, Stek AM, Cressey TR, Mirochnick M, Capparelli EV. Population Pharmacokinetics of Tenofovir in Pregnant and Postpartum Women Using Tenofovir Disoproxil Fumarate. Antimicrob Agents Chemother 2021; 65:e02168-20. [PMID: 33318014 PMCID: PMC8092509 DOI: 10.1128/aac.02168-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacokinetics of drugs can be affected by physiologic changes during pregnancy. Our aim was to assess the influence of covariates on tenofovir (TFV) pharmacokinetics in pregnant and postpartum women receiving tenofovir disoproxil fumarate (TDF). Population pharmacokinetic parameter estimates and the influence of covariates were assessed using nonlinear mixed-effects modeling (NONMEM 7.4). Forty-six women had intensive pharmacokinetic evaluations during the second and third trimesters of pregnancy, with another evaluation postpartum. A two-compartment pharmacokinetic model with allometric scaling for body weight and first-order absorption best described the tenofovir plasma concentration data. Apparent oral clearance (CL/F) and volume of distribution at steady state (Vss/F) were increased during pregnancy. Weight, serum creatinine (SCr), pregnancy, albumin, and age were associated with TFV CL/F during univariate assessment, but in the multivariate analysis, changes in CL/F and Vss/F were only associated with increased body weight and enhanced renal function. Due to greater weight and lower SCr during pregnancy, CL/F was 28% higher during pregnancy than postpartum. In the final model, CL/F (liters per hour) was described as 2.07 × (SCr/0.6)0.65 × weight0.75, with a low between-subject variability (BSV) of 24%. The probability of target attainment (proportion exceeding area under the concentration-time curve of >1.99 μg·h/ml, the 10th percentile of average TFV exposure for nonpregnant historical controls) was 68%, 80%, 87%, and 93% above the target with 300 mg, 350 mg, 400 mg, and 450 mg of TDF, respectively, during pregnancy and 88%, 92%, 96%, and 98% above the target with same doses in postpartum women. Dose adjustment of TDF during pregnancy is not generally warranted, but any modification should be based on weight and renal function. (This study has been registered at ClinicalTrials.gov under identifier NCT00042289.).
Collapse
Affiliation(s)
- Ahizechukwu C Eke
- Division of Maternal Fetal Medicine, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Doctoral Training Program (PhD), Graduate Training Program in Clinical Investigation (GTPCI), Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Kensuke Shoji
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Brookie M Best
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California, USA
- Pediatrics Department, University of California San Diego-Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jeremiah D Momper
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California, USA
| | - Alice M Stek
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Tim R Cressey
- PHPT/IRD UMI 174, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Mark Mirochnick
- Division of Neonatology, Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Edmund V Capparelli
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California, USA
- Pediatrics Department, University of California San Diego-Rady Children's Hospital San Diego, San Diego, California, USA
| |
Collapse
|
14
|
Kawasaki T, Kondo M, Hiramatsu R, Nabekura T. (-)-Epigallocatechin-3-gallate Inhibits Human and Rat Renal Organic Anion Transporters. ACS OMEGA 2021; 6:4347-4354. [PMID: 33623845 PMCID: PMC7893792 DOI: 10.1021/acsomega.0c05586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 05/15/2023]
Abstract
Organic anion transporter 1 (OAT1, SLC22A6) and 3 (OAT3, SLC22A8) are multispecific drug transporters highly expressed on the basolateral membranes of the renal proximal tubules. OAT1 and OAT3 mediate the tubular secretion of clinically significant drugs; thus, they influence the pharmacokinetics of drugs and further determine their efficacy and toxicity. OAT1 and OAT3 are also the target of drug-drug interactions. In this study, we examined the effects of the tea catechin (-)-epigallocatechin-3-gallate (EGCG) on human (h) and rat (r) OAT1 and OAT3 using the fluorescent organic anion 6-carboxyfluorescein (6-CF) and hOAT1-, hOAT3-, rOat1-, or rOat3-expressing HEK293 cells and on renal elimination of 6-CF in rats. 6-CF is transported by hOAT1, hOAT3, rOat1, and rOat3. 6-CF is urinary excreted by Oats in rats. EGCG, a dominant catechin in green tea leaf, inhibits human and rat OAT1 and OAT3 and reduces the renal elimination of 6-CF in rats. Our findings are useful for the assessment of food-drug interactions mediated by renal OATs.
Collapse
Affiliation(s)
- Tatsuya Kawasaki
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Masaki Kondo
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Rioka Hiramatsu
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Tomohiro Nabekura
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| |
Collapse
|
15
|
Groaz E, De Jonghe S. Overview of Biologically Active Nucleoside Phosphonates. Front Chem 2021; 8:616863. [PMID: 33490040 PMCID: PMC7821050 DOI: 10.3389/fchem.2020.616863] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The use of the phosphonate motif featuring a carbon-phosphorous bond as bioisosteric replacement of the labile P–O bond is widely recognized as an attractive structural concept in different areas of medicinal chemistry, since it addresses the very fundamental principles of enzymatic stability and minimized metabolic activation. This review discusses the most influential successes in drug design with special emphasis on nucleoside phosphonates and their prodrugs as antiviral and cancer treatment agents. A description of structurally related analogs able to interfere with the transmission of other infectious diseases caused by pathogens like bacteria and parasites will then follow. Finally, molecules acting as agonists/antagonists of P2X and P2Y receptors along with nucleotidase inhibitors will also be covered. This review aims to guide readers through the fundamentals of nucleoside phosphonate therapeutics in order to inspire the future design of molecules to target infections that are refractory to currently available therapeutic options.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The Role of Mitochondria in Drug-Induced Kidney Injury. Front Physiol 2020; 11:1079. [PMID: 33013462 PMCID: PMC7500167 DOI: 10.3389/fphys.2020.01079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The kidneys utilize roughly 10% of the body’s oxygen supply to produce the energy required for accomplishing their primary function: the regulation of body fluid composition through secreting, filtering, and reabsorbing metabolites and nutrients. To ensure an adequate ATP supply, the kidneys are particularly enriched in mitochondria, having the second highest mitochondrial content and thus oxygen consumption of our body. The bulk of the ATP generated in the kidneys is consumed to move solutes toward (reabsorption) or from (secretion) the peritubular capillaries through the concerted action of an array of ATP-binding cassette (ABC) pumps and transporters. ABC pumps function upon direct ATP hydrolysis. Transporters are driven by the ion electrochemical gradients and the membrane potential generated by the asymmetric transport of ions across the plasma membrane mediated by the ATPase pumps. Some of these transporters, namely the polyspecific organic anion transporters (OATs), the organic anion transporting polypeptides (OATPs), and the organic cation transporters (OCTs) are highly expressed on the proximal tubular cell membranes and happen to also transport drugs whose levels in the proximal tubular cells can rapidly rise, thereby damaging the mitochondria and resulting in cell death and kidney injury. Drug-induced kidney injury (DIKI) is a growing public health concern and a major cause of drug attrition in drug development and post-marketing approval. As part of the article collection “Mitochondria in Renal Health and Disease,” here, we provide a critical overview of the main molecular mechanisms underlying the mitochondrial damage caused by drugs inducing nephrotoxicity.
Collapse
Affiliation(s)
- Zhibo Gai
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ting Gui
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers. These strategies can increase aqueous drug solubility and stability of many hydrophobic drugs for topical ophthalmic formulations. AREAS COVERED The article discusses various ocular barriers, ocular influx, and efflux transporters. It elaborates various prodrug strategies used for enhancing drug absorption. Along with this, the article also describes nanomicellar formulation, its characteristic and advantages, and applications in for anterior and posterior segment drug delivery. EXPERT OPINION Prodrugs and nanomicellar formulations provide an effective strategy for improving drug absorption and drug bioavailability across various ocular barriers. It will be exciting to see the efficacy of nanomicelles for treating back of the eye disorders after their topical application. This is considered as a holy grail of ocular drug delivery due to the dynamic and static ocular barriers, restricting posterior entry of topically applied drug formulations.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
18
|
Fujiwara K, Yamamoto Y, Saita T, Matsufuji S. Metabolism and disposition of oseltamivir (OS) in rats, determined by immunohistochemistry with monospecific antibody for OS or its active metabolite oseltamivir carboxylate (OC): A possibility of transporters dividing the drugs' excretion into the bile and kidney. Pharmacol Res Perspect 2020; 8:e00597. [PMID: 32489006 PMCID: PMC7266928 DOI: 10.1002/prp2.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 01/19/2023] Open
Abstract
Among any drugs, no comparative pharmacological study on how prodrug and its active metabolite behave in animal bodies is available. Immunohistochemistry (IHCs) using newly prepared two monoclonal antibodies, AOS‐96 and AOC‐160, monospecific for oseltamivir (OS) and its metabolite oseltamivir carboxylate (OC) were developed, simultaneously detecting the uptake or excretion of OS and OC in the intestine, liver, and kidney of rats to which OS was orally administered. In the intestine, IHC for OS revealed OS highly distributed to the absorptive epithelia with heavily stained cytoplasmic small granules (CSGs). IHC for OC showed that OC also distributed highly in the epithelia, but without CSGs, suggesting that OS was partly converted to OC in the cells. In the liver, OS distributed in the hepatocytes and on their bile capillaries, as well as on the lumina from the bile capillaries to the interlobular bile ducts. OC distributed in the whole cell of the hepatocytes, but without CSGs nor on any lumina through the interlobular bile ducts. In the kidney, a few levels of OS distributed in the cytoplasm of almost all the renal tubule cells, but they contained numerous CSGs. In contrast, OC distributed highly in the proximal tubules, but very slightly in the lower renal tubules of the nephrons. Thus, it was concluded that the two drugs behave in completely different ways in rat bodies. This paper also discusses a possibility of the correlation of OS or OC levels in tissue cells with their known transporters.
Collapse
Affiliation(s)
- Kunio Fujiwara
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Yutaro Yamamoto
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Tetsuya Saita
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Senya Matsufuji
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Antonescu IE, Karlgren M, Pedersen ML, Simoff I, Bergström CAS, Neuhoff S, Artursson P, Steffansen B, Nielsen CU. Acamprosate Is a Substrate of the Human Organic Anion Transporter (OAT) 1 without OAT3 Inhibitory Properties: Implications for Renal Acamprosate Secretion and Drug-Drug Interactions. Pharmaceutics 2020; 12:pharmaceutics12040390. [PMID: 32344570 PMCID: PMC7238232 DOI: 10.3390/pharmaceutics12040390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023] Open
Abstract
Acamprosate is an anionic drug substance widely used in treating symptoms of alcohol withdrawal. It was recently shown that oral acamprosate absorption is likely due to paracellular transport. In contrast, little is known about the eliminating mechanism clearing acamprosate from the blood in the kidneys, despite the fact that studies have shown renal secretion of acamprosate. The hypothesis of the present study was therefore that renal organic anion transporters (OATs) facilitate the renal excretion of acamprosate in humans. The aim of the present study was to establish and apply OAT1 (gene product of SLC22A6) and OAT3 (gene product of SLC22A8) expressing cell lines to investigate whether acamprosate is a substrate or inhibitor of OAT1 and/or OAT3. The studies were performed in HEK293-Flp-In cells stably transfected with SLC22A6 or SLC22A8. Protein and functional data showed that the established cell lines are useful for studying OAT1- and OAT3-mediated transport in bi-laboratory studies. Acamprosate inhibited OAT1-mediated p-aminohippuric acid (PAH) uptake but did not inhibit substrate uptake via OAT3 expressing cells, neither when applied concomitantly nor after a 3 h preincubation with acamprosate. The uptake of PAH via OAT1 was inhibited in a competitive manner by acamprosate and cellular uptake studies showed that acamprosate is a substrate for OAT1 with a Km-value of approximately 700 µM. Probenecid inhibited OAT1-mediated acamprosate uptake with a Ki-value of approximately 13 µM, which may translate into an estimated clinically significant DDI index. In conclusion, acamprosate was identified as a substrate of OAT1 but not OAT3.
Collapse
Affiliation(s)
- Irina E. Antonescu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (I.E.A.); (M.L.P.)
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden; (M.K.); (C.A.S.B.); (P.A.)
| | - Maria L. Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (I.E.A.); (M.L.P.)
| | - Ivailo Simoff
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden;
| | - Christel A. S. Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden; (M.K.); (C.A.S.B.); (P.A.)
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden; (M.K.); (C.A.S.B.); (P.A.)
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden;
| | | | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (I.E.A.); (M.L.P.)
- Correspondence: ; Tel.: +45-6550-9427
| |
Collapse
|
20
|
Han LW, Gao C, Zhang Y, Wang J, Mao Q. Transport of Bupropion and its Metabolites by the Model CHO and HEK293 Cell Lines. Drug Metab Lett 2020; 13:25-36. [PMID: 30488806 DOI: 10.2174/1872312813666181129101507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Bupropion (BUP) is widely used as an antidepressant and smoking cessation aid. There are three major pharmacologically active metabolites of BUP, Erythrohydrobupropion (EB), Hydroxybupropion (OHB) and Threohydrobupropion (TB). At present, the mechanisms underlying the overall disposition and systemic clearance of BUP and its metabolites have not been well understood, and the role of transporters has not been studied. OBJECTIVE The goal of this study was to investigate whether BUP and its active metabolites are substrates of the major hepatic uptake and efflux transporters. METHOD CHO or HEK293 cell lines or plasma membrane vesicles that overexpress OATP1B1, OATP1B3, OATP2B1, OATP4A1, OCT1, BCRP, MRP2 or P-gp were used in cellular or vesicle uptake and inhibition assays. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) was used to quantify transport activity. RESULTS BUP and its major active metabolites were actively transported into the CHO or HEK293 cells overexpressing OATP1B1, OATP1B3 or OATP2B1; however, such cellular active uptake could not be inhibited at all by prototypical inhibitors of any of the OATP transporters. These compounds were not transported by OCT1, BCRP, MRP2 or P-gp either. These results suggest that the major known hepatic transporters likely play a minor role in the overall disposition and systemic clearance of BUP and its active metabolites in humans. We also demonstrated that BUP and its metabolites were not transported by OATP4A1, an uptake transporter on the apical membrane of placental syncytiotrophoblasts, suggesting that OATP4A1 is not responsible for the transfer of BUP and its metabolites from the maternal blood to the fetal compartment across the placental barrier in pregnant women. CONCLUSION BUP and metabolites are not substrates of the major hepatic transporters tested and thus these hepatic transporters likely do not play a role in the overall disposition of the drug. Our results also suggest that caution should be taken when using the model CHO and HEK293 cell lines to evaluate potential roles of transporters in drug disposition.
Collapse
Affiliation(s)
- Lyrialle W Han
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Chunying Gao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Yuchen Zhang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Joanne Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
21
|
Alcamo AM, Wolf MS, Alessi LJ, Chong HJ, Green M, Williams JV, Simon DW. Successful Use of Cidofovir in an Immunocompetent Child With Severe Adenoviral Sepsis. Pediatrics 2020; 145:peds.2019-1632. [PMID: 31826930 PMCID: PMC6939840 DOI: 10.1542/peds.2019-1632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 01/22/2023] Open
Abstract
Adenovirus infection is common in childhood and is generally associated with self-limited disease. Cidofovir, a viral DNA polymerase inhibitor, is used to treat adenovirus infection in select populations but is not often recommended for immunocompetent patients because of limited antiviral activity and nephrotoxicity. Here, we report a case of fulminant adenovirus infection associated with lymphopenia and multiple organ failure requiring extracorporeal membrane oxygenation support in a previously healthy child. After 1 week of supportive therapy, the patient had persistent organ failure and continued to have adenoviremia of >560 000 copies per mL. Weekly doses of cidofovir with concurrent probenecid for renal protection was initiated. Adenovirus blood load declined after the first cidofovir dose, becoming undetectable after 3 doses. The patient was successfully decannulated from extracorporeal membrane oxygenation, extubated, and eventually discharged at his functional baseline without need for ongoing respiratory support. Lymphopenia improved after viremia resolved, and a subsequent immunologic workup revealed no evidence of primary immunodeficiency. The viral isolate was genotyped as adenovirus type 7. This case reveals the successful use of cidofovir for management of severe adenovirus infection in a previously healthy child. To date, there are no universally accepted recommendations for the use of cidofovir in this population. Further study is warranted to determine the potential role of cidofovir in treating severe adenovirus infections in immunocompetent children.
Collapse
Affiliation(s)
- Alicia M. Alcamo
- Departments of Critical Care Medicine and,Contributed equally as co-first authors
| | - Michael S. Wolf
- Departments of Critical Care Medicine and,Contributed equally as co-first authors
| | | | - Hey J. Chong
- Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Green
- Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John V. Williams
- Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
22
|
Leowattana W. Antiviral Drugs and Acute Kidney Injury (AKI). Infect Disord Drug Targets 2019; 19:375-382. [PMID: 31288730 DOI: 10.2174/1871526519666190617154137] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023]
Abstract
The introduction of more efficient antiviral drugs are common cause drug-induced
acute kidney injury (AKI). The true prevalence of antiviral drugs induced nephrotoxicity is hardly
determined. It causes AKI by many mechanisms including acute tubular necrosis (ATN), allergic
interstitial nephritis (AIN), and crystal nephropathy. ATN has been described with a few kinds of
antiviral drugs such as cidofovir, adefovir and tenofovir with unique effects on transporter defects,
apoptosis, and mitochondrial injury. AIN from atazanavir is a rapid onset of AKI and usually nonoliguric
but dialytic therapy are needed because of severity. Additionally, crystal nephropathy
from acyclovir, indinavir, and foscarnet can cause AKI due to intratubular obstruction. In this article,
the mechanisms of antiviral drug-induced AKI were reviewed and strategies for preventing
AKI were mentioned.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Rajavithi Road, Rachatawee, Bangkok 10400, Thailand
| |
Collapse
|
23
|
Mak LY, Liu SH, Yap DYH, Seto WK, Wong DKH, Fung J, Chan TM, Lai CL, Yuen MF. In Vitro and In Vivo Renoprotective Effects of Telbivudine in Chronic Hepatitis B Patients Receiving Nucleotide Analogue. Dig Dis Sci 2019; 64:3630-3641. [PMID: 31280390 DOI: 10.1007/s10620-019-05717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/02/2019] [Indexed: 01/10/2023]
Abstract
AIM Renal toxicity of adefovir disoproxil (ADV) and tenofovir disoproxil fumarate (TDF) is a significant concern in chronic hepatitis B (CHB) patients. Early observational clinical data suggested that telbivudine (LdT) might have renoprotective effects. METHODS In this prospective study, consecutive CHB patients on combined lamivudine (LAM) + ADV/TDF were switched to LdT + ADV/TDF at recruitment and were followed up for 24 months. Estimated glomerular filtration rate (eGFR) was calculated with the modification of diet in renal disease equation. The effects of LdT on cell viability and expression of kidney injury or apoptotic biomarkers were investigated in cultured renal tubular epithelial cell line HK-2. RESULTS Thirty-one patients (median age 55 years, 90.3% male) were recruited (54.8% TDF: 45.2% ADV). Serum HBV DNA was undetectable at all time points. Median eGFR was 70.2 (IQR 62.6-77.9) and 81.5 (IQR 63.6-99.1) mL/min/1.73 m2 at baseline and 24 months, respectively (p < 0.001). Downstaging of chronic kidney disease was observed in eight (25.8%) patients and was more common in ADV-treated compared to TDF-treated patients (7/8 vs. 1/17, p = 0.011; OR 16, 95% CI 1.643-155.766, p = 0.017). In vitro data showed that adding LdT to ADV or TDF was associated with improved cell viability and lower expression of injury and apoptotic biomarkers compared with ADV or TDF alone. Treatment was prematurely discontinued in four(12.9%) patients due to myalgia. CONCLUSIONS Clinical and in vitro data suggest that LdT has renoprotective effects in patients on long-term ADV/TDF treatment. LdT may be considered as an adjuvant therapy in this special group of patients with renal impairment (NCT03778567).
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road 102, Pokfulam, Hong Kong
| | - Sze-Hang Liu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road 102, Pokfulam, Hong Kong
| | - Desmond Yat-Hin Yap
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road 102, Pokfulam, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road 102, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Danny Ka-Ho Wong
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road 102, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - James Fung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road 102, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tak-Mao Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road 102, Pokfulam, Hong Kong
| | - Ching-Lung Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road 102, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road 102, Pokfulam, Hong Kong. .,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
24
|
Liu X. Transporter-Mediated Drug-Drug Interactions and Their Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:241-291. [PMID: 31571167 DOI: 10.1007/978-981-13-7647-4_5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug transporters are considered to be determinants of drug disposition and effects/toxicities by affecting the absorption, distribution, and excretion of drugs. Drug transporters are generally divided into solute carrier (SLC) family and ATP binding cassette (ABC) family. Widely studied ABC family transporters include P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), and multidrug resistance proteins (MRPs). SLC family transporters related to drug transport mainly include organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug/toxin extrusions (MATEs). These transporters are often expressed in tissues related to drug disposition, such as the small intestine, liver, and kidney, implicating intestinal absorption of drugs, uptake of drugs into hepatocytes, and renal/bile excretion of drugs. Most of therapeutic drugs are their substrates or inhibitors. When they are comedicated, serious drug-drug interactions (DDIs) may occur due to alterations in intestinal absorption, hepatic uptake, or renal/bile secretion of drugs, leading to enhancement of their activities or toxicities or therapeutic failure. This chapter will illustrate transporter-mediated DDIs (including food drug interaction) in human and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
25
|
|
26
|
El Helou G, Razonable RR. Safety considerations with current and emerging antiviral therapies for cytomegalovirus infection in transplantation. Expert Opin Drug Saf 2019; 18:1017-1030. [PMID: 31478398 DOI: 10.1080/14740338.2019.1662787] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Human cytomegalovirus (HCMV) is a major contributor of morbidity and mortality, and its management is essential for the successful outcome of solid organ and hematopoietic stem cell transplantation. Areas covered: This review discusses the safety profiles of currently available and emerging antiviral drugs and the other strategies for HCMV prevention and treatment after transplantation. Expert opinion: Strategies for management of HCMV rely largely on the use of antiviral agents that inhibit viral DNA polymerase (ganciclovir/valganciclovir, foscarnet, and cidofovir/brincidofovir) and viral terminase complex (letermovir), with different types and degrees of adverse effects. An investigational agent, maribavir, exerts its anti-CMV effect through UL97 inhibition, and its safety profile is under clinical evaluation. In choosing the antiviral medication to use, it is important to consider these safety profiles in addition to overall efficacy. In addition to antiviral drugs, reduction of immunosuppression is often generally needed in the management of HCMV infection, but with a potential risk of allograft rejection or graft-versus-host disease. The use of HCMV-specific or non-specific intravenous immunoglobulins remains debated, while adoptive HCMV-specific T cell therapy remains investigational, and associated with unique set of adverse effects.
Collapse
Affiliation(s)
- Guy El Helou
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
27
|
Li T, Li J, Yang Y, Han Y, Wu D, Xiao T, Wang Y, Liu T, Zhao Y, Li Y, Dai Z, Fu X. Synthesis, pharmacological evaluation, and mechanistic study of adefovir mixed phosphonate derivatives bearing cholic acid and l-amino acid moieties for the treatment of HBV. Bioorg Med Chem 2019; 27:3707-3721. [PMID: 31301948 DOI: 10.1016/j.bmc.2019.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
The deficiency of nucleos(t)ide analogues (NAs) as anti-hepatitis B virus (HBV) drugs in clinical use is attributable to their insufficient enrichment in liver and non-target organ toxicity. We aimed to develop potent anti-HBV adefovir derivatives with hepatotrophic properties and reduced nephrotoxicity. A series of adefovir mono l-amino acids, mono cholic acid-drug conjugates were designed and synthesized, and their antiviral activity and uptake in rat primary hepatocytes and Na+-dependent taurocholate co-transporting polypeptide (NTCP)-HEK293 cells were evaluated. We isolated compound 6c as the optimal molecular candidate, with the highest antiviral activity (EC50 0.42 μmol/L, SI 1063.07) and highest cellular uptake in primary hepatocytes and NTCP-HEK293 cells. In-depth mechanistic studies demonstrated that 6c exhibited a lower toxicity in HK-2 cells when compared to adefovir dipivoxil (ADV). This is because 6c cannot be transported by the human renal organic anion transporter 1 (hOAT1). Furthermore, pharmacokinetic characterization and tissue distribution of 6c indicates it has favorable druggability and pharmacokinetic properties. Further docking studies suggested compounds with ursodeoxycholic acid and l-amino acid groups are better at binding to NTCP due to their hydrophilic properties, indicating that 6c is a potential candidate as an anti-HBV therapy and therefore merits further investigation.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Yang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Yilin Han
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Dirong Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Tao Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Yang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, PR China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China
| | - Zeqin Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, PR China.
| |
Collapse
|
28
|
Pump WC, Schulz R, Huyton T, Kunze-Schumacher H, Martens J, Hò GGT, Blasczyk R, Bade-Doeding C. Releasing the concept of HLA-allele specific peptide anchors in viral infections: A non-canonical naturally presented human cytomegalovirus-derived HLA-A*24:02 restricted peptide drives exquisite immunogenicity. HLA 2019; 94:25-38. [PMID: 30912293 PMCID: PMC6593758 DOI: 10.1111/tan.13537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 11/30/2022]
Abstract
T‐cell receptors possess the unique ability to survey and respond to their permanently modified ligands, self HLA‐I molecules bound to non‐self peptides of various origin. This highly specific immune function is impaired following hematopoietic stem cell transplantation (HSCT) for a timespan of several months needed for the maturation of T‐cells. Especially, the progression of HCMV disease in immunocompromised patients induces life‐threatening situations. Therefore, the need for a new immune system that delivers vital and potent CD8+ T‐cells carrying TCRs that recognize even one human cytomegalovirus (HCMV) peptide/HLA molecule and clear the viral infection long term becomes obvious. The transcription and translation of HCMV proteins in the lytic cycle is a precisely regulated cascade of processes, therefore, it is a highly sensitive challenge to adjust the exact time point of HCMV‐peptide recruitment over self‐peptides. We utilized soluble HLA technology in HCMV‐infected fibroblasts and sequenced naturally sHLA‐A*24:02 presented HCMV‐derived peptides. One peptide of 14 AAs length derived from the IE2 antigen induced the strongest T‐cell responses; this peptide can be detected with a low ranking score in general peptide prediction databanks. These results highlight the need for elaborate and HLA‐allele specific peptide selection.
Collapse
Affiliation(s)
- Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rebecca Schulz
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Jörg Martens
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
29
|
Gessner A, König J, Fromm MF. Clinical Aspects of Transporter-Mediated Drug-Drug Interactions. Clin Pharmacol Ther 2019; 105:1386-1394. [PMID: 30648735 DOI: 10.1002/cpt.1360] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
Drug transporters play an essential role in disposition and effects of multiple drugs. Plasma concentrations of the victim drug can be modified by drug-drug interactions occurring in enterocytes (e.g., P-glycoprotein), hepatocytes (e.g., organic anion-transporting polypeptide 1B1 (OATP1B1)), and/or renal proximal tubular cells (e.g., organic cation transporter 2 (OCT2)/multidrug and toxin extrusion 1 and 2-K (MATE1/MATE2-K)). In addition, transporter-mediated drug-drug interactions can cause altered local tissue concentrations and possibly altered effects/toxicity (e.g., in liver and kidneys). During drug development, there is now an intensive in vitro screening of new molecular entities as transporter substrates and inhibitors, followed if necessary by drug-drug interaction studies in healthy volunteers. Nevertheless, there are still unresolved issues, which will also be discussed in this review article (e.g., the clinical significance of transporter-mediated drug-drug interactions of particular relevance to the elderly who are prescribed multiple drugs, with additional impaired liver or kidney function, and the extent to which medication safety in real life could be improved by a reduction of those interactions).
Collapse
Affiliation(s)
- Arne Gessner
- 1Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg König
- 1Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- 1Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Shen H, Scialis RJ, Lehman-McKeeman L. Xenobiotic Transporters in the Kidney: Function and Role in Toxicity. Semin Nephrol 2019; 39:159-175. [DOI: 10.1016/j.semnephrol.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Roles of Renal Drug Transporter in Drug Disposition and Renal Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:341-360. [PMID: 31571169 DOI: 10.1007/978-981-13-7647-4_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kidney plays an important role in maintaining total body homeostasis and eliminating toxic xenobiotics and metabolites. Numerous drugs and their metabolites are ultimately eliminated in the urine. The reabsorption and secretion functions of the nephron are mediated by a variety of transporters located in the basolateral and luminal membranes of the tubular cells. In the past decade, many studies indicated that transporters play important roles in drug pharmacokinetics and demonstrated the impact of renal transporters on the disposition of drugs, drug-drug interactions, and nephrotoxicities. Here, we focus on several important renal transporters and their roles in drug elimination and disposition, drug-induced nephrotoxicities and potential clinical solutions.
Collapse
|
32
|
|
33
|
Bajaj P, Chowdhury SK, Yucha R, Kelly EJ, Xiao G. Emerging Kidney Models to Investigate Metabolism, Transport, and Toxicity of Drugs and Xenobiotics. Drug Metab Dispos 2018; 46:1692-1702. [PMID: 30076203 DOI: 10.1124/dmd.118.082958] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
The kidney is a major clearance organ of the body and is responsible for the elimination of many xenobiotics and prescription drugs. With its multitude of uptake and efflux transporters and metabolizing enzymes, the proximal tubule cell (PTC) in the nephron plays a key role in the disposition of xenobiotics and is also a primary site for toxicity. In this minireview, we first provide an overview of the major transporters and metabolizing enzymes in the PTCs responsible for biotransformation and disposition of drugs. Next, we discuss different cell sources that have been used to model PTCs in vitro, their pros and cons, and their characterization. As current technology is inadequate to evaluate reliably drug disposition and toxicity in the kidney, we then discuss recent advancements in kidney microphysiological systems (MPS) and the need to develop robust in vitro platforms that could be routinely used by pharmaceutical companies to screen compounds. Finally, we discuss the new and exciting field of stem cell-derived kidney models as potential cell sources for future kidney MPS. Given the push from both regulatory agencies and pharmaceutical companies to use more predictive "human-like" in vitro systems in the early stages of drug development to reduce attrition, these emerging models have the potential to be a game changer and may revolutionize how renal disposition and kidney toxicity in drug discovery are evaluated in the future.
Collapse
Affiliation(s)
- Piyush Bajaj
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| | - Swapan K Chowdhury
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| | - Robert Yucha
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| | - Edward J Kelly
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| | - Guangqing Xiao
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| |
Collapse
|
34
|
Brincidofovir (CMX001) Toxicity Associated With Epithelial Apoptosis and Crypt Drop Out in a Hematopoietic Cell Transplant Patient: Challenges in Distinguishing Drug Toxicity From GVHD. J Pediatr Hematol Oncol 2018; 40:e364-e368. [PMID: 29846280 PMCID: PMC6059994 DOI: 10.1097/mph.0000000000001227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brincidofovir (CMX001) is an oral agent with activity against double-strand DNA viruses undergoing clinical trials in immunocompromised patients. We report a patient clinically diagnosed with brincidofovir-related gastrointestinal (GI) toxicity and his histologic findings. A 2-year-old boy with medulloblastoma undergoing autologous hematopoietic cell transplantation developed adenovirus viremia 9 days posttransplant. After initial treatment with intravenous cidofovir he was started on oral brincidofovir as part of a clinical trial. He developed hematochezia, anorexia, and emesis 11 weeks later. Sigmoid colon biopsy showed marked crypt drop out, moderate epithelial apoptosis, and lamina propria edema. The pathologic diagnosis was drug-related injury versus infection. Brincidofovir toxicity was diagnosed clinically and the drug was discontinued. His GI symptoms improved in 2 weeks with supportive care and octreotide. Brincidofovir causes GI toxicity and histologically demonstrates epithelial apoptosis and crypt injury, similar to graft versus host disease and mycophenolate mofetil toxicity.
Collapse
|
35
|
Transporter-dependent cytotoxicity of antiviral drugs in primary cultures of human proximal tubular cells. Toxicology 2018; 404-405:10-24. [DOI: 10.1016/j.tox.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/10/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
|
36
|
Soo JYC, Jansen J, Masereeuw R, Little MH. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 2018; 14:378-393. [PMID: 29626199 PMCID: PMC6013592 DOI: 10.1038/s41581-018-0003-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro screens for nephrotoxicity are currently poorly predictive of toxicity in humans. Although the functional proteins that are expressed by nephron tubules and mediate drug susceptibility are well known, current in vitro cellular models poorly replicate both the morphology and the function of kidney tubules and therefore fail to demonstrate injury responses to drugs that would be nephrotoxic in vivo. Advances in protocols to enable the directed differentiation of pluripotent stem cells into multiple renal cell types and the development of microfluidic and 3D culture systems have opened a range of potential new platforms for evaluating drug nephrotoxicity. Many of the new in vitro culture systems have been characterized by the expression and function of transporters, enzymes, and other functional proteins that are expressed by the kidney and have been implicated in drug-induced renal injury. In vitro platforms that express these proteins and exhibit molecular biomarkers that have been used as readouts of injury demonstrate improved functional maturity compared with static 2D cultures and represent an opportunity to model injury to renal cell types that have hitherto received little attention. As nephrotoxicity screening platforms become more physiologically relevant, they will facilitate the development of safer drugs and improved clinical management of nephrotoxicants.
Collapse
Affiliation(s)
- Joanne Y-C Soo
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jitske Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Melissa H Little
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
37
|
Adefovir dipivoxil induced hypophosphatemic osteomalacia in chronic hepatitis B: a comparative study of Chinese and foreign case series. BMC Pharmacol Toxicol 2018; 19:23. [PMID: 29769119 PMCID: PMC5956546 DOI: 10.1186/s40360-018-0212-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adefovir dipivoxil (ADV)-induced renal tubular dysfunction and hypophosphatemic osteomalacia (HO) have been given great consideration in the past few years. However, no standard guidance is available due to a lack of powerful evidence from appropriate long-term prospective case-control studies and variations in the definition of renal adverse events. The aim of this study is to clarify clinical features of ADV-related HO in Chinese chronic hepatitis B patients with long-term ADV treatment in Chinese and non-Chinese comparative case series. METHODS Retrieval of case reports was based on Pubmed, CNKI, Wan Fang and VIP databases using the key words adefovir dipivoxil, hypophosphatemia, osteomalacia and Fanconi syndrome. We divided patients into Chinese (C group) and Foreign (F group) groups according to their nationality. Comparisons involving demographics, clinical manifestations, tests, treatment and prognosis were conducted between the two groups. RESULTS Of the patients screened, 120 Chinese patients were identified in the C group, and 32 non-Chinese patients were identified in the F group. The average age of the C group was younger than that of the F group (51.89 years ±10.96 years versus 56.47 years ±11.36 years, t = - 2.084, P = 0.039). No significant difference was found in gender (male to female, 3.29:1 versus 3:1, χ 2 = 0.039, P = 0.844). Although there was no significant difference in the duration of ADV therapy before ostalgia onset, the C group tended to develop adverse events earlier, by 2-3 years, while the F group developed adverse events at 4-5 years (Z = - 1.517, P = 0.129). Prognosis was good after adjustment of the ADV dose and supplemental administration of phosphate and calcitriol. Time to resolution of tubular dysfunction was commenced at the first month, and Chinese patients were more prone to recover in the first 3 months than non-Chinese patients (91.3% of patients in the C group versus 56.3% in the F group, Z = - 3.013, P = 0.003). CONCLUSIONS Sufficient attention is required for middle-aged males before and during exposure to long-term ADV therapy, regardless of nationality. The clinical picture, laboratory and radiograph alterations are important clues for those patients and are usually characterized by polyarthralgia, renal tubular dysfunction and mineralization defects. Implementation of an early renal tubular injury index is recommended for patients with higher risk, which would prevent further renal injury.
Collapse
|
38
|
Zou L, Stecula A, Gupta A, Prasad B, Chien HC, Yee SW, Wang L, Unadkat JD, Stahl SH, Fenner KS, Giacomini KM. Molecular Mechanisms for Species Differences in Organic Anion Transporter 1, OAT1: Implications for Renal Drug Toxicity. Mol Pharmacol 2018; 94:689-699. [PMID: 29720497 DOI: 10.1124/mol.117.111153] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Species differences in renal drug transporters continue to plague drug development with animal models failing to adequately predict renal drug toxicity. For example, adefovir, a renally excreted antiviral drug, failed clinical studies for human immunodeficiency virus due to pronounced nephrotoxicity in humans. In this study, we demonstrated that there are large species differences in the kinetics of interactions of a key class of antiviral drugs, acyclic nucleoside phosphonates (ANPs), with organic anion transporter 1 [(OAT1) SLC22A6] and identified a key amino acid residue responsible for these differences. In OAT1 stably transfected human embryonic kidney 293 cells, the Km value of tenofovir for human OAT1 (hOAT1) was significantly lower than for OAT1 orthologs from common preclinical animals, including cynomolgus monkey, mouse, rat, and dog. Chimeric and site-directed mutagenesis studies along with comparative structure modeling identified serine at position 203 (S203) in hOAT1 as a determinant of its lower Km value. Furthermore, S203 is conserved in apes, and in contrast alanine at the equivalent position is conserved in preclinical animals and Old World monkeys, the most related primates to apes. Intriguingly, transport efficiencies are significantly higher for OAT1 orthologs from apes with high serum uric acid (SUA) levels than for the orthologs from species with low serum uric acid levels. In conclusion, our data provide a molecular mechanism underlying species differences in renal accumulation of nephrotoxic ANPs and a novel insight into OAT1 transport function in primate evolution.
Collapse
Affiliation(s)
- Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Anshul Gupta
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Bhagwat Prasad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Li Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Jashvant D Unadkat
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Simone H Stahl
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Katherine S Fenner
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| |
Collapse
|
39
|
Itoh A, Sadanari H, Takemoto M, Matsubara K, Daikoku T, Murayama T. Tricin inhibits the CCL5 induction required for efficient growth of human cytomegalovirus. Microbiol Immunol 2018; 62:341-347. [PMID: 29603339 DOI: 10.1111/1348-0421.12590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
Treatment of human embryonic lung fibroblast (HEL) cells with tricin (4', 5, 7-trihydroxy-3', 5'-dimethoxyflavone) following infection with human cytomegalovirus (HCMV) reportedly significantly suppresses HCMV replication. In the present work, the mechanisms for the anti-HCMV effects of tricin in HEL cells were examined. It was found that exposure of HEL cells to tricin inhibited HCMV replication, with concomitant decreases in amounts of transcripts of the CC chemokine RANTES (CCL5)-encoding gene and in expression of the CCL5 protein. It was also found that transcripts of HCMV immediate early 1 (IE1), and HCMV UL54 (encoding DNA polymerase) and replication of HCMV was significantly lower in CCL5 gene-knockdown cells. These results suggest that the anti-HCMV activity of tricin differs from that of ganciclovir and that CCL5 is one of the chemokines involved in HCMV replication. In addition, it is possible that chemokine CCL5 is one of the targets of tricin.
Collapse
Affiliation(s)
- Akimasa Itoh
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Hidetaka Sadanari
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Masaya Takemoto
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Keiko Matsubara
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Tohru Daikoku
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Tsugiya Murayama
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| |
Collapse
|
40
|
Fujimoto KJ, Nema D, Ninomiya M, Koketsu M, Sadanari H, Takemoto M, Daikoku T, Murayama T. An in silico-designed flavone derivative, 6-fluoro-4'-hydroxy-3',5'-dimetoxyflavone, has a greater anti-human cytomegalovirus effect than ganciclovir in infected cells. Antiviral Res 2018; 154:10-16. [PMID: 29559264 DOI: 10.1016/j.antiviral.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022]
Abstract
A novel type of antiviral agent for human cytomegalovirus (HCMV) is required, because the appearance of ganciclovir (GCV) resistant viruses has been reported. Tricin (4',5,7-trihydroxy-3',5'-dimethoxyflavone) has been shown to suppress significantly HCMV replication in human embryonic lung (HEL) fibroblast cells. Recently, we revealed that the action of tricin is different from that of GCV and cyclin-dependent kinase 9 (CDK9) is one of the target proteins of tricin. These results suggested that tricin is considered as a novel type of anti-HCMV agent. However, its anti-HCMV potency is not greater than that of GCV. This study tried to develop novel compounds with much greater anti-HCMV activity than GCV. We first made modifications to tricin by introducing fluorine atom, and then performed molecular docking simulations using the designed compounds and CDK9. The calculated binding energies showed that 6F-tricin (6-fluoro-4'-hydroxy-3',5'-dimetoxyflavone) binds to CDK9 much stronger than tricin. Based on these results, 6F-tricin was synthesized, and then its anti-HCMV effect was analyzed in HEL cell cultures. As a result, 6F-tricin strongly suppressed HCMV replication in a dose-dependent manner. The anti-HCMV activity with a 50% effective concentration (EC50) was 0.126 nM, corresponding to about 1/200 and 1/400 of EC50 of GCV (27.5 nM) and tricin (54.3 nM), respectively. Moreover, 6F-tricin had no cytotoxicity against HEL cells at concentrations up to 10 μM. We further performed detailed analysis on the amino acid contributions to the binding energies and found that the strong binding affinity for 6F-tricin to CDK9 is attributed to the specific binding orientation of 6F-tricin in the ATP-binding site. These results suggest that 6F-tricin is a promising candidate for anti-HCMV drug development.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Center for Basic Education, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Daiki Nema
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hidetaka Sadanari
- Center for Basic Education, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Masaya Takemoto
- Center for Basic Education, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Tohru Daikoku
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Tsugiya Murayama
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan.
| |
Collapse
|
41
|
Sadanari H, Fujimoto KJ, Sugihara Y, Ishida T, Takemoto M, Daikoku T, Murayama T. The anti-human cytomegalovirus drug tricin inhibits cyclin-dependent kinase 9. FEBS Open Bio 2018; 8:646-654. [PMID: 29632816 PMCID: PMC5881553 DOI: 10.1002/2211-5463.12398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 11/23/2022] Open
Abstract
4′,5,7‐trihydroxy‐3′,5′‐dimethoxyflavone (tricin), derived from Sasa albo‐marginata, has been reported to suppress significantly human cytomegalovirus (HCMV) replication in human embryonic lung (HEL) fibroblast cells. However, the target protein of tricin remains unclear. This study focused on the anti‐HCMV activity of tricin in terms of its binding affinity to cyclin‐dependent kinase 9 (CDK9). A molecular docking study predicted that tricin binds well to the ATP‐binding site of CDK9. Experimental measurements then revealed that tricin inhibits the kinase activity of CDK9 and affects the phosphorylation of the carboxy‐terminal domain of RNA polymerase II. Based on these results, we conclude that CDK9 is one of the target proteins of tricin. We also found that tricin possesses anti‐HCMV activity with no cytotoxicity against HEL cells.
Collapse
Affiliation(s)
- Hidetaka Sadanari
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Kazuhiro J Fujimoto
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Yuto Sugihara
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Tomoki Ishida
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Masaya Takemoto
- Center for Basic Education Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Tohru Daikoku
- Department of Microbiology and Immunology Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| | - Tsugiya Murayama
- Department of Microbiology and Immunology Faculty of Pharmaceutical Sciences Hokuriku University Kanazawa Japan
| |
Collapse
|
42
|
Zhu S, Yang YH, Gao RW, Li R, Zou YZ, Feng L, Zhang B. Clinical features of hypophosphatemic osteomalacia induced by long-term low-dose adefovir dipivoxil. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 12:41-45. [PMID: 29343941 PMCID: PMC5747959 DOI: 10.2147/dddt.s140988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective To investigate the predictors of hypophosphatemic osteomalacia induced by adefovir dipivoxil (ADV) and to monitor for early detection. Patients and methods Hospitalized patients who were diagnosed with ADV-related hypo-phosphatemic osteomalacia were recruited and retrospectively analyzed in our hospital from January 2012 to December 2016. A telephone interview was conducted at 1, 3, 6, 9, 12, and 24 months after cessation of ADV. Results In the 8 patients enrolled in the study, the hypophosphatemic osteomalacia symptoms developed at an average of 5.14 (4–7) years since ADV treatment (10 mg/d). The average alkaline phosphatase (ALP) level was 279.50 (137–548) U/L, which was significantly higher than the normal level (45–125 U/L). The serum phosphorus level was an average of 0.59 (0.43–0.69) mmol/L, which was lower than the normal range (2.06–2.60 mmol/L). Serum calcium levels of the enrolled patients remained within normal limits. Reduced estimated glomerular filtration rate (eGFR <29 mL/min/1.73 m2) was seen in 4 cases. The clinical manifestations were mainly progressive systemic bone and joint pain, frequent fractures, trouble in walking, height reduction (4–6 cm), and so on. After cessation of ADV, symptoms like bone pain resolved gradually. Serum phosphorus level restored to normal in 4.5 months after the withdrawal of ADV. However, in 4 patients, renal function failed to return to normal in 24 months. Conclusion More attention should be paid to the duration of ADV treatment. The level of serum phosphorus and ALP, as well as renal function, should be monitored for early detection of potential adverse drug reactions.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Hui Yang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Rong-Wei Gao
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Li
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Zhen Zou
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lei Feng
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
43
|
Inhibition of human cytomegalovirus replication by tricin is associated with depressed CCL2 expression. Antiviral Res 2017; 148:15-19. [DOI: 10.1016/j.antiviral.2017.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022]
|
44
|
|
45
|
Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 2017; 116:73-91. [PMID: 28111348 DOI: 10.1016/j.addr.2017.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Renal proximal tubules are targets for toxicity due in part to the expression of transporters that mediate the secretion and reabsorption of xenobiotics. Alterations in transporter expression and/or function can enhance the accumulation of toxicants and sensitize the kidneys to injury. This can be observed when xenobiotic uptake by carrier proteins is increased or efflux of toxicants and their metabolites is reduced. Nephrotoxic chemicals include environmental contaminants (halogenated hydrocarbon solvents, the herbicide paraquat, the fungal toxin ochratoxin, and heavy metals) as well as pharmaceuticals (certain beta-lactam antibiotics, antiviral drugs, and chemotherapeutic drugs). This review explores the mechanisms by which transporters mediate the entry and exit of toxicants from renal tubule cells and influence the degree of kidney injury. Delineating how transport proteins regulate the renal accumulation of toxicants is critical for understanding the likelihood of nephrotoxicity resulting from competition for excretion or genetic polymorphisms that affect transporter function.
Collapse
|
46
|
Zhao X, Sun K, Lan Z, Song W, Cheng L, Chi W, Chen J, Huo Y, Xu L, Liu X, Deng H, Siegenthaler JA, Chen L. Tenofovir and adefovir down-regulate mitochondrial chaperone TRAP1 and succinate dehydrogenase subunit B to metabolically reprogram glucose metabolism and induce nephrotoxicity. Sci Rep 2017; 7:46344. [PMID: 28397817 PMCID: PMC5387747 DOI: 10.1038/srep46344] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/16/2017] [Indexed: 02/05/2023] Open
Abstract
Despite the therapeutic success of tenofovir (TFV) for treatment of HIV-1 infection, numerous cases of nephrotoxicity have been reported. Mitochondrial toxicity has been purported as the major target of TFV-associated renal tubulopathy but the underlying molecular mechanism remains unclear. In this report, we use metabolomics and proteomics with HK-2 cells and animal models to dissect the molecular pathways underlying nephropathy caused by TFV and its more toxic analog, adefovir (ADV). Proteomic analysis shows that mitochondrial chaperone TRAP1 and mtDNA replicating protein SSBP1 were significantly down-regulated in TFV and ADV treated HK-2 cells compared with controls. Transmission electron microscopy (TEM) revealed that TFV and ADV-treated HK-2 cells had accumulated glycogen, a phenotype that was also observed in mice treated with TFV and ADV. Analysis of the proteins in TCA cycle showed succinate dehydrogenase subunit B (SDHB) was nearly depleted in glucose oxidative phosphorylation pathway however certain enzymes in the glycolysis and glycogen synthesis pathway had elevated expression in TFV and ADV-treated HK-2 cells. These results suggest that TFV and ADV may cause mitochondrial dysfunction in renal tubular cells and reprogramming of glucose metabolism. The resulting glycogen accumulation may partially contribute to TFV and ADV induced renal dysfunction.
Collapse
Affiliation(s)
- Xinbin Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhou Lan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenxin Song
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Lili Cheng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenna Chi
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Huo
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lina Xu
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohui Liu
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Julie A. Siegenthaler
- Department of Pediatrics, Denver-Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
47
|
Tippin TK, Morrison ME, Brundage TM, Momméja-Marin H. Brincidofovir Is Not a Substrate for the Human Organic Anion Transporter 1: A Mechanistic Explanation for the Lack of Nephrotoxicity Observed in Clinical Studies. Ther Drug Monit 2016; 38:777-786. [PMID: 27851688 PMCID: PMC5113238 DOI: 10.1097/ftd.0000000000000353] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/05/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Brincidofovir (BCV) is an orally bioavailable lipid conjugate of cidofovir (CDV) with increased in vitro potency relative to CDV against all 5 families of double-stranded DNA viruses that cause human disease. After intravenous (IV) administration of CDV, the organic anion transporter 1 (OAT1) transports CDV from the blood into the renal proximal tubule epithelial cells with resulting dose-limiting nephrotoxicity. OBJECTIVE To study whether OAT1 transports BCV and to evaluate the pharmacokinetic and renal safety profile of oral BCV compared with IV CDV. METHODS The cellular uptake of BCV and its major metabolites was assessed in vitro. Renal function at baseline and during and after treatment in subjects in BCV clinical studies was examined. RESULTS In OAT1-expressing cells, uptake of BCV and its 2 major metabolites (CMX103 and CMX064) was the same as in mock-transfected control cells and was not inhibited by the OAT inhibitor probenecid. In human pharmacokinetic studies, BCV administration at therapeutic doses resulted in detection of CDV as a circulating metabolite; peak CDV plasma concentrations after oral BCV administration in humans were <1% of those observed after IV CDV administration at therapeutic doses. Analysis of renal function and adverse events from 3 BCV clinical studies in immunocompromised adult and pediatric subjects indicated little to no evidence of associated nephrotoxicity. Over 80% of subjects who switched from CDV or foscarnet to BCV experienced an improvement in renal function as measured by maximum on-treatment estimated glomerular filtration rate. CONCLUSIONS The lack of BCV uptake through OAT1, together with lower CDV concentrations after oral BCV compared with IV CDV administration, likely explains the superior renal safety profile observed in immunocompromised subjects receiving BCV compared with CDV.
Collapse
|
48
|
Lin Y, Pan F, Wang Y, Chen Z, Lin C, Yao L, Zhang X, Zhou R, Pan C. Adefovir dipivoxil-induced Fanconi syndrome and its predictive factors: A study of 28 cases. Oncol Lett 2016; 13:307-314. [PMID: 28123560 DOI: 10.3892/ol.2016.5393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to identify monitoring and prevention measures as well as predictive factors for early detection of renal toxicity associated with long-term administration of adefovir dipivoxil in order to avoid progression to Fanconi syndrome. Clinical data of 28 patients with Fanconi syndrome caused by long-term administration of adefovir dipivoxil for the treatment of chronic hepatitis B virus (HBV) infection were collected pre-and post-administration for analysis. Patients presented with fatigue, progressive systemic pain in multiple bones and joints, as well as difficulty in walking and pathological fractures in a number of severe cases. Laboratory examinations revealed hypophosphatemia, elevated serum cystatin C (Cys-C), elevated serum creatinine (SCr), reduced glomerular filtration rate (GFR), positive urinary protein, erythrocytes and glucose, as well as osteoporosis. In consequence, adefovir dipivoxil administration was stopped, and patients received concentrated divitamins, sodium phosphate syrup and calcitriol. Symptoms and abnormalities in laboratory examinations were significantly improved in all patients after 2-6 months. Therefore, serum phosphate, SCr, routine urine parameters, Cys-C and GFR should be monitored regularly in chronic HBV patients treated with adefovir dipivoxil. The following factors were identified as predictive of kidney damage and Fanconi syndrome: Age ≥40 years, living in rural areas, previous renal toxicity, estimated GFR (eGFR) <90 ml/min/1.73 m2, hypertension, diabetes, cirrhosis and duration of adefovir dipivoxil treatment exceeding 24 months. The present results indicate that timely termination of adefovir dipivoxil treatment and replacement with other antiviral agents is critical once renal impairment appears, and that it is necessary to change to other antiviral agents and prolong the interval of administration according to the eGFR level.
Collapse
Affiliation(s)
- Yong Lin
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Fan Pan
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Ziqian Chen
- Department of Medical Imaging, Fuzhou General Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Chun Lin
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Lvfeng Yao
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xin Zhang
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Rui Zhou
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Chen Pan
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
49
|
Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 2016; 6:363-373. [PMID: 27709005 PMCID: PMC5045553 DOI: 10.1016/j.apsb.2016.07.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/12/2022] Open
Abstract
The kidney is a vital organ for the elimination of therapeutic drugs and their metabolites. Renal drug transporters, which are primarily located in the renal proximal tubules, play an important role in tubular secretion and reabsorption of drug molecules in the kidney. Tubular secretion is characterized by high clearance capacities, broad substrate specificities, and distinct charge selectivity for organic cations and anions. In the past two decades, substantial progress has been made in understanding the roles of transporters in drug disposition, efficacy, toxicity and drug-drug interactions (DDIs). In the kidney, several transporters are involved in renal handling of organic cation (OC) and organic anion (OA) drugs. These transporters are increasingly recognized as the target for clinically significant DDIs. This review focuses on the functional characteristics of major human renal drug transporters and their involvement in clinically significant DDIs.
Collapse
Key Words
- ABC, ATP-binding cassette
- ATP, adenosine triphosphate
- AUC, area under the plasma concentration curve
- BBB, blood–brain barrier
- CHO, Chinese hamster ovary
- CL, plasma clearance
- CLR, renal clearance
- Cmax, maximum plasma concentration
- DDIs, drug–drug interactions
- Drug–drug interactions
- FDA, U.S. Food and Drug Administration
- GSH, glutathione
- HEK, human embryonic kidney
- IC50, half maximal inhibitory concentration
- ITC, International Transporter Consortium
- Ki, inhibitory constant
- MATE, multidrug and toxin extrusion protein
- MPP+, 1-methyl-4-phenylpyridimium
- MRP, multidrug resistance-associated protein
- MSD, membrane-spanning domain
- MW, molecular weight
- NBD, nucleotide-binding domain
- NME, new molecular entity
- NSAID, non-steroidal anti-inflammatory drugs
- Nephrotoxicity
- OA, organic anion
- OAT or Oat, organic anion transporters
- OATP or Oatp, organic anion-transporting peptide
- OC, organic cation
- OCT or Oct, organic cation transporter
- OCTN, Organic zwitterions/cation transporters
- Organic anions
- Organic cations
- P-gp, P-glycoprotein
- PAH, p-aminohippurate
- Renal drug transporters
- SLC, solute carrier
- SNP, single-nucleotide polymorphism
- TEA, tetraethylammonium
- TMD, transmembrane domain
- URAT, urate transporter
- fe, fraction of the absorbed dose excreted unchanged in urine
Collapse
|
50
|
Nieskens TTG, Wilmer MJ. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur J Pharmacol 2016; 790:46-56. [PMID: 27401035 DOI: 10.1016/j.ejphar.2016.07.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
The renal proximal tubule epithelium is responsible for active secretion of endogenous and exogenous waste products from the body and simultaneous reabsorption of vital compounds from the glomerular filtrate. The complexity of this transport machinery makes investigation of processes such as tubular drug secretion a continuous challenge for researchers. Currently available renal cell culture models often lack sufficient physiological relevance and reliability. Introducing complex biological culture systems in a 3D microfluidic design improves the physiological relevance of in vitro renal proximal tubule epithelium models. Organ-on-a-chip technology provides a promising alternative, as it allows the reconstruction of a renal tubule structure. These microfluidic systems mimic the in vivo microenvironment including multi-compartmentalization and exposure to fluid shear stress. Increasing data supports that fluid shear stress impacts the phenotype and functionality of proximal tubule cultures, for which we provide an extensive background. In this review, we discuss recent developments of kidney-on-a-chip platforms with current and future applications. The improved proximal tubule functionality using 3D microfluidic systems is placed in perspective of investigating cellular signalling that can elucidate mechanistic aberrations involved in drug-induced kidney toxicity.
Collapse
Affiliation(s)
- Tom T G Nieskens
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|