1
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Edwards A, Layton AT. Cell Volume Regulation in the Proximal Tubule of Rat Kidney : Proximal Tubule Cell Volume Regulation. Bull Math Biol 2017; 79:2512-2533. [PMID: 28900833 PMCID: PMC5660676 DOI: 10.1007/s11538-017-0338-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Abstract
We developed a dynamic model of a rat proximal convoluted tubule cell in order to investigate cell volume regulation mechanisms in this nephron segment. We examined whether regulatory volume decrease (RVD), which follows exposure to a hyposmotic peritubular solution, can be achieved solely via stimulation of basolateral K[Formula: see text] and [Formula: see text] channels and [Formula: see text]-[Formula: see text] cotransporters. We also determined whether regulatory volume increase (RVI), which follows exposure to a hyperosmotic peritubular solution under certain conditions, may be accomplished by activating basolateral [Formula: see text]/H[Formula: see text] exchangers. Model predictions were in good agreement with experimental observations in mouse proximal tubule cells assuming that a 10% increase in cell volume induces a fourfold increase in the expression of basolateral K[Formula: see text] and [Formula: see text] channels and [Formula: see text]-[Formula: see text] cotransporters. Our results also suggest that in response to a hyposmotic challenge and subsequent cell swelling, [Formula: see text]-[Formula: see text] cotransporters are more efficient than basolateral K[Formula: see text] and [Formula: see text] channels at lowering intracellular osmolality and reducing cell volume. Moreover, both RVD and RVI are predicted to stabilize net transcellular [Formula: see text] reabsorption, that is, to limit the net [Formula: see text] flux decrease during a hyposmotic challenge or the net [Formula: see text] flux increase during a hyperosmotic challenge.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Anita T Layton
- Departments of Mathematics and Biomedical Engineering, Duke University, Durham, NC, 27708-0320, USA
| |
Collapse
|
3
|
Weinstein AM, Sontag ED. Modeling proximal tubule cell homeostasis: tracking changes in luminal flow. Bull Math Biol 2009; 71:1285-322. [PMID: 19280266 DOI: 10.1007/s11538-009-9402-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 01/15/2009] [Indexed: 11/29/2022]
Abstract
During normal kidney function, there are routinely wide swings in proximal tubule fluid flow and proportional changes in Na(+) reabsorption across tubule epithelial cells. This "glomerulotubular balance" occurs in the absence of any substantial change in cell volume, and is thus a challenge to coordinate luminal membrane solute entry with peritubular membrane solute exit. In this work, linear optimal control theory is applied to generate a configuration of regulated transporters that could achieve this result. A previously developed model of rat proximal tubule epithelium is linearized about a physiologic reference condition; the approximate linear system is recast as a dynamical system; and a Riccati equation is solved to yield the optimal linear feedback that stabilizes Na(+) flux, cell volume, and cell pH. The first observation is that optimal feedback control is largely consigned to three physiologic variables, cell volume, cell electrical potential, and lateral intercellular hydrostatic pressure. Parameter modulation by cell volume stabilizes cell volume; parameter modulation by electrical potential or interspace pressure act to stabilize Na(+) flux and cell pH. This feedback control is utilized in a tracking problem, in which reabsorptive Na(+) flux varies over a factor of two, in order to represent a substantial excursion of glomerulotubular balance. The resulting control parameters consist of two terms, an autonomous term and a feedback term, and both terms include transporters on both luminal and peritubular cell membranes. Overall, the increase in Na(+) flux is achieved with upregulation of luminal Na(+)/H(+) exchange and Na(+)-glucose cotransport, with increased peritubular Na(+)-3HCO(3)(-) and K(+)-Cl(-) cotransport, and with increased Na(+), K(+)-ATPase activity. The configuration of activated transporters emerges as a testable hypothesis of the molecular basis for glomerulotubular balance. It is suggested that the autonomous control component at each cell membrane could represent the cytoskeletal effects of luminal flow.
Collapse
Affiliation(s)
- Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
4
|
Davies SL, Brown PD, Best L. Glucose-induced swelling in rat pancreatic alpha-cells. Mol Cell Endocrinol 2007; 264:61-7. [PMID: 17112656 DOI: 10.1016/j.mce.2006.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 07/31/2006] [Accepted: 10/05/2006] [Indexed: 11/23/2022]
Abstract
Pancreatic beta-cells increase in volume when exposed to elevated concentrations of extracellular glucose. This study has examined the effects of glucose on the volumes of pancreatic alpha-cells, which like beta-cells are regulated by glucose, and intestinal epithelial Caco-2 cells which are unresponsive to glucose. Cell volume changes were monitored by a video-imaging method. Increasing the extracellular glucose concentration caused a concentration-dependent increase in alpha-cell volume over the range 1-20mM. Glucose-induced swelling was not, however, observed in Caco-2 cells. The glucose-induced swelling in both alpha- and beta-cells was abolished by 0.5mM phloretin, an inhibitor of the GLUT proteins, indicating that GLUT mediated glucose transport is a pre-requisite for swelling. Glucose metabolism also appears to be essential, as islet cell swelling was not observed with 16 mM 3-O-methyl glucose. These data suggest that glucose-induced swelling may be a property exclusive to glucose-regulated cells.
Collapse
Affiliation(s)
- Sarah L Davies
- Faculty of Life Sciences, University of Manchester, 2nd Floor Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | | | | |
Collapse
|
5
|
Weinstein AM, Weinbaum S, Duan Y, Du Z, Yan Q, Wang T. Flow-dependent transport in a mathematical model of rat proximal tubule. Am J Physiol Renal Physiol 2007; 292:F1164-81. [PMID: 17213461 DOI: 10.1152/ajprenal.00392.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mathematical model of rat proximal tubule has been extended to include calculation of microvillous torque and to incorporate torque-dependent solute transport in a compliant tubule. The torque calculation follows that of Du Z, Yan Q, Duan Y, Weinbaum S, Weinstein AM, and Wang T (Am J Physiol 290: F289-F296, 2006). In the model calculations, torque-dependent scaling of luminal membrane transporter density [either as an ensemble or just type 3 Na(+)/H(+) exchanger (NHE3) alone] had a relatively small impact on overall Na(+) reabsorption and could produce a lethal derangement of cell volume; coordinated regulation of luminal and peritubular transporters was required to represent the overall impact of luminal flow on Na(+) reabsorption. When the magnitude of torque-dependent Na(+) reabsorption in the model agrees with that observed in mouse proximal tubules, the model tubule shows nearly perfect perfusion-absorption balance at high luminal perfusion rates, but enhanced sensitivity of reabsorption at low flow. With a slightly lower coefficient for torque-sensitive transporter insertion, perfusion-absorption balance in the model tubule is closer to observations in the rat over a broader range of inlet flows. In simulation of hyperglycemia, torque-dependent transport attenuated the diuretic effect and brought the model tubule into closer agreement with experimental observation in the rat. The model was also extended to represent finite rates of hydration and dehydration of CO(2) and H(2)CO(3). With carbonic anhydrase inhibition, torque-dependent transport blunted the diuretic effect and enhanced the shift from paracellular to transcellular NaCl reabsorption. The new features of this model tubule are an important step toward simulation of glomerulotubular balance.
Collapse
Affiliation(s)
- Alan M Weinstein
- Dept. of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Ascorbic acid and dehydroascorbic acid (DHAA, oxidized vitamin C) are dietary sources of vitamin C in humans. Both nutrients are absorbed from the lumen of the intestine and renal tubules by, respectively, enterocytes and renal epithelial cells. Subsequently vitamin C circulates in the blood and enters all of the other cells of the body. Concerning flux across the plasma membrane, simple diffusion of ascorbic acid plays only a small or negligible role. More important are specific mechanisms of transport and metabolism that concentrate vitamin C intracellularly to enhance its function as an enzyme cofactor and antioxidant. The known transport mechanisms are facilitated diffusion of DHAA through glucose-sensitive and -insensitive transporters, facilitated diffusion of ascorbate through channels, exocytosis of ascorbate in secretory vesicles, and secondary active transport of ascorbate through the sodium-dependent vitamin C transporters SVCT1 and SVCT2 proteins that are encoded by the genes Slc23a1 and Slc23a2, respectively. Evidence is reviewed indicating that these transport pathways are regulated under physiological conditions and altered by aging and disease.
Collapse
Affiliation(s)
- John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York 14214-3079, USA.
| |
Collapse
|
7
|
Lionetto MG, Giordano ME, De Nuccio F, Nicolardi G, Hoffmann EK, Schettino T. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium. ACTA ACUST UNITED AC 2005; 208:749-60. [PMID: 15695766 DOI: 10.1242/jeb.01440] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Control of cell volume is a fundamental and highly conserved physiological mechanism, essential for survival under varying environmental and metabolic conditions. Epithelia (such as intestine, renal tubule, gallbladder and gills) are tissues physiologically exposed to osmotic stress. Therefore, the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium, when symmetrically bathed with Ringer solution, develops a net Cl- current giving rise to a negative transepithelial potential at the basolateral side of the epithelium. The eel intestinal epithelium responded to a hypotonic challenge with a biphasic decrease in the transepithelial voltage (V(te)) and the short circuit current (I(sc)). This electrophysiological response correlated with a regulatory volume decrease (RVD) response, recorded by morphometrical measurement of the epithelium height. Changes in the transepithelial resistance were also observed following the hypotonicity exposure. The electrogenic V(te) and I(sc) responses to hypotonicity resulted from the activation of different K+ and anion conductive pathways on the apical and basolateral membranes of the epithelium: (a) iberiotoxin-sensitive K+ channels on the apical and basolateral membrane, (b) apamin-sensitive K+ channels mainly on the basolateral membrane, (c) DIDS-sensitive anion channels on the apical membrane. The functional integrity of the basal Cl- conductive pathway on the basolateral membrane is also required. The electrophysiological response to hypotonic stress was completely abolished by Ca2+ removal from the Ringer perfusing solution, but was not affected by depletion of intracellular Ca2+ stores by thapsigargin.
Collapse
Affiliation(s)
- M G Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Lecce, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Dehydroascorbic acid (DHA) is abundant in the human diet and also is generated from vitamin C (ascorbic acid, AA) in the lumen of the gastrointestinal tract. DHA is absorbed from the lumen of the small intestine and reduced to AA, which subsequently circulates in the blood. Utilization of AA as an antioxidant and enzyme cofactor causes its oxidation to DHA in extracellular fluid and cells. DHA has an important role in many cell types because it can be used to regenerate AA. Both physiological (e.g. insulin, insulin-like growth factor I, cyclic AMP) and pathological (e.g. oxidative stress, diabetes, sepsis) factors alter the transport and metabolic mechanisms responsible for this DHA recycling.
Collapse
Affiliation(s)
- John X Wilson
- Department of Physiology, Faculty of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1.
| |
Collapse
|
9
|
Dubinsky WP, Mayorga-Wark O, Schultz SG. Potassium channels in basolateral membrane vesicles from necturus enterocytes: stretch and ATP sensitivity. Am J Physiol Cell Physiol 2000; 279:C634-8. [PMID: 10942713 DOI: 10.1152/ajpcell.2000.279.3.c634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that ATP-inhibitable K(+) channels, in vesicles derived from the basolateral membrane of Necturus maculosus small intestinal cells, exhibit volume regulatory responses that resemble those found in the intact tissue after exposure to anisotonic solutions. We now report that increases in K(+) channel activity can also be elicited by exposure of these vesicles to isotonic solutions containing glucose or alanine that equilibrate across these membranes. We also demonstrate that swelling after exposure to a hypotonic solution or an isotonic solution containing alanine or glucose reduces inhibition of channel activity by ATP and that this finding cannot be simply attributed to dilution of intravesicular ATP. We conclude that ATP-sensitive, stretch-activated K(+) channels may be responsible for the well-established increase in basolateral membrane K(+) conductance of Necturus small intestinal cells after the addition of sugars or amino acids to the solution perfusing the mucosal surface, and we propose that increases in cell volume, resulting in membrane stretch, decreases the sensitivity of these channels to ATP.
Collapse
Affiliation(s)
- W P Dubinsky
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77225, USA
| | | | | |
Collapse
|
10
|
Jensen LJ, Stuart-Tilley AK, Peters LL, Lux SE, Alper SL, Breton S. Immunolocalization of AE2 anion exchanger in rat and mouse epididymis. Biol Reprod 1999; 61:973-80. [PMID: 10491632 DOI: 10.1095/biolreprod61.4.973] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A low-bicarbonate concentration and an acidic pH in the luminal fluid of the epididymis and vas deferens are important for sperm maturation. These factors help maintain mature sperm in an immotile but viable state during storage in the cauda epididymidis and vas deferens. Two proton extrusion mechanisms, an Na(+)/H(+) exchanger and an H(+)ATPase, have been proposed to be involved in this luminal acidification process. The Na(+)/H(+) exchanger has not yet been localized in situ, but we have reported that H(+)ATPase is expressed on the apical membrane of apical (or narrow) and clear cells of the epididymis. These cells are enriched in carbonic anhydrase II, indicating the involvement of bicarbonate in the acidification process and suggesting that the epididymis is a site of bicarbonate reabsorption. Previous unsuccessful attempts to localize the Cl/HCO(3) anion exchanger AE1 in rat epididymis did not investigate other anion exchanger (AE) isoforms. In this report, we used a recently described SDS antigen unmasking treatment to localize the Cl/HCO(3) exchanger AE2 in rat and mouse epididymis. AE2 is highly expressed in the initial segment, intermediate zone, and caput epididymidis, where it is located on the basolateral membrane of epithelial cells. The cauda epididymidis and vas deferens also contain basolateral AE2, but in lower amounts. The identity of the AE2 protein was further confirmed by the observation that basolateral AE2 expression was unaltered in the epididymis of AE1-knockout mice. Basolateral AE2 may participate in bicarbonate reabsorption and luminal acidification, and/or may be involved in intracellular pH homeostasis of epithelial cells of the male reproductive tract.
Collapse
Affiliation(s)
- L J Jensen
- Renal Unit and Program in Membrane Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
11
|
Dubinsky WP, Mayorga-Wark O, Schultz SG. Volume regulatory responses of basolateral membrane vesicles from Necturus enterocytes: role of the cytoskeleton. Proc Natl Acad Sci U S A 1999; 96:9421-6. [PMID: 10430958 PMCID: PMC17798 DOI: 10.1073/pnas.96.16.9421] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1999] [Accepted: 05/21/1999] [Indexed: 11/18/2022] Open
Abstract
Previous studies from this laboratory have demonstrated that basolateral membrane vesicles isolated from Necturus maculosus small intestinal epithelial cells possess a K(+) channel that is inhibited by ATP. In the present studies, we demonstrate that these vesicles, which are essentially devoid of soluble cytoplasmic contaminants, exhibit volume regulatory responses that parallel those of intact epithelial cells. Thus, suspension of these vesicles in a solution that is hypotonic to the intravesicular solution increases channel activity whereas suspension in a solution that is hypertonic to the intravesicular solution decreases, and may abolish, channel activity. These volume regulatory responses appear to be mediated by the same K(ATP) channel and depend on an intact actin cytoskeletal network. The responses to both hypotonic and hypertonic challenge are abolished by cytochalasin D or by incubating the vesicles under conditions that are known to depolymerize actin. Phalloidin, which is known to stabilize actin filaments, partially prevents the action of cytochalasin D. Thus, the present results indicate that the K(ATP) channel activity of basolateral membrane vesicles from Necturus basolateral membranes respond to hypo- and hypertonic challenge monotonically around an isotonic "set point" and that these responses depend on an intact actin cytoskeleton.
Collapse
Affiliation(s)
- W P Dubinsky
- Department of Integrative Biology, Pharmacology and Physiology, University of Texas Medical School, P.O. Box 20708, Houston, TX 77265, USA
| | | | | |
Collapse
|
12
|
Noulin JF, Brochiero E, Lapointe JY, Laprade R. Two types of K(+) channels at the basolateral membrane of proximal tubule: inhibitory effect of taurine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F290-7. [PMID: 10444584 DOI: 10.1152/ajprenal.1999.277.2.f290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell-attached configuration of the patch-clamp technique was used to investigate the effects of taurine on the basolateral potassium channels of rabbit proximal convoluted tubule. In the absence of taurine, the previously reported ATP-blockable channel, K(ATP), was observed in 51% of patches. It is characterized by an inwardly rectifying current-voltage curve with an inward slope conductance of 49 +/- 5 pS (n = 15) and an outward slope conductance of 13 +/- 6 pS (n = 15). The K(ATP) channel open probability (P(o)) is low, 0.15 +/- 0.06 (n = 15) at a -V(p) = -100 mV (V(p) is the pipette potential), and increases slightly with depolarization. The gating kinetics are characterized by one open time constant (tau(o) = 5.0 +/- 1.9 ms, n = 6) and two closed time constants (tau(C1) = 5. 2 +/- 1.5 ms, tau(C2) = 140 +/- 40 ms; n = 6). In 34% of patches, a second type of potassium channel, sK, with distinct properties was recorded. Its current-voltage curve is characterized by a sigmoidal shape, with an inward slope conductance of 12 +/- 2 pS (n = 4). Its P(o) is voltage independent and averages 0.67 +/- 0.03 (n = 4) at -V(p) = -80 mV. Both its open time and closed time distributions are described by a single time constant (tau(o) = 96 +/- 19 ms, tau(C) = 10.5 +/- 3.6 ms; n = 4). Extracellular perfusion of 40 mM taurine fails to affect sK channels, whereas K(ATP) channel P(o) decreases by 75% (from 0.17 +/- 0.06 to 0.04 +/- 0.02, n = 7, P < 0.05). In conclusion, the absolute basolateral potassium conductance of rabbit proximal tubules is the resulting combination of, at least, two types of potassium channels of roughly equal importance: a high-conductance low-open probability K(ATP) channel and a low-conductance high-open probability sK channel. The previously described decrease in the basolateral absolute potassium conductance by taurine is, however, mediated by a single type of K channel: the ATP-blockable K channel.
Collapse
Affiliation(s)
- J F Noulin
- Groupe de Recherche en Transport Membranaire, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | |
Collapse
|
13
|
Jensen LJ, Schmitt BM, Berger UV, Nsumu NN, Boron WF, Hediger MA, Brown D, Breton S. Localization of sodium bicarbonate cotransporter (NBC) protein and messenger ribonucleic acid in rat epididymis. Biol Reprod 1999; 60:573-9. [PMID: 10026101 DOI: 10.1095/biolreprod60.3.573] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
An acidic environment is important for sperm maturation in the epididymis and also helps to maintain mature sperm in an immotile state during storage in this organ. Both an Na+/H+ exchanger and an H+ATPase have been implicated in this process. The H+ATPase is concentrated in specialized apical (and/or narrow) and clear cells of the epididymis, while the Na+/H+ exchanger has not yet been localized in situ. As in other proton-secreting epithelia, bicarbonate transport occurs in the epididymis, where it is implicated in luminal acidification. In this study we used an antibody raised against a fusion protein (maltose-binding protein: MBP-NBC-5) from the C-terminus of the recently cloned rat kidney Na+/HCO3- cotransporter (NBC) to localize this protein in the epididymis and vas deferens of the rat. The distribution of the respective mRNA was mapped by in situ hybridization. NBC message was strongly expressed in the initial segment and the intermediate zone of the epididymis, and the NBC-5 antibody gave a strong basolateral staining in both principal cells and apical/narrow cells in this region. Western blotting revealed a single band at about 160 kDa in the epididymis. The intensity of staining as well as mRNA levels decreased in the cauda epididymidis and in the vas deferens, where only weak staining was seen. Basolateral NBC may function in parallel with apical proton secretion to regulate luminal acidification and/or bicarbonate reabsorption in the excurrent duct system.
Collapse
Affiliation(s)
- L J Jensen
- Renal Unit and Program in Membrane Biology, Massachusetts General Hospital, Boston, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ji HL, Fuller CM, Benos DJ. Osmotic pressure regulates alpha beta gamma-rENaC expressed in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1182-90. [PMID: 9814964 DOI: 10.1152/ajpcell.1998.275.5.c1182] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothesis that amiloride-sensitive Na+ channels (ENaC) are involved in cell volume regulation was tested. Anisosmotic ND-20 media (ranging from 70 to 450 mosM) were used to superfuse Xenopus oocytes expressing alpha beta gamma-rat ENaC (alpha beta gamma-rENaC). Whole cell currents were reversibly dependent on external osmolarity. Under conditions of swelling (70 mosM) or shrinkage (450 mosM), current amplitude decreased and increased, respectively. In contrast, there was no change in current amplitude of H2O-injected oocytes to the above osmotic insults. Currents recorded from alpha beta gamma-rENaC-injected oocytes were not sensitive to external Cl- concentration or to the K+ channel inhibitor BaCl2. They were sensitive to amiloride. The concentration of amiloride necessary to inhibit one-half of the maximal rENaC current expressed in oocytes (Ki; apparent dissociation constant) decreased in swollen cells and increased in shrunken oocytes. The osmotic pressure-induced Na+ currents showed properties similar to those of stretch-activated channels, including inhibition by Gd3+ and La3+, and decreased selectivity for Na+. alpha beta gamma-rENaC-expressing oocytes maintained a nearly constant cell volume in hypertonic ND-20. The present study is the first demonstration that alpha beta gamma-rENaC heterologously expressed in Xenopus oocytes may contribute to oocyte volume regulation following shrinkage.
Collapse
Affiliation(s)
- H L Ji
- Department of Physiology and Biophysics, University of Alabama, Birmingham, Alabama 35294-0005, USA
| | | | | |
Collapse
|
15
|
Breton S, Hammar K, Smith PJ, Brown D. Proton secretion in the male reproductive tract: involvement of Cl--independent HCO-3 transport. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1134-42. [PMID: 9755067 DOI: 10.1152/ajpcell.1998.275.4.c1134] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lumen of the epididymis is the site where spermatozoa undergo their final maturation and acquire the capacity to become motile. An acidic luminal fluid is required for the maintenance of sperm quiescence and for the prevention of premature activation of acrosomal enzymes during their storage in the cauda epididymis and vas deferens. We have previously demonstrated that a vacuolar H+-ATPase [proton pump (PP)] is present in the apical pole of apical and narrow cells in the caput epididymis and of clear cells in the corpus and cauda epididymis and that this PP is responsible for the majority of proton secretion in the proximal vas deferens. We now show that PP-rich cells in the vas deferens express a high level of carbonic anhydrase type II (CAII) and that acetazolamide markedly inhibits the rate of proton secretion by 46.2 +/- 6.1%. The rate of acidification was independent of Cl- and was strongly inhibited by SITS under both normal and Cl--free conditions (50.6 +/- 5.0 and 57. 5 +/- 6.0%, respectively). In the presence of Cl-, diphenylamine-2-carboxylate (DPC) had no effect, whereas SITS inhibited proton secretion by 63.7 +/- 11.3% when applied together with DPC. In Cl--free solution, DPC markedly inhibited proton efflux by 45.1 +/- 7.6%, SITS produced an additional inhibition of 18.2 +/- 6.6%, and bafilomycin had no additive effect. In conclusion, we propose that CAII plays a major role in proton secretion by the proximal vas deferens. Acidification does not require the presence of Cl-, but DPC-sensitive Cl- channels might contribute to basolateral extrusion of HCO-3 under Cl--free conditions. The inhibition by SITS observed under both normal and Cl--free conditions indicates that a Cl-/HCO-3 exchanger is not involved and that an alternative HCO-3 transporter participates in proton secretion in the proximal vas deferens.
Collapse
Affiliation(s)
- S Breton
- Renal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
16
|
Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998; 78:247-306. [PMID: 9457175 DOI: 10.1152/physrev.1998.78.1.247] [Citation(s) in RCA: 1275] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To survive, cells have to avoid excessive alterations of cell volume that jeopardize structural integrity and constancy of intracellular milieu. The function of cellular proteins seems specifically sensitive to dilution and concentration, determining the extent of macromolecular crowding. Even at constant extracellular osmolarity, volume constancy of any mammalian cell is permanently challenged by transport of osmotically active substances across the cell membrane and formation or disappearance of cellular osmolarity by metabolism. Thus cell volume constancy requires the continued operation of cell volume regulatory mechanisms, including ion transport across the cell membrane as well as accumulation or disposal of organic osmolytes and metabolites. The various cell volume regulatory mechanisms are triggered by a multitude of intracellular signaling events including alterations of cell membrane potential and of intracellular ion composition, various second messenger cascades, phosphorylation of diverse target proteins, and altered gene expression. Hormones and mediators have been shown to exploit the volume regulatory machinery to exert their effects. Thus cell volume may be considered a second message in the transmission of hormonal signals. Accordingly, alterations of cell volume and volume regulatory mechanisms participate in a wide variety of cellular functions including epithelial transport, metabolism, excitation, hormone release, migration, cell proliferation, and cell death.
Collapse
Affiliation(s)
- F Lang
- Institute of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|